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Traditional computer forensics and /or malware detection methods are generally implemented
at the operating system (OS) or the hypervisor level, which benefits from abundant software
semantics and implementation flexibility. Nevertheless, the data logging and monitoring sys-
tems involved in these methods are vulnerable to spoofing attacks at the same level, which
undermine their effectiveness. In this dissertation, the hardware-based methodologies are
proposed to perform workload forensics and/or malware detection in microprocessors. In
contrast to the software-based counterparts, a hardware-based implementation ensures the
immunity to software tampering. Specifically, a generic architecture is introduced which a
hardware-based forensic analysis or a malware detection method needs to follow, as well
as the various architecture-level information which could potentially be harnessed to ensure
system security and/or integrity. To illustrate the proposed concept, two incarnations, i.e.,
hardware-based workload forensics and hardware-based rootkit detection are present. Ex-
perimental results corroborate that even a low-cost hardware implementation can facilitate
highly successful forensics analysis and/or malware detection, while taking advantage of its

innate immunity to software-based attacks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the last few decades, the prevalence of electronic devices has resulted in rapidly in-
creasing amounts of private/sensitive information, such as personal details or trade secrets,
being stored, processed and exchanged in electronic form. Unfortunately but inevitably, this
has also lead to the emergence of hundreds of millions of malicious software [32], or malware,
which seek to interfere with the underlying computer systems and to steal or disrupt such
information, in order to benefit from such illegitimate access. As a result, developing defense
mechanisms against these threats becomes indispensable. Generally speaking, implementa-
tion of such defense mechanisms can branch into computer forensics and malware detection.
The former aims at performing retroactive investigations to reconstruct past events while
the latter aims at detecting and/or preventing the execution of potential threats.

Most state-of-the-art computer forensics and malware detection methods are software-
based, i.e., developed at OS-level or hypervisor-level. OS-level methods benefit from semantic-
rich information, e.g., process 1D, file system objects, etc., as well as flexible deployment.
Nevertheless, they are susceptible to software attacks launched from the same privilege do-
main. To address this limitation, hypervisor-level methods were proposed, since hypervisors
operate with higher privileges. Unfortunately, the hypervisor itself can be the attack target,
as several vulnerabilities and intrusion methods have been identified [39]. Consequently,
software-based detection approaches may suffer the risk of corruption of the logged data or

even disabling of the detection system.



1.2 Contribution

To address the aforementioned limitation, in this dissertation, a hardware-based framework is
proposed to perform computer forensics and malware detection. Specifically, this framework
relies exclusively on data collected directly through the hardware, without the intervention of
a hypervisor or an OS, whereby the logged information may be compromised. Accordingly,
traces obtained from hardware are expected to be immune to software-based tampering. On
the other hand, a hardware-based solution requires circuitry addition and modification in the
microprocessor for identifying, extracting, and logging the relevant information. Therefore,
judicious selection of information sufficient for fulfilling the targeted task becomes crucial.
To this end, the proposed framework leverages architecture-level events, which are related to
program execution in the OS, in order to perform the hardware-based defense with low cost.
In this dissertation, I present several applications in both computer forensics and malware

detection with various implementations, to illustrate the proposed idea.

1.3 Dissertation Organization

The remainder of the dissertation is structured as follows. Chapter [2| briefly discusses the
related work. A generic architecture of the proposed hardware-based methodology as well as
its potential design challenges are introduced in Chapter[3] Two incarnations, which perform
hardware-based workload forensics and hardware-based rootkit detection, are briefly present
to illustrate the proposed concept in Chapter 4] and Chapter [3], respectively. Chapter [

summarizes the research and discusses the future work.



CHAPTER 2

LITERATURE REVIEW

The state-of-the-art in forensic analysis and malware detection methods are discussed in this
chapter, which can be categorized into OS-level approaches and hypervisor-level approaches.
Within each category, existing methods can be further divided into data-centric and program-

centric, depending on the methodology employed in these methods.

2.1 OS-level approaches

OS-level approaches generally benefit from the semantic-rich information. Data-centric ap-
proaches in this category mainly focus on performing signature-based analysis to verify the
integrity of objects of interest for forensic analysis or malware detection. Various commercial
computer forensic products fall into dis paradigm. For example, EnCase creates images for
disk data to enable data recovery and/or to ensure data integrity. Similar products include
FTK and Registry Recon [22] 2, 5]. On the other hand, detecting malware through Control
Flow Integrity (CFT), which seeks to identify illegitimate redirection of program control flow,
has been proposed as a promising defense against control flow hijacking attacks of OS ker-
nel services [15, [7]. Alternatively, program-centric approaches model the program behavior
based on information related to the program execution flow, e.g., system call sequence, to
perform further analysis. A large body of work on intrusion detection follows this paradigm
[30, 46], [@]. In general, these methods rely solely on analysis of system call sequences. An
interesting extension is introduced in [35], which focuses on a subset of system calls that are
deemed to be most informative. Clustering of system call arguments is also employed in order
to better understand how it has been invoked by the operating system. In another incarna-
tion, called Accessminer, further information such as timestamps, return values, etc., is used

to model how benign programs access OS resources (e.g., files and registry entries), so that



malware-induced suspicious behavior can be better distinguished from normal functionality

133].

2.2 Hypervisor-level approaches

Hypervisor-level approaches benefit from the inherently higher security offered by virtual-
ization and isolation, as mentioned in Chapter [I} Nevertheless, these approaches suffer from
the semantic gap problem. Specifically, while methodologies similar to those introduced at
the OS-level can be applied at the hypervisor-level, we first need to interpret the information
collected at the hypervisor level and bridge the semantic gap by linking this information to
tangible OS-level objects. To achieve this, architecture-specific hardware conventions are
typically relied upon. For instance, Antfarm uses the CR3 register available in the x86 ar-
chitecture in order to identify process creation, switching and termination [26]. Once the
semantic gap is bridged, program-centric intrusion detection methods similar to the ones
developed at the OS-level may be applied. For example, the system call number/sequence
can be extracted from the instruction flow and specific registers (rather than from a software
tracing tool, such as strace), in order to perform behavior-based modeling and analysis
[21], [40]. Data-centric methods may also be devised. Methods along this direction monitor
the critical area in kernel memory (e.g., system call table, kernel text, etc.) in order to
prevent malicious changes therein [36]. Such methods even go to a lower layer, to check
whether contents on the disk and its image in main memory match [31], [34]. Nevertheless,
they still rely on OS-level information (e.g., system.map) to locate which part is critical to

keep their eyes on [34].



CHAPTER 3

HARDWARE-BASED DEFENSE METHODOLOGY
3.1 System Design

The generic design of the proposed hardware-based methodology for forensics analysis or
malware detection, as shown in Figure involves three dimensions: (1) designing the
system architecture of the approaches, which determines how data should be collected, pro-
cessed, and analyzed, (2) selecting objects of interest according to the specific objective, and
(3) selecting appropriate analysis methods to process the collected data for the corresponding
purpose. More specifically, we evaluate several options corresponding to different application

scenarios in each dimension, which will be discussed in detail in following sections.

3.1.1 System Architecture

The system of the proposed hardware-based defense solution consists of two main compo-
nents, namely a data logging component and a data analysis component. The data logging
component monitors the architecture state of the underlying microprocessor and collects
data of interest exclusively from the hardware, which has to be implemented in hardware,
integrated with the microprocessor. Unlike software-based approaches, in this way, there
exists no physical pathway for the OS, hypervisor, or any application running on the system
to interfere with the logged data, ensuring resistance to software tampering.

The data analysis component, on the other hand, is responsible for performing specific
analyses on the logged data, while its actual implementation depends upon the type of defense
mechanism to be employed. Unlike the data logging component, the analysis component can
be performed either in the hardware, to enable on-line functionalities for prompt response,
or in a trusted software environment, to perform off-line analysis with flexibility. Figure

illustrates the generic system architecture.
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3.1.2 Object of Interest

Depending on the objective, a defense methods can be categorized into data-centric or
program-centric. Data-centric methods generally focus on the integrity of a piece of spe-
cific data in order to investigate whether any unauthorized modification occurs. Given the
nature of malicious software, popular objects of interest in this category include kernel im-
age, kernel service table, control flow of kernel service, network channel, etc. This option
is generally employed in the scenarios that invariants (e.g., rule of execution, static code
behavior, network protocol, etc.) must be maintained and a complete set of the golden ref-
erences is available. Moreover, It tends to benefit from a light implementation overhead due
to the simple comparison.

Program-centric methods, on the other hand, model the expected behavior of a program
in order to identify what program it actually is or whether it is malicious. The OS-level ab-

straction of a program, i.e., process and its dynamic execution flow, are the common objects
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of interest in this category. This option is preferred in the more complicated scenarios that
a complete set of golden reference is unachievable and thus, a straightforward comparison
cannot be applied. For example, the complete set of program control flow is deemed to be
unpredictable statically since some of the program execution path depends on its dynamic
input arguments. Accordingly, a statistical model needs to be involved in order to evaluate
the program behavior and draw conclusion with certain level of confidence (e.g., in terms of
probability). Nevertheless, this option, compared to its former counterpart, definitely incurs

more implementation overhead.

3.1.3 Analysis Methods

Similarly, the analysis methods employed herein fall into either signature-based methods or

behavior-based methods. Signature-based methods generate checksums over their objects of



interest, which can be used as a golden reference for integrity checking or as a description of
the expected behaviors. These methods benefit from their simplicity of implementation and
may work well with those objects whose execution is fixed or infrequently changed. Given
the complexity of program execution, however, behavior-based methods are more favorable
when the dynamic behavior of a program has to be learned. These methods aim at modeling
program behavior dynamically based on a number of pre-defined features. In order to allow
enough flexibility to account for program execution variation and, at the same time, be able
to distinguish benign from malicious program behavior, machine learning algorithms and
statistical analysis are typically employed.

To conclude, a hardware-based approach for forensics analysis or malware detection can
be constructed through combination of these three dimensions, i.e., off-line or on-line, data-

centric or program-centric, signature-based or behavior-based.



CHAPTER 4

HARDWARE-BASED WORKLOAD FORENSICY

In this chapter, the feasibility of workload forensics using hardware-based methodologies is
evaluated. Specifically, two incarnations of off-line workload forensics based on spatial fea-
tures and temporal features are introduced, which involves hardware-software co-design while
an on-line workload forensics solution is proposed, which potentially benefits the application

scenario of identifying workloads in real time.

4.1 Off-line Workload Forensics using Spatial Features

4.1.1 System Overview

In this work, we experiment with one instantiation of hardware-based workload forensics,
whose actual implementation follows an off-line system architecture, i.e., performing the data
logging in hardware while analyzing collected data in software. Specifically, we explore the
possibility of reconstructing workload at the granularity of a process, while relying solely on
information available through monitoring the TLB and statistically processing this informa-
tion. Considering our objective of developing a hardware-based solution, however, we need
to address the semantic gap problem. Indeed, we need to identify a process directly at the
circuit level (i.e., without relying on data available at the OS level), so that we can associate
with it the logged information that will be used for workload reconstruction. In modern OSs,
due to the virtual memory concept, each process has its own dedicated address space, which

maps resources used by the process into physical memory. This mapping is facilitated by the

1© 2016 IEEE. Reprinted/portions adapted, with permission, from Liwei Zhou and Yiorgos Makris,
“Hardware-based workload forensics: Process reconstruction via TLB monitoring,” in IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), May 2016, pp. 167-172.

2(© 2016 IEEE. Reprinted/portions adapted, with permission, from Liwei Zhou and Yiorgos Makris,
“Hardware-based workload forensics and malware detection in microprocessors,” in 17th International Work-
shop on Microprocessor and SOC Test and Verification (MTV), December 2016, pp. 45-50.



translation between virtual address and physical address, maintained by a per-process page
table. In x86, the base address of this table is stored in a control register, CR3. Changes
of the CR3 value perfectly match the events of process creation, switching and termination
[26]. Accordingly, by monitoring the CR3 register, delineating processes becomes possible,
thereby bridging the semantic gap. Below, we provide details of the two key components of

our system, namely the logging module and the analysis module.

4.1.2 Implementation
Logging Module

Program execution typically follows phases, which can be effectively predicted via perfor-
mance counter values [19]. Performance counters, however, generally contain global values,
reflecting performance of a microprocessor over its entire workload. Moreover, order of pro-
gram execution will affect performance counter values. As a result, bridging the semantic
gap and associating these values accurately with OS-level objects, such as processes, is not
at all straightforward.

To address this limitation, rather than using performance counter values, our approach
uses instructions causing TLB misses as its main logging object. A TLB is a small cache
memory which maintains recent translations of virtual addresses to physical addresses. In
x86, when the CR3 value changes, the entire TLB is flushed. This design convention benefits
our approach in two ways. First, all TLB events can be accurately associated with the
process represented by the current CR3 value. Second, the effect of different order of program
execution is mitigated, as the TLB starts fresh with every process. Therefore, the granularity
of the logged data (i.e., process-level) matches our analysis target.

In x86, the TLB is split into two parts, one for instruction addresses (iTLB) and the other
for data access addresses (ATLB). The logging module monitors the iTLB state and identifies

the instructions which raise an iTLB miss. Only user-space instructions are considered in
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our scheme. In the Linux OS, all virtual addresses higher than 0xC0000000 are regarded as
pointers to kernel space. Accordingly, our logging module ignores iTLB miss events raised
by such addresses. In the end, each CR3 value, which represents a separate process, can be
associated with a sequence of instructions (which caused iTLB misses). Figure [4.1|shows the
logging logic.

In order to use machine learning for analysis, we extract a normalized set of features
from the logged data. In our scheme, we use features which reflect both order and frequency
information. Conceptually, for each CR3 value, its associated set of instructions causing
iTLB misses is first partitioned into subsets of a maximum size of partition size. Par-
titioning helps retain order information while reducing log size. In one extreme, choosing
partition size to be 1 retains all instruction order information but is too expensive and,
most likely, unnecessary. In the other extreme, no partitioning would minimize the log size

but would also sacrifice all order information, thereby limiting the accuracy of the foren-

11



sic analysis. In our system, we experimented with partition_size of 100 instructions. In
practice, to minimize the required hardware, we do not log the actual instructions in each
partition but, rather, a set of 18 frequency features. These 18 features are extracted through
counters which are updated every time a qualifying iTLB miss occurs, and reflect information
regarding the operator and the operands of the qualifying instruction, as shown in Figure
4.2

The first six features capture the count of qualifying instructions for each of the following

operator (Op.) types:

1. Data Op.: operations performing data manipulation, such as storing/loading values,

setting flags, etc.
2. Stack Op.: operations performing stack manipulation.
3. ALU Op.: operations performing arithmetic or logic calculation.
4. Control Flow Op.: operations changing instruction execution flow.

5. I/O Op.: operations working with x86 I/O ports and interacting with peripherals.

D

. Floating Point Op.: operations performing all FP related manipulation.

The remaining twelve features capture the count of qualifying instructions which use the
various types of operands (Opr.). These include 8 features corresponding to the 8 general
purpose registers of 32-bit x86, one for memory reference, one for XMM registers and floating
point stack, one for all segment registers, and one for immediate value.

A vector F.V.; =< Op.1,...,0p.¢,Opr.1,...,Opr.;o > is extracted for each partition. For
each process, as identified through its CR3 value, a list of feature vectors [F.V.q, ..., F.V.;, ...,
F.V.end is collected, reflecting the order of partitions. The length of this list is considered as

an additional feature. Ultimately, a feature matrix is generated, as shown in Figure [£.2 We

12
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note that, since the number of partitions can vary from process to process, once the data is
off-loaded to the analysis module and prior to statistical processing we use zero padding for
the feature lists of processes so that all lists have the same number of columns in the feature
matrix.

As mentioned earlier, our logging mechanism resides entirely in hardware, therefore re-
quiring modification in CPU design, in order to eliminate the possibility of software attacks.
To minimize the required storage for the data log, feature extraction is also implemented in
hardware, with the final log containing only the feature matrices.

The hardware logging module consists of three main components, with its overall archi-
tecture shown in Figure [4.3;

Event Monitor: this component is used to monitor critical events, including TLB miss,
CR3 register update, program counter update, etc. The event monitor serves as the main
controller of the entire logging system. In x86, the TLB is implemented in the Memory
Management Unit (MMU) and miss events are handled transparently by the hardware. The
event monitor is expected to reside in the CPU but is also connected to the iTLB cache

memory to get notification when a miss occurs. After the hardware resolves this miss (and

13
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Figure 4.3: Logging system implementation in hardware

independently of whether a translation is found in the page table or not), the event monitor
picks up the instruction which raised the iTLB miss and feeds it to the feature generator. In
parallel, the value of the CR3 register, which works as an identifier of the current process, is
monitored to ensure that the current iTLB miss event is associated with the correct process.
Feature Generator: this component performs feature extraction for each instruction which
raises an iTLB miss. During decoding of such an instruction, the feature generator produces
the corresponding feature list according to the rules introduced above. A temporary register
is used to update the values of a feature vector. When the partition size limit is reached or
the current process terminates, the final value is sent to the storage system along with the
CR3 value.

Storage System: this component is the actual space where the logged information is stored.

A FIFO buffer is used to handle the clock difference between the CPU and the storage
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system. To save memory space, zero padding is not done in hardware. Instead, the size
discrepancy between log entries is handled during analysis. Periodically or continuously the
logged data is transmitted through a dedicated port, which is physically inaccessible by the

OS, to a trusted external storage or to the environment where analysis is performed.

Analysis module

The objective of the analysis module is to reconstruct workload execution at the granularity
of a process, using the extracted feature matrices. Since forensics is typically an ex post
facto effort, analysis is implemented in software and is executed in a trusted environment.
However, future extensions could use dedicated on-chip learning to perform the analysis
directly in hardware, possibly even in real-time, in a fashion similar to the malware detection
method described in [19].

The actual analysis is based on machine learning and employs multi-class classification,
where each class corresponds to a single process. Additionally, previously unseen processes
are identified through outlier detection. We experimented with two different non-linear
multi-class classifiers of varying complexity and performance, namely K-Nearest Neighbors
(KNN) and Support Vector Machine (SVM). KNN computes the k nearest neighbors for a
sample based on their Euclidean distance and assigns the sample to a class based on majority
voting among these neighbors. SVM, on the other hand, generates decision boundaries
which separate the feature space into labeled sub-spaces, while ensuring maximal separation
among them. When evaluating a new sample, the SVM classifies it based on the label of
the sub-space that it falls into. An important consideration when applying machine learning
is the high dimensionality of the feature matrix. Since the extracted feature vector list
may contain a large number of elements, it is necessary to reduce the dimensionality before
performing classification, in order to avoid the curse of dimensionality. To this end, we use

Principal Component Analysis (PCA), which generates a lower-dimensional feature matrix,
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while retaining most of the information of the original matrix. In our implementation, we
used KNN from the Matlab library and SVM from the LIBSVM library [11].

Upon the generated features, this method employs multi-class classification for workload
reconstruction, where each class corresponds to a single process. Additionally, previously
unseen processes are identified through outlier detection. Regarding process classification,
two different non-linear multi-class classifiers of varying complexity and performance are ex-
perimented with, namely K-Nearest Neighbors (KNN) and Support Vector Machine (SVM).
To perform outlier screening, the probability estimation available in the SVM is leveraged.
Given a sample, the SVM provides not only the chosen class, but also a vector containing
the probabilities that this sample belongs to each known class. The conjecture of the outlier
detection method is that when the sample comes from a known distribution (i.e., previously
seen), the probability of the winning class will dominate all others, while when it comes from
an unknown distribution (i.e., outlier), multiple classes will exhibit fairly similar probability.
Therefore, a simple outlier screening criterion is the probability difference between the first
and second most likely classes. If this difference exceeds a threshold, which can be learned
through cross-validation, the process is classified as an outlier. In this implementation, KNN

from the Matlab library and SVM from the LIBSVM library are used [L1].

4.1.3 Experimental Results

We now proceed to assess the effectiveness of our method in correctly classifying known
processes and identifying previously unseen ones. Additionally, we evaluate the data logging
rate required, as this reflects the incurred hardware overhead.

The experiments were performed in Simics, wherein we simulated a 32-bit x86 machine
with a single Intel Pentium 4 core running at 2GHz and containing 4GB of RAM, on which
we loaded a minimum installation Ubuntu server that embeds a Linux 2.6 kernel, as our
operating system. All collected data is normalized and fed to the analysis software via

Python/Matlab.
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Table 4.1: Process classification accuracy (subset of classes)

application training testing KNN SVM
class samples samples accuracy accuracy
overall 2386 2376 96.97% 96.63%
bash 1088 1087 100% 100%
cjpeg 25 25 100% 100%
djpeg 25 25 96% 100%
susan 75 75 100% 100%
search 50 50 98% 98%
madplay 50 50 96% 96%
tiff2bw 50 50 98% 94%
tiff2rgba 50 50 100% 100%
tiffmedian 50 50 96% 100%
basicmath 50 50 92% 90%
toast 50 50 96% 96%
untoast 50 50 94% 94%
rawcaudio 25 25 92% 92%
rawdaudio 25 25 52% 52%
run-parts 18 18 83.33% 83.33%
date 15 15 86.67% 86.67%
dpkg 11 11 72.73% 72.73%
savelog 9 9 55.56% 55.56%
cron 4 3 66.67% 66.67%
cmp 3 3 33.33% 33.33%

Process Classification Accuracy

To evaluate the accuracy of our method in correctly classifying processes, we use MiBench
[24], a free commercially representative benchmark suite as our workload, which contains a
few tens of application classes. The entire suite was executed 100 times, with each application
invoked with various valid arguments or in the background. We also randomized workload
execution to avoid the bias that a specific order might impose. We exploit the Simics fea-
ture, haps, to hook our event monitor on the iTLB and the program counter. Our feature

extraction method was then applied on the workload log. In total, we collected a dataset
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containing 4762 samples, each comprising a feature vector matrix and representing a process
to be classified. Initial dimensionality of the feature vector matrix was as large as 83612
and was reduced to 200 after applying PCA. The reduced matrix was then fed into the two
classifiers. Half of the samples of each application class were used for training and the other
half for testing. The process classification results using KNN and SVM are shown in Table
4.1 As may be observed, both classifiers performed very well in correctly classifying the
processes, reaching an overall classification accuracy of 96.97% and 96.63% respectively. For
most classes, this accuracy was even higher. However, parasite processes such as savelog,
cron, and cmp, can be created sporadically during the execution of MiBench applications in
our simulation environment. Samples of these processes were considered in our experiments
but their low frequency of occurrence limits the available samples and undermines the corre-
sponding classification accuracy. Fortunately, considering their weight, their overall impact
on process classification accuracy is small.

A noteworthy exception is the process rawdaudio, for which half of the instances are
misclassified as rawcaudio, despite the adequate number of training/validation samples.
This is explained by the fact that rawcaudio implements an Adaptive Differential Pulse
Code Modulation (ADPCM) encoding algorithm, wherein rawdaudio, which implements
the corresponding decoding algorithm, is invoked as a major functional unit. This inclusion
introduces similarity and reduces classification accuracy for rawdaudio. Additional features

of more advanced machine learning algorithms could potentially address this limitation.

Outlier Detection Accuracy

To perform outlier screening, we leverage the probability estimation available in the SVM.
Given a sample, the SVM provides not only the chosen class, but also a vector containing
the probabilities that this sample belongs to each known class. The conjecture of our outlier

detection method is that when the sample comes from a known distribution (i.e., previously
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Table 4.2: Summary of FP and FN rates in outlier detection

test # No. of seen processes No. of outliers FP rate FN rate

test 1 2269 214 11.98% 10.76%
test 2 2221 311 13.12% 3.51%
test 3 2302 149 12.25% 3.84%
test 4 2246 260 11.92% 2.44%
average N/A N/A 12.31% 5.13%
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Figure 4.4: Probability difference between top two classes

seen), the probability of the winning class will dominate all others, while when it comes from
an unknown distribution (i.e., outlier), multiple classes will exhibit fairly similar probability.
Therefore, a simple outlier screening criterion is the probability difference between the first

and second most likely classes. If this difference exceeds a threshold, which is learned through

cross-validation, the process is classified as an outlier.

To evaluate the effectiveness of our system in identifying previously unseen processes, we
repeated the experiment, this time omitting 5 randomly selected classes from the training set,
while retaining them in the testing set to mimic outlier processes. Through cross-validation,
we set the threshold for outlier screening to 0.6 and we applied it to the processes in the

testing set. Table summarizes the results for four different runs. For each run, we
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report the number of seen and outlier processes in the test set, as well as the false positive
(FP) (i.e., seen process classified as outlier) and false negative (FN) (i.e., outlier classified
as seen process) error rates. As may be observed, even the simple outlier screening method
described above results in high outlier detection accuracy, with the average FP and FN
values at 12.31% and 5.13%, respectively. This effectiveness is explained through Figure
4.4, which confirms our conjecture. Indeed, for previously seen processes, the probability
difference between the top two classes is overwhelmingly high, while for outlier processes it is
overwhelmingly low. Threshold adjustment can support biased decisions, favoring one error

direction, while advanced outlier detection methods can further improve the results.

Logging Overhead

To evaluate the overhead of our method, we focus on its major hardware component, namely
storage, and we seek to assess the required data logging rate. Unfortunately, Simics is not a
cycle-accurate simulator. Therefore, to attain a more accurate estimation, we calculated the
logging rate as follows. For each partition of a process, our method requires one feature vector
containing 18 elements. If we assume partition_size to be 100, as in our experiments, we
only need 7 bits for each element, since the occurrence frequency can never exceed the
partition size. The number of partitions per second for which a vector needs to be logged
is determined by the iTLB miss rate. Assuming clock cycles per instruction (CPI) has an
optimal value of 1, the estimated logging rate is calculated step by step by the equations

below:

F.V. size = 18 x [log, partition_size] (4.1)

. , I'LB miss rate
partition generation rate = — , (4.2)
partition_size

bits/inst. = F.V. size X partition generation rate (4.3)

bits/inst. x clk freq.
CPI(assumed = 1)

est. logging rate(bits/sec) = (4.4)
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We ran our benchmark suite several times to obtain an average iTLB miss rate, the value of
which was 0.0016%, resulting in an estimated data logging rate of only 5.17 KB/sec. While
a typical TLB miss rate is expected to be around 0.01-1% [38], since we consider only user-
space virtual addresses and only iTLB misses, the relevant miss rate for our scheme is much
less. Furthermore, since we assumed an optimal CPI of 1, the logging rate ought to be even
lower in realistic cases. As a point of reference, the performance counter-based method in
[19], which performs similar analysis with a different objective (i.e., malware detection vs.

workload forensics), requires bandwidth of a few hundred KB/s.

4.1.4 Conclusion

In this work, a hardware-based approach is proposed for performing workload reconstruc-
tion and process identification for the purpose of forensic analysis. Unlike OS-level and
hypervisor-level methods, which rely on information obtained through the OS and are,
therefore, vulnerable to software attacks, this hardware-based method extracts and logs
the required information directly in hardware, making it impervious to such attacks. Herein,
a simple incarnation of this general idea was demonstrated, which relies on identifying in-
structions causing an iTLB miss and extracting/logging appropriate features, based on which
a statistical analysis can, then, perform process identification. The proposed method was
evaluated on a 32-bit x86 architecture running Linux OS, which was implemented in the
Simics simulation environment, alongside a statistical analysis module which employed KNN
and SVM for the purpose of process classification. Experimental results using the popular
Mibench benchmark suite reveal that an overall process classification accuracy of 96.97% can
be achieved with very low logging rate. Nevertheless, the performance of the identification
of some program classes can be potentially improved, which may required advanced machine

learning algorithm.
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4.2 Off-line Workload Forensics using Temporal Features

4.2.1 System Overview

In this work, an advanced framework, i.e., TLB profiling Expert (TPE), is proposed, in order
to address the limitation in the work above and improve the performance further. The TPE,
similar to the work above, follows the off-line system architecture, consisting of two main
components, i.e., logging module and analysis module, while the feasibility of workload foren-
sics using temporal features (rather than spatial features) mined from the TLB profile (i.e.,
instructions raising iTLB miss) is explored. This idea is motivated by the fact that tempo-
ral features, compared with its spatial counterpart, can convey more information regarding
the program behavior, and therefore, may potentially improve the performance in identifying
workloads. Furthermore, the TPE is evaluated on two OS/architecture platforms, i.e., 32-bit
Linux/x86 and 64-bit Linux/RISC-V. A modern computer architecture design falls into the
category of either a Complex Instruction Set Computing (CISC) architecture or a Reduced
Instruction Set Computing (RISC) architecture. Correspondingly, the x86 architecture is
a representative CISC architecture, which is widely adopted in Intel microprocessor family.
On the other hand, the RISC-V architecture is an open-source representative RISC architec-
ture, which was initially developed by the University of California, Berkeley, and provides
extensive flexibility for various industrial or research purpose. Furthermore, a modern OS
can adapt itself to a 32-bit version or a 64-bit version, according to different architecture
support. Consequently, the evaluation on both the OS/architecture platforms ensures the

practicality and generalizability of the TPE.
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4.2.2 Implementation
Logging Module

The logging module in TPE collects data exclusively from the hardware related to the process
identifier, and performs feature extraction in order to generate representative features for
modeling the program behavior. In x86, as mentioned before, the CR3 value can be used as
a process identifier. Similarly, the RISC-V architecture cooperates with the feature of page
virtualization as well and maintains a page table which facilitates the translating between
virtual addresses and physical addresses. Accordingly, the base address of a page table,
whose value is stored in the Supervisor Page-Table Base Register (SPTBR), can be used as
the process identifier to track the currently-active process.

In order to extract the temporal features, we first pre-process the logged data to obtain an
abstraction of its semantic. Upon the pre-processed data, three types of features, i.e., counts
of occurrence with partitioning, n-gram model and raw sequence of categorized operator, are
then developed and evaluated. The counts of occurrence feature is the same as proposed in
the last chapter and is used as a reference herein, while only the latter two features will be
discussed in this section. Moreover, the same methodology is shared between the x86 and
RISC-V architecture, while slight difference is involved in data pre-processing due to the
distinction between the x86 instruction set and RISC-V instruction set. The actual feature
extraction procedure is introduced as follows.

The semantic of the logged instruction sequence is first abstracted through categorizing
the operator and operand of instructions. Six types of operators (Op.) are considered on

x86 as follows:

1. Data Op.: operations performing data manipulation, such as storing/loading values,

setting flags, etc.

2. Stack Op.: operations performing stack manipulation.
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3. ALU Op.: operations performing arithmetic or logic calculation.

4. Control Flow Op.: operations changing instruction execution flow.

5. I/O Op.: operations working with x86 1/O ports and interacting with peripherals.
6. Floating Point Op.: operations performing all FP related manipulation.

On the other hand, we consider 12 categories of operands (Opr.), including 8 classes corre-
sponding to the 8 general purpose registers, 1 for memory reference, 1 for XMM registers
and floating point stack, 1 for all segment registers, and 1 for immediate value. Upon these
18 types of Op./Opr., the exact features representing the process behavior on x86 can then
be developed.

Regarding the RISC-V architecture, unfortunately, dedicated Stack Op. and I/O Op.
are not available in RISC-V instruction set, and thus, the same classification of operators can-
not be directly applied in this scenario [44]. Alternatively, these two categories are excluded.
Furthermore, the RISC-V implements a group of dedicated instructions manipulating the
Control and Status Registers (CSR) to facilitate program execution. CSRs manage various
common CPU tasks, e.g., interrupt and exception handling, paging switch and addressing,
etc., as well as maintain the status of the process and the flags raised by different program
executions. Therefore, a new category, i.e., CSR Op., is included in the classification, which

results in the five types of operators as follows:
1. Data Op.: same definition as in x86.
2. ALU Op.: same definition as in x86.
3. Control Flow Op.: same definition as in x86.
4. Floating Point Op.: same definition as in x86.

5. CSR Op.: operations manipulating CSR register family.
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Additionally, 13 categories of operands (Opr.) are considered herein. These include 1 class
for stack pointer, 1 for global pointer which tracks access to the heap, 1 for thread pointer
which points to thread-local storage, 1 for program counter and 1 for immediate value.
Moreover, 4 classes are considered for function call-related operands, i.e., the registers which
hold the return address, the temporary registers which hold intermediate results during
function execution, the saved registers which hold the values that should be maintained
across function calls, and the registers for function arguments and return values. Another
4 counterparts are considered for function calls involving floating point arithmetic. Upon
these 18 types of Op./Opr., the exact features representing the process behavior on RISC-V
architecture can then be developed.

The two temporal features, i.e., n-gram model and the raw sequence model, can then
be constructed as follows. A m-gram is a subsequence of n items derived from a given
sequence. A feature matrix can then be constructed by the number of multiple possible n-
gram subsequences. Therefore, similarly, when n is greater than two, n-gram model can also
preserve both frequency and order information, while the order information is less lossy with
larger n. The n-gram model is advantageous in the size of the feature matrix, since the total
number of features can be fixed and bound by the number of possible elements in a given
sequence m and the choice of n, i.e., m"™. However, n-gram model is generally applied on an
univariate sequence so that it cannot be directly used on our logged instruction sequences,
which are multivariate sequences, containing variables of both operators and operands.

Current researches on program behavior modeling generally only adopt features gener-
ated from sequence of ‘operators’, without considering ‘operands’ (e.g., relying on sequence
of system call number solely and ignoring its argument [30, [46, [O]) while their effective-
ness has been verified. Similarly in our scheme, the operators can be expected to convoy
more information of program behavior than the operands do. Therefore, we discard the

operand part in our logged instruction sequence while retain only the operator part so that
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Figure 4.5: Feature extraction - n-gram

the original multivariate instruction sequence can then be converted into the univariate op-
erator sequence, on which the n-gram model can be easily applied, as shown in Figure [4.5]
As a result, feature extraction using n-gram model, compared with number of occurrence
with partitioning, maintains frequency and lossy order information with a feature matrix of
significantly reduced size whereas it ignores operands information.

A n-gram model tries to extract significant features from a lossy compression of the
logged instruction sequence while these features are handcrafted, requiring human intelli-
gence and/or experience. Inevitably, there is no guarantee that the selected features are the
most representative while some descriptive information, e.g., the precise order information,
may also be accidentally sieved due to the compression. As a result, crafting features, which
capture both frequency and order information more precisely, may be beneficial. To this
end, we employ the entire raw instruction sequence, without any further feature extraction,
as the feature vector. Indeed, the original sequence is able to maintain the lossless frequency
and order information. However, traditional machine learning methods, which expects inde-
pendent features in the feature vector cannot accept sequential inputs. Hence, it is necessary
to employ more advanced machine learning algorithm, i.e., deep learning model, in order to

process the sequential features.
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Figure 4.6: Feature extraction - raw operator sequence

Deep learning is a branch of machine learning, which attempts to model high-level ab-
straction of data through multiple processing layers. Using deep learning model benefits us
in two ways. Firstly, certain architecture of the deep learning model can process sequential
inputs so that it is a perfect complement to our sequential features. On the other hand, deep
learning algorithm can mine representative features from the raw sequence automatically,
without human intervention, thereby, optimal features may be generated. Details of the
exact learning model we apply will be explained in the following section.

Due to the fact that existing deep learning models limit their capability to processing
only univariate sequence, as well as the assumption that the operator is more informative in
program behavior modeling, the actual feature we use is the operator sequence while operand
information is discard, as shown in Figure [4.6] Furthermore, after learning the log of the
instruction sequence, it is revealed that most instructions fall into DATA Op. set and
ALU Op. set. Hence, for both the x86 and RISC-V scenarios, we extend the categories of
these two operators as illustrated in Table 4.3 Consequently, 13 classes of operators, rather
than the original 6 classes, are evaluated alternatively for the x86 scenario, while 11 classes
of operators, rather than the original 5 classes, are evaluated alternatively for the RISC-V

scenario.
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Table 4.3: Extended classes of DATA Op./ALU Op. set for both x86 and RISC-V scenario

Original class Extended class Description
DATA Op. DATA Op. data manip'ulatio'n operatio'n
(x86) ADDR Op. address mgnlpulgtlon opergtlon
FLAG Op. flag manipulation operation
DATA Op. LOAD Op. data load operation
(RISC-V) STORE Op. data store operation
ADD Op. addition operation
SUB Op. subtraction operation
ALU Op. MULT Op. multiplication operation
(x86 & RISC-V) DIV Op. division operation
LOGIC Op. logic operation (AND, OR, etc.)
SHIFT Op. shift operation

State-of-the-art program-centric forensics approaches generally model the program be-
havior through profiling their entire execution flow. However, it has been revealed that most
program behaviors tend to diverge at early stage so that a subsequence of their execution flow
can be sufficient to provide distinguishable features [I6]. In this work, the early prediction ef-
fect was evaluated on the temporal features introduced above. Specifically, the corresponding
feature extraction mechanism is performed only on a fixed-length subsequence of the oper-
ator sequence. Various possible lengths of the subsequence are experimented exhaustively
while the optimal length is selected based on the statistical result. Apparently, the early pre-
diction effect simplifies the feature extraction mechanism in hardware, leading to significant
decrease in the memory overhead, as well as minimizing the size of feature matrices so that

the computational complexity of the further forensics analysis can be reduced.

4.2.3 Analysis Module

Similar to the prior work, the analysis module is implemented in a trusted software envi-
ronment, based on machine learning algorithms which facilitating multi-class classification.

For the purpose of process reconstruction, Three different non-linear multi-class classifiers
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Figure 4.7: ANN vs. RNN

of varying complexity and performance are experimented with, namely K-Nearest Neighbors
(KNN), Support Vector Machine (SVM) and Recurrent Neural Network (RNN). KNN and
SVM, as traditional machine learning algorithm, are employed to handle the n-gram model
in the same manner as the prior work. RNN, on the other hand, as the more advanced deep
learning algorithm, is employed to handle the raw sequence model. In our implementation,
we used KNN from the Matlab library and SVM from the LIBSVM library [I1].

RNN;, as a variation of the traditional Artificial Neural Network (ANN), has been devel-
oped in order to make use of sequential information of the input. The traditional ANN has
a unidirectional multi-layer structure, where each layer consists of user-defined number of
nodes, i.e., neurons, who are interconnected with nodes in the adjacent layers. The leftmost
layer of the network is generally termed input layer while the rightmost layer is termed
output layer. All the intermediate layers, on the other hand, are termed hidden layers. Each
neuron in a hidden layer is then composed of tunable parameter matrix W, called weight as
well as a user-defined function F', called activation function, which performs the mapping
y = F(WTz), where x and y are the corresponding input and output of the neuron. A
typical ANN architecture is shown in Figure [1.7al Apparently, ANN evaluates each feature

element independently, and therefore, cannot process sequential features.
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RNN, on the other hand, considers the sequential information through simple modifica-
tion on the traditional ANN. Specifically, in RNN, a self-feedback is applied on each neuron
so that its outputs, now, not only rely on inputs from the last layer but also depend on the
previous computations of its own. For better understanding, a RNN can be converted into
the traditional ANN through unfolding the feedback of its neurons, as shown in Figure [4.§]
while the depth of the unfolded network depends on the length of the input sequence. By this
mean, RNN memorizes information of what has been calculated, and therefore, leverages the
sequential information in the input sequence. A typical architecture of RNN is illustrated in
Figure [4.7b]

The conventional method to train an ANN, i.e., backpropagation through time (BPTT),
generally relies on the backpropagation of error and the gradient descent algorithm. However,
the gradient-based training method may suffer from vanishing gradient problem, as identified
in [6]. In particular, traditional BPTT updates the weights backwards layer-by-layer by the
chain rule, where the error at an arbitrary neuron is propagated back to its previous stages
for multiple times, depending on the depth of the network. Correspondingly, the gradient
decreases exponentially with the depth, thereby, when the depth is large, the gradient of
the ‘front’ layers (i.e., layers closer to the initial inputs) may ultimately vanish. As a result,

the BPTT algorithm may be undermined or not working at all. The RNN, unfortunately,
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Figure 4.9: The implementation of the memory cell in LSTM-RNN

is more severely affected by this problem, since its unfolded network structure is generally
much deeper.

To overcome this limitation, we employ an alternative architecture of the RNN, namely
Long Short-Term Memory (LSTM), which was initially proposed in [25]. LSTM-RNN sub-
stitutes the original neuron with a memory cell, whose implementation is shown in Figure
4.9 A memory cell generally consists of an input gate, a neuron with self-feedback, a forget
gate and an output gate [23]. The input gate determines whether the incoming signal can
alter the current memory state or not while the output gate allows the outputs to affect
other cells or blocks it. The forget gate, on the other hand, controls the effect of the previ-
ous memory state [25]. By this mean, LSTM maintains a more constant error propagation
during BPTT training, which enables the RNN to learn over much longer steps, thereby
prevents the vanishing gradient. In our implementation, we used LSTM-RNN from Keras
[13].

In order to identify unseen processes, which should not be classified as any existing

process class, the outlier detection is performed. Specifically, two different approaches are
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Figure 4.10: Typical architecture of an auto-encoder

considered, i.e., probability estimates and auto-encoder, to distinguish unseen process from
seen process. The former is the same as introduced in the prior work, which is used a
reference herein, while the latter is discussed in detail as follows.

An auto-encoder is an ANN, which has exactly same dimensions in both the input layer
and the output layer, and aims at learning the representative distribution of the inputs in
order to reconstruct them at the outputs. The performance of an auto-encoder is generally
evaluated through the reconstruction error, which indicates the deviation of the reproduced
outputs from the inputs and can be implemented by the Mean Square Error (MSE). The
reconstruction error, thus, is expected to be minimized in an optimized model. A typical
auto-encoder is depicted in Figure 4.10]

In this work, in order to enable the compatibility with sequential inputs of the auto-
encoder, the LSTM-RNN is employed as the network architecture. Particularly, it is at-
tempted to learn the characteristics of a set of instruction sequences of a process through
the auto-encoder so that the reconstruction error for elements in sequences of seen processes
is minimized while the error for elements in sequences of unseen processes is distinguishably

large. For each element ¢ in a seen process sequence of length [, a maximum acceptable error
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emaz (1) 1s learned in advance, hence, our outlier screening mechanism can be developed by

setting a threshold on the number of abnormal reconstruction error as follows:
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