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HARDWARE-BASED WORKLOAD FORENSICS

AND MALWARE DETECTION IN MODERN MICROPROCESSORS

Liwei Zhou, PhD
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Supervising Professor: Yiorgos Makris, Chair

Traditional computer forensics and/or malware detection methods are generally implemented

at the operating system (OS) or the hypervisor level, which benefits from abundant software

semantics and implementation flexibility. Nevertheless, the data logging and monitoring sys-

tems involved in these methods are vulnerable to spoofing attacks at the same level, which

undermine their effectiveness. In this dissertation, the hardware-based methodologies are

proposed to perform workload forensics and/or malware detection in microprocessors. In

contrast to the software-based counterparts, a hardware-based implementation ensures the

immunity to software tampering. Specifically, a generic architecture is introduced which a

hardware-based forensic analysis or a malware detection method needs to follow, as well

as the various architecture-level information which could potentially be harnessed to ensure

system security and/or integrity. To illustrate the proposed concept, two incarnations, i.e.,

hardware-based workload forensics and hardware-based rootkit detection are present. Ex-

perimental results corroborate that even a low-cost hardware implementation can facilitate

highly successful forensics analysis and/or malware detection, while taking advantage of its

innate immunity to software-based attacks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the last few decades, the prevalence of electronic devices has resulted in rapidly in-

creasing amounts of private/sensitive information, such as personal details or trade secrets,

being stored, processed and exchanged in electronic form. Unfortunately but inevitably, this

has also lead to the emergence of hundreds of millions of malicious software [32], or malware,

which seek to interfere with the underlying computer systems and to steal or disrupt such

information, in order to benefit from such illegitimate access. As a result, developing defense

mechanisms against these threats becomes indispensable. Generally speaking, implementa-

tion of such defense mechanisms can branch into computer forensics and malware detection.

The former aims at performing retroactive investigations to reconstruct past events while

the latter aims at detecting and/or preventing the execution of potential threats.

Most state-of-the-art computer forensics and malware detection methods are software-

based, i.e., developed at OS-level or hypervisor-level. OS-level methods benefit from semantic-

rich information, e.g., process ID, file system objects, etc., as well as flexible deployment.

Nevertheless, they are susceptible to software attacks launched from the same privilege do-

main. To address this limitation, hypervisor-level methods were proposed, since hypervisors

operate with higher privileges. Unfortunately, the hypervisor itself can be the attack target,

as several vulnerabilities and intrusion methods have been identified [39]. Consequently,

software-based detection approaches may suffer the risk of corruption of the logged data or

even disabling of the detection system.
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1.2 Contribution

To address the aforementioned limitation, in this dissertation, a hardware-based framework is

proposed to perform computer forensics and malware detection. Specifically, this framework

relies exclusively on data collected directly through the hardware, without the intervention of

a hypervisor or an OS, whereby the logged information may be compromised. Accordingly,

traces obtained from hardware are expected to be immune to software-based tampering. On

the other hand, a hardware-based solution requires circuitry addition and modification in the

microprocessor for identifying, extracting, and logging the relevant information. Therefore,

judicious selection of information sufficient for fulfilling the targeted task becomes crucial.

To this end, the proposed framework leverages architecture-level events, which are related to

program execution in the OS, in order to perform the hardware-based defense with low cost.

In this dissertation, I present several applications in both computer forensics and malware

detection with various implementations, to illustrate the proposed idea.

1.3 Dissertation Organization

The remainder of the dissertation is structured as follows. Chapter 2 briefly discusses the

related work. A generic architecture of the proposed hardware-based methodology as well as

its potential design challenges are introduced in Chapter 3. Two incarnations, which perform

hardware-based workload forensics and hardware-based rootkit detection, are briefly present

to illustrate the proposed concept in Chapter 4 and Chapter 5, respectively. Chapter 6

summarizes the research and discusses the future work.
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CHAPTER 2

LITERATURE REVIEW

The state-of-the-art in forensic analysis and malware detection methods are discussed in this

chapter, which can be categorized into OS-level approaches and hypervisor-level approaches.

Within each category, existing methods can be further divided into data-centric and program-

centric, depending on the methodology employed in these methods.

2.1 OS-level approaches

OS-level approaches generally benefit from the semantic-rich information. Data-centric ap-

proaches in this category mainly focus on performing signature-based analysis to verify the

integrity of objects of interest for forensic analysis or malware detection. Various commercial

computer forensic products fall into dis paradigm. For example, EnCase creates images for

disk data to enable data recovery and/or to ensure data integrity. Similar products include

FTK and Registry Recon [22, 2, 5]. On the other hand, detecting malware through Control

Flow Integrity (CFI), which seeks to identify illegitimate redirection of program control flow,

has been proposed as a promising defense against control flow hijacking attacks of OS ker-

nel services [15, 7]. Alternatively, program-centric approaches model the program behavior

based on information related to the program execution flow, e.g., system call sequence, to

perform further analysis. A large body of work on intrusion detection follows this paradigm

[30, 46, 9]. In general, these methods rely solely on analysis of system call sequences. An

interesting extension is introduced in [35], which focuses on a subset of system calls that are

deemed to be most informative. Clustering of system call arguments is also employed in order

to better understand how it has been invoked by the operating system. In another incarna-

tion, called Accessminer, further information such as timestamps, return values, etc., is used

to model how benign programs access OS resources (e.g., files and registry entries), so that

3



malware-induced suspicious behavior can be better distinguished from normal functionality

[33].

2.2 Hypervisor-level approaches

Hypervisor-level approaches benefit from the inherently higher security offered by virtual-

ization and isolation, as mentioned in Chapter 1. Nevertheless, these approaches suffer from

the semantic gap problem. Specifically, while methodologies similar to those introduced at

the OS-level can be applied at the hypervisor-level, we first need to interpret the information

collected at the hypervisor level and bridge the semantic gap by linking this information to

tangible OS-level objects. To achieve this, architecture-specific hardware conventions are

typically relied upon. For instance, Antfarm uses the CR3 register available in the x86 ar-

chitecture in order to identify process creation, switching and termination [26]. Once the

semantic gap is bridged, program-centric intrusion detection methods similar to the ones

developed at the OS-level may be applied. For example, the system call number/sequence

can be extracted from the instruction flow and specific registers (rather than from a software

tracing tool, such as strace), in order to perform behavior-based modeling and analysis

[21, 40]. Data-centric methods may also be devised. Methods along this direction monitor

the critical area in kernel memory (e.g., system call table, kernel text, etc.) in order to

prevent malicious changes therein [36]. Such methods even go to a lower layer, to check

whether contents on the disk and its image in main memory match [31, 34]. Nevertheless,

they still rely on OS-level information (e.g., system.map) to locate which part is critical to

keep their eyes on [34].

4



CHAPTER 3

HARDWARE-BASED DEFENSE METHODOLOGY

3.1 System Design

The generic design of the proposed hardware-based methodology for forensics analysis or

malware detection, as shown in Figure 3.2, involves three dimensions: (1) designing the

system architecture of the approaches, which determines how data should be collected, pro-

cessed, and analyzed, (2) selecting objects of interest according to the specific objective, and

(3) selecting appropriate analysis methods to process the collected data for the corresponding

purpose. More specifically, we evaluate several options corresponding to different application

scenarios in each dimension, which will be discussed in detail in following sections.

3.1.1 System Architecture

The system of the proposed hardware-based defense solution consists of two main compo-

nents, namely a data logging component and a data analysis component. The data logging

component monitors the architecture state of the underlying microprocessor and collects

data of interest exclusively from the hardware, which has to be implemented in hardware,

integrated with the microprocessor. Unlike software-based approaches, in this way, there

exists no physical pathway for the OS, hypervisor, or any application running on the system

to interfere with the logged data, ensuring resistance to software tampering.

The data analysis component, on the other hand, is responsible for performing specific

analyses on the logged data, while its actual implementation depends upon the type of defense

mechanism to be employed. Unlike the data logging component, the analysis component can

be performed either in the hardware, to enable on-line functionalities for prompt response,

or in a trusted software environment, to perform off-line analysis with flexibility. Figure 3.1

illustrates the generic system architecture.
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Figure 3.1: High-level system architecture

3.1.2 Object of Interest

Depending on the objective, a defense methods can be categorized into data-centric or

program-centric. Data-centric methods generally focus on the integrity of a piece of spe-

cific data in order to investigate whether any unauthorized modification occurs. Given the

nature of malicious software, popular objects of interest in this category include kernel im-

age, kernel service table, control flow of kernel service, network channel, etc. This option

is generally employed in the scenarios that invariants (e.g., rule of execution, static code

behavior, network protocol, etc.) must be maintained and a complete set of the golden ref-

erences is available. Moreover, It tends to benefit from a light implementation overhead due

to the simple comparison.

Program-centric methods, on the other hand, model the expected behavior of a program

in order to identify what program it actually is or whether it is malicious. The OS-level ab-

straction of a program, i.e., process and its dynamic execution flow, are the common objects

6



Figure 3.2: Three dimensions of the design of the proposed methodology

of interest in this category. This option is preferred in the more complicated scenarios that

a complete set of golden reference is unachievable and thus, a straightforward comparison

cannot be applied. For example, the complete set of program control flow is deemed to be

unpredictable statically since some of the program execution path depends on its dynamic

input arguments. Accordingly, a statistical model needs to be involved in order to evaluate

the program behavior and draw conclusion with certain level of confidence (e.g., in terms of

probability). Nevertheless, this option, compared to its former counterpart, definitely incurs

more implementation overhead.

3.1.3 Analysis Methods

Similarly, the analysis methods employed herein fall into either signature-based methods or

behavior-based methods. Signature-based methods generate checksums over their objects of

7



interest, which can be used as a golden reference for integrity checking or as a description of

the expected behaviors. These methods benefit from their simplicity of implementation and

may work well with those objects whose execution is fixed or infrequently changed. Given

the complexity of program execution, however, behavior-based methods are more favorable

when the dynamic behavior of a program has to be learned. These methods aim at modeling

program behavior dynamically based on a number of pre-defined features. In order to allow

enough flexibility to account for program execution variation and, at the same time, be able

to distinguish benign from malicious program behavior, machine learning algorithms and

statistical analysis are typically employed.

To conclude, a hardware-based approach for forensics analysis or malware detection can

be constructed through combination of these three dimensions, i.e., off-line or on-line, data-

centric or program-centric, signature-based or behavior-based.

8



CHAPTER 4

HARDWARE-BASED WORKLOAD FORENSICS1,2

In this chapter, the feasibility of workload forensics using hardware-based methodologies is

evaluated. Specifically, two incarnations of off-line workload forensics based on spatial fea-

tures and temporal features are introduced, which involves hardware-software co-design while

an on-line workload forensics solution is proposed, which potentially benefits the application

scenario of identifying workloads in real time.

4.1 Off-line Workload Forensics using Spatial Features

4.1.1 System Overview

In this work, we experiment with one instantiation of hardware-based workload forensics,

whose actual implementation follows an off-line system architecture, i.e., performing the data

logging in hardware while analyzing collected data in software. Specifically, we explore the

possibility of reconstructing workload at the granularity of a process, while relying solely on

information available through monitoring the TLB and statistically processing this informa-

tion. Considering our objective of developing a hardware-based solution, however, we need

to address the semantic gap problem. Indeed, we need to identify a process directly at the

circuit level (i.e., without relying on data available at the OS level), so that we can associate

with it the logged information that will be used for workload reconstruction. In modern OSs,

due to the virtual memory concept, each process has its own dedicated address space, which

maps resources used by the process into physical memory. This mapping is facilitated by the

1 c© 2016 IEEE. Reprinted/portions adapted, with permission, from Liwei Zhou and Yiorgos Makris,
“Hardware-based workload forensics: Process reconstruction via TLB monitoring,” in IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), May 2016, pp. 167-172.

2 c© 2016 IEEE. Reprinted/portions adapted, with permission, from Liwei Zhou and Yiorgos Makris,
“Hardware-based workload forensics and malware detection in microprocessors,” in 17th International Work-
shop on Microprocessor and SOC Test and Verification (MTV), December 2016, pp. 45-50.
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translation between virtual address and physical address, maintained by a per-process page

table. In x86, the base address of this table is stored in a control register, CR3. Changes

of the CR3 value perfectly match the events of process creation, switching and termination

[26]. Accordingly, by monitoring the CR3 register, delineating processes becomes possible,

thereby bridging the semantic gap. Below, we provide details of the two key components of

our system, namely the logging module and the analysis module.

4.1.2 Implementation

Logging Module

Program execution typically follows phases, which can be effectively predicted via perfor-

mance counter values [19]. Performance counters, however, generally contain global values,

reflecting performance of a microprocessor over its entire workload. Moreover, order of pro-

gram execution will affect performance counter values. As a result, bridging the semantic

gap and associating these values accurately with OS-level objects, such as processes, is not

at all straightforward.

To address this limitation, rather than using performance counter values, our approach

uses instructions causing TLB misses as its main logging object. A TLB is a small cache

memory which maintains recent translations of virtual addresses to physical addresses. In

x86, when the CR3 value changes, the entire TLB is flushed. This design convention benefits

our approach in two ways. First, all TLB events can be accurately associated with the

process represented by the current CR3 value. Second, the effect of different order of program

execution is mitigated, as the TLB starts fresh with every process. Therefore, the granularity

of the logged data (i.e., process-level) matches our analysis target.

In x86, the TLB is split into two parts, one for instruction addresses (iTLB) and the other

for data access addresses (dTLB). The logging module monitors the iTLB state and identifies

the instructions which raise an iTLB miss. Only user-space instructions are considered in
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Figure 4.1: Logging logic

our scheme. In the Linux OS, all virtual addresses higher than 0xC0000000 are regarded as

pointers to kernel space. Accordingly, our logging module ignores iTLB miss events raised

by such addresses. In the end, each CR3 value, which represents a separate process, can be

associated with a sequence of instructions (which caused iTLB misses). Figure 4.1 shows the

logging logic.

In order to use machine learning for analysis, we extract a normalized set of features

from the logged data. In our scheme, we use features which reflect both order and frequency

information. Conceptually, for each CR3 value, its associated set of instructions causing

iTLB misses is first partitioned into subsets of a maximum size of partition size. Par-

titioning helps retain order information while reducing log size. In one extreme, choosing

partition size to be 1 retains all instruction order information but is too expensive and,

most likely, unnecessary. In the other extreme, no partitioning would minimize the log size

but would also sacrifice all order information, thereby limiting the accuracy of the foren-
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sic analysis. In our system, we experimented with partition size of 100 instructions. In

practice, to minimize the required hardware, we do not log the actual instructions in each

partition but, rather, a set of 18 frequency features. These 18 features are extracted through

counters which are updated every time a qualifying iTLB miss occurs, and reflect information

regarding the operator and the operands of the qualifying instruction, as shown in Figure

4.2.

The first six features capture the count of qualifying instructions for each of the following

operator (Op.) types:

1. Data Op.: operations performing data manipulation, such as storing/loading values,

setting flags, etc.

2. Stack Op.: operations performing stack manipulation.

3. ALU Op.: operations performing arithmetic or logic calculation.

4. Control Flow Op.: operations changing instruction execution flow.

5. I/O Op.: operations working with x86 I/O ports and interacting with peripherals.

6. Floating Point Op.: operations performing all FP related manipulation.

The remaining twelve features capture the count of qualifying instructions which use the

various types of operands (Opr.). These include 8 features corresponding to the 8 general

purpose registers of 32-bit x86, one for memory reference, one for XMM registers and floating

point stack, one for all segment registers, and one for immediate value.

A vector F.V.i =< Op.1, ..., Op.6, Opr.1, ..., Opr.12 > is extracted for each partition. For

each process, as identified through its CR3 value, a list of feature vectors [F.V.1, ..., F.V.i, ...,

F.V.end] is collected, reflecting the order of partitions. The length of this list is considered as

an additional feature. Ultimately, a feature matrix is generated, as shown in Figure 4.2. We
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Figure 4.2: Feature extraction mechanism

note that, since the number of partitions can vary from process to process, once the data is

off-loaded to the analysis module and prior to statistical processing we use zero padding for

the feature lists of processes so that all lists have the same number of columns in the feature

matrix.

As mentioned earlier, our logging mechanism resides entirely in hardware, therefore re-

quiring modification in CPU design, in order to eliminate the possibility of software attacks.

To minimize the required storage for the data log, feature extraction is also implemented in

hardware, with the final log containing only the feature matrices.

The hardware logging module consists of three main components, with its overall archi-

tecture shown in Figure 4.3:

Event Monitor: this component is used to monitor critical events, including TLB miss,

CR3 register update, program counter update, etc. The event monitor serves as the main

controller of the entire logging system. In x86, the TLB is implemented in the Memory

Management Unit (MMU) and miss events are handled transparently by the hardware. The

event monitor is expected to reside in the CPU but is also connected to the iTLB cache

memory to get notification when a miss occurs. After the hardware resolves this miss (and

13



v/n v. addr. p. addr.

v/n v. addr. p. addr.

v/n v. addr. p. addr.

v/n v. addr. p. addr.

…
...

v/n v. addr. p. addr.

iTLB

MMU

Event 
monitor

CPU

User space iTLB miss

CR3 / SPTBR

Instruction raising 
iTLB miss 

Feature 
generator

Instruction decoder

Storage 
system

Final log

F.V. list

instr. 1

instr. 2

instr. 3

instr. 4

…...

instr. i

Proc. ID 1

F.V. 1

F.V. 2

…...

Proc. ID 2

F.V. 1

…...

Figure 4.3: Logging system implementation in hardware

independently of whether a translation is found in the page table or not), the event monitor

picks up the instruction which raised the iTLB miss and feeds it to the feature generator. In

parallel, the value of the CR3 register, which works as an identifier of the current process, is

monitored to ensure that the current iTLB miss event is associated with the correct process.

Feature Generator: this component performs feature extraction for each instruction which

raises an iTLB miss. During decoding of such an instruction, the feature generator produces

the corresponding feature list according to the rules introduced above. A temporary register

is used to update the values of a feature vector. When the partition size limit is reached or

the current process terminates, the final value is sent to the storage system along with the

CR3 value.

Storage System: this component is the actual space where the logged information is stored.

A FIFO buffer is used to handle the clock difference between the CPU and the storage
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system. To save memory space, zero padding is not done in hardware. Instead, the size

discrepancy between log entries is handled during analysis. Periodically or continuously the

logged data is transmitted through a dedicated port, which is physically inaccessible by the

OS, to a trusted external storage or to the environment where analysis is performed.

Analysis module

The objective of the analysis module is to reconstruct workload execution at the granularity

of a process, using the extracted feature matrices. Since forensics is typically an ex post

facto effort, analysis is implemented in software and is executed in a trusted environment.

However, future extensions could use dedicated on-chip learning to perform the analysis

directly in hardware, possibly even in real-time, in a fashion similar to the malware detection

method described in [19].

The actual analysis is based on machine learning and employs multi-class classification,

where each class corresponds to a single process. Additionally, previously unseen processes

are identified through outlier detection. We experimented with two different non-linear

multi-class classifiers of varying complexity and performance, namely K-Nearest Neighbors

(KNN) and Support Vector Machine (SVM). KNN computes the k nearest neighbors for a

sample based on their Euclidean distance and assigns the sample to a class based on majority

voting among these neighbors. SVM, on the other hand, generates decision boundaries

which separate the feature space into labeled sub-spaces, while ensuring maximal separation

among them. When evaluating a new sample, the SVM classifies it based on the label of

the sub-space that it falls into. An important consideration when applying machine learning

is the high dimensionality of the feature matrix. Since the extracted feature vector list

may contain a large number of elements, it is necessary to reduce the dimensionality before

performing classification, in order to avoid the curse of dimensionality. To this end, we use

Principal Component Analysis (PCA), which generates a lower-dimensional feature matrix,
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while retaining most of the information of the original matrix. In our implementation, we

used KNN from the Matlab library and SVM from the LIBSVM library [11].

Upon the generated features, this method employs multi-class classification for workload

reconstruction, where each class corresponds to a single process. Additionally, previously

unseen processes are identified through outlier detection. Regarding process classification,

two different non-linear multi-class classifiers of varying complexity and performance are ex-

perimented with, namely K-Nearest Neighbors (KNN) and Support Vector Machine (SVM).

To perform outlier screening, the probability estimation available in the SVM is leveraged.

Given a sample, the SVM provides not only the chosen class, but also a vector containing

the probabilities that this sample belongs to each known class. The conjecture of the outlier

detection method is that when the sample comes from a known distribution (i.e., previously

seen), the probability of the winning class will dominate all others, while when it comes from

an unknown distribution (i.e., outlier), multiple classes will exhibit fairly similar probability.

Therefore, a simple outlier screening criterion is the probability difference between the first

and second most likely classes. If this difference exceeds a threshold, which can be learned

through cross-validation, the process is classified as an outlier. In this implementation, KNN

from the Matlab library and SVM from the LIBSVM library are used [11].

4.1.3 Experimental Results

We now proceed to assess the effectiveness of our method in correctly classifying known

processes and identifying previously unseen ones. Additionally, we evaluate the data logging

rate required, as this reflects the incurred hardware overhead.

The experiments were performed in Simics, wherein we simulated a 32-bit x86 machine

with a single Intel Pentium 4 core running at 2GHz and containing 4GB of RAM, on which

we loaded a minimum installation Ubuntu server that embeds a Linux 2.6 kernel, as our

operating system. All collected data is normalized and fed to the analysis software via

Python/Matlab.
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Table 4.1: Process classification accuracy (subset of classes)

application
class

training
samples

testing
samples

KNN
accuracy

SVM
accuracy

overall 2386 2376 96.97% 96.63%
bash 1088 1087 100% 100%
cjpeg 25 25 100% 100%
djpeg 25 25 96% 100%
susan 75 75 100% 100%
search 50 50 98% 98%

madplay 50 50 96% 96%
tiff2bw 50 50 98% 94%

tiff2rgba 50 50 100% 100%
tiffmedian 50 50 96% 100%
basicmath 50 50 92% 90%

toast 50 50 96% 96%
untoast 50 50 94% 94%

rawcaudio 25 25 92% 92%
rawdaudio 25 25 52% 52%

......
run-parts 18 18 83.33% 83.33%

date 15 15 86.67% 86.67%
dpkg 11 11 72.73% 72.73%

savelog 9 9 55.56% 55.56%
cron 4 3 66.67% 66.67%
cmp 3 3 33.33% 33.33%

Process Classification Accuracy

To evaluate the accuracy of our method in correctly classifying processes, we use MiBench

[24], a free commercially representative benchmark suite as our workload, which contains a

few tens of application classes. The entire suite was executed 100 times, with each application

invoked with various valid arguments or in the background. We also randomized workload

execution to avoid the bias that a specific order might impose. We exploit the Simics fea-

ture, haps, to hook our event monitor on the iTLB and the program counter. Our feature

extraction method was then applied on the workload log. In total, we collected a dataset
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containing 4762 samples, each comprising a feature vector matrix and representing a process

to be classified. Initial dimensionality of the feature vector matrix was as large as 83612

and was reduced to 200 after applying PCA. The reduced matrix was then fed into the two

classifiers. Half of the samples of each application class were used for training and the other

half for testing. The process classification results using KNN and SVM are shown in Table

4.1. As may be observed, both classifiers performed very well in correctly classifying the

processes, reaching an overall classification accuracy of 96.97% and 96.63% respectively. For

most classes, this accuracy was even higher. However, parasite processes such as savelog,

cron, and cmp, can be created sporadically during the execution of MiBench applications in

our simulation environment. Samples of these processes were considered in our experiments

but their low frequency of occurrence limits the available samples and undermines the corre-

sponding classification accuracy. Fortunately, considering their weight, their overall impact

on process classification accuracy is small.

A noteworthy exception is the process rawdaudio, for which half of the instances are

misclassified as rawcaudio, despite the adequate number of training/validation samples.

This is explained by the fact that rawcaudio implements an Adaptive Differential Pulse

Code Modulation (ADPCM) encoding algorithm, wherein rawdaudio, which implements

the corresponding decoding algorithm, is invoked as a major functional unit. This inclusion

introduces similarity and reduces classification accuracy for rawdaudio. Additional features

of more advanced machine learning algorithms could potentially address this limitation.

Outlier Detection Accuracy

To perform outlier screening, we leverage the probability estimation available in the SVM.

Given a sample, the SVM provides not only the chosen class, but also a vector containing

the probabilities that this sample belongs to each known class. The conjecture of our outlier

detection method is that when the sample comes from a known distribution (i.e., previously
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Table 4.2: Summary of FP and FN rates in outlier detection

test # No. of seen processes No. of outliers FP rate FN rate
test 1 2269 214 11.98% 10.76%
test 2 2221 311 13.12% 3.51%
test 3 2302 149 12.25% 3.84%
test 4 2246 260 11.92% 2.44%

average N/A N/A 12.31% 5.13%

(a) Seen processes (b) Outlier processes

Figure 4.4: Probability difference between top two classes

seen), the probability of the winning class will dominate all others, while when it comes from

an unknown distribution (i.e., outlier), multiple classes will exhibit fairly similar probability.

Therefore, a simple outlier screening criterion is the probability difference between the first

and second most likely classes. If this difference exceeds a threshold, which is learned through

cross-validation, the process is classified as an outlier.

To evaluate the effectiveness of our system in identifying previously unseen processes, we

repeated the experiment, this time omitting 5 randomly selected classes from the training set,

while retaining them in the testing set to mimic outlier processes. Through cross-validation,

we set the threshold for outlier screening to 0.6 and we applied it to the processes in the

testing set. Table 4.2 summarizes the results for four different runs. For each run, we
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report the number of seen and outlier processes in the test set, as well as the false positive

(FP) (i.e., seen process classified as outlier) and false negative (FN) (i.e., outlier classified

as seen process) error rates. As may be observed, even the simple outlier screening method

described above results in high outlier detection accuracy, with the average FP and FN

values at 12.31% and 5.13%, respectively. This effectiveness is explained through Figure

4.4, which confirms our conjecture. Indeed, for previously seen processes, the probability

difference between the top two classes is overwhelmingly high, while for outlier processes it is

overwhelmingly low. Threshold adjustment can support biased decisions, favoring one error

direction, while advanced outlier detection methods can further improve the results.

Logging Overhead

To evaluate the overhead of our method, we focus on its major hardware component, namely

storage, and we seek to assess the required data logging rate. Unfortunately, Simics is not a

cycle-accurate simulator. Therefore, to attain a more accurate estimation, we calculated the

logging rate as follows. For each partition of a process, our method requires one feature vector

containing 18 elements. If we assume partition size to be 100, as in our experiments, we

only need 7 bits for each element, since the occurrence frequency can never exceed the

partition size. The number of partitions per second for which a vector needs to be logged

is determined by the iTLB miss rate. Assuming clock cycles per instruction (CPI) has an

optimal value of 1, the estimated logging rate is calculated step by step by the equations

below:

F.V. size = 18× dlog2 partition sizee (4.1)

partition generation rate =
iTLB miss rate

partition size
(4.2)

bits/inst. = F.V. size× partition generation rate (4.3)

est. logging rate(bits/sec) =
bits/inst.× clk freq.
CPI(assumed = 1)

(4.4)

20



We ran our benchmark suite several times to obtain an average iTLB miss rate, the value of

which was 0.0016%, resulting in an estimated data logging rate of only 5.17 KB/sec. While

a typical TLB miss rate is expected to be around 0.01-1% [38], since we consider only user-

space virtual addresses and only iTLB misses, the relevant miss rate for our scheme is much

less. Furthermore, since we assumed an optimal CPI of 1, the logging rate ought to be even

lower in realistic cases. As a point of reference, the performance counter-based method in

[19], which performs similar analysis with a different objective (i.e., malware detection vs.

workload forensics), requires bandwidth of a few hundred KB/s.

4.1.4 Conclusion

In this work, a hardware-based approach is proposed for performing workload reconstruc-

tion and process identification for the purpose of forensic analysis. Unlike OS-level and

hypervisor-level methods, which rely on information obtained through the OS and are,

therefore, vulnerable to software attacks, this hardware-based method extracts and logs

the required information directly in hardware, making it impervious to such attacks. Herein,

a simple incarnation of this general idea was demonstrated, which relies on identifying in-

structions causing an iTLB miss and extracting/logging appropriate features, based on which

a statistical analysis can, then, perform process identification. The proposed method was

evaluated on a 32-bit x86 architecture running Linux OS, which was implemented in the

Simics simulation environment, alongside a statistical analysis module which employed KNN

and SVM for the purpose of process classification. Experimental results using the popular

Mibench benchmark suite reveal that an overall process classification accuracy of 96.97% can

be achieved with very low logging rate. Nevertheless, the performance of the identification

of some program classes can be potentially improved, which may required advanced machine

learning algorithm.
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4.2 Off-line Workload Forensics using Temporal Features

4.2.1 System Overview

In this work, an advanced framework, i.e., TLB profiling Expert (TPE), is proposed, in order

to address the limitation in the work above and improve the performance further. The TPE,

similar to the work above, follows the off-line system architecture, consisting of two main

components, i.e., logging module and analysis module, while the feasibility of workload foren-

sics using temporal features (rather than spatial features) mined from the TLB profile (i.e.,

instructions raising iTLB miss) is explored. This idea is motivated by the fact that tempo-

ral features, compared with its spatial counterpart, can convey more information regarding

the program behavior, and therefore, may potentially improve the performance in identifying

workloads. Furthermore, the TPE is evaluated on two OS/architecture platforms, i.e., 32-bit

Linux/x86 and 64-bit Linux/RISC-V. A modern computer architecture design falls into the

category of either a Complex Instruction Set Computing (CISC) architecture or a Reduced

Instruction Set Computing (RISC) architecture. Correspondingly, the x86 architecture is

a representative CISC architecture, which is widely adopted in Intel microprocessor family.

On the other hand, the RISC-V architecture is an open-source representative RISC architec-

ture, which was initially developed by the University of California, Berkeley, and provides

extensive flexibility for various industrial or research purpose. Furthermore, a modern OS

can adapt itself to a 32-bit version or a 64-bit version, according to different architecture

support. Consequently, the evaluation on both the OS/architecture platforms ensures the

practicality and generalizability of the TPE.
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4.2.2 Implementation

Logging Module

The logging module in TPE collects data exclusively from the hardware related to the process

identifier, and performs feature extraction in order to generate representative features for

modeling the program behavior. In x86, as mentioned before, the CR3 value can be used as

a process identifier. Similarly, the RISC-V architecture cooperates with the feature of page

virtualization as well and maintains a page table which facilitates the translating between

virtual addresses and physical addresses. Accordingly, the base address of a page table,

whose value is stored in the Supervisor Page-Table Base Register (SPTBR), can be used as

the process identifier to track the currently-active process.

In order to extract the temporal features, we first pre-process the logged data to obtain an

abstraction of its semantic. Upon the pre-processed data, three types of features, i.e., counts

of occurrence with partitioning, n-gram model and raw sequence of categorized operator, are

then developed and evaluated. The counts of occurrence feature is the same as proposed in

the last chapter and is used as a reference herein, while only the latter two features will be

discussed in this section. Moreover, the same methodology is shared between the x86 and

RISC-V architecture, while slight difference is involved in data pre-processing due to the

distinction between the x86 instruction set and RISC-V instruction set. The actual feature

extraction procedure is introduced as follows.

The semantic of the logged instruction sequence is first abstracted through categorizing

the operator and operand of instructions. Six types of operators (Op.) are considered on

x86 as follows:

1. Data Op.: operations performing data manipulation, such as storing/loading values,

setting flags, etc.

2. Stack Op.: operations performing stack manipulation.
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3. ALU Op.: operations performing arithmetic or logic calculation.

4. Control Flow Op.: operations changing instruction execution flow.

5. I/O Op.: operations working with x86 I/O ports and interacting with peripherals.

6. Floating Point Op.: operations performing all FP related manipulation.

On the other hand, we consider 12 categories of operands (Opr.), including 8 classes corre-

sponding to the 8 general purpose registers, 1 for memory reference, 1 for XMM registers

and floating point stack, 1 for all segment registers, and 1 for immediate value. Upon these

18 types of Op./Opr., the exact features representing the process behavior on x86 can then

be developed.

Regarding the RISC-V architecture, unfortunately, dedicated Stack Op. and I/O Op.

are not available in RISC-V instruction set, and thus, the same classification of operators can-

not be directly applied in this scenario [44]. Alternatively, these two categories are excluded.

Furthermore, the RISC-V implements a group of dedicated instructions manipulating the

Control and Status Registers (CSR) to facilitate program execution. CSRs manage various

common CPU tasks, e.g., interrupt and exception handling, paging switch and addressing,

etc., as well as maintain the status of the process and the flags raised by different program

executions. Therefore, a new category, i.e., CSR Op., is included in the classification, which

results in the five types of operators as follows:

1. Data Op.: same definition as in x86.

2. ALU Op.: same definition as in x86.

3. Control Flow Op.: same definition as in x86.

4. Floating Point Op.: same definition as in x86.

5. CSR Op.: operations manipulating CSR register family.
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Additionally, 13 categories of operands (Opr.) are considered herein. These include 1 class

for stack pointer, 1 for global pointer which tracks access to the heap, 1 for thread pointer

which points to thread-local storage, 1 for program counter and 1 for immediate value.

Moreover, 4 classes are considered for function call-related operands, i.e., the registers which

hold the return address, the temporary registers which hold intermediate results during

function execution, the saved registers which hold the values that should be maintained

across function calls, and the registers for function arguments and return values. Another

4 counterparts are considered for function calls involving floating point arithmetic. Upon

these 18 types of Op./Opr., the exact features representing the process behavior on RISC-V

architecture can then be developed.

The two temporal features, i.e., n-gram model and the raw sequence model, can then

be constructed as follows. A n-gram is a subsequence of n items derived from a given

sequence. A feature matrix can then be constructed by the number of multiple possible n-

gram subsequences. Therefore, similarly, when n is greater than two, n-gram model can also

preserve both frequency and order information, while the order information is less lossy with

larger n. The n-gram model is advantageous in the size of the feature matrix, since the total

number of features can be fixed and bound by the number of possible elements in a given

sequence m and the choice of n, i.e., mn. However, n-gram model is generally applied on an

univariate sequence so that it cannot be directly used on our logged instruction sequences,

which are multivariate sequences, containing variables of both operators and operands.

Current researches on program behavior modeling generally only adopt features gener-

ated from sequence of ‘operators’, without considering ‘operands’ (e.g., relying on sequence

of system call number solely and ignoring its argument [30, 46, 9]) while their effective-

ness has been verified. Similarly in our scheme, the operators can be expected to convoy

more information of program behavior than the operands do. Therefore, we discard the

operand part in our logged instruction sequence while retain only the operator part so that
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Figure 4.5: Feature extraction - n-gram

the original multivariate instruction sequence can then be converted into the univariate op-

erator sequence, on which the n-gram model can be easily applied, as shown in Figure 4.5.

As a result, feature extraction using n-gram model, compared with number of occurrence

with partitioning, maintains frequency and lossy order information with a feature matrix of

significantly reduced size whereas it ignores operands information.

A n-gram model tries to extract significant features from a lossy compression of the

logged instruction sequence while these features are handcrafted, requiring human intelli-

gence and/or experience. Inevitably, there is no guarantee that the selected features are the

most representative while some descriptive information, e.g., the precise order information,

may also be accidentally sieved due to the compression. As a result, crafting features, which

capture both frequency and order information more precisely, may be beneficial. To this

end, we employ the entire raw instruction sequence, without any further feature extraction,

as the feature vector. Indeed, the original sequence is able to maintain the lossless frequency

and order information. However, traditional machine learning methods, which expects inde-

pendent features in the feature vector cannot accept sequential inputs. Hence, it is necessary

to employ more advanced machine learning algorithm, i.e., deep learning model, in order to

process the sequential features.
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Figure 4.6: Feature extraction - raw operator sequence

Deep learning is a branch of machine learning, which attempts to model high-level ab-

straction of data through multiple processing layers. Using deep learning model benefits us

in two ways. Firstly, certain architecture of the deep learning model can process sequential

inputs so that it is a perfect complement to our sequential features. On the other hand, deep

learning algorithm can mine representative features from the raw sequence automatically,

without human intervention, thereby, optimal features may be generated. Details of the

exact learning model we apply will be explained in the following section.

Due to the fact that existing deep learning models limit their capability to processing

only univariate sequence, as well as the assumption that the operator is more informative in

program behavior modeling, the actual feature we use is the operator sequence while operand

information is discard, as shown in Figure 4.6. Furthermore, after learning the log of the

instruction sequence, it is revealed that most instructions fall into DATA Op. set and

ALU Op. set. Hence, for both the x86 and RISC-V scenarios, we extend the categories of

these two operators as illustrated in Table 4.3. Consequently, 13 classes of operators, rather

than the original 6 classes, are evaluated alternatively for the x86 scenario, while 11 classes

of operators, rather than the original 5 classes, are evaluated alternatively for the RISC-V

scenario.
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Table 4.3: Extended classes of DATA Op./ALU Op. set for both x86 and RISC-V scenario

Original class Extended class Description

DATA Op.
(x86)

DATA Op. data manipulation operation
ADDR Op. address manipulation operation
FLAG Op. flag manipulation operation

DATA Op.
(RISC-V)

LOAD Op. data load operation
STORE Op. data store operation

ALU Op.
(x86 & RISC-V)

ADD Op. addition operation
SUB Op. subtraction operation

MULT Op. multiplication operation
DIV Op. division operation

LOGIC Op. logic operation (AND, OR, etc.)
SHIFT Op. shift operation

State-of-the-art program-centric forensics approaches generally model the program be-

havior through profiling their entire execution flow. However, it has been revealed that most

program behaviors tend to diverge at early stage so that a subsequence of their execution flow

can be sufficient to provide distinguishable features [16]. In this work, the early prediction ef-

fect was evaluated on the temporal features introduced above. Specifically, the corresponding

feature extraction mechanism is performed only on a fixed-length subsequence of the oper-

ator sequence. Various possible lengths of the subsequence are experimented exhaustively

while the optimal length is selected based on the statistical result. Apparently, the early pre-

diction effect simplifies the feature extraction mechanism in hardware, leading to significant

decrease in the memory overhead, as well as minimizing the size of feature matrices so that

the computational complexity of the further forensics analysis can be reduced.

4.2.3 Analysis Module

Similar to the prior work, the analysis module is implemented in a trusted software envi-

ronment, based on machine learning algorithms which facilitating multi-class classification.

For the purpose of process reconstruction, Three different non-linear multi-class classifiers
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Figure 4.7: ANN vs. RNN

of varying complexity and performance are experimented with, namely K-Nearest Neighbors

(KNN), Support Vector Machine (SVM) and Recurrent Neural Network (RNN). KNN and

SVM, as traditional machine learning algorithm, are employed to handle the n-gram model

in the same manner as the prior work. RNN, on the other hand, as the more advanced deep

learning algorithm, is employed to handle the raw sequence model. In our implementation,

we used KNN from the Matlab library and SVM from the LIBSVM library [11].

RNN, as a variation of the traditional Artificial Neural Network (ANN), has been devel-

oped in order to make use of sequential information of the input. The traditional ANN has

a unidirectional multi-layer structure, where each layer consists of user-defined number of

nodes, i.e., neurons, who are interconnected with nodes in the adjacent layers. The leftmost

layer of the network is generally termed input layer while the rightmost layer is termed

output layer. All the intermediate layers, on the other hand, are termed hidden layers. Each

neuron in a hidden layer is then composed of tunable parameter matrix W , called weight as

well as a user-defined function F , called activation function, which performs the mapping

y = F (W Tx), where x and y are the corresponding input and output of the neuron. A

typical ANN architecture is shown in Figure 4.7a. Apparently, ANN evaluates each feature

element independently, and therefore, cannot process sequential features.
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Figure 4.8: An unfolded recurrent neuron in RNN

RNN, on the other hand, considers the sequential information through simple modifica-

tion on the traditional ANN. Specifically, in RNN, a self-feedback is applied on each neuron

so that its outputs, now, not only rely on inputs from the last layer but also depend on the

previous computations of its own. For better understanding, a RNN can be converted into

the traditional ANN through unfolding the feedback of its neurons, as shown in Figure 4.8,

while the depth of the unfolded network depends on the length of the input sequence. By this

mean, RNN memorizes information of what has been calculated, and therefore, leverages the

sequential information in the input sequence. A typical architecture of RNN is illustrated in

Figure 4.7b.

The conventional method to train an ANN, i.e., backpropagation through time (BPTT),

generally relies on the backpropagation of error and the gradient descent algorithm. However,

the gradient-based training method may suffer from vanishing gradient problem, as identified

in [6]. In particular, traditional BPTT updates the weights backwards layer-by-layer by the

chain rule, where the error at an arbitrary neuron is propagated back to its previous stages

for multiple times, depending on the depth of the network. Correspondingly, the gradient

decreases exponentially with the depth, thereby, when the depth is large, the gradient of

the ‘front’ layers (i.e., layers closer to the initial inputs) may ultimately vanish. As a result,

the BPTT algorithm may be undermined or not working at all. The RNN, unfortunately,
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Figure 4.9: The implementation of the memory cell in LSTM-RNN

is more severely affected by this problem, since its unfolded network structure is generally

much deeper.

To overcome this limitation, we employ an alternative architecture of the RNN, namely

Long Short-Term Memory (LSTM), which was initially proposed in [25]. LSTM-RNN sub-

stitutes the original neuron with a memory cell, whose implementation is shown in Figure

4.9. A memory cell generally consists of an input gate, a neuron with self-feedback, a forget

gate and an output gate [23]. The input gate determines whether the incoming signal can

alter the current memory state or not while the output gate allows the outputs to affect

other cells or blocks it. The forget gate, on the other hand, controls the effect of the previ-

ous memory state [25]. By this mean, LSTM maintains a more constant error propagation

during BPTT training, which enables the RNN to learn over much longer steps, thereby

prevents the vanishing gradient. In our implementation, we used LSTM-RNN from Keras

[13].

In order to identify unseen processes, which should not be classified as any existing

process class, the outlier detection is performed. Specifically, two different approaches are
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considered, i.e., probability estimates and auto-encoder, to distinguish unseen process from

seen process. The former is the same as introduced in the prior work, which is used a

reference herein, while the latter is discussed in detail as follows.

An auto-encoder is an ANN, which has exactly same dimensions in both the input layer

and the output layer, and aims at learning the representative distribution of the inputs in

order to reconstruct them at the outputs. The performance of an auto-encoder is generally

evaluated through the reconstruction error, which indicates the deviation of the reproduced

outputs from the inputs and can be implemented by the Mean Square Error (MSE). The

reconstruction error, thus, is expected to be minimized in an optimized model. A typical

auto-encoder is depicted in Figure 4.10.

In this work, in order to enable the compatibility with sequential inputs of the auto-

encoder, the LSTM-RNN is employed as the network architecture. Particularly, it is at-

tempted to learn the characteristics of a set of instruction sequences of a process through

the auto-encoder so that the reconstruction error for elements in sequences of seen processes

is minimized while the error for elements in sequences of unseen processes is distinguishably

large. For each element i in a seen process sequence of length l, a maximum acceptable error
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emax(i) is learned in advance, hence, our outlier screening mechanism can be developed by

setting a threshold on the number of abnormal reconstruction error as follows:

ei =

 eabr, if ei > emax(i)

enorm, otherwise
(4.5)

sample =

 seen proc., if |{ei | ei = eabr}| < th

outlier, otherwise
(4.6)

Considering the underlying distribution describing different seen process classes may vary

significantly, in this work, we build auto-encoder for each seen process classes while their

corresponding thresholds are set separately.

4.2.4 Experimental Results

The experimental setup remains the same as in the prior work for x86 architecture. On the

other hand, The experiments for RISC-V architecture were performed in Spike, a RISC-V

ISA simulator, where a 64-bit machine was simulated with 2 GB RAM. A basic RISC-V

version of Linux 3.4 kernel was then loaded as the OS platform. Furthermore, The source

code of the original Spike simulator was modified according to our specific purpose, i.e.,

monitoring instructions raising iTLB miss and the change of SPTBR value.

Similarly, the MiBench benchmark was used as the workload, while, unfortunately, 10

of the benchmark classes cannot be compiled by the RISC-V cross-compiler, due to the

header file missing in the RISC-V Linux. Therefore, these testbenches were excluded in our

experiments. Consequently, the rest of the benchmark suite were executed 400 times in the

same manner as in our previous experiments, which results in approximately 4800 samples

in total. Similarly, each samples represents a single process.
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Figure 4.11: Early prediction analysis on x86 and RISC-V

Early Prediction Analysis Using LSTM-RNN

The early prediction effect was first evaluated in the process reconstruction using LSTM-

RNN approach on both x86 and RISC-V architectures. We note that LSTM-RNN accepts

raw operator sequence as its inputs and performs multi-class classification on our workload
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dataset in order to reconstruct the executed processes. The dataset collected was split

by half into the training set and the validation set. The evaluated length of the operator

sequence varied from 10 to 200 on x86 while it varied from 25 to 500 on RISC-V. Figure

4.11 summarized the performance of the LSTM-RNN classifier at different input sequence

length on both architectures. As may be observed, the classification accuracy increases

monotonically when the sequence length is lengthened, which corresponds to the fact that

longer sequence convoys more information for better distinguishability. On the other hand,

the input length longer than 100 on x86 has no significant impact on the classification

accuracy, which justifies the early prediction effect, indicating that process reconstruction

based on the entire program execution flow is unnecessary at all. Similarly, such phenomenon

can also be observed on RISC-V after the input length reaches 150. As a result, in order to

achieve acceptable classification accuracy with minimal logging overhead, we selected 100 as

the optimal length of the input sequence on x86 as well as 150 as the optimal input sequence

length on RISC-V.

Process Classification Result on x86

The process classification was performed on samples of 23 classes of processes, where each

class had 400 samples. The dataset was split by half into training set and validation set,

each of which contains half of the samples for every process class. Upon the two dataset, we

compared the effectiveness of using the three types of features combined with three different

machine learning model to identify different processes, as introduced in Section 4.2.2, which

is illustrated in Figure 4.12.

We first evaluated the classification performance using the counts of occurrence features

as a reference point. The initial dimensionality of the collected feature vector matrix was as

large as 83612 and was reduced to 200 after applying PCA. The reduced matrix was then fed

into the two classifiers, i.e., KNN and SVM, leading to the process classification results as

35



Benchmark class

to
as

t  
   

unto
as

t  
 

sh
a 

   
   

lam
e 

   
  

su
sa

n   
  

bas
icm

at
h 

bf  
   

   

pat
ric

ia 
 

se
ar

ch
   

 

fft
   

   
 

dijk
st

ra
  

tif
f2

rg
ba 

tif
fm

ed
ian

tif
f2

bw   

qso
rt 

   
 

cjp
eg

   
  

djp
eg

   
  

ra
wca

udio 

ra
wdau

dio 

cr
c  

   
  

m
ad

play
   

lou
t  

   
 

pgp   
   

 

ov
er

all
   

Mac
hine le

ar
ning m

eth
od

CoO-KNN

CoO-SVM

3 gram-KNN

3 gram-SVM

4 gram-KNN

4 gram-SVM

RNN-LSTM

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.12: Process identification results on x86

illustrated by the first two rows (the blue row as the first) in Figure 4.12. The classification

result accords to the observation in the prior work. Both classifiers performed very well

in correctly classifying the processes, reaching an overall classification accuracy of 95.74%

and 95.83% respectively while the process rawdaudio is an exception. Alternative features

with more advanced machine learning algorithms, as proposed in this work, may potentially

address this limitation.
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The alternative features using n-gram model were evaluated next. We experimented with

the 3-gram and 4-gram models, which were applied on the operator sequence of length 100

to extract features since the early prediction effect was revealed. As described in Section

4.2.2, since we consider 6 types of operators, the initial dimensionality of the feature matrix

generated by the 3-gram and 4-gram model were 216 and 1296 accordingly. Compared

with the case of using counts of occurrence, the dimension of the feature matrix generated

using n-gram model was far less. Similarly, the matrix was then fed into KNN and SVM to

perform the process classification. As indicated by the third to the sixth rows in Figure 4.12,

the overall classification accuracy for the two classifiers using 3-gram model were 83.25%

and 82.64% while the accuracy for the two classifiers using 4-gram model were 86.99% and

85.93%. As expected, The 4-gram model, since it captures information in finer-grained

manner, performed better than the 3-gram model. However, compared with the result of

using counts of occurrence, the overall performance of the n-gram model was not competitive.

Neither the issue between the process rawcaudio and rawdaudio was resolved. This may be

explained by the fact that the n-gram models, similar to the counts of occurrence, preserve

the frequency and order information in a lossy way while they sacrificed potentially helpful

information from the operands. Nevertheless, the n-gram model generated a much smaller

feature matrix, which implies dramatically reduced storage/computation overhead.

Finally, we evaluated the effectiveness of process classification using the raw operator

sequence with the deep learning model. The dimensionality of the feature matrix in this

scheme equals to the optimal length of the operator sequence, i.e., 100, due to the early pre-

diction effect. As shown by the last row (the red row) in Figure 4.12, the RNN-LSTM model

performs the best in process identification, achieving an average classification accuracy of

99.12%, which is approximately 3% higher than the accuracy achieved through KNN/SVM

with counts of occurrence. Furthermore, while the similarity issue between the process

rawdaudio and rawcaudio was unresolved by using other features, the process rawdaudio
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was successfully distinguished from the process rawcaudio in this scheme. Indeed, essen-

tially, counts of occurrence and n-gram model generates compressed representation of the

raw instruction sequence. On the other hand, the raw operator sequence preserves the fre-

quency and order information more precisely while the deep learning model can intelligently

mine descriptive features from its input sequences. As a result, a lossless abstraction of

the raw instruction sequence is generated, which leads to a better performance for process

classification.

Outlier Detection Result on x86

To evaluate the effectiveness of the TPE in identifying previously unseen processes, we

repeated the experiment, this time omitting 5 randomly selected classes from the training

set, while retaining them in the validation set to mimic outlier processes. We compared

the performance of our two outlier detection methods, i.e., probability estimates and auto-

encoder, as follows.

We first evaluate the outlier detection using probability estimates. Through cross-

validation, we set the threshold for outlier screening to 0.6, which is applied to the testing

set to identify unseen process. Figure 4.13 summarizes the results for four different runs. For

each run, we report the false positive (FP) (i.e., seen process classified as outlier) and false

negative (FN) (i.e., outlier classified as seen process) rates. As may be observed, even the

simple outlier screening method described above results in high outlier detection accuracy,

with the average FP and FN rate at 12.31% and 5.13%, respectively. This result accords to

the observation in the prior work and is used a reference point.

Unlike probability estimates using a global threshold to identify outliers, an auto-encoder

is built for each seen process class, which results in 18 independent auto-encoders, whose

thresholds to screen outliers were set separately. For each class, we report its corresponding

threshold, as well as the FP/FN rate, which is summarized in Figure 4.14. The left y axis
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Figure 4.13: Outlier detection results using probability estimates on x86

represents the FP/FN rate while the right y axis represents the threshold applied for each

process class to screen outliers. As may be observed, this approach significantly reduces

the FP/FN rate, compared with the method using probability estimates, which results in

an average FP rate of 0.96% and an average FN rate of 0.21%. Zero FP or FN rate, which

indicates no error in identifying outliers, can even be reached in certain process classes, while

the worst case of the FN and FP rate is 3.5% and 3.77% respectively. Indeed, modeling

the characteristic distribution of different process classes individually may lead to a more

precise interpretation of each class. Additionally, the sequential features also surpass the

independent features in extracting meaningful information from the raw instruction sequence,

which has been verified in the process classification result. As a result, outlier detection using

auto-encoder can be expected to outperform another alternative using probability estimates.
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Figure 4.14: Outlier detection results using auto-encoder on x86

Logging overhead on x86

To evaluate the design overhead of the TPE on x86, we focus on assessing the required data

logging rate corresponding to our different feature extraction mechanisms. Unfortunately,

Simics is not a cycle-accurate simulator. Therefore, to attain a more accurate estimation,

we calculated the logging rate as follows.

In the scheme of feature extraction using counts of occurrence, for each partition of

a process, the TPE requires one feature vector containing 18 elements. If we assume

partition size to be 100, as in our experiments, we only need 7 bits for each element,

since the occurrence frequency can never exceed the partition size. The number of par-

titions per second for which a vector needs to be logged is determined by the iTLB miss

rate. Assuming clock cycles per instruction (CPI) has an optimal value of 1, the estimated
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logging rate is calculated step by step by the equations below:

F.V. size = 18× dlog2 partition sizee (4.7)

partition generation rate =
iTLB miss rate

partition size
(4.8)

bits/inst. = F.V. size× partition generation rate (4.9)

est. logging rate(bits/sec) =
bits/inst.× clk freq.
CPI(assumed = 1)

(4.10)

On the other hand, in the scheme of feature extraction using n-gram model or raw

operator sequence, it is more efficient to log the operator sequence itself directly. Given the

number of categories of operators to be 6 or 13 respectively, we only need 3 or 4 bits for

each element in the sequence. Similarly, the number of categorized operators in the operator

sequence to be logged per second is determined by the iTLB miss rate. The estimated logging

rate is calculated by the equations below:

element size = dlog2 number of op. categoriese (4.11)

bits/inst. = iTLB miss rate× element size (4.12)

est. logging rate(bits/sec) =
bits/inst.× clk freq.
CPI(assumed = 1)

(4.13)

We ran our benchmark suite several times to obtain an average iTLB miss rate, the

value of which was 0.0016%, resulting in an estimated data logging rate of only 5.17 KB/s,

12.31 KB/s and 16.41 KB/s respectively. While a typical TLB miss rate is expected to

be around 0.01-1% [38], since we consider only user-space virtual addresses and only iTLB

misses, the relevant miss rate for our scheme is much less. Furthermore, since we assumed

an optimal CPI of 1, the logging rate ought to be even lower in realistic cases. As may be

observed, compared with counts of occurrence, n-gram model and raw operator sequence

nearly doubles/triples the logging rate. Nevertheless, due to the early prediction effect, the

logging mechanisms in the latter two scheme are only enabled for the first 100 instructions
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Figure 4.15: Process identification results on RISC-V

raising iTLB miss while remains disabled during the rest of time, hence, generating logs of

much smaller size. Therefore, n-gram model and raw operator sequence, although introduce

higher rate during the logging process, they, in fact, incur less storage overhead.

Process Classification Result on RISC-V

This section evaluates the effectiveness of the TPE in process identification on RISC-V. The

experiments were performed on samples of 12 process classes, where each class contained 400
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samples. The dataset was split by half into training set and validation set, each of which

contained half of the samples for every process class. The same experiments as in the x86

scenario were performed on the two datasets, whose results are illustrated in Figure 4.15.

We start with evaluating the classification performance using counts of occurrence. Simi-

larly, a first-level dimensionality reduction using PCA was performed on the collected dataset.

The compressed dataset was then fed into the KNN and SVM model, engendering the classi-

fication results as illustrated by the first two rows in Figure 4.15. As may be observed, both

classifiers achieved similar results in process identification as in the x86 scenario, reaching an

overall accuracy of 94.5% and 92.1% respectively. Alternative features and machine learning

algorithms may further improve the results.

The 3-gram and 4-gram models, which were applied on the operator sequence of length

150 for feature extraction, were evaluated next. Upon the 5 types of operators as mentioned

in Section 4.2.2, the 3-gram and 4-gram model generated the feature matrices whose initial

dimensionality were 125 and 625 respectively. The feature matrices were then fed into KNN

and SVM to perform process classification. Accordingly, as illustrated by the third to the

sixth rows in Figure 4.15, an overall classification accuracy of 87.46% and 86.33% for the

two classifiers using 3-gram model can be achieved, while an overall accuracy of 87.66%

and 87.45% for the two classifiers using 4-gram model can be achieved. Likewise, the n-

gram model does not bring advantageous results in process identification over the counts

of occurrence, while it is beneficial in reducing the massive storage/computation overhead

introduced by the latter.

Finally, we evaluated the performance of the deep learning model using the raw operator

sequence in process identification on RISC-V. The dimensionality of the feature matrix in

this scheme is 150, which accords to the optimal length of input sequence, achieved by the

early prediction analysis. As shown by the last row in Figure 4.15, the RNN-LSTM model

performs the best as well in process identification on RISC-V, reaching an overall classi-

fication accuracy of 97.8%, which is approximately 3% higher than the accuracy achieved
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Figure 4.16: Outlier detection results using probability estimates on RISC-V

through KNN/SVM with counts of occurrence. In a nutshell, the TPE is able to perform well

in identifying processes on both x86 and RISC-V architectures, while the RNN-LSTM model

consistently achieves the best performance on both architectures. This observation, there-

fore, corroborates the effectiveness of the sequential features as well as the generalizability

of the TPE.

Outlier Detection Result on RISC-V

Regarding evaluating the outlier detection on RISC-V, we follow the same experimental

flow, as in the x86 scenario, i.e., omitting 5 randomly selected classes from the training set

while retaining them in the validation set to mimic outlier processes. The performance of

the proposed methods using probability estimates and auto-encoder was then evaluated as

follows.

The outlier detection using probability estimates is first evaluated. The threshold for

outlier screening in this case is set to 0.6 through cross-validation. As shown in Figure 4.16,
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Figure 4.17: Outlier detection results using auto-encoder on RISC-V

the repeated tests indicate a high outlier detection accuracy, with the average FP and FN

rate of 7% and 10.45% respectively. The consistent results in both x86 and RISC-V scenarios

confirm the effectiveness of the proposed simple outlier screening method.

To evaluate the performance of the auto-encoder on RISC-V, the same experiments were

performed, as in the x86 scenario. As a result, 12 independent auto-encoders were con-

structed with individual outlier screening thresholds. Figure 4.17 summarized the outlier

detection results. As may be observed, an average FP rate of 1.84% as well as an average

FN rate of 1.8% can be achieved, which is significantly lower than the counterpart in the

case of using probability estimates. The worst case of the FN and FP rate is 3.3% and 3.5%

respectively. This results corroborates the effectiveness of the auto-encoder on both x86 and

RISC-V architectures.
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Logging Overhead on RISC-V

Since Spike is not a cycle-accurate simulator, the data logging rate, similarly, has to be

computed manually. On the other hand, although the data pre-processing on the RISC-V

differs from its x86 counterpart due to the distinct instruction set design, the methodologies

for feature extraction are identical on both architectures. As a result, the same formulas,

i.e., equation (4.7) - (4.13), can be used in order to estimate the data logging rate of the

TPE on the RISC-V.

In our experiments, the average iTLB miss rate for user-space instructions was 0.026%.

Moreover, the spike simulator does not implement a timing model. Therefore, assuming the

clock frequency according to a RISC-V CPU prototype, i.e., SiFive E51, running at 1.5 GHz

[1], an average data logging rate of 71.7 KB/s, 146 KB/s and 195 KB/s can be achieved

when counts of occurrence, n-gram model and raw operator sequence are applied in feature

extraction, respectively. The relatively high iTLB miss rate, compared with the case on

x86, can be explained by the different implementation of the RISC-V ISA as well as its

cross-compiler. Further optimization on this platform, which is in parallel to this work, is

expected to lower the iTLB miss rate.

4.2.5 Conclusion

In this work, the TPE was proposed as an extended work of the prior work. More specifically,

the feasibility of using temporal features in hardware-based workload forensic analysis pro-

cessed with advanced machine learning algorithms, i.e., RNN-LSTM and autoencoder, was

explored. The TPE was evaluated in Linux OS running on two representative architectures,

i.e., 32-bit x86 and 64-bit RISC-V, which were simulated in the Simics and Spike simula-

tors, respectively. Comparison between the performance of spatial features and temporal

features on both architectures indicates that the RNN-LSTM/auto-encoder model using the
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sequential features outperforms other analysis methods in terms of process classification ac-

curacy/outlier detection accuracy as well as logging overhead. Specifically, experimental

results using the popular Mibench benchmark suite reveal that, on x86, an overall process

identification accuracy of 99.12% can be achieved, and an average FP/FN rate of 0.96% and

0.21% in identifying unseen process can be reached, at the cost of simple hardware additions

capable of processing and logging data at a rate of 16.41 KB/s. Similarly, on RISC-V, an

overall accuracy of 97.8% in process identification can be achieved, as well as an average

FP/FN rate of 1.84% and 1.8% for unseen process identification can be reached, at the cost

of data logging rate of 195 KB/s. These results corroborate the effectiveness as well as the

generalizability of the TPE using temporal features.

4.3 On-line Workload Forensics

4.3.1 System Overview

In this work, an on-line workload forensics method is proposed. More specifically, we ex-

plore the possibility of relying exclusively on custom hardware components in order to trace

architectural data of interest and further identify the executed workloads in real time us-

ing machine learning algorithms. The actual implementation consists of a hardware tracing

module, a feature extraction module, and a workload identification module. The hardware

tracing module is able to collect architectural events related to program execution exclusively

from the hardware, whose data collection bus must remain invisible to OS-level applications.

The feature extraction module generates representative features from the collected data,

which describe program behavior, while the workload identification module wraps a machine

learning-based classifier to identify (1) whether one workload is legitimate or not, (2) what a

workload is if it is legitimate, through their dynamic behavior at the granularity of process.

Herein, the machine learning algorithm is involved to consider the runtime variation of pro-

gram execution. Due to the real time characteristic and the on-line system architecture, the
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Figure 4.18: Architecture of ARM CoreSight

set of features and the machine learning algorithms to be used need to be carefully selected,

since the complexity in the features and the algorithm may incur significant design overhead,

which prevents the proposed method from deployment.

4.3.2 Implementation

HW tracing

The first and the foremost building block in our proposed framework is a hardware tracing

component, which logs architectural events that can distinguish program behavior. Intu-

itively, the most informative event capable of modeling the program behavior is the dynamic

control flow. Control flow tracing in hardware, however, is not straightforward at all, since

it requires deep coupling with the execution pipeline of the underlying microprocessor while

it is expected to introduce minimal performance overhead. Fortunately, industrial-standard

hardware tracing solutions have been proposed, e.g., ARM CoreSight and Intel Processor

Tracing (PT) [4, 29]. Generally speaking, these solutions aim at non-intrusively collecting

program runtime branch addresses so that the dynamic control flow of a program can be
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Table 4.4: Summary of application scenarios of commercial processors with hardware tracing
support

Applications ARM Intel
Server and Desktop Cortex-A75/A55 Xeon D family,

Xeon E3/E5 family,
Core i5/i7/i9 family

Mobile devices Cortex-A73/A57,
Snapdragon (Qualcomm),
Ax (Apple)

Core i3/i5/i7 family,
Core m3/m5/m7 family

Embedded applications Cortex-A35/A17,
Cortex-M23/M7/M4

Core i5/i7 family,
Xeon E3 family

reconstructed with the assistance of the binary image of programs. For example, the ARM

CoreSight employs a hardware macro, i.e., the Program Trace Macrocell (PTM) to fulfill the

task. During the execution of an application in the OS, the PTM generates multiple types

of packets according to customized trigger rules, which logs current context ID value, direct

and indirect branch address, timestamps, etc. These packets are compressed in a specific

way defined by ARM in order to minimize the bandwidth of the data log. The generated

packets are then sent to the data storage through a communication channel, namely fun-

nel. Two different data storage are introduced in CoreSight, namely Embedded Trace Buffer

(ETB) and Trace Port Interface Unit (TPIU). The ETB maintains data in on-chip RAM so

that software debug tools can later access it, while the TPIU drives the external pins of the

trace port so that the trace data can be offloaded to an external hardware. Hence, we follow

the latter path to collect our data of interest. An architectural view of the ARM CoreSight

design is shown in Figure 4.18.

In order to simplify the design complexity as well as ensure the practicality of our work-

load forensics framework, we decide to take advantage of the state-of-the-art industrial-

standard hardware tracing techniques. Considering the easier accessibility to the physical

devices embedding ARM processor core and its hardware tracing module, the ARM Core-
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Sight is employed in our proposed framework to facilitate the tracing task. Nevertheless,

we note that the proposed framework is not ARM CoreSight-dependent. Essentially, any

state-of-the-art hardware tracing solution, e.g., Intel PT, or custom solutions, can be plugged

into this framework, while the ARM CoreSight is selected in this work only to facilitate the

illustration of the proposed concept.

On the other hand, the wide adoption of the hardware tracing technology in the latest

commercial processors eases the data acquisition of the proposed framework in various real-

life application scenarios, as summarized in Table 4.4. For instance, both the ARM Cortex-

A processor series, which bolster high-performance consumer infrastructure devices, and

the Cortex-M processor series, which are optimized for low-cost Microcontroller (MCU) or

System-on-Chip (SoC), are equipped with the ARM CoreSight solution. So does the Intel

processor architecture, which embeds Intel PT starting from its 5th generation, i.e., the

Broadwell in 2015.

In order to collect representative architectural data to describe program behavior and

bridge the semantic gap, the ARM CoreSight is configured to trace the value of context ID

register, which is interpreted as a process identifier [26], and the corresponding direct and

indirect branch target addresses, which describe the program control flow and, thus, model

the program behavior. Upon the trace collected through the CoreSight module, descriptive

features are then generated in the feature extraction module.

Feature Extraction

Modeling program behavior using branch addresses exclusively is restricted by the intrinsic

implementation of the ARM CoreSight. Nonetheless, the transition between branch ad-

dresses is considered to be sufficient to reveal both the static information of the execution

of an arbitrary application, i.e., the layout of its address space, as well as the corresponding

dynamic information, i.e., the program execution control flow. To facilitate the next-step
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workload identification, the feature extraction component extracts descriptive features from

the collected sequence of branch addresses. Specifically, we evaluate both the potential

spatial features and the temporal features as discussed below.

We perceive the spatial features as the features which are able to capture the information

of the address space layout of different applications. A common choice is, the Counts of

Occurrence (CoO), which partitions the address spaces and then collects the counts of hits

by branch addresses on each partition. Generally speaking, a finer-grained partitioning

provides a more precise view of how an application organizes and utilizes its address space

during runtime, while the size of the feature space grows linearly according to the granularity

and incurs higher implementation overhead.

A typical address space layout is shown in Figure 4.19. As may be observed, the locations

containing program runtime code mainly fall into three sections (i.e., .text section, shared

memory section and the kernel space section), while the .text section maintains the user-
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level code of the program, the shared memory section contains dynamically linked C shared

library and the kernel space section keeps the OS service routines. This results in an extreme

bias in the hit area in the address space of the branch target addresses. Therefore, splitting

the address space evenly leads to a sparse feature vector and creates a lot of dummy entries,

which remain zero or insignificant number and carry no useful information according to

the increase of granularity. In contrast, we apply a weighted partitioning method, whose

essential idea is to assign more partitions to the dense area (containing more CoO), while

assigning fewer partitions to the sparse area (containing less CoO).

The partitioning problem can then be modeled as follows: given an address space AS

and a target partition number P, find a set of edges E whose size is P-1 and which partition

the AS, so that the standard deviation of the P-size dataset after partitioning, where each

partition p contains accumulated CoO, is minimized. Essentially, this is an optimization

problem which can be solved through gradient descent algorithm. However, since the AS can

only be split in order, we develop a computation-friendly heuristic algorithm to fulfill the

partitioning task. First, we assume the size of the minimal dividable partition U is 212 Bytes,

which match the 4K page size, in order to reduce the computational complexity. Initially,

the AS is, therefore, evenly split into a list L consisting of 232−12 = 220 partitions. Given a

target P, we run the following process in iteration until the partitioning is done: (1) compute

the average CoO over the L according to P, (2) accumulate the CoO in each ui until the sum

reaches the average, (3) the accumulated ui forms one pj, (4) exclude pj from L and go back

to step (1). Listing 4.1 shows the pseudocode of the partition algorithm. Compared with

gradient descent, the time complexity of this algorithm is O(n), which is far more efficient.

Essentially, the spatial features introduced above extracts the spatial relationship of

different branch target addresses and generates a lossy representation, i.e., the CoO after

partitioning. However, it fails to capture the temporal relationship, which is the order of

different branch target addresses and may also be helpful for identifying program behavior.
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input : L [ $2 ˆ{20}$ ] and P
output : E [P−1]

t o t a l = sum(L) , p accum = 0 , i = 0 , P l e f t = P;
// i t e r a t e over each minimal d i v i d a b l e p a r t i t i o n
f o r u in L :

mean = t o t a l / P l e f t ;
p accum $\ l e f t a r r o w $ p accum + L [ u ] ;
i f p accum > mean :

//p conta in s only one u
i f p accum == L [ u ] :

E [ i ] $\ l e f t a r r o w $ u ;
t o t a l $\ l e f t a r r o w $ t o t a l − p accum ;
p accum $\ l e f t a r r o w $ 0 ;

e l s e :
//p conta in s mu l t ip l e u ,
ensure p has the value c l o s e s t to the mean
i f | p accum−mean | >= | p accum−L [ u]−mean | :

E [ i ] $\ l e f t a r r o w $ u − 1 ; // exc lude cur r ent u
t o t a l $\ l e f t a r r o w $ t o t a l − ( p accum+L [ u ] ) ;
p accum $\ l e f t a r r o w $ L [ u ] ;

e l s e :
E [ i ] $\ l e f t a r r o w $ u ;
t o t a l $\ l e f t a r r o w $ t o t a l − p accum ;
p accum $\ l e f t a r r o w $ 0 ;

i $\ l e f t a r r o w $ i + 1 ;
P l e f t $\ l e f t a r r o w $ P l e f t − 1 ;
i f P l e f t == 1 : // the l e f t u w i l l form the l a s t p

break i t e r a t i o n ;
r e turn E;

Listing 4.1: Heuristic weighted partition algorithm
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A popular feature extraction alternative to maintaining the temporal information of a

dataset is the n-gram model. An n-gram is a subsequence of n items derived from a given

sequence. A feature vector can then be constructed with the number of all the possible

n-gram subsequences. When n is greater than 2, n-gram model can, thereby, preserve the

sequential information, while such information is less lossy with larger n. The total number

of features generated by an n-gram model can be bound by the number of possible elements

in a given sequence m and the choice of n, i.e., mn. The n-gram model in our scenario is

then generated as follows: (1) split the address space into arbitrary P partitions using the

algorithm in Listing 4.1, (2) given a n, the n-gram model calculates the CoO of the transition

combination between any n partitions, (3) the size of the feature vector is P n. Due to the

underlying implementation cost, herein, we only consider the 2-gram model.

While the n-gram model compresses the temporal information in a lossy manner, the

original sequence of branch addresses itself can be used as a feature vector in a lossless way.

Herein, we explore the feasibility of using a partition sequence which is transformed from

the original branch address sequence where each element is substituted with the partition it

belongs to. Nevertheless, traditional machine learning methods, which expects independent

features in the feature vector, e.g., our spatial features, cannot accept sequential inputs.

Therefore, it is necessary to employ a more advanced machine learning algorithm, which is

able to process sequential features.

Real-time Workload Identification

State-of-the-art program behavior modeling methods generally require a complete execution

flow to perform further analysis, which prevents a real-time response. However, as shown in

[17], program behaviors tend to deviate at an early stage of their execution. Therefore, in

our scheme, it may be feasible to perform the real-time identification analysis using only a

subsequence of the branch target address sequence, which implies more prompt response for

identifying workload, rather than the ex post facto identification analysis.
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Herein, we explore the possibility of using a header portion of the complete program

execution profile in order to perform real-time workload identification analysis. Nevertheless,

the header portion contains lossy information, which may undermine the effectiveness of

the classifier in identification. We evaluate various lengths of the branch target addresses

sequence to be used, in order to find the minimal length of subsequence required, leading to

similar identification accuracy as the mechanism using a complete program execution profile.

Given the truncated subsequence, spatial or temporal features introduced above can then be

extracted.

Upon the aforementioned extracted features, our workload identification mechanism em-

ploys several machine learning algorithm to timely understand the workload being executed

at the granularity of a process. In particular, the actual analysis is performed in two stages as

follows. The first-level analysis employs the machine learning algorithm for anomaly detec-

tion in order to identify the unexpected suspicious workload beyond the legitimate workload

set. The second-level analysis leverages multi-class classification to identify if legitimate

workloads are executed according to the design specification and regulatory compliance.

Regarding the spatial features, considering the program behavior is generally not lin-

early distinguishable, we experimented with two non-linear classifiers of varying complexity

and performance, namely Decision Tree (DT) and Artificial Neural Network (ANN). In our

scheme, we evaluate DT from the Matlab library and ANN from Keras [13].

With reference to the temporal features, although the traditional machine learning al-

gorithm can process the n-gram model, advanced learning algorithm must be involved in

order to process the partition sequence. Herein, similar to the prior work, we employ Recur-

rent Neural Network (RNN), which has been developed to accept sequential inputs. In our

implementation, we used LSTM-RNN from Keras [13].
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Figure 4.20: architectural view of the proposed framework

Hardware Implementation

In this Section, we present the hardware implementation according to the proposed frame-

work. Since we leverage the ARM CoreSight to facilitate our design, it is unnecessary to

design our custom hardware tracing module. Alternatively, a custom data decoder is required

in order to decode the trace collected by the ARM CoreSight module. An architectural view

of the entire framework is illustrated in Figure 4.20.

• Trace decoder:The trace decoder decodes the incoming data trace based on the packet

format and the decoding rules introduced in the ARM CoreSight manual [4]. The de-

coder works at the same frequency as the ARM CoreSight module to synchronize itself

with the CoreSight packet output. Only packets related to the current context ID value

and the direct/indirect branch address, recognized by the predefined specific headers

[4], are processed by the decoder, while the others are ignored. Upon the decoded

branch address sequence, the next-level feature extraction can then be performed.

• Feature Extraction:This component extracts the features from the received branch

address sequence in parallel with the data stream decoder, once it detects a valid

decoded branch address. A feature vector is instantiated in order to store the CoO.
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A conditional check is performed in order to access the correct partition based on the

partition edge derived by the algorithm introduced in Listing 4.1. After the number of

processed branch addresses reaches a pre-defined limit (which is determined through

the evaluation in the following Section), this components finalizes the current round of

the feature extraction.

Before the workload identification analysis is actually performed, the feature vector

is standardized using the formula: (X − X)/∆, where X is the feature vector, and

the coefficients X and ∆ are the mean and standard variation vector derived from the

training set. The standardization coefficients are pre-computed and stored in the on-

chip ROMs, while the actual process is fulfilled using the Xilinx Floating Point (FP) IP

cores [45], involving an integer-to-FP converter, an FP subtractor, and an FP divider.

Consequently, the standardization process can be performed in T(Stand.) = T(conv.)

+ T(Sub.) + T(Div.) cycles, where T(x ) depends on the actual configuration of the

IP cores.

• Classifier:The classifier module implements an ANN model due to its better scalability

and flexibility than a DT model. The ANN is designed with one hidden layer, whose

number of neurons are determined through the evaluation in the following Section.

The sigmoid function is used as the activation function. In particular, two layers of

computation are required in our implementation, i.e., an input-hidden layer and a

hidden-output layer, while the output of an arbitrary neuron at each layer involves

the sigmoid result of the accumulation and the dot multiplication of its input and

corresponding weights as follows:

O
(j)
i = sigmoid(

N∑
i=1

W
(j)
i · I) (4.14)

where I is the input vector to the ith neuron at jth layer, N is the input vector size,

Oi and Wi are the corresponding output vector and weights of the neuron. The final

classification result is, thus, based on the maximum pooling of the output layer.
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The cardinal design of an ANN is the implementation of a neuron, which primarily

consists of (1) memory storage that maintains weights and biases of layers and interme-

diate results, (2) computational logic that fulfills the equation 4.14, and (3) the class

prediction based on the max-pooling. ROMs are employed to store the pre-computed

weights and bias for each layer while a RAM is employed to store the intermediate out-

put values of the hidden layer which serve as the inputs of the output layer. In order to

implement the aforementioned dot multiplication and the accumulation efficiently, we

take advantage of the Fused Multiply-Add (FMA) mode of the Xilinx FP IP core with

a feedback logic. Furthermore, to simplify the sigmoid function design, we employ a

piecewise linear approximation of the original function whose maximum absolute error

of approximation is 0.005 [20]. To further reduce the design overhead of the ANN, the

sigmoid function in the output layer is excluded without affecting the class prediction

due to the monotonicity of the sigmoid function. Accordingly, the entire calculation

in a single neuron for a N-length input vector takes T(neuron) = N × T(mul-add) [+

T(sigmoid)] cycles to finish.

Although a fully-parallel design of the ANN can produce data with optimal timing, the

implementation overhead is overwhelming and is proportional to the number of neurons

in the ANN structure, thus, may not be affordable. In contrast, we employ a serial

design, which is optimized for minimal design overhead. As a result, our ANN consist

of one instance of the neuron, while the latency to finishing the entire classification

takes T(classify) = (H + C) × T(neuron), where H is the number of neurons at the

hidden layer and C is the number of program classes.

• Anomaly Detector: To take the on-chip resource restriction for hardware design

into account, a hardware-friendly extension of the multi-class classifier for anomaly

detection is employed rather than implementing a separate detection module. Specifi-

cally, the conjecture of the anomaly detection is that the maximum probability of the
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prediction in the ANN for a seen, i.e., legitimate, class is consistently larger (higher

confidence level) than the maximum probability of the (mis)prediction for an unseen,

i.e., suspicious, class (lower confidence level). Hence, a threshold can be studied for

each legitimate class, while the workload identification is extended with the capability

of anomaly detection as follows:

class =

 suspicious, if max. prob. < th(i)

argmax, otherwise
(4.15)

By this means, the anomaly detection and classification tasks are integrated into one

single implementation of the machine learning algorithm, which minimize the design

overhead of the analysis module.

4.3.3 Experimental Results

The effectiveness of the proposed method in correctly identifying workloads and filtering

suspicious workloads is assessed in this section. The classification results are illustrated

using both spatial features and temporal features, while the optimal partition number P and

the minimal required length of a branch address sequence are reported, which balance the

effectiveness and design overhead.

The experiments were performed on a Linaro Linux host running Linux kernel 4.6, which

is loaded on the Zedboard, a Xilinx Zynq-7000 series FPGA who embeds an ARM processor

and ARM CoreSight Module. We collected the data trace generated through the Core-

Sight module directly from the hardware, decoded the package and performed the feature

extraction mechanism in software for evaluation. Both common Linux commands and the

MiBench [24] benchmark suite were used as our workloads, leading to the evaluation of 25

program families, while each family is executed with different arguments, creating multiple

variations for classification in order to boost the resilience of our framework. In total, we
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Figure 4.21: Average workload identification accuracy according to different partitioning
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collect approximately 400 variations for each program family, which were split randomly in

half for training and testing.

Partition Number P

We first evaluate the impact on the effectiveness of the workload identification of our parti-

tioning methodology and different choices of partition numbers. Both the evenly partitioning

method and the heuristic weighted partitioning method was evaluated while the former was

considered as a baseline design to compare with. We examined possible partition number

ranging from 4 to 50, where the interval was 2. Figure 4.21 summarized the average iden-

tification accuracy over all the program classes, using both DT and ANN, corresponding to
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(b) Weighted partitioning,
P = 15
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(c) Evenly partitioning,
P = 26
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(f) Weighted partitioning,
P = 35

Figure 4.22: Distribution of counts of occurrence according to evenly partitioning vs.
weighted partitioning in different partition size

different partitioning solutions. As may be observed, the evenly partitioning method led to

no favorable result (the green and the maple line in Figure 4.21) in workload identification,
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which reached an identification accuracy of approximately 83% for DT and 65% for ANN.

Furthermore, the identification accuracy in this scenario does not change significantly with

the increase in the partition number, which implies that the finer-grain granularity in the

evenly partitioning does not produce a deeper view of program execution. A detailed dis-

tribution of counts of occurrence (in log) for multiple partition number choice in the evenly

partitioning was illustrated in Figure 4.22a, 4.22c, and 4.22e. As may be observed, such

the distribution remains extremely biased while more partitions are evaluated. Indeed, with

evenly partitioning, most newly-added partitions are assigned to the insignificant area since

every portion in the address space is treated equally. As a result, more partitions involved

in the evenly partitioning contribute less in workload identification.

On the other hand, the DT and ANN perform well with the heuristic weighted partition-

ing method in workload identification. As shown in Figure 4.21, the average identification

accuracy in both cases (the red and the blue line) increases monotonically according to the

partitioning granularity. In particular, the DT obtained an approximately 10% gain in the

average identification accuracy with finer-grained weighted partitioning, while the ANN ob-

tained an approximately 20% gain in the accuracy. Compared with the evenly partitioning

scenario, the DT ultimately surpassed the baseline with approximately 13% in performance,

while the ANN surpassed the baseline with approximately 30% in performance. This obser-

vation implies that the weighted partitioning algorithm is able to break those biased areas,

from which more significant information can be revealed. A detailed distribution of counts

of occurrence (in log) for the weighted partitioning case was illustrated in Figure 4.22b,

4.22d, and 4.22f. Compared with their counterparts in the evenly partitioning scenario,

the distribution is closer to a uniform distribution, which indicates that the significant area

in an address space is broken further as the partition number increases. By this means,

more partitions can convey more information, and, thereby, improves the distinguishability

of program behavior.

62



Moreover, the identification accuracy in the weighted partitioning scenario is observed to

reach a stability after a ‘inflection point’, while the increase in the partitioning granularity no

longer has significant impact on the identification efficacy. This may be explained by the fact

that the significance of the different portion of the address space has been well balanced, and

thus, more partitions cannot bring additional information to distinguish program behavior.

Therefore, we select the ‘inflection point’ – in this case, 26 – as the optimal partition number,

which balances the feature space size and the effectiveness of the classifier. Accordingly,

we achieved an average identification accuracy of 96.68% and 95.57% for DT and ANN

respectively.

Length of Branch Address Sequence

Assuming the optimal partition number being used, we next evaluate how the different length

of the branch address sequence under evaluation influences the workload identification result.

We evaluated the length of the branch address sequence varying from 1000 to 50000, where

the interval was 1000. The identification accuracy, using both DT and ANN, according to

different lengths of the sequence under evaluation was illustrated in Figure 4.23. As may

be observed, workloads may not be distinguishable at the initial stage of their execution,

since, generally, workload execution starts with some common initialization process. Along

with the increase in sequence length under evaluation, however, the identification accuracy

steadily rises. Similar to the partition number case, herein, we notice a ‘inflection point’

as well, after which the workload identification accuracy stays stable, without affected by

the sequence length under evaluation. As a result, we select 42000 as the optimal length of

the branch address sequence when performing identification, in order to enable the real-time

identification and maintain the balance between the response time and the effectiveness of

the classifiers. A deeper view of the capability of our real-time identification is illustrated in

Figure 4.24. Specifically, we report the percentage of the optimal length within the average
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Figure 4.23: The average workload identification accuracy according to different sequence
length

length of the original branch address sequences for each program class. As may be observed,

we are able to identify workloads using 49.21% of their complete branch address sequence on

average, while the best case is 20.9% and the worst case is 89.76%. Accordingly, with both

partition number and sequence length under evaluation optimized, an average identification

accuracy of 95.52% and 96.37% can be reached for DT and ANN respectively.

Using temporal features

Finally, we evaluate the effectiveness of our method using temporal features. The exper-

iments were performed based on the optimization derived from the analysis above, while

the performance of the counterparts using spatial features was considered as the benchmark
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Figure 4.24: The optimal sequence length proportional to the full-size sequence length

performance. We first evaluate the effectiveness of the 2-gram model. Given the optimal

partition number and the length of the branch address sequence, both DT and ANN achieved

similar results as the benchmark, which is 95.45% for DT and 96.59% for ANN. However, the

size of the feature space is squared, introducing a dramatic increase in design overhead. We

also explored the feasibility of using the 2-gram model with the same size of feature space,

i.e., we experimented with a choice of 5 partitions, which results in 25 features in total. Un-

fortunately, an average identification accuracy of 90.23% and 91.98% was achieved for DT

and ANN, respectively, which does not surpass or reach the similar level of the benchmark

performance. Nevertheless, compared with the identification result upon the spatial features

with 5 partitions, an approximately 3% gain in identification accuracy was obtained. Table

4.5 summarized the comparison.
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Table 4.5: Effectiveness of 2-gram model vs. spatial features

spatial features 26 partitions spatial features 5 partitions
DT ANN DT ANN

95.52% 96.37% 88.58% 87.62%
2-gram 26 partitions 2-gram 5 partitions
DT ANN DT ANN

95.45% 96.59% 90.23% 91.98%

Table 4.6: Effectiveness of partition sequence vs. spatial features

spatial features optimal setting
DT ANN

95.52% 96.37%
spatial features

len. 1000
p. seq. len. 1000 p. seq. len. 1000

(no repeat)
DT ANN LSTM-RNN LSTM-RNN

40.58% 34.95% 35.14% 44.98%

The partition sequence feature is evaluated next. Similarly, we use the optimal partition

setting in this experiment, i.e., 26 weighted partitions. Due to the limit in the computation

complexity, the maximum sequence length that can be fed to our LSTM-RNN model is

1000, rather than 42000. Accordingly, an average identification accuracy of 35.14% was

achieved under such setting, which is similar to the result using spatial features with the

branch address sequence of length 1000, as shown in Figure 4.23. Apparently, The length of

the partition sequence under evaluation limits the capability of the classifier to distinguish

different workloads.

Nevertheless, a deeper view of the partition sequence reveals that the partition sequence

consists of repeated patterns (e.g., prolonged repeated access in the same partition), which

may be another source of ambiguity. Hence, we experimented with a variant of the original

partition sequence feature, which maintained the same length but eliminated the repeated

pattern. This enables capturing more temporal information in longer partition sequence
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within a 1000-length window. As a result, an average identification accuracy of 44.98% was

reached, which achieved approximately 10% improvement in the accuracy and surpassed the

identification accuracy under scenarios of using spatial features as well as original partition

sequence with the same length. Table 4.6 summarized the comparison. Consequently, we

conclude that the temporal features are able to carry additional information to assist in

distinguishing program behavior in certain scenarios, yet, with the cost of a dramatic increase

in the design overhead, which limits their practicality. On the other hand, the spatial features

remain the dominant factor in general in identifying different workloads.

To summarize our experimental results, the effectiveness of the workload identification

based on spatial features is advantageous to the mechanism using temporal features, consid-

ering the trade-off between the identification accuracy and the design complexity. Through

experiments, we select 26 as the optimal partition number, while the length of the branch

address sequence is selected to be 42000 in order to enable real-time identification. As a

result, our workload forensics framework is implemented based on the spatial features with

the optimal setting as well as the ANN model.

Anomaly Detection

The effectiveness of the extension for anomaly detection was evaluated through experiments

that selected arbitrary legitimate program classes as suspicious. The multi-class classifier

was then trained with the remaining classes only while the unknown classes were included in

the testing set only. The configuration of the machine learning algorithm (i.e., the features,

partition size, sequence length, etc.) corresponds to the optimal setting concluded in the

experiments for workload identification. Figure 4.25 illustrates the false negative (i.e., suspi-

cious process classified as legitimate) rate as well as the false positive (i.e., legitimate process

classified as suspicious) rate of identifying suspicious process classes according to different

threshold settings. As may be observed, the hardware-friendly extension performed fairly
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Figure 4.25: False negative rate vs. false positive rate according to the threshold for different
program classes (subset)

well in filtering suspicious programs, reach an average FN rate of 4.5% and FP rate of 2%

respectively, which confirms our conjecture. We note that although more advanced anomaly

detection algorithms may potentially improve the results, significant design overhead may

be introduced. On the other hand, the incurred overhead of our current solution, which

extends the original design with the threshold comparison, is negligible. Nevertheless, the

trade-off can be balanced in a different favor according to the specification and the available

resources.

68



Table 4.7: Summary of effectiveness of hardware design

Classification sigmoid at output layer
accuracy inclusion exclusion

FP width
32-bit 56.12% 96.37%
16-bit 56.12% 96.37%

Hardware Design Evaluation

In this Section, we evaluate the effectiveness and the design overhead of the hardware design

of the proposed framework, according to the optimal configuration derived from the simu-

lation results. The framework was implemented on Zedboard and was integrated with an

ARM Cortex-A9 core. The processor operated at 333 MHz, while the ARM CoreSight Core

and our framework were configured to operate at 100 MHz. The ANN is configured with 26

input features and one hidden layer with 10 neurons, which provides the best identification

performance with minimal implementation overhead in our experiments. Two different in-

stances, which employ the IEEE 754 half precision FP (16-bit) as well as the single precision

FP (32-bit), were developed to evaluate the impact of the FP precision on the effectiveness of

the framework. Furthermore, the inclusion and the exclusion of the sigmoid function at the

output layer were evaluated as well to elaborate the impact of the function approximation

on the effectiveness. Hence, four different implementations were evaluated accordingly.

The classification accuracy of the four implementations of the proposed framework is

shown in Table 4.7, respectively. The best-case result matched the results obtained in the

software simulation, which corroborates the effectiveness of our design. On the other hand,

as may be observed, the selection of different FP precision has no impact on the effectiveness

while the inclusion of the sigmoid at the output layer dramatically decrease the classification

accuracy for both precisions. This can be explained by the use of the max-pooling mechanism

by an ANN-based classifier in predicting. In particular, given arbitrary input vectors, an
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Table 4.8: Summary of design overhead

LUT
util(%)

BRAM
util(%)

DSP
util(%)

IO
util(%)

Power
(W)

Proce-ssor 12.67% 2.14% 4.09% 32.5% 2.072
Frame-work 1.84% 1.79% 0.91% 2.5% 0.044

ANN generates its prediction based on the arguments of the maxima, or arg max, rather than

the absolute values. As a result, as long as the ordering in the output vectors is retained,

the slight error introduced by different FP precision can be ignored. On the other hand, the

approximation of the sigmoid function applied in our design corrupts the original ordering

(e.g., ”A is greater than B” is approximated to ”A equals B” when both A and B are larger

or smaller than a threshold), and thus, leads to erroneous results in prediction. In a nutshell,

it is observed that the exclusion of the approximated sigmoid function is necessary while the

FP precision is insignificant, leading to a final design with half precision FP associated with

the exclusion of the sigmoid at the output layer.

We evaluate the design overhead of the proposed framework with the implementation

derived in the section above in two aspects as follows: (1) the area and power overhead

introduced by our framework compared with an ARM processor and, (2) The estimated

average latency, which measures the timing from the start of the workload execution to the

point when framework outputs the identification result.

As shown in Table 4.8, the entire framework introduced additional use of 1.84% LUTs and

0.91% DSP, most of which are contributed by the FP arithmetic components. The additional

BRAM utilization, on the other hand, is contributed by the neural network weights and bias

ROMs. Moreover, an additional 2% overhead is introduced in the power consumption.

Whereas our framework is non-intrusive to the processor execution flow, there is a delay

between the start of a program execution and the identification outcome. Such latency

depends on the average branch frequency BF (in percents) in a program profile. As a result,
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the average latency to identify a workload will be T(identify) = T(feat. gen.) + T(Stand.)

+ T(classify) = 42000 ÷ BF × CPI + 234 + 2250 cycles (calculated by the equations defined

in Section 4.3.2. Assuming the average BF to be 15% (according to the statistics in [24]) and

CPI to be 1 to simplify the calculation, the proposed framework takes 865.68 µs to identify

a workload at a 333 MHz processor clock with a 100 MHz framework clock.

4.3.4 Conclusion

In this work, a hardware-based on-line workload forensics framework was proposed, facili-

tated by the CoreSight module. We extensively explored the potential features that can be

extracted from the trace generated by CoreSight module, upon which several machine learn-

ing models were evaluated. The proposed method was experimented in a Linux OS loaded on

Zedboard, which embeds an ARM architecture. The parameters used for feature generation

(i.e., the partition number and the sequence length) were optimized for real-time workload

identification, leading to an average accuracy of 96.37% in classifying various program classes.

The hardware implementation was evaluated on the Zedboard FPGA, integrated with an

ARM processor, which incurred insignificant design overhead and identification latency.
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CHAPTER 5

HARDWARE-BASED ROOTKIT DETECTION1,2,3

5.1 Overview

Alongside the computer forensics, malware detection is another branch to ensure system

security, which has been widely studied and employed as well. Although numerous malware

detection mechanisms have been developed, whose preliminary experiments have shown fa-

vorable results, there remains one species of malware, i.e., kernel rootkits, whose detection

is far from promising. In general, kernel rootkits have unrestricted access to operating sys-

tem (OS) resources due to their privileged implementation, and attempt to tamper kernel

objects and inject malicious code stealthily. In this chapter, the feasibility of performing

rootkit detection through hardware-based detection mechanism is explored. More Specifi-

cally, the proposed method aims at kernel rootkits which are assumed to (i) have full access

to the OS memory image, and (ii) be able to make arbitrary modifications and execute ma-

licious code in OS kernel space. As a result, the rootkits are able to hijack the control flow

of arbitrary kernel services, e.g., system calls, and hook their malicious activities onto ran-

dom benign processes. Furthermore, unlike previous malware or rootkit detection methods

which require availability of known malware/rootkit samples during their program behavior

modeling phase [43, 19, 37], we assume no prior knowledge of the kernel rootkits, i.e., the

contaminated objects, the rootkit payload, or the binary image of the rootkits. In other

1 c© 2016 IEEE. Reprinted/portions adapted, with permission, from Liwei Zhou and Yiorgos Makris,
“Hardware-based workload forensics and malware detection in microprocessors,” in 17th International Work-
shop on Microprocessor and SOC Test and Verification (MTV), December 2016, pp. 45-50.

2 c© 2017 IEEE. Reprinted/portions adapted, with permission, from Liwei Zhou and Yiorgos Makris,
“Hardware-based on-line intrusion detection via system call routine fingerprinting,” in Design, Automation
and Test in Europe Conference and Exhibition (DATE), March 2017, pp. 1546-1551.

3 c© 2018 IEEE. Reprinted/portions adapted, with permission, from Liwei Zhou and Yiorgos Makris,
“Hardware-assisted rootkit detection via on-line statistical fingerprinting of process execution,” in Design,
Automation and Test in Europe Conference and Exhibition (DATE), March 2018, pp. 1580-1585.
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words, we assume a zero-day attack scenario. Accordingly, two incarnations are proposed

herein, i.e., static rootkit detection and dynamic rootkit detection.

5.2 Static Rootkit Detection

5.2.1 Threat Model

The hardware-based static rootkit detection ensures the integrity of an executed system call

service routine during runtime in a way that is immune to tampering by software, hence,

follows the on-line system architecture [48]. The idea is motivated by the fact that most

malware detection methods rely on system call-related information, yet their logging/mon-

itoring mechanisms rarely inspect the actual system call execution flow, which leaves room

for malwares to evade detection through system call hijacking. System call hijacking enables

an attacker to control the execution flow of one or several system calls; thereby, malicious

code can be introduced and executed without the knowledge of the legitimate system user.

In Linux OS, for example, this can be achieved through a kernel rootkit exploiting the Load-

able Kernel Module (LKM), which contains user defined code and is intended to extend or

customize the functionality of the original kernel. Compounding the problem, when the ex-

tended or customized functionality is no longer required, the kernel module can be unloaded,

restoring the kernel to its original state and, thereby, leaving no trace.

In general, three types of system call hijacking attack can be launched, as shown in Figure

5.1:

• System Call Table Redirection: The simplest attack using the LKM is a redirection

of the system call table. When a system call is invoked, instead of querying the original

system call table to access the corresponding service routine, the OS is redirected to

a different table whose content is controlled by the attacker and whose existence is

unknown to the OS and the legitimate users.
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Figure 5.1: Three types of system call hijacking

• System Call Table Modification: Another attack option is to modify the value of

certain entries in the original system call table rather than redirecting to a different

table, as the latter may leave more of a trace and can be easily detected. In this way,

the attacker can redirect the service routine of certain system calls to his/her own

malicious code snippet. After the malicious code finishes, control is returned to the

original service routine so that the OS remains oblivious to the attack.

• Service Routine Modification: A more complicated option is to directly modify

the service routines of one or more system call. In this case, the system call table as

well as its entries remain unmodified, yet the actual service routines are contaminated

with additional/different instructions. A smart attack may still operate covertly and

hide its presence from the OS by incorporating the general service provided by the

original routine.

Theoretically, the type 1 attack requires the least design complexity but suffers more risk to

be detected, while the type 3 attack is the most complicated by design yet the most likely to

evade detection. Armed with the capability of system call hijacking, an attacker can easily

spoof OS-level and hypervisor-level intrusion detection methods. Indeed, upon invocation of
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a system call, these methods typically log and validate the system call ID or series of IDs,

yet have no mechanism of attesting that the legitimate service routine is executed.

Accordingly, the proposed hardware-based rootkit detection system addresses the three

types of system call hijacking separately by following an on-line system architecture, which

consists of two main components, i.e., the logging component and the validation component.

In particular, the logging component collects three critical pieces of information related to

the integrity of system call execution, namely the base address of the system call table,

the contents of the system call table, and the actual system call service routines. When a

system call is invoked, the validation component, then, contrasts these information against

their corresponding valid signatures in order to detect the three types of system call hijacking

attacks.

5.2.2 System Design

The proposed hardware-based intrusion detection system, as Figure 5.2 shows, consists of two

main components: a data logging component and a validation component. The data logging

component collects three critical pieces of information related to the integrity of system call

execution, namely the base address of the system call table, the contents of the system call

table, and the actual system call service routines. Using this information, the validation

component seeks to detect the three types of system call hijacking attacks included in our

threat model. The base address of the system call table, as well as its contents, are retrieved

through the Basic Input/Output System (BIOS), when the OS kernel is booted. Therefore,

we also store this information directly in the hardware and contrast it against the real-time

values every time a system call invocation occurs, so that any unexpected modification can

be detected and an alarm can be raised to suspend execution.

Attesting validity of the actual system call routine, however, is slightly more involved.

Specifically, our method employs custom hardware to generate a fingerprint for each basic
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Figure 5.2: High-level design of proposed method

block of the executed routine and to compare it against a set of known acceptable fingerprints

for this routine. The choice of a basic block, as opposed to the entire system call service

routine, as the minimum entity to be fingerprinted is driven by practicality. A basic block is

a snippet of atomic code executed between two control flow transfers. Therefore, the actual

instructions executed are fixed, hence the golden fingerprint of a basic block can be statically

computed. In contrast, the instructions executed by the entire system call service routine

depend on the arguments with which it is invoked at run-time; hence there is a multitude

of golden fingerprints which are not only harder to exhaustively identify but may also leave

more room for malicious modifications to go undetected.
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int 80h

lea esi,0[esi]

...

jae 0xc162d80a

call dword ptr 0xc16380a0[eax*4] /*system call table is referred to here*/

(a) INT 80H handler

sysenter

mov esp,dword ptr 0xffffde84[esp]

...

jae 0xc162d80a

call dword ptr 0xc16380a0[eax*4] /*system call table is referred to here*/

(b) SYSENTER handler

Figure 5.3: Two types of the system call handler in x86

5.2.3 Implementation

Data Logging Component

To extract system call related information directly from the hardware without assistance from

upper-level resources, such as system.map, we exploit several x86 hardware conventions, as

described below.

• System call table address: In a 32-bit x86 architecture, two methods can be used

to invoke a system call. The first one uses the conventional software interrupt, through

INT 0x80. In particular, this instruction consults the Interrupt Descriptor Table (IDT)

to identify the entry point to the system call table, which is then indexed with a system

call code to execute corresponding service routine. As shown in the first basic block

of the INT 0x80 handler in Figure 5.3a , the exact base address of the system call

table, in this case 0xc16380a0, can be obtained through decoding the last instruction.

The second method for invoking a system call uses SYSENTER instructions. These

instructions were introduced by Intel in order to enable fast entry to the kernel and
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avoid the overhead incurred by software interrupts. Similarly, the same base address

is referred to in the first basic block of the SYSENTER handler, as shown in Figure 5.3b.

If an attacker launches a Type-1 attack to redirect access to the system call table,

the base address of the attacker-defined table must appear as a target address in the

first basic block of the system call handling routine. Therefore, comparing the actual

address to the legitimate one at run-time directly in hardware helps in detecting such

attacks.

• System call table content: In addition to the base address of the system call table,

its content is also known. In this work we store a golden fingerprint, which is generated

using the mechanism introduced in the following section, for the entire system call table.

When a system call is invoked, the fingerprint of the employed table is computed and

compared to the golden one in hardware, in order to detect Type-2 attacks.

• System call service routine: In order to detect Type-3 attacks, we need the abil-

ity to analyze instruction-level behavior of system calls. However, logging the entire
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instruction flow would introduce unacceptable hardware overhead and is, generally, un-

necessary. Instead, we employ a MISR to compress the instruction flow and generate

simple fingerprints.

A MISR is a variant of a Linear Feedback Shift Register (LFSR). A standard LFSR

is a shift register whose output is a linear function of its previous state, where the

feedback input bit is generated by the XOR/XNOR function of a subset of the register

bits. A MISR has the same structure, but additional input bits are fed through an

XOR/XNOR gate to every flip-flop of the shift register in each cycle, as shown in

Figure 5.4. As a result, the next state of the MISR depends on both the current state

and the input bits.

Using a MISR for our purpose has three advantages: (1) the hardware structure of a

MISR is relatively simple, involving only D-Flip-Flops (DFF) and XOR gates; thus,

it incurs low design overhead. The number of DFFs and XORs is decided by the

characteristic polynomial of the underlying LFSR. In our case, since we seek to compact

instructions and the maximum length of a single instruction in x86 is 15 bytes, the

degree of the characteristic polynomial has to be at least 1204. Specifically, we chose

to implement a MISR using x120 + x119 + 1 as the characteristic polynomial. (2)

A MISR is scalable and can process multiple inputs simultaneously, independent of

the input length; this allows us to efficiently process entire instructions in order to

generate fingerprints for basic blocks. (3) The MISR has a relatively low aliasing

probability. Aliasing occurs when identical signatures are generated for different input

sequences and can undermine our ability to detect invalid instruction sequences. An

approximation of the aliasing probability of a MISR is 2−n, where n is the degree of

its characteristic polynomial. In our case, since n is 120, the aliasing probability is as

low as 2−120, which is negligible.

4Intel 64 and IA-32 Architectures Software Developer’s Manual
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In this work, execution flow of a system call service routine is described by multiple

fingerprints, one for each of its basic blocks. The generated fingerprints are then fed

into the on-line validation component, which we will describe next, to detect intrusion.

To associate the generated fingerprints with the corresponding system call, we use the

system call code as an identifier. In x86, the system call code is stored in the EAX

register when an INT 0x80 or SYSENTER instruction is executed, hence our hardware

obtains it directly from there.

5.2.4 Validation Component

The role of the validation component is to examine the validity of the fingerprints generated

by the logging component for the basic blocks of a system call service routine. In particu-

lar, the golden fingerprints for each system call are identified through static code analysis

and programmed in the validation component, which then checks membership of an on-line

generated fingerprint in the appropriate golden set. A failed membership test implies that

the system call service routine is invalid. Considering the potential design overhead of the

validation component, explicitly storing in hardware all golden fingerprints for each system

calls and comparing them in parallel against an on-line generated fingerprint would be pro-

hibitively expensive. Therefore, instead of using a lookup table or a hash table for this

purpose, we employ a Bloom filter for compactly storing the golden fingerprints and rapidly

performing membership tests.

A Bloom filter is a space-efficient probabilistic data structure, used to test whether an

element is a member of a set [8]. As shown in Figure 5.5a, a typical Bloom filter consists

of an m-bit array and implements k different hash functions hi, i ∈ [1, k], each of which

maps an input element E to one of the positions in the array through a uniform random

distribution. An empty Bloom filter is an array with all 0s. When adding an element, all

k position bits mapped by the hash functions for this element are set to 1. As a result, an

element is a member of the set if and only if ∀i ∈ [1, k], hi(E) = 1.
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Figure 5.5: Implementation of the validation component using Bloom filter

A Bloom filter never misidentifies a valid member of the set as a non-member. However,

it is possible that due to collision in the outputs of the hash functions, a non-member may be

accepted as a member of the set, which in our case would imply that an invalid fingerprint

may evade detection. Fortunately, appropriate choice of m and k can bound the probability

of this evasion detection occurrence [3]. Furthermore, our design leverages a partitioned and

fully-pipelined Bloom filter architecture. Partitioning, which splits the m-bit array into k

sections that can be separately queried by the k hash functions, may further reduce detection

evasion, since the outputs of the k hash functions themselves cannot suffer from collision [3].

Pipelining, on the other hand, allows us to disable the computation of the next hash function

when the output of the previous hash function is 0, which indicates that the input element

is certainly not a member of the set, thereby reducing power consumption.

In a Bloom filter, for a given array size of m bits and set cardinality n, the optimal number

of hash functions kopt, which minimizes detection evasion probability p, is kopt = m
n
ln2.

For the optimal value kopt, m becomes a linear function of n, which can be calculated as
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m =
⌈
− nlnp

(ln2)2

⌉
. In this work, the maximum n (i.e., basic blocks in a system call routine)

does not exceed 3500, while p is set to 3%. As a result, the chosen values for m and k are

24576 bits (3 KB) and 6, respectively.

Our Bloom filter implementation uses the hardware-friendly hash function design sug-

gested in [12]. Specifically, given a b-bit input element E, its hash is calculated as

h(E) = (S1 · E1)⊕ (S2 · E2)⊕ · · · ⊕ (Sb · Eb)

where Si is a random seed coefficient ∈ [1, log2m) and the operation · is,

Si · Ei =

 Si, if Ei = 1

0, otherwise

Further optimization is applied to the construction of hash functions. A classic Bloom filter

requires k independent instances of hash functions, which introduces significant overhead

when k grows. However, as described in [28], two independent hash functions h1 and h2,

referred to as primary hash functions, are sufficient, while the remaining k−2 hash functions

can be obtained through h′(x) = h1(x) + j ·h2(x), where j is an arbitrary integer. Thus, the

design overhead can be approximately bound by the cost of two hash functions, regardless

of the value of k. Detailed implementation of the validation component is shown in Figure

5.5b. Finally, the overall architecture of the proposed method, which interfaces the logging

and validation components with the microprocessor pipeline, is illustrated in Figure 5.6.

5.2.5 Experimental Results

Evaluation of this hardware-based intrusion detection method was also performed in Simics

with the same configuration as the one in the case of workload forensics. To evaluate effec-

tiveness of this method, a static analysis was first performed to collect the golden fingerprints

of the basic blocks for each system call service routine, and to program the corresponding

Bloom filters. Next, MiBench was used to collect fingerprints for legitimate workload. On
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Table 5.1: Statistics for legitimate workload

system call invocations fingerprints
sys open 1103 2708
sys read 4480 3325
sys write 5504 1883
sys close 181 1470

sys rt sigprocmask 5640 146
sys rt sigaction 1029 392

sys mmap2 218 1170
sys ioctl 318 231
sys brk 125 179

the other hand, to collect fingerprints for contaminated workload, five rootkits which exploit

LKM to launch system call hijacking attacks of the three types introduced in Section 5.2.1

were evaluated. In order to hook our logging component onto the program counter and mon-

itor the instruction flow, we exploit the haps feature of Simics. We note that, for reasons

explained in Section 5.2.5–‘Limitation’, in our experiments we only fingerprint basic blocks

entered through direct jump instructions.
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Table 5.2: Kernel rootkit detection summary

rootkit description detected?
Type-1 attack system call table redirected X
Type-2 attack table entry sys open() redirected X
Type-2 attack table entry sys write() redirected X
Type-2 attack table entry sys mkdir() redirected X
Type-3 attack sys write() routine modified X

Effectiveness

Table 5.1 summarizes the number of times each system call was invoked by the legitimate

workload, as well as the corresponding number of distinct fingerprints (only the most fre-

quently invoked system calls are shown). All of these fingerprints were processed by the

corresponding Bloom filter and passed the validation process, i.e., no false alarms occurred.

Table 5.2 summarizes the five kernel rootkits which we used to launch system call hijack-

ing attacks. Following the definitions in Section 5.2.1, the first one is Type 1, the next three

are Type 2 and the last one is a Type 3 threat. All five were successfully detected by our

method, as they invoked system calls whose service routine execution generated fingerprints

that were rejected by the corresponding Bloom filter.

Design Overhead

Since the logging and validation components are implemented directly in hardware and do

not interfere with the original microprocessor execution flow, the performance overhead of

our system is expected to be zero. As a point of reference, similar work developed at the

hypervisor level, introduced additional performance overhead of 262.3 ms [43].

To evaluate the hardware design overhead of our method, we use a predictive 45nm

Process Design Kit (PDK) [41]. The logging component and the validation component

are separately synthesized in Synopsis Design Vision. Since the library does not contain a

memory cell, we report the memory cost of the bit array and the seed coefficients of the

Bloom filter separately, in terms of bytes required.
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Table 5.3: Design overhead summary

area (µm2) power (mW )
logging 1810.56 5.55

validation 7419.16 15.9
total 9229.72 21.45

microprocessor 107× 106 65× 103

overhead 0.008625% 0.033%

Table 5.3 summarizes the incurred overhead for each of the two components. Compared

with a 45nm Intel Processor5, whose area is 107 mm2 and average power consumption is

65 W , the total overhead of this hardware implementation is negligible. Furthermore, while

other hardware-based methods performing similar analysis introduce additional 2% area

overhead in general [18, 14], our implementation consumes hundreds of times less in area.

Regarding the seed coefficient lookup table, two tables are required for the two indepen-

dent primary hash functions, in which 120 different random 12-bit values are programmed.

Therefore, the memory cost of the seed coefficient lookup table is 360 B in total. Considering

that the total system call number in Linux 2.6 is 336, the memory cost of the bit array for

the Bloom filters is 0.98 MB.

Limitation

In modern microprocessors, control flow transfers may involve either direct or indirect jump

instructions. In the former, the starting point of the next basic block is explicitly known,

but in the latter it is computed at run-time and may redirect execution to an instruction

that is not at the beginning of a statically identified basic block. Hence, indirect jumps

limit our ability to retrieve all possible basic blocks within an execution flow. Therefore,

in order to avoid false alarms, basic blocks reached via an indirect jump are not finger-

printed. However, similar to other hardware-based methods which rely on behavior mod-

5http://ark.intel.com/products/35605
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eling [43, 19, 37, 47], if a non-zero false-positive rate is acceptable such fingerprinting can

be enabled to opportunistically detect indirect jump-based attacks. Evidently, such attacks

constitute a very challenging problem for hardware and software-based intrusion detection

methods alike. Software solutions developed are vulnerable to tampering, incur relatively

high implementation overhead which makes their deployment impractical [15, 7], and have

limited effectiveness, as implied in [10]. These facts motivate our hardware-based dynamic

rootkit detection proposed in the next section.

5.2.6 Conclusion

In this work, a low-cost hardware-based approach was introduced for performing on-line in-

trusion detection through system call routine fingerprinting. Unlike software-based methods,

this hardware-based method extracts the required information directly in hardware, making

it impervious to software attacks. Herein, an incarnation of this general idea was demon-

strated, which logs and generates fingerprints using a MISR and examines their validity

by checking their membership in a pre-specified set of golden fingerprints, implemented as

a Bloom filter. The proposed method was evaluated on a 32-bit x86 architecture running

Linux OS, implemented in Simics. Experimental results, using the Mibench suite as legiti-

mate software and kernel rootkits launching system call hijacking attacks as malware, reveal

that the fingerprints of the contaminated routines can be fully differentiated from those of

the legitimate code. The hardware cost of our method in a 45nm process is 9229.72 µm2 in

area and 21.45 mW in power, as well as approximately 1 MB of memory, which is negligible

compared to the size of a modern microprocessor. Nevertheless, the intrinsic static analysis

may prevent this method from detection software tampering in dynamic program behavior,

which can be launched through modifying code blocks accessed through indirect jump.
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5.3 Dynamic Rootkit Detection

5.3.1 Threat Model

In this work, a threat model with a broader definition is considered. Particularly, the pro-

posed method aims at kernel rootkits which are assumed to (i) have full access to the OS

memory image, and (ii) be able to make arbitrary modifications and execute malicious code

in OS kernel space. As a result, the rootkits are able to hijack the control flow of arbitrary

kernel services, e.g., system calls, interrupt handler, etc., and hook their malicious activities

onto random benign processes. Furthermore, unlike previous malware or rootkit detection

methods which require availability of known malware/rootkit samples during their program

behavior modeling phase [43, 19, 37], we assume no prior knowledge of the kernel rootkits,

i.e., the contaminated objects, the rootkit payload, or the binary image of the rootkits. In

other words, we assume a zero-day attack scenario.

5.3.2 System Design

Due to the limitation of static computation in the rootkit detection method proposed above,

i.e., a smart attacker may be able to launch an attack through the execution path accessed

via indirect jumps, and thus, evade the static detection, a dynamic rootkit detection method

is proposed herein to address this limitation, which leverages behavior modeling of runtime

program execution in order to distinguish rootkit-infected execution from the legitimated

counterpart.

Traditional dynamic malware detection methods seek to model program behavior and,

therefore, train a 2-class classifier, in order to distinguish malicious processes from benign

ones. In other words, these methods detect malware through inter-process behavior deviation.

However, such a detection mechanism may fail under rootkit attack scenarios. For example,

an attack can be launched by implanting a rootkit that injects malicious code in the original
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system call table. This results in distortion in the execution flow of existing processes, rather

than creation of a new (covert) malware instance. In such cases, rootkit-infected processes,

whose behavior deviates only slightly from their legitimate version due to malicious actions,

may not be detected. In contrast, the proposed dynamic rootkit detection mechanism herein

models program execution profile individually for each process, using a machine learning

approach, in order to identify whether a process is rootkit-infected. In other words, this

detection mechanism relies on intra-process behavior deviation, as shown in Figure 5.7. As a

result, a more precise view of process execution profile is constructed at a finer granularity

and, thus, even slight deviations of process execution flow incurred by kernel rootkits can be

detected. In a nutshell, the dynamic rootkit detection method accords to the program-centric

and behavior-based paradigm.

The actual implementation of this method follows a off-line system architecture, which

mines the architecture state and extracts relevant information exclusively from the hardware,

and off-loaded the collected data to a trusted software environment, which is isolated from the

original OS, wherein the rootkit detection is performed by a machine learning entity which

has been trained to model the intra-process behavior. The rootkit detection is performed
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through a hierarchical mechanism, as shown in Figure 5.8. When a new process sample

arrives, a first-level process identification is applied to identify what process class it belongs

to. After that, a second-level rootkit detection is performed on the corresponding process

class independently, in order to investigate whether a process sample is truly benign or

rootkit-infected.

To perform the entire detection flow, we have to address several challenges, as ex-

plained below: (i) Process identifier: In order to perform rootkit detection at the process

level through a hardware-assisted method, we need to bridge the semantic gap between

architecture-level logged information and the actual processes. (ii) Program behavior:

Descriptive features need to be extracted from information available in the hardware in

order to model program behavior. (iii) Machine learning: Using the collected data, an ap-

propriate machine learning method is required in order to perform the proposed hierarchical

analysis.
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5.3.3 Implementation

Process Identifier and Behavior

This work aims at the x86 architecture and thus, similarly, the CR3 value is used as the

identifier of a process.

While the behavior of a program can be explained through execution of its instruction

flow in a microprocessor, it is impractical to log the entire instruction flow in hardware. As

a result, architecture-level information is generally leveraged, which indirectly reflects data

and control transfer flow, in order to model program behavior. Along these lines, this method

seeks to model program behavior through hardware events representing change of micropro-

cessor state, including register usage, program control flow redirection, OS operation state,

etc. During rootkit execution, these hardware events will deviate from those occurring dur-

ing a benign execution path, thereby leaving traces that can be used for rootkit detection. In

particular, this method interprets the program data/control transfer flow through hardware

events involving data dependencies between registers, branches in program execution flow,

and OS privilege transition.

Data dependencies exist when an instruction involves target or source operands which

are also referenced by preceding instructions. Such dependencies need to be resolved prior

to instruction execution, in order to preserve correct program functionality. Three types of

data dependencies exist: (i) True dependency occurs when an instruction reads a register

being written by a preceding instruction. (ii) Anti-dependency occurs when an instruction

writes a register being read by a preceding instruction. (iii) Output dependency occurs when

an instruction writes a register being written by a preceding instruction.

In x86, four general purpose registers, i.e., eax, ebx, ecx, and edx, are most frequently

used. This method collects counts of the three types of dependencies on each of the registers

as the data dependency-related features. Furthermore, instructions can operate in user mode
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Table 5.4: Summary of feature set

Type Description
DP[1-24] counts of 3 types of data dependencies on 4 general-purpose registers

in 2 OS modes
BR[25-27] counts of 3 types of branches (i.e., within and across the 2 OS modes)

or kernel mode in a modern OS. Data dependency statistics are collected separately for these

two modes, leading to a deeper understanding of how a process operates in its user space

and in kernel space. Ultimately, for each process (represented by CR3 value as mentioned in

Section 4.1.2), 24 data dependency-related features are collected.

Regarding branches in program execution flow, 3 types of branches are considered, in-

cluding intra-user, user-kernel and intra-kernel branches. Intra-user branches involve jumps

between user-space instructions, capturing the functionality of a program in user mode.

User-kernel branches, on the other hand, involve transition between user and kernel mode.

Such transition may occur due to either software interrupts, which are launched actively

by program execution, or hardware interrupts, which are asynchronous with the program

execution flow. Since this method aims at modeling program behavior with minimal impact

on the underlying environment, only branches introduced by software interrupts, launched

by programs explicitly through SYSCALL or INT instructions, are considered. Finally, similar

to intra-user branches, intra-kernel branches are collected accordingly. Table 5.4 summarizes

the features considered in this work.

Machine Learning for Rootkit detection

Upon extracting the aforementioned features, our detection mechanism employs machine

learning to perform a hierarchical analysis, i.e., a first-level process identification and a

second-level rootkit detection.
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• Process Identification: The process identification method employs multi-class classi-

fication algorithms, where each class corresponds to a single process. We experimented

with three classifiers of varying complexity and performance, namely K-Nearest Neigh-

bors (KNN), Support Vector Machine (SVM) and Artificial Neural Network (ANN).

KNN is a non-parametric classification algorithm which classifies samples based on

spatial relationship in their feature space. It computes the k nearest neighbors of a

sample using Euclidean distance and assigns the sample to a class based on majority

voting among these neighbors. SVM, on the other hand, generates a hyperplane which

separates the transformed feature space into labeled sub-spaces, while ensuring max-

imal separation among them. ANN exploits a multi-layer structure, where each layer

consists of multiple nodes, i.e., neurons, which are interconnected with nodes in adja-

cent layers. Through stacked layers, ANN maps the original inputs, via an activation

function on each neuron, to a final labeled space, accomplishing the classification. In

our implementation, we used KNN from the Matlab library, SVM from the LIBSVM

library [11] and ANN from Keras [13].

• Rootkit Detection: After identifying the process class that a sample belongs to, a

second-level rootkit detection is performed. To this end, an outlier detection method is

employed, wherein an outlier indicates that the process behavior has been compromised

and a rootkit is detected. Specifically, since the probability distribution of the feature

space of processes is unknown, the Kernel Density Estimation (KDE) is used, which

can handle unknown input probability distributions.

KDE evaluates the probability density of the samples under test using an adaptive

kernel estimator and identifies outliers outside the probability distribution. Outlier

detection is then performed as follows. Given a benign-sample matrix X including n

samples, each of which has d features, its kernel estimator is defined by:
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f̃(x) =
1

nhd

n∑
i=1

K(
1

h
(x−Xi)) (5.1)

where K is the kernel function and h is an adjustable smoothing parameter called

bandwidth. The kernel used herein is the Epanechnikov kernel:

Ke(t) =


1
2
c−1d (d+ 2)(1− tT t), tT t < 1

0, otherwise

(5.2)

where c−1d = 2πd/2/(d · Γ(d/2)) is the volume of the unit d-dimensional sphere [42]. A

rule-of-thumb choice of h is:

h =
{

8c−1d (d+ 4)(2
√
π)d
}1/(d+4)

n−1/(d+4) (5.3)

For a sample-under-test matrix Y including m samples, each of which has d features,

its adaptive kernel estimator is:

f̂(y) =
1

n

m∑
i=1

1

(h · λi)d
K(

1

h · λi
(x− Yi)) (5.4)

where the local bandwidth scalars λi are defined by:

λi =
{
f̃(Xi)/g

}−α
(5.5)

f̃(Xi) is a pilot density estimate calculated in (5.1) with h defined in (5.3). g is the

geometric mean given by:

log g = n−1
n∑
i=1

log f̃(Xi) (5.6)
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while α is a sensitivity parameter ∈ [0, 1]. After obtaining the probability density

estimate for the samples under test, a threshold is set to filter outliers. Probability

lower than the threshold indicates a rootkit-infected process, while probability greater

than the threshold indicates a benign process. Parameters of the outlier detection

model, such as h, α and the threshold are tuned for each process class individually, in

order to optimize detection performance.

Hardware Implementation

As mentioned earlier, our feature extraction is performed directly in hardware to eliminate

the possibility of software tampering. The actual implementation, as shown in Figure 5.9,

employs a custom hardware component, i.e., feature collector, which is deeply coupled with

the CPU and collects the process identifier as well as the features used for process behavior

modeling, based on the microprocessor state.

In order to collect process identifiers, the feature collector captures the CR3 register value

whenever a value update is encountered. As aforementioned, user and kernel mode features

are collected separately. To determine which mode an instruction operates in, we leverage

the design convention of control register CR0 in x86. The least significant bit of CR0 register,

or PE bit, indicates which mode the underlying system operates in, with ‘1’ meaning kernel

mode and ‘0’ meaning user mode. Therefore, the feature collector is wired to the PE bit to

split program instructions into user-space and kernel-space instructions, respectively.

Statistics of data dependencies can, then, be generated for instructions in different modes.

To this end, we make use of the built-in decoder in the microprocessor to derive the read/write

operations on the 4 general purpose registers. A temporary register is associated with each

of the general purpose registers, maintaining the READ or WRITE tag of its last access. For

every new access on a general purpose register, its current operation is compared with its last

operation, thereby identifying dependency pairs. Accordingly, a counter corresponding to
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Figure 5.9: Hardware implementation of feature extraction

the specific dependency type is incremented by ‘1’ while the temporary register is updated.

Collecting the 3 types of branch statistics, meanwhile, is more straightforward. The feature

collector continuously monitors the program counter and instruction operators, in order to

detect the occurrence of the branch events, and updates the corresponding counters.

5.3.4 Experimental Results

In this Section, the efficacy of the proposed method in accurately classifying processes and

successfully detecting rootkits is evaluated. Additionally, the area/power overhead and log-

ging bandwidth required by the hardware implementation of this method is estimated. Sim-
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Table 5.5: Summary of rootkit samples

Rootkit Targeted system call Rootkit Targeted system call
maKit write, open, read lkm-syscall open, close

suterusu ioctl, read, write hook-syscall mkdir
syscall-hooker read, write simple-rootkit read
hijack-syscall open Diamorphine getdents, kill

ilarly, the experiments were performed in Simics with same configuration as in the static

rootkit detection, while Mibench was used as benign workload. As rootkit samples, the real-

world Linux rootkits summarized in Table 5.5 were experimented, which hijack arbitrary

kernel service routines to perform denial-of-service attack, file/process hiding, key logging,

etc. Implementations of rootkit samples have been elaborated to create more variants, since

only a generalized template is provided in the original version.

Effectiveness in Process Identification

To evaluate the accuracy of the proposed method in process identification, the Mibench suite

was executed repeatedly, with each application invoked with various valid arguments or in

the background. Rootkit-infected samples are created by executing Mibench after enabling

different rootkits. In total, approximately 20000 benign as well as 10000 rootkit-infected

samples were collected, evenly for 20 process classes. The benign dataset was split in half

for training and testing, while the rootkit-infected dataset was used only in testing.

The process identification results using KNN, SVM and ANN are shown in Table 5.6. The

numbers on the left of the slash represent identification accuracy using the testing set exclud-

ing rootkit-infected samples, while the numbers on the right side represent the case including

these samples. As may be observed, there is no significant difference in the results between

the two cases, indicating that rootkit-infected processes did not incur higher misclassifica-

tion, even though the training set contained only benign processes. This observation supports
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Table 5.6: Process identification accuracy

KNN SVM ANN
average 100/99.85% 99.90/99.87% 99.89/99.87%
bf 100/100% 100/99.71% 100/100%
qsort 100/100% 99.34/99.73% 100/100%
patricia 100/100% 99.28/99.72% 100/100%
toast 100/100% 100/100% 100/100%
untoast 100/100% 100/100% 100/100%
susan 100/100% 100/100% 100/100%
dijkstra 100/100% 100/100% 100/100%
sha 100/100% 100/100% 100/100%
crc 100/100% 100/100% 100/100%
search 100/98.26% 100/100% 100/98.26%
tiff2rgba 100/100% 99.34/99.10% 100/100%
tiff2bw 100/100% 100/99.17% 98.50/99.69%
tiffmedian 100/100% 100/100% 100/100%
basicmath 100/100% 100/100% 100/100%
rawcaudio 100/100% 100/100% 100/100%
rawdaudio 100/100% 100/100% 100/100%
fft 100/98.83% 100/100% 99.29/99.41%
cjpeg 100/100% 100/100% 100/100%
djpeg 100/100% 100/100% 100/100%
pgp 100/100% 100/100% 100/100%

the conjecture that the rootkit-infected process behavior may not be distinguishable from its

benign instances through inter-process behavior deviation. Furthermore, all three classifiers

performed well in identifying processes (including rootkit-infected processes), reaching an

average accuracy of 99.85%, 99.87%, and 99.87% respectively. This provides solid ground

for the next-level rootkit detection.

Effectiveness in Rootkit Detection

Effectiveness of the proposed method in rootkit detection was evaluated separately for each

process class. Benign samples in each class were split in half for training and testing, while

rootkit-infected samples were only used for testing. The parameters of the KDE algorithm
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Table 5.7: Per-process rootkit detection results

process class FP rate FN rate process class FP rate FN rate
bf 1.41% 0% tiff2rgba 1.33% 0%
qsort 0% 0% tiff2bw 1.74% 0%
patricia 0.73% 0% tiffmedian 0.98% 0%
toast 0% 0% basicmath 0.75% 0%
untoast 0.67% 0% rawcaudio 0% 0%
susan 0.49% 0% rawdaudio 0% 0%
dijkstra 1.4% 0% fft 0% 0%
sha 1.43% 0% cjpeg 1.8% 0%
crc 0.69% 0% djpeg 0% 0%
search 1.49% 0% pgp 0% 0%

were optimized independently for each class through cross-validation to maximize rootkit

detection capability with minimal false alarms. During the optimization of KDE parameters,

only a subset of the rootkit family under test was used, in order to avoid overfitting to the

current rootkit dataset, as well as to ensure resilience of the detection model to zero-day

rootkit samples.

Table 5.7 summarizes the per-class false positive (FP) (i.e., benign process identified as

rootkit-infected) and false negative (FN) (i.e., rootkit-infected process identified as benign)

rates. As may be observed, the worst FP rate is 1.8% and the average is 0.75%, while 0%

FN rates are achieved for all process classes under test. Indeed, intra-process behavioral

models describe process activities at a finer granularity, making rootkit-infected behavior

distinguishable. We emphasize that our method outperforms the state-of-the-art hardware-

assisted malware detection method, which achieves no significant result in rootkit detection

[19]. Furthermore, compared with the software-based counterpart which achieves similarly

promising results (i.e., 100% detection rate with low FP rate) [43], our method is inherently

more secure since it extracts data in hardware through a custom component. Moreover, it

incurs zero runtime overhead due to the non-intrusive collection-to-analysis path. In contrast,

the software-based solution incurs a runtime overhead of approximately 3% [43].
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Table 5.8: Design overhead of the proposed method

area(µm2) power(mW ) logging(KB/s)
this method 649.98 1.9152 50.51

processor 107× 106 65× 103 N/A

Overhead

To evaluate the design overhead of the proposed method, we focus on (i) additional area

and power overhead introduced by the feature collector, and (ii) the required data logging

bandwidth. Herein, we evaluate the area/power overhead by synthesizing the design of the

feature collector using a predictive 45nm Process Design Kit (PDK) [41], which results in

area overhead of 649.98 µm2 and power overhead of 1.9152 mW (at 2GHz). Compared to a

45nm Intel processor6, the additional overhead incurred by the feature collector is negligible.

Furthermore, we ran our workload multiple times to obtain an average estimation of the

data logging rate, resulting in a rate of 50.51KB/s. As a point of reference, the performance

counter-based method in [19] requires bandwidth of a few hundred KB/s to perform similar

analysis. Table 5.8 summarizes the design overhead of the proposed method.

Discussion

Modern microprocessors exploit techniques such as register renaming or Reorder buffer

(ROB) to improve performance. Register renaming renames a register to an idle one when a

writing request occurs, so that this operation can be executed before its preceding instruction

which reads the same register. Similarly, a ROB leverages a register buffer as temporary

storage to hold values of speculatively executed instructions. These techniques eliminate

anti-dependencies as well as output dependencies and enable out-of-order and speculative

6Specifications from http://ark.intel.com/products/35605
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program execution. However, they do not affect negatively the proposed method effective-

ness, as our feature collector investigates data dependencies when instructions are fetched

and decoded in-order, before these techniques are applied.

On the other hand, hardware-based malware detection can be implemented on-chip

[37, 27]. This method, however, implements only the feature extraction mechanism in hard-

ware and exports the logged data to a trusted software environment to perform off-chip

analysis. In fact, there is a trade-off between on-chip and off-chip solutions. The former

generally benefit from prompt reaction to malicious events as compared with the latter;

implementing the analysis module on chip, however, increases the design complexity and

overhead. Furthermore, when the underlying OS or applications release an update, the con-

figuration of the on-chip analysis module must be updated accordingly, which is not at all

straightforward. In contrast, an off-chip analysis module is slower in responding but more

flexible, as it can be updated while the on-chip logging component remains unchanged.

5.3.5 Conclusion

In this work, a hardware-assisted infrastructure for performing on-line rootkit detection

dynamically was proposed. Compared with the prior work, a new hierarchical detection

mechanism is proposed in this method, leveraging intra-process behavior deviation and out-

lier detection. An incarnation of this idea, which models per-process behavior using data-

dependencies, branch statistics and privilege transition, based on which rootkit detection

can be performed, was described herein. Experimental results using the Mibench suite with

real-world kernel rootkits revealed that almost perfect detection accuracy with very low false

positive rate can be achieved. The required logging bandwidth of our method is 50.51KB/s

while its hardware cost is negligible compared to the size of a modern microprocessor.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, a line of research has been presented, which proposes hardware-based

methodology for performing computer forensics and malware detection. Unlike traditional

software-based methods, a hardware-based approach benefits itself from its innate immunity

to software tampering, which ensures the security and reliability of the logging and analysis

system. A generic architecture is introduced which the hardware-based forensics/malware

detection systems need to follow, whose possible implementations can be constructed through

combinations of three dimensions (i.e., on-line/off-line, data-centric/program-centric, signature-

based/behavior-based), depending on their various purposes. This general concept was illus-

trated through five incarnations, the first two of which performs a hardware-based workload

reconstruction through spatial features and temporal features extracted via TLB profiling

while the third of which enables on-line real-time capability in hardware-based workload

forensics. Hardware-based static and dynamic detection through system call fingerprint-

ing and intra-process behavior modeling were then evaluated to illustrate the application

scenario in malware detection. Experimental results corroborate that low-cost hardware

implementations can facilitate highly successful forensics analysis and malware detection.

Regarding the future work, several potential improvements of the current work can be

explored, including:

• Mine additional features and methodologies for low-cost real-time workload forensics

in resource-restricted scenario, e.g., IoT applications.

• Explore feasibility of finer-grained analysis than the workload identification, e.g., se-

mantic identification.

• Build the entire System-on-Chip (SoC) to facilitate the proposed methodology.
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