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FEATURE ENGINEERING FOR DATA ANALYTICS

Ke Xu, PhD
The University of Texas at Dallas, 2017

Supervising Professor: Haim Schweitzer

Data plays a fundamental role in modern science, engineering, and business applications. We

investigate two important problems in data analytics. The first is feature selection, where we

consider both the unsupervised and the supervised case. The second is data privacy, where we

propose a new model and describe algorithms that improve data privacy in that model.

Feature selection is the process of removing redundant and irrelevant features from the data. There

are two general classes of feature selection: the unsupervised case and the supervised case. In

the unsupervised case features are selected to approximate the entire data matrix, while in the

supervised case features are selected to predict a set of labels from the data matrix.

We describe several new algorithms for the unsupervised case that are closely related to the A⇤

heuristic search algorithm. These new algorithms can effectively select features from large datasets

and are shown experimentally to be more accurate than the current state of the art. The evaluation

criterion for feature selection is typically an error measured in the Frobenius norm. We generalize

the criteria to a large family of unitarily invariant norms. These include, among others, the Spectral

norm, the Nuclear norm, and Schatten p-norms.

We proposed several algorithms for supervised feature selection that improve the running time and

the accuracy of the current state of the art. A common approach for reducing the running time is to

perform the selection in two stages. In the first stage a fast filter is applied to select good candidates.

The number of candidates is further reduced in the second stage by an accurate algorithm that may
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run significantly slower. We describe a general framework that can use an arbitrary off-the-shelf

unsupervised algorithm for the second stage. The algorithm is applied to the selection obtained in

the first stage weighted appropriately.

Another common approach for accelerating the running time of feature selection is to use a greedy

technique called “forward selection”. We show how to use this technique to address the multi-label

classification problem. Experimental results on real-world data demonstrate the effectiveness of

the proposed approach.

We generalize the error criteria of forward selection to unitarily invariant functions. In particu-

lar we show how to minimize Schatten p-norms to solve the outlier-robust PCA problem. The

algorithm is very efficient and experimental results show that it outperforms a well-known outlier-

robust PCA method that uses convex optimization.

In standard machine learning and regression, feature values are used to predict some desired infor-

mation from the data. One privacy concern is that the feature values may also expose information

that one wishes to keep confidential. We propose a model that formulates this concern, and we

show that such privacy can be achieved with almost no effect on the quality of predicting desired

information. We describe two algorithms for the case in which the prediction model starts with

a linear operator. The desired effect can be achieved by zeroing out feature components in the

approximate null space of the linear operator.
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CHAPTER 1

INTRODUCTION

1.1 The problems being addressed

Data plays a fundamental role in modern science, engineering, and business applications. We

investigate two important problems of data analytics: feature selection and data privacy. Our work

on feature selection includes the development of several new algorithms that compare favorably

with the current state of the art. Our contribution to data privacy includes the proposal of a new

privacy model and algorithms that improve the privacy in that model.

1.1.1 Feature selection

Feature selection is a standard dimensionality reduction technique. See, e.g., (Guyon and Elisseeff,

2003; Fan and Lv, 2010; Chandrashekar and Sahin, 2014). Given data items described in terms of

n features, the goal is to select k<n features such that the reduced k dimensional vectors are useful

for the task at hand.

The unsupervised feature selection technique gives a sparse approximation to the data matrix,

and has found applications in many areas. These include the computation of stable and rank reveal-

ing QR factorizations (e.g., (Golub and Van-Loan, 2013; Gu and Eisenstat, 1996; Boutsidis et al.,

2009)), feature selection in machine learning (e.g., (Drineas et al., 2010; Maung and Schweitzer,

2013; Wei and Billings, 2007), and data mining and knowledge representation (e.g., (Dasgupta

et al., 2007; Kumar et al., 2012; Drineas et al., 2010)).

In supervised feature selection the features are selected for predicting labels associated with

each data item. These can be linear regression (e.g., (Hastie et al., 2009; Miller, 2002; Dahmen

and DeVore, 2008; Das and Kempe, 2008), multi-target regression (e.g., (Džeroski et al., 2000;

Spyromitros-Xioufis et al., 2016)) and multi-label classification (e.g., (Boutell et al., 2004; Diplaris

et al., 2005; Katakis et al., 2008)).
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1.1.2 Data privacy

Data analytics dgebring enormous benefits to our society in areas such as social media, business

and health care, etc. But it may also affect the privacy of individuals. There are many studies that

address these problems with various techniques. For example, in differential privacy noise is added

to blur the distinction between individual items in the data. See, e.g., (Dwork and Roth, 2014;

Sarwate and Chaudhuri, 2013), Several studies investigate feature selection as a tool for obtaining

privacy of database. See, e.g., (Pattuk et al., 2015; Jafer et al., 2015; Banerjee and Chakravarty,

2011). Recent studies (Enev et al., 2012; Hamm, 2015; Whitehill and Movellan, 2012) consider a

setting that makes the distinction between desired and confidential information. In (Hamm, 2015),

the ally (data aggregator) and the user (data contributor) participate in the data filtering. The goal

is to prevent an adversary from predicting the private information of users while maintaining the

utility of the data. The framework proposed in (Enev et al., 2012) transforms the data such that

the covariance between the data and the desired information is increased, while the covariance

between the data and confidential information is decreased.

1.2 Our contributions

1.2.1 Effective feature selection

We investigate several algorithms that enable effective selection of features from data for both the

unsupervised and the supervised case. We describe new algorithms for the column subset selection

problems that are motivated by the classic A* approach in heuristic search. Some of our algorithms

are optimal but slow, and others are not guaranteed to find an optimal solution but run much faster

than optimal algorithms (Arai et al., 2015). Experimental results show that these new algorithms

are more accurate than the current state of the art while still being practical.

A common approach for reducing the run time of feature selection is to perform it in two stages.

In the first stage candidate features are selected. These candidates are evaluated more thoroughly in
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a second stage. See, e.g., (Guyon and Elisseeff, 2003; Dasgupta et al., 2007; Boutsidis et al., 2009).

In supervised feature selection the second stage is typically supervised (and slow). We describe

a general approach that enables combining two off-the-shelf algorithms to perform the selection

where the second stage is unsupervised. The main idea is to apply the unsupervised algorithm to

the selection obtained in the first stage weighted appropriately. Our main technical result is the

computation of these weights. The method is shown experimentally to be almost as accurate as

using supervised algorithms, while at the same time it may be significantly faster.

Another common fast approach for feature selection is named “forward selection”. See, e.g.,

(Chen et al., 1989; Gharavi-Alkhansari and Huang, 1998; Rebollo-Neira and Lowe, 2002). We

describe how to use this greedy approach to effectively select features for multi-label classifica-

tion. The proposed algorithm is further generalized by adding monomial kernels which depend

on a single variable. Experimental results on real-world data demonstrate the effectiveness of the

proposed approaches.

1.2.2 Error criteria generalization

A common error evaluation criterion for feature selection is the Frobenius norm. See, e.g., (Frieze

et al., 2004; Çivril and Magdon-Ismail, 2012; Paul et al., 2015). We generalize the error criterion

to a large family of unitarily invariant norms. These include, among others, the Spectral norm,

the Nuclear norm, and Schatten p-norms. We show how to obtain optimal subset selection under

such error criteria. We generalize the classical forward selection algorithm so that it can be used

with the various unitarily invariant functions. In particular, we show minimizing Schatten p-norms

to solve the outlier-robust PCA problem. The algorithm is very efficient and experimental results

show that it outperforms a well-known outlier-robust PCA method that uses convex optimization.

1.2.3 Privacy mechanism for predictors

The privacy concern we address is the potential inappropriate use of data to predict confidential

information. Adapting machine learning terminology of a learning and a testing phase, our goal is
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protecting the privacy of information during the testing phase. It is different from studies concerned

with the privacy of training data, such as differential privacy.

The proposed algorithms can be applied to predictors that start with a linear operator. They

are different from other recent studies that have different (or no) assumptions about the predictors.

See, e.g., (Enev et al., 2012; Hamm, 2015; Whitehill and Movellan, 2012). The main observation

is that projections on the null space of the predictors do not change the prediction value. Thus the

desired effect can be achieved by zeroing out feature components in the approximate null space of

the linear operator.

1.3 Dissertation organization

The dissertation is organized as follows. Chapters 2 and 3 introduce the main problems being

addressed. Chapter 2 describes the problem of feature selection and Chapter 3 introduces privacy

considerations in data analytics. In Chapters 4, 6 and 7, we describe algorithms for the effective

feature selection. These include the approaches related to weighted A⇤ heuristic search, two-stage

algorithm and generalized forward selection algorithm for multi-label classification. In Chapters 5

and 8, we show the generalization of evaluation criteria to unitarily invariant norms for both unsu-

pervised feature selection and supervised feature selection. The approach for enhancing the data

privacy is illustrated in Chapter 9.
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CHAPTER 2

THE FEATURE SELECTION PARADIGM

Feature selection is a known problem in machine learning, data mining and knowledge representa-

tion. The goal is to identify and remove redundant and irrelevant features from data. Consider the

simple example shown in Table 2.1. Features include height in centimeter, height in feet, age, and

weight in pounds. Body mass index is the label to be predicted. Notice that the two features related

to height can be converted to each other. Thus one of the height feature is redundant and can be

removed. Another key point is that BMI depend only on the height and the weight of an individual.

Therefore the age feature is irrelevant. In practice, identifying the redundant and irrelevant features

is not as easy as this example. In many situations, the optimal solution is known to be NP-hard

(Çivril, 2017; Shitov, 2017). Feature selection provides several important benefits as following:

• It simplifies the prediction model which makes it easier to interpret.

• It enables faster and more efficient prediction.

• In practice, it gives better generalization properties than using the entire feature set.

2.1 Problem formulation

Let Y be a data matrix of m rows and N columns. Its columns are y1, . . . , yN , where a column y
i

is an m dimensional vector. Similarly, let X be a “dictionary” matrix of m rows and n columns. Its

columns, also called “atoms”, are x1, . . . , xn

, where a column x
i

is an m dimensional vector. We

consider the problem of selecting a subset of k columns from X that can be used to approximate

all the columns of Y . Specifically, suppose the columns x
s1 , . . . , xsk

are selected from X , then

each column y
i

of Y can be approximated by the linear combination:

y
i

⇡ a
i,1xs1 + . . .+ a

i,k

x
sk

(2.1)
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Table 2.1: Example of feature selection.

Name Height (cm) Height (ft) Age Weight (lb) Body Mass Index (BMI)
Lucy 160 5.24 17 98 17.4
Alexa 173 5.67 26 121 18.4
Jack 185 6.07 40 174 23

Figure 2.1: Feature selection illustration. The data matrix Y is m⇥N , the dictionary matrix X is
m⇥ n, and the selection matrix S is m⇥ k.

Here a
i,1, . . . , ai,k are coefficients associated with y

i

and chosen to minimize the approximation

error. In matrix form this can be written as:

Y ⇡ SA (2.2)

Here S = (x
s1 , . . . , xsk

) is the m ⇥ k selection matrix created from the k columns of X , and the

coefficients matrix A is k⇥N . The quality of the selection S is determined by the following error:

E = min

A

kY � SAk2
F

(2.3)

where the matrix norm is the Frobenius norm. We are interested in the case where n (the dictionary

size) is big and k (the selection size) is small, as illustrated in Figure 2.1.

2.2 Unsupervised and supervised feature selection

There are two general classes of feature selection: the unsupervised and the supervised case.
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The unsupervised case has X=Y , taking the dictionary to be the same as the data matrix.

Here the challenge is to approximate the data matrix Y by a small subset of its columns. This is

called “unsupervised feature selection” in machine learning (e.g. (Hastie et al., 2009; Maung and

Schweitzer, 2013)) and “column subset selection” in computational linear algebra (e.g. (Golub and

Van-Loan, 2013)). The most important application in numerical linear algebra is the computation

of a stable QR factorization, which can be achieved by computing the orthogonal matrix Q only

from the selected column subset (Golub and Van-Loan, 2013). Using this framework for unsuper-

vised feature selection was shown to be useful in areas such as text classification (Dasgupta et al.,

2007) and the analysis of microarray data (Mahoney and Drineas, 2009).

In the supervised case X is not the same as Y . Referring to the matrix X as a dictionary is

common in the signal processing literature where in the heavily analyzed case of N=1 the matrix Y

is called “the signal”. Applications include wavelet decomposition (e.g. (Mallat, 1999; Pati et al.,

1993)), image processing (e.g. (Bergeaud and Mallat, 1995)), and video coding (e.g. (Neff and

Zakhor, 1997)). The case N=1 is also common in machine learning and related studies, where it is

known as feature selection in linear regression (e.g. (Hastie et al., 2009; Miller, 2002; Dahmen and

DeVore, 2008; Das and Kempe, 2008)). Detailed analysis appears, for example, in (Mao, 2004).

Applications to finance are described in (Fan and Lv, 2010). The case N > 1 is known as multi-

label learning where each sample is associated with a set of labels. It has attracted a lot of interest

in recent years. The applications include image annotation (Boutell et al., 2004), protein function

classification (Diplaris et al., 2005) and text categorization (Katakis et al., 2008).
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CHAPTER 3

THE PRIVACY PARADIGM

There are many who consider the “sensor revolution” as the next big thing (Hardy, 2016). Cyber-

physical systems surround us with sensors that collect data. The data can then be analyzed, and

provide useful information that can help improve many aspects of our lives. The drawback is that

the same data may reveal sensitive information that one may wish to keep private.

Informally, privacy considerations in cyber-physical systems can be taken as the need to protect

information about humans from unauthorized access by humans or machines. We argue here that

there are some fundamental differences between this and the privacy of datasets, where the goal

is to keep private the data of individual users in the dataset, while allowing the mining of useful

information from the dataset (Dwork and Roth, 2014). These fundamental differences suggest

new approaches to enhance sensor data privacy that are very different from approaches that were

developed for datasets privacy.

Consider the flow of information collected with sensors, as illustrated in Figure 3.1. Sensors obtain

information about humans, and then transmit that information to a data collection center. An

analysis is then performed on data obtained from the Data Collection Center. There are different

privacy considerations depending on where the data may be intercepted along the flow diagram,

how much data is kept at the Data Collection Center, and for how long the data is maintained.

Three cases are discussed below.

Case 1: Data collected from many individuals.

In this case the data is intercepted between the Data Collection Center and the Analysis module.

Privacy violation is the exposure of sensor data from any particular individual. This is essen-

tially the same as the privacy problem in datasets, and can be approached using similar tools. In

particular, the data can be “blurred” to the point where it is impossible to distinguish particular

individuals, but the data can still be used to mine relevant statistical information. As an example,
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Sensors
Data

Collection
Center

Analysis

Figure 3.1: The flow of information collected with sensors

smart electricity meters measure electricity consumption at small time intervals. In this case the

Data Collection Center is the electricity provider. The privacy requirement is to prevent an adver-

sary from learning about the habits of the occupants of any particular house. For this and other

examples see, e.g., (McDaniel and McLaughlin, 2009; Sarwate and Chaudhuri, 2013; Cortés et al.,

2016; Kerschbaum and Strüker, 2012).

Case 2: Data collected from a single individual, combined with external datasets.

In this case the data can be intercepted anywhere between the sensors module and the Analysis

module. Privacy violation occurs when it is possible to identify the particular individual in another,

external dataset, which contains information about many individuals. Standard approaches for this

case are the encryption of the sensor data, or making sure that the external datasets are anonymized.

See for example (Koufogiannis and Pappas, 2016), where GPS data is combined with external data

to identify the individual driving the car.

Case 3: Data collected from a single individual, no external datasets.

As in Case 2 the data can be intercepted anywhere between the sensors module and the Analysis

module. However, the violation of privacy in this case is different. It occurs when an adversary

can use external information to build a model that enables inferring confidential information about

the individual from the sensor data. The main difference between Case 3 and cases 1,2 is that

the external information does not come from the same individual who is being examined. Still,

the external information can be used as “training data” in a machine learning setting, and enable

accurate prediction of confidential information.
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As an example consider the case of electroencephalogram (EEG) measurements. It is known

that epileptic seizures can be predicted from such measurements, a discovery which has the po-

tential of significantly improving the lives of 1% of the world population (Altunay et al., 2010;

Carney et al., 2011). However, it was recently found that the same EEG measurements can also

be used to detect schizophrenia. Even worse, they may be used to predict who is likely to develop

schizophrenia (Johannesen et al., 2016). Clearly, epileptic individuals may be concerned about al-

lowing others to learn that they “may” develop schizophrenia, to the extent where they may decide

not to use EEG to predict their epileptic seizures.

Cases 2 and 3 may appear similar, as both use sensor measurements from a single individual,

and look for intersections of these measurements with an external dataset. However, the privacy

consideration is very different. In Case 2 it has to do with identifying an individual in a dataset,

while in Case 3 the particular dataset that was used to train the classifier is irrelevant.

There are many studies that address privacy in situations similar to cases 1 and 2. It appears

that the tools used to achieve privacy in these cases are similar to those used in the investigation

of dataset privacy. In particular, this includes differential privacy and cryptographic techniques.

There are very few studies in dataset privacy that can be applied to Case 3. We investigate possible

approaches to enhance the privacy in Case 3.

The reason why Case 3 is so different from cases 1,2 is that it involves no explicit dataset. The

fundamental idea behind dataset privacy is that statistical information can be extracted without

exposing personal information. But there can be no “statistics” of a single measure, which means

that addressing privacy in Case 3 requires an entirely different approach. We discuss a mechanism

aimed at providing such privacy in Chapter 9.

10



CHAPTER 4

COLUMN SUBSET SELECTION WITH PROVABLE BOUNDS ON SUBOPTIMALITY

BY HEURISTIC SEARCH

Identifying a small number of features that can represent the data is a known problem that comes

up in areas such as machine learning, knowledge representation, data mining, and numerical linear

algebra. Computing an optimal solution is believed to be NP-hard, and there is extensive work

on approximation algorithms. Classic approaches exploit the algebraic structure of the underlying

matrix, while more recent approaches use randomization. An entirely different approach that uses

the A* heuristic search algorithm to find an optimal solution was recently proposed. Not surpris-

ingly it is limited to effectively selecting only a small number of features. We propose a similar

approach related to the Weighted A⇤ algorithm. This gives algorithms that are not guaranteed to

find an optimal solution but run much faster than the A⇤ approach, enabling effective selection

of many features from large datasets. We demonstrate experimentally that these new algorithms

are more accurate than the current state-of-the-art while still being practical. Furthermore, they

come with an adjustable guarantee on how different their error may be from the smallest possible

(optimal) error. Their accuracy can always be increased at the expense of a longer running time.

Portions of this chapter are the results of collaboration with Hiromasa Arai and Crystal Maung.

The results are published in (Arai et al., 2016).

4.1 Introduction

Feature selection is a standard dimensionality reduction technique. Given data items described in

terms of n features, the goal is to select k<n features such that the reduced k dimensional vectors

are useful for the task at hand. In supervised feature selection the features are selected for pre-

dicting values associated with each data item. These can be classification labels (e.g., (Guyon and

Elisseeff, 2003)), or multi-valued regression (e.g., (Maung and Schweitzer, 2015)). In unsuper-

vised feature selection the standard criterion is to select k features that can be used to approximate
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all n features. There are two common approaches for computing the unsupervised selection. The

first is to partition the feature space into k clusters and then select a representative from each clus-

ter (e.g., (Dy et al., 2003; Li et al., 2012)). This assumes a feature to be redundant if another feature

similar to it has already been selected. The second common approach assumes that a feature is re-

dundant if it can be approximated by a linear combination of other features that have already been

selected (e.g., (Jimenez-Rodriguez et al., 2007; Wei and Billings, 2007; Drineas et al., 2010; Das-

gupta et al., 2007; Wang et al., 2015)). Thus, if the goal is to select features for a nearest neighbor

algorithm the first approach seems most appropriate. But if the selected features are to be used

in a Gaussian classifier, the second approach seems more appropriate (Duda et al., 2001). In this

dissertation we consider only the second approach, which is formally described as follows.

Let X be an m ⇥ n data matrix of m items (rows), each described in terms of n features

(columns). We wish to approximate X by a linear combination of k of its columns: X ⇡ S
k

A.

The matrix S
k

= (x
s1 , . . . , xsk

) is formed by the selected columns, and A is the coefficients matrix.

In Frobenius norm the approximation error is:

Err(S
k

) = min

A

kX � S
k

Ak2
F

(4.1)

Finding S
k

that minimizes (4.1) is also known as the “Column Subset Selection Problem” (CSSP) in

numerical linear algebra. Previous studies of the CSSP with the Frobenius norm error include (Wei

and Billings, 2007; Golub and Van-Loan, 2013; Boutsidis et al., 2009; Çivril and Magdon-Ismail,

2012; Çivril, 2014). Obtaining approximations in other norms, such as the spectral norm or the l1

norm is considered to be harder (e.g., (Tropp, 2004)).

Unsupervised feature selection gives a sparse approximation to the data matrix, and has found

applications in many areas. These include the computation of stable and rank revealing QR fac-

torizations (e.g. (Golub and Van-Loan, 2013; Gu and Eisenstat, 1996; Boutsidis et al., 2009)),

feature selection in machine learning (e.g. (Drineas et al., 2010; Maung and Schweitzer, 2013; Wei

and Billings, 2007), remote sensing (e.g., (Jimenez-Rodriguez et al., 2007; Wang et al., 2015)),
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and data mining and knowledge representation (e.g. (Dasgupta et al., 2007; Kumar et al., 2012;

Drineas et al., 2010)).

Computing the selection S
k

that minimizes (4.1) is believed to be NP-hard (Çivril and Magdon-

Ismail, 2009; Çivril, 2014). Most current algorithms compute an approximate solution, and the

current state-of-the-art is reviewed in Section 4.2. The only exception we are aware of is a recent

algorithm (Arai et al., 2015) that uses the A⇤ algorithm to compute a guaranteed optimal solution.

The algorithm gives huge runtime improvements over exhaustive search. However, as implied

by the NP-hardness of the problem, it can compute effectively only a small number of features

from small to moderate size datasets. Therefore, this algorithm is not a competitor to the current

state-of-the-art approximation algorithms.

In this dissertation we show that heuristics similar to those proposed in (Arai et al., 2015) can

be used to design much faster algorithms, that are more accurate than the current state-of-the-art.

These new algorithms are not guaranteed to produce the optimal solution, but they can be applied

to very large datasets and effectively select hundreds of features. Experimental evaluation shows

that these algorithms are almost always more accurate than all other practical algorithms we are

aware of. Furthermore, they come with an adjustable guarantee on how different their error may

be from the smallest possible (optimal) error.

The chapter is organized as follows. The current state-of-the-art is reviewed in Section 4.2. The

algorithm of (Arai et al., 2015) which forms the basis to our results is described in Section 4.2.3.

Our main result, which extends this to the Weighted A⇤ algorithm is described in Section 4.3.

Experimental results are shown in Section 4.4.

4.2 The current state-of-the-art

Let S⇤
k

denote a (best) selection of k columns that minimizes the error in (4.1), and let Err(S⇤
k

)

be the corresponding (minimal) error. Recent studies suggest that computing S⇤
k

is most likely

NP-hard (Çivril and Magdon-Ismail, 2012; Çivril, 2014). The eigenvalues of the matrix XXT can
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be used to obtain bounds on Err(S⇤
k

). Let Err⇤
k

denote the error of the best approximation of X in

terms of a rank-k matrix. Then the following inequalities hold:

Err⇤
k

 Err(S⇤
k

)  (k + 1)Err⇤
k

(4.2)

Calculating Err⇤
k

is easy, since the columns of the best rank-k matrix are the k dominant eigenvec-

tors of XXT , scaled by the corresponding eigenvalues. From this it follows that:

Err⇤
k

=

mX

t=k+1

�
t

where �
t

is the t-largest eigenvalue of XXT . This fact, and the left-hand side inequality in (4.2)

follow from the Courant Fischer theorem (Golub and Van-Loan, 2013). The right-hand side in-

equality is a recent result (Deshpande et al., 2006; Deshpande and Rademacher, 2010). The same

references also show that the upper bound in (4.2) is tight in the following sense: If Err⇤
k

is given,

then the constant k+1 in (4.2) is the best possible.

4.2.1 Algorithms from numerical linear algebra

Subset selection algorithms were developed in numerical linear algebra for computing a stable

and rank-revealing QR factorization. The algorithm that we call QRP performs column subset

selection by computing the QR factorization of X with column pivoting. It is numerically stable

and efficient, but lacks in accuracy when compared to some of the more sophisticated algorithms.

See (Golub and Van-Loan, 2013; Gu and Eisenstat, 1996) for details. A more accurate variant

of this algorithms applies the QRP to the “leverage” vectors. These are truncated right singular

vectors of the SVD decomposition of X . It was invented by Golub, Klema and Stewart and we

refer to it as the GKS. See (Golub and Van-Loan, 2013) for details.

Among the many other algorithms that were developed in numerical linear algebra the algo-

rithm of Gu and Eisenstat (Gu and Eisenstat, 1996) that we call GE is considered the most accurate.

It typically starts with a selection computed by the QRP, and then updates the selection, swapping

columns to increase the “volume” (product of singular values squared) of the selection matrix.
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4.2.2 Randomized algorithms

Randomized algorithms come with a small probability of failure. Some are very fast, and with high

probability select a subset of size O(k log k) that can be shown to contain an accurate selection

of size k. They can be converted into algorithms that select exactly k vectors by the approach

of (Boutsidis et al., 2009). The idea is to apply a randomized algorithm in the first stage to select

more than k vectors, and then apply another deterministic algorithm on the (properly weighted)

selection to obtain a reduced selection of size k.

The randomized algorithm described in (Frieze et al., 2004) selects columns with probabili-

ties proportional to their squared norms. Using it for the randomized phase and the GE for the

deterministic phase gives the algorithm that we call FKV-GE.

The randomized algorithm described in (Boutsidis et al., 2009) selects columns with probabil-

ity proportional to the squared norm of the corresponding truncated singular vectors of the SVD

decomposition (the leverage space). Using it for the randomized phase and the GE for the deter-

ministic phase gives the algorithm that we call LEV-GE.

An algorithm that samples k-tuples of columns with probability proportional to their “volume”

(product of singular values squared) was developed in (Deshpande et al., 2006; Deshpande and

Rademacher, 2010; Guruswami and Sinop, 2012). Its accuracy can be shown to meet the upper

bound specified in (4.2).

4.2.3 Heuristic search for the optimal solution

The algorithms reviewed in Sections 4.2.1,4.2.2 are fast, but typically do not produce an optimal

solution. A recent study (Arai et al., 2015) has shown how to model the CSSP as a graph search,

and then use the classic A⇤ algorithm (Hart et al., 1968; Pearl, 1984) to find the optimal solution.

Their algorithm, that we call CSSP-A⇤, is guaranteed to find the optimal solution, runs much

faster than exhaustive search, but much slower than the other algorithms described in Section 4.2.

In particular, it can only be used when k is very small and only on small to moderate size datasets.
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{x1} {x2} {x3} {x4}

{x1,x2}
{x1,x3}

{x1,x4} {x2,x3}
{x2,x4}

{x3,x4}

Figure 4.1: Example of subset graph for n = 4, k = 2.

0. Put the root node into F .

1. While F is nonempty and no solution found:
1.1 Pick n

i

with the smallest f 0
(n

i

) from F .
1.2 If n

i

has k columns return it as the solution.
1.3 Otherwise:

1.3.1 Add n
i

to C.
1.3.2 Examine all children n

j

of n
i

.
1.3.2.1 If n

j

is in C or F do nothing.
1.3.2.2 Otherwise put n

j

in F .

Figure 4.2: Example of the subsets graph and the generic heuristic search algorithm. The algorithm
maintains the fringe list F and the closed nodes list C. Several choices of f 0

(n
i

) are discussed in
the text.

The CSSP-A⇤ operates on a graph, where nodes correspond to column subsets. There is an

edge from subset s1 to subset s2 if adding one column to s1 creates s2. We call the node s
r

the

root of the subgraph consisting of all nodes s satisfying s�s
r

. We call the empty set the root of the

graph. An example is shown in Figure 4.1.

The algorithm shown in Figure 4.2 is the classic A⇤ algorithm applied to the subsets graph. The

description leaves the value of f 0
(n

i

) unspecified.
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4.2.4 A⇤ and the Weighted A⇤ algorithms

The standard formulation of the A⇤ algorithm (e.g., (Pearl, 1984; Russell and Norvig, 2010)) in-

volves the three functions f(n
i

), g(n
i

), h(n
i

), that are defined for each node n
i

. The value of g(n
i

)

is the length of the path from the root to n
i

, the value of h(n
i

) is an estimate of the distance between

n
i

and the goal, and f(n
i

) is calculated as f(n
i

) = g(n
i

)+h(n
i

). Under some restrictions on h(n
i

)

(it should be “consistent”), the value of f(n
i

) is non decreasing along any path. This property can

be used to prove the optimality of the A⇤ algorithm.

A standard approach for accelerating the running time of the A⇤ algorithm is the “Weighted

A⇤ heuristic”. Instead of taking f 0
(n

i

) = g(n
i

) + h(n
i

), the Weighted A⇤ algorithm increases

the weight of the h(n
i

) component by using f 0
(n

i

) = g(n
i

) + (1 + ✏)h(n
i

). It can be shown

((Pearl, 1984)) that with this choice of f 0
(n

i

) the A⇤ algorithm gives a solution with error value

g⇤⇤ satisfying: g⇤⇤  (1 + ✏)g⇤, where g⇤ is the error of the optimal solution. Experimental results

and theoretical analysis (e.g., (Pearl, 1984; Likhachev et al., 2003)) show that the Weighted A⇤

algorithm runs much faster than the A⇤. Observe that the bound on g⇤⇤ is multiplicative.

4.3 Weighted A⇤ algorithms for the CSSP

In this section we prove a theorem and use it to derive weighted A⇤ algorithms for the CSSP. The

theorem is stated in terms of the functions f(n
i

), g(n
i

), h(n
i

), that are defined for each node n
i

.

These functions are defined in Section 4.3.1 in terms of eigenvalues of a certain matrix. In the

beginning of this section we give a non-computational definition that is sufficient for stating and

proving the theorem.

Let n
i

be a node in the subsets graph. Let j denote the corresponding number of columns for

subset S
i

. Define:

g(n
i

) , Error of estimating X using the j columns in S
i

.

f(n
i

) , Error of estimating X using the j columns in S
i

and additional “best possible” k–j vec-

tors.
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h(n
i

) , g(n
i

)� f(n
i

).

Observe that by definition g(n
i

) is monotonically decreasing along any path, and f(n
i

) is monoton-

ically increasing along any path. From this it follows that h(n
i

) is monotonically decreasing along

any path. In addition, at each leaf node q (a goal node of the search) j=k, so that f(n
q

) = g(n
q

),

and h(n
q

) = 0.

Let n⇤ be an optimal solution node so that g(n⇤) is the smallest possible error in Equation (4.1).

Let n⇤⇤ be a solution obtained by the algorithm in Figure 4.1 using a particular choice for f 0
(n

i

)

with the (not necessarily optimal) error g(n⇤⇤). It was proved in (Arai et al., 2015) that if f 0
(n

i

) =

f(n
i

) = g(n
i

) � h(n
i

) then g(n⇤⇤) = g(n⇤) (i.e, the solution found by the algorithm is optimal).

As in Section 4.2.4, this suggests that adding weight to h(n
i

) would give a weighted A⇤ algorithm

with an improved running time. Suppose instead of f 0
(n

i

)=g(n
i

)–h(n
i

) we take:

f 0
(n

i

) = g(n
i

)� (1 + ✏)h(n
i

) (4.3)

Observe that in this case f 0
(n

i

) is monotonically increasing, and it is possible to give proof similar

to the one in (Pearl, 1984) which shows that g(n⇤⇤)  (1+ ✏)g(n⇤). We skip the details of this case

because we have found experimentally that this algorithm is impractical. Its running time is even

worse than that of the CSSP-A⇤. Other attempts of defining a monotonically increasing f 0
(n

i

) in

terms of g(n
i

), h(n
i

) also failed to improve the running time. As we describe next, the solution

we have found does not have f 0
(n

i

) monotonically increasing or decreasing, but it still gives exact

bounds on suboptimality.

Theorem 1: Let n⇤ be an optimal solution node of the CSSP, and let g(n⇤) be the corresponding

(smallest) error value. Suppose the function v(n
i

)�0 can be computed at each node n
i

. Define:

f 0
(n

i

) = g(n
i

)� h(n
i

) + ✏v(n
i

), ✏ � 0

Then if f 0
(n

i

) is used by the algorithm in Figure 4.1, it will terminate with a solution node n⇤⇤

satisfying:

g(n⇤⇤)  g(n⇤) + ✏vmax, vmax = max

ni

v(n
i

) (4.4)
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Proof: Suppose the theorem is false. Then there is a case where the algorithm terminates at the

solution node n⇤⇤ with the associated error g(n⇤⇤) which satisfies: g(n⇤⇤) > g(n⇤) + ✏vmax. In

Lemma 1 below we prove that under this condition if n
z

is any node on the path from the root to

n⇤ then f 0
(n

z

) < f 0
(n⇤⇤). We proceed to show that this leads to a contradiction.

To see the contradiction observe that the fringe list always contains a node n
z

on the path from

the root to n⇤. (The root is such a node, and if such a node is selected from the fringe, one of its

children will be on the path from the root to n⇤.) But then since f 0
(n

z

) < f 0
(n⇤⇤) any such node n

z

in the fringe will be selected before n⇤⇤, so that eventually n⇤ is selected before n⇤⇤ contradicting

the assumption. ⌅

Lemma 1: With the notation of Theorem 1 under the assumption g(n⇤⇤) > g(n⇤) + ✏vmax, if n
z

is

on the path to n⇤ then f 0
(n

z

) < f 0
(n⇤⇤).

Proof:

f 0
(n⇤⇤) = g(n⇤⇤)–h(n⇤⇤)+✏v(n⇤⇤) = g(n⇤⇤) + ✏v(n⇤⇤)

> g(n⇤) + ✏vmax + ✏v(n⇤⇤)

� f(n⇤) + ✏vmax � f(n
z

) + ✏v(n
z

)

= f 0
(n

z

)

In the above inequality chain we used the following:

1. h(n⇤⇤)=0 and f(n⇤) = g(n⇤), since both n⇤⇤ and n⇤ are leaf (goal) nodes.

2. f(n⇤) � f(n
z

), since node n
z

is on the path to node n⇤ and f(n
i

) is monotonically increasing

along any path.

3. vmax � v(n
z

). ⌅

Theorem 1 is a useful tool for proving bounds on the suboptimality of the solution. But by

itself it doesn’t provide guidance as to what constitutes a useful function v(n
i

). The following

corollary suggests that v(n
i

) should be chosen monotonically decreasing along any path. Under

this condition the bound becomes tighter during the run of the algorithm.
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Table 4.1: Weighted A* algorithms.

Name f 0
i

Suboptimality Bound
CSSP-WA*-g g

i

�h
i

+✏g
i

g⇤⇤g⇤+✏g0
CSSP-WA*-h g

i

� h
i

+✏h
i

g⇤⇤g⇤+✏h0

CSSP-WA*-b g
i

� h
i

+✏b
i

g⇤⇤g⇤+✏b0
g⇤⇤(1+✏(k+1))g⇤

Corollary 1: Let n⇤⇤, n⇤, and v(n
i

) be as in Theorem 1. Suppose v(n
i

) is monotonically decreasing

(non-increasing) along any path. Let n
r

be a visited node in the path to the solution. Then:

g(n⇤⇤)  g(n⇤) + ✏v(n
r

) (4.5)

Proof: Apply Theorem 1 to the subgraph rooted at n
r

. ⌅

The guarantee in the corollary may be much stronger then the guarantee provided by the theorem

since v(n
r

) may be much smaller than the value of v(n
i

) at the root.

The suboptimality bounds on g(n⇤⇤) that can be proved from the theorem and the corollary

are additive. This is weaker than the multiplicative bound of the classic WA⇤ algorithm (e.g.,

(Pearl, 1984). Multiplicative bounds are typically preferred because they are more accurate for

small g(n⇤) values. In particular, when g(n⇤) = 0 algorithms with multiplicative bounds on their

suboptimality return the optimal solution regardless of the value of ✏.

Since both g(n
i

) and h(n
i

), as defined in Section 4.3, are monotonically decreasing, we have

experimented with them as possible choices for v(n
i

). (As discussed in Section 4.3.3 these choices

give essentially the same algorithm.) In addition, we propose a third option, the function b(n
i

),

which gives a multiplicative bound on the algorithm suboptimality.

The algorithms are summarized in Table 4.1. We write f 0
i

, g
i

, h
i

, for f 0
(n

i

), g(n
i

), h(n
i

) respec-

tively, g0, h0, b0 for the values of g(), h(), b() at the root, and g⇤, g⇤⇤ for g(n⇤), g(n⇤⇤) respectively.
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4.3.1 Efficient calculation of heuristic values

In calculating f(n
i

), g(n
i

), h(n
i

) we follow (Arai et al., 2015). Let S
i

be the columns at node

n
i

, and set j = |S
i

|. Compute Q
i

, an orthogonal matrix which forms a basis to S
i

. Compute:

X
i

= X �Q
i

QT

i

X , and B
i

= X
i

XT

i

. Let �1 � . . . � �
m

be the eigenvalues of B
i

. Then:

g(n
i

) =

mX

t=1

�
t

= Trace(B
i

) = kX
i

k2
F

,

h(n
i

) =

jX

t=1

�
t

, f(n
i

) = g(n
i

)� h(n
i

) =

mX

t=j+1

�
t

We observe that the heuristics are needed only after line 1.3.2.1 of the algorithm in Figure 4.2.

At that point the parent of the node is known. We show how to calculate the children eigenvalues

efficiently by performing a more expensive eigenvalue decomposition for the parent, at line 1.3.1

of the algorithm. Furthermore, these more expensive calculations can be reduced by computing an

expensive eigenvalue decomposition once, at line 0. To summarize, we discuss three different types

of eigenvalue decompositions. The first is calculated once, at the root, the second is calculated for

each selected node, and the third is calculated for each child.

Eigenvalue decomposition at the root

Define:

B = Y Y T

The eigenvalue decomposition at the root is performed on B:

B = V DV T

Here V has orthonormal columns, and D is diagonal. We note that the values of V and D can also

be calculated from the SVD of Y . There are efficient algorithms for computing this factorization.

The one we have used is described in (Halko et al., 2011). Let r be the numeric rank of Y then

r  min{m,n}. It is enough to keep V as an m⇥ d matrix, and retain only d eigenvalues.
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Eigenvalue decomposition for parent nodes

This eigenvalue decomposition is performed at line 1.3.1 of algorithm. Instead of working with

the matrix B1, as defined in Theorem 3, we show that there an equivalent matrix that is easier to

calculate.

Lemma 1: Define the r ⇥ r matrix H by:

H = D � ZZT

= D �
rX

j=1

z
j

zT
j

(4.6)

where Z = D1/2V TQ1 and z
j

= D1/2V T q
j

. Then the matrices B1 and H have the same eigenval-

ues (and therefore also the same trace).

Proof: Using the eigenvalue decomposition of B we have:

B1 = (I �Q1Q
T

1 )B(I �Q1Q
T

1 ) = GDGT

where G = (I �Q1QT

1 )V . As we show later H can be written as: H = D1/2GTGD1/2. From this

it follows that both H and B1 can be viewed as the product of the same two matrices (in different

order) which implies that they have the same eigenvalues. To complete the proof it remains to

show that the two expressions for H are identical. Direct calculation gives:

GTG = V T

(I �Q1Q
T

1 )V = I � V TQ1Q
T

1 V

Therefore:

D1/2GTGD1/2
= D �D1/2V TQ1Q

T

1 V D1/2

= D � ZZT

This completes the proof of the lemma. The special structure of the matrix H , which can be

expressed as r rank-1 updates to a diagonal matrix, allows for specialized routines for computing

its eigenvectors and eigenvalues. See, e.g (Bini and Robol, 2014; Melman, 1998; Golub, 1973).

22



Computing eigenvalues for children nodes

The calculation of the heuristic at line 1.3.2.2 of the algorithm is the most time consuming part of

the algorithm. We show how to compute these values efficiently from the eigenvalue decomposi-

tion of the parent.

Theorem 4 Let n
p

be a parent node encountered at line 1.3.1 of the algorithm with selection

of size k1. Let Q
p

be an orthonormal matrix that spans these k1 vectors. Let H
p

be the matrix

computed according to (4.6). Let Trace
p

be the trace of H
p

. Suppose a child node n
y

is created by

adding y to the selection of n
p

. Then the following procedure computes the heuristic values at n
y

without explicitly computing the associated matrix H
y

of Equation (4.6).

1. q
y

= Q
p

QT

p

y.

2. z
y

= D1/2V T q
y

.

3. g
y

= Trace(H
y

) = Trace
p

� |z
y

|2.

4. The top k � k1 � 1 eigenvalues of H
y

are computed using a specialized method.

5 Compute h
y

as the sum of the eigenvalues computed at 4.

6 f
y

= g
y

� h
y

.

Proof: Then from (4.6) it follows that:

H
y

= H
p

� z
y

zT
y

, z
y

= D1/2V T q
y

(4.7)

The formula in 3. follows from the linearity of the trace. The computation of the top eigenvalues

in 4. can exploit the special structure shown in (4.7). Our particular implementation uses Gragg’s

method (Melman, 1998). This is an iterative procedure with cubic convergence speed.
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4.3.2 A multiplicative bound on suboptimality

We begin by sharpening the right hand size of Equation (4.2): Err(S⇤
k

)  (k + 1)Err⇤
k

. With the

notation used in this section this can be written as: g(n⇤)  (k + 1)f(n0), where n0 is the root.

Consider a node n
i

corresponding to a subset S
i

of j columns, where k–j columns still need to be

selected. Let S⇤
i

be the best solution satisfying S⇤
i

� S
i

. We have:

g(n⇤)  Err(S⇤
i

)  (k–j+1)f(n
i

) = (k–j+1)(
mX

t=k–j+1

�
t

)

where the eigenvalue calculations are as defined in Section 4.3.1. Now consider adding a zero

vector to S
i

. This does not change the eigenvalues, but increases the value of j. Therefore, (k �

j)(
P

m

t=k�j

�
t

) is also an upper bound. Since this process can be repeated by adding l zero vectors,

for l = 0, . . . , k � j, we get the following sharper upper bound:

g(n⇤)  Err(S⇤
i

)  min

l=0,...,k�j

(k–j+1–l)(
mX

t=k–j+1–l

�
t

)

We define the right hand side as b(n
i

):

b(n
i

) = min

l=0,...,k�j

(k–j+1–l)(
mX

t=k–j+1–l

�
t

)

As an upper bound b(n
i

) is expected to decrease (but not necessarily monotonically). For root node

n0 we have:

b(n0) = min

l=0,...,k
(k+1–l)(

mX

t=k+1–l

�
t

)

 (k + 1)(

mX

t=k+1

�
t

)

= (k + 1)g(n⇤)

This shows that the additive upper bound g⇤⇤g⇤+✏b0 implies the multiplicative upper bound

g⇤⇤(1+✏(k+1))g⇤.
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4.3.3 The relationship between the three algorithms

All three algorithms reduce to the CSSP-A* for ✏ = 0. As shown above, the CSSP-WA*-b has

a multiplicative bound on its suboptimality while the other two have only additive bounds. This

implies that when g⇤ is very small, the CSSP-WA*-b is more accurate than the other two. Our

experiments support this observation.

We proceed to show that the CSSP-WA*-g and the CSSP-WA*-h are essentially the same algo-

rithm corresponding to different choices of ✏. The f 0 values of these algorithms can be expressed

as:

f 0
g

(n
i

) = (1 + ✏
g

)g(n
i

)� h(n
i

)

f 0
h

(n
i

) = g(n
i

)� (1� ✏
h

)h(n
i

)

Since an arbitrary scaling of the f 0 values does not affect the behavior of the algorithm we have

the following equivalent form of f 0
g

(n
i

):

f 00
g

(n
i

) =

f 0
g

(n
i

)

1 + ✏
g

= g(n
i

)� h(n
i

)

1 + ✏
g

Comparing this with the expression for f 0
h

(n
i

) shows that the two algorithms are equivalent under

the condition:

✏
h

=

✏
g

1 + ✏
g

This shows the two algorithms to be equivalent whenever ✏
h

< 1.

4.4 Experimental results

We implemented and tested the three CSSP-WA* algorithms that were described in Section 4.3.

The experiments described here compare our algorithms to the current state-of-the-art on several

large publicly available datasets.

The state-of-the-art algorithms considered here (see Section 4.2) are the GKS (see (Golub and

Van-Loan, 2013)) and the GE ((Gu and Eisenstat, 1996)) from numerical linear algebra, and the
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Table 4.2: Dataset description.

Dataset Size Availability
Madelon 2, 000⇥ 500 UCI
Isolet5 1, 559⇥ 618 UCI
CNAE-9 1, 080⇥ 857 UCI
TechTC01 163⇥ 29, 261 Technion
Day1 20, 000⇥ 3, 231, 957 UCI

randomized LEV-GE two-stage-method of Boutsidis et.al (Boutsidis et al., 2009). The datasets

information is shown in Table 4.2.

4.4.1 Evaluating accuracy and running time

The results of accuracy evaluation are shown in the Table 4.3. Observe that the WA* algorithms

always come as most accurate. On the other hand, the WA* algorithms are significantly slower than

the other algorithms as shown in Table 4.4 . The running time is measured in minutes. Therefore

WA* algorithms are still being practical.

4.4.2 Dependency on ✏

The results of experiments for evaluating the performance of the WA* algorithms as a function of

✏ are shown in Figure 4.3. The experiments were performed on the TechTC01 dataset with k = 50.

The upper left panel shows runtime as a function of ✏. Although the results for the WA* are clearly

worse than the results of the other algorithms, they are still measured in minutes. As a comparison,

running the CSSP-A* on the same dataset is impractical, as the results may take hundreds of years.

The bottom left panel shows the results only for the WA* algorithms. It clearly shows that the

runtime improves with the increase of ✏ value but only up to a certain point. Increasing ✏ above 0.4

gives little or no improvement in running time.

The upper right panel shows accuracy as a function of ✏. Observe that the WA* algorithms are

significantly more accurate than the other algorithms for all values of ✏ in the 0 � 1 range that we
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Table 4.3: Error comparison. The most accurate result for each experiment is underlined. Some
results are missing because they are too slow. The WA* algorithms use ✏ = 0.5 on Madelon,
CNAE-9 and TechTC01, and ✏ = 0.9 on the other datasets.

k GKS GE LEV_GE WA⇤-h WA⇤-g WA⇤-b

Dataset Madelon
20 6.97E+08 7.00E+08 6.52E+08 6.05E+08 6.05E+08 6.05E+08
60 4.82E+08 4.86E+08 5.27E+08 4.59E+08 4.59E+08 4.59E+08

100 3.48E+08 3.47E+08 4.21E+08 3.38E+08 3.38E+08 3.38E+08

Dataset Isolet5
20 7.72E+04 9.30E+04 8.01E+04 6.58E+04 6.58E+04 6.60E+04
60 4.01E+04 4.57E+04 4.10E+04 3.72E+04 3.72E+04 3.70E+04

100 2.62E+04 2.88E+04 2.74E+04 2.48E+04 2.48E+04 2.47E+04

Dataset CNAE-9
20 4.28E+03 4.31E+03 4.97E+03 4.27E+03 4.28E+03 4.28E+03
60 2.58E+03 2.56E+03 3.38E+03 2.55E+03 2.55E+03 2.55E+03

100 1.77E+03 1.79E+03 2.43E+03 1.76E+03 1.76E+03 1.76E+03

Dataset TechTC01
20 7.14E+05 7.68E+05 8.68E+05 6.93E+05 6.92E+05 6.92E+05
60 1.52E+05 1.59E+05 1.65E+05 1.29E+05 1.28E+05 1.28E+05

100 2.78E+04 3.18E+04 2.80E+04 2.12E+04 2.07E+04 2.07E+04

Dataset Day1
20 4.82E+05 - 5.01E+05 4.60E+05 4.59E+05 4.59E+05
60 3.72E+05 - 3.97E+05 3.50E+05 3.49E+05 3.49E+05

100 3.20E+05 - 3.48E+05 3.02E+05 3.01E+05 -

experimented with. The same comparison showing only the WA* algorithms is shown in the lower

right panel. In terms of accuracy the results are less clear, although in general the results seem to

improve for smaller ✏ values.

4.5 Discussion

This dissertation describes new algorithms for the column subset selection problems that are based

on the classic Weighted A* approach in heuristic search. Our algorithms run slower than the

current state-of-the-art, but are still practical even for large datasets. Their advantage is having
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Table 4.4: Time comparison, measured in minutes. Some results are missing because they are too
slow. The WA* algorithms use ✏ = 0.5 on Madelon, CNAE-9 and TechTC01, and ✏ = 0.9 on the
other datasets.

k GKS GE LEV_GE WA⇤-h WA⇤-g WA⇤-b

Dataset Madelon
20 0.01 0.003 0.30 0.58 0.59 0.58
60 0.01 0.003 0.87 2.11 2.39 2.36

100 0.02 0.006 1.52 4.47 4.92 4.86

Dataset Isolet5
20 0.01 0.002 0.45 0.97 0.92 0.80
60 0.01 0.008 1.78 3.63 3.50 6.77

100 0.02 0.016 3.94 6.90 6.75 6.78

Dataset CNAE-9
20 0.01 0.002 0.29 1.82 1.84 1.83
60 0.01 0.002 0.89 6.15 6.27 6.29

100 0.02 0.003 1.55 10.80 10.96 10.97

Dataset TechTC01
20 0.02 0.006 0.67 0.75 0.79 0.80
60 0.04 0.011 1.93 5.65 5.68 5.68

100 0.06 0.350 3.15 14.50 14.54 14.47

Dataset Day1
20 0.50 - 10.67 31.25 31.24 31.40
60 1.50 - 35.18 140.68 140.57 140.59

100 2.84 - 63.01 272.58 297.58 -

better accuracy than the current state-of-the-art. Their accuracy and running time can be fine tuned

with the ✏ parameter. For ✏ = 0 they all find the optimal solution, but this will most likely take

exponential time. Our claim of practicality is for larger ✏ values where our experiments indicate

superior accuracy at an “acceptable” running time. We are not aware of any other algorithm in the

literature that is practical, and can have similar accuracy levels.

Since the algorithms presented here are still much slower than some of the algebraic/randomized

techniques, it is questionable whether they should be an appropriate tool for big data. (See, for ex-
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Figure 4.3: Performance comparison as a function of ✏ on TechTC01, for k=50.

ample, the runtime results on the Day1 dataset.) But for most other applications they give practical

solutions with superior accuracy to currently available methods.
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CHAPTER 5

OPTIMAL COLUMN SUBSET SELECTION AND RELATED PROBLEMS UNDER

UNITARILY INVARIANT CRITERIA BY HEURISTIC SEARCH

Chapter 4 describes a solution to the classical column subset selection problem with provable

bounds on suboptimality. It computes a suboptimal solution by the weighted A⇤ heuristic search

and the error is measured in Frobenius norm. In this chapter, an optimal solution for a large family

of unitarily invariant criteria is discussed. These criteria include, among others, the Spectral norm,

the Nuclear norm, and the Schatten p-norms. Related optimal algorithms for expressing a matrix

as a linear combination of a column-sparse matrix and a low-rank matrix are also described. The

approach is combinatorial, and generalizes previous studies that use the A⇤ technique with the

Frobenius norm.

Since the optimization problem is most likely NP-hard, it is not surprising that our optimal

algorithms are only practical for a relatively small selection size. By relaxing the optimality re-

quirement the combinatorial approach produces a solution that is guaranteed to be near the optimal.

This sub-optimal algorithm runs much faster, and can be applied to select significantly larger col-

umn subsets. Our main contributions are as follows: 1. Optimal subset selection algorithms under

unitarily invariant criteria that are much faster than exhaustive search. 2. Optimal algorithms for

approximating a matrix by a linear combination of a column-sparse matrix and a low-rank matrix.

3. Sub-optimal algorithms for 1 and 2 that have accuracy guarantees and are shown experimentally

to be more accurate than the current state of the art.

Portions of this chapter are the results of collaboration with Swair Shah.

5.1 Introduction

The selection of a small subset of matrix columns that can be used to approximate the entire

matrix is known as the Column Subset Selection Problem (CSSP). Formally, let X be an m ⇥ n
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matrix, and let S be an m ⇥ k matrix consisting of k columns selected from X . Then X can

be approximated by a linear combination of the columns of S as follows: X ⇡ SA, where A is

the k ⇥ n coefficients matrix. A related problem is the unconstrained low rank approximation,

where X is approximated by a linear combination of k columns that form the matrix V as follows:

X ⇡ V A, where A is the k⇥n coefficients matrix. This is the classical PCA (Principal Component

Analysis). Combining these two low-rank representations gives what we call the “double low-rank

representation”, or DLRR. Here X ⇡ SA1 + V A2, where S consists of r1 columns from X , and

V is an unconstrained m⇥ r2 matrix. Let ⇥ be an error criterion, then the approximation errors of

these representations are:

PCA: e(X, k) = min

V,A

⇥(X � V A), with |V | = k

CSSP: e(X, k) = min

S,A

⇥(X � SA), with S ⇢ X , |S| = k

DLRR: e(X, r1, r2) = min

S,A1,V,A2

⇥(X � SA1 � V A2), with S ⇢ X , |S| = r1, |V | = r2

(5.1)

In the above equations we use the notation S ⇢ X to indicate that the columns of S are a subset of

the columns of X , and the notation |S| to specify the number of S columns (similarly for V ).

The solution to the PCA is well known (e.g., (Jolliffe, 1986)). When ⇥ is any unitarily invariant

norm the best matrix V consists of the k eigenvectors of XXT corresponding to its largest eigen-

values. In Section 5.2 we point out that this characterization is even more general, and holds for all

monotonically increasing unitarily invariant error criteria (these criteria are defined in Section 5.2).

Our main result is algorithms for the CSSP and the DLRR that are optimal under the same general

monotonically increasing unitarily invariant error criteria.

Our main interest is in the CSSP. Even though the DLRR appears similar to other classic matrix

representations which express a matrix as the sum of a sparse matrix and a low-rank matrix (e.g.,

(Candès et al., 2011)), the representation is not the same. Our interest in the DLRR is as an

intermediate step to obtain the CSSP algorithms. We do not explore explicit applications of this

representation.
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The CSSP has attracted a lot of attention, with the first algorithm (pivoted QR) being developed

more than 50 years ago (Businger and Golub, 1965). Over the years algorithms were designed to

minimize various error criteria. Numerical linear algebra studies attempt to minimize the Spec-

tral norm (these norms are formally defined in Section 5.2). See, e.g., Chapter 5 in (Golub and

Van-Loan, 2013). The most accurate deterministic CSSP algorithm for optimizing the Spectral

norm is described in (Gu and Eisenstat, 1996). A randomized algorithm for the Spectral norm

is described in (Boutsidis et al., 2009). Randomized algorithms for the Frobenius norm include,

among others, (Frieze et al., 2004; Boutsidis et al., 2009; Deshpande and Rademacher, 2010; Gu-

ruswami and Sinop, 2012; Paul et al., 2015). Deterministic algorithms for the Frobenius norm

include, among others, (Çivril and Magdon-Ismail, 2012; Guruswami and Sinop, 2012; Arai et al.,

2015, 2016). Algorithms and analysis related to the Nuclear norm include, among others, (Candès

et al., 2011; Cabral et al., 2013). Algorithms and analysis related to the Schatten p-norms include,

among others (Nie et al., 2012; Zhu et al., 2015).

Finding the optimal subset is known to be NP-hard for the Volume criterion (Çivril and Magdon-

Ismail, 2009). There is also strong evidence that it is NP-hard for the Frobenius norm (Çivril,

2014). The general belief is that CSSP is NP-hard for all “interesting” error criteria, such as all

those discussed in Section 5.2. As is the case for many other NP-hard problems, it is still possi-

ble to develop algorithms that can do significantly better than exhaustive search. We study such

algorithms in this dissertation.

An algorithm that computes the optimal solution to the CSSP in Frobenius norm was described

in (Arai et al., 2015). The optimization problem was converted into a graph search problem and

solved with the A⇤ algorithm. Unfortunately, the algorithm in (Arai et al., 2015) works only for

the Frobenius norm. The heuristic function “h” that is used by A⇤ (see, e.g., (Russell and Norvig,

2010)) has no natural interpretation in other error criteria. However, as we show, a similar approach

discussed below can still work.

Our approach is to consider the CSSP as a special case of the DLRR. We show in Section 5.3

that the DLRR can be solved by A⇤ with no assumptions on the error criterion. An efficient
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implementation requires optimally evaluating a nontrivial function, defined in equation 5.2. We

show (in Section 5.4) how to calculate this function efficiently whenever the error criterion is a

monotonically increasing unitarily invariant function.

5.2 Unitarily invariant monotonic functions

The function ⇥ in Equation (5.1) associates a matrix with a nonnegative real value. An obvious

choice for ⇥ is a matrix norm. However, some of the criteria that are being used in applications

are not norms. An example is the Schatten p-norms with 0 < p < 1. See, e.g., (Nie et al., 2012;

Zhu et al., 2015; Tao, 2012). We proceed to show that the most commonly used error criteria are

monotonically increasing unitarily invariant functions.

Unitarily invariant matrix norms do not change their values if the matrix is rotated. It can be

shown (e.g., (Marshall et al., 2011)) that a unitarily invariant norm can always be expressed as a

monotonically nondecreasing function of its singular values. Thus, we have the following relation:

⇥(A) = ✓(�1, . . . , �m

), where A 2 Rm⇥n, and �1 � �2 . . . � �
m

are its singular values

We observe that the opposite is not true. There are monotonically increasing functions ✓ that do

not correspond to norms. Here is a list of the most common error criteria and their description in

terms of the function ✓:

Spectral: ✓ = �1, Frobenius: ✓ = (

P
m

j=1 �
2
j

)

1/2,

Nuclear: ✓ =

P
m

j=1 �j

, Schatten: ✓ = (

P
m

j=1 �
p

j

)

1/p for p > 0

Clearly, these are all monotonically increasing functions. However, the Schatten p-norms are not

matrix norms for 0 < p < 1. See, e.g., (Tao, 2012). Also observe that both the Frobenius and the

Nuclear norms are special cases of the Schatten p-norm.

Definition: A matrix function ⇥ is called unitarily invariant monotonic if:

1. ⇥(E) = ✓(�1, . . . , �m

), where �
i

are the singular values of E.
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2. ✓ is nondecreasing in all of its arguments.

We are interested in unitarily invariant monotonic functions because of the following two prop-

erties that are given in Theorem 1.

Theorem 1: Suppose ⇥(E) is unitarily invariant monotonic. Let X 2 Rm⇥n,V 2 Rm⇥k, A 2

Rk⇥n be three matrices. Then:

1. If X and V are known then A = V +X minimizes ⇥(X � V A), where V + is the pseudo-

inverse of V .

2. If X is known then the matrix V consisting of the k eigenvectors corresponding to the largest

eigenvalues of X minimizes ⇥(X � V A).

Proof: Part 1 appears in the proof of Theorem B.7 in (Marshall et al., 2011). When ⇥ is a

unitarily invariant norm Part 2 is the celebrated Eckart and Young theorem (Marshall et al., 2011).

The extension to monotonic functions that are not norms is less well known. A proof can be found

in Part b of Theorem 3.2 in (Mathar and Meyer, 1993).

5.3 The A* algorithm

Throughout this section we use the following notation. For two matrices A,B we write A ⇢ B to

indicate that the columns of A are a subset of the columns of B. We write |A| for the number of

columns in A, and A|B for the matrix consisting of the columns of A followed by the columns of

B.

When the matrix X and the error criterion ⇥ are known from the context we use the following

shortcut. For a matrix Y the function e(Y ) is defined as follows:

e(Y ) = min

A

⇥(X � Y A)

Observe the following:

min

A1,A2

⇥(X � S
i

A1 � V
i

A2) = min

A

⇥(X � (S
i

|V
i

)A) = e(S
i

|V
i

)
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5.3.1 Optimality and sub-optimality with accuracy guarantees

As discussed in Section 5.1 we describe algorithms for computing the optimal solutions to the

CSSP and the DLRR. An optimal solution gives the smallest approximation error, as defined be-

low. Let ⇥ be an error criterion (not necessarily unitarily invariant monotonic). The matrices

S⇤, V ⇤, A⇤
1, A

⇤
2 satisfying S⇤ ⇢ X , |S⇤| = r1, |V ⇤| = r2 are the optimal solution for the DLRR if:

⇥(X � S⇤A⇤
1 � V ⇤A⇤

2)  ⇥(X � SA1 � V A2) for any S ⇢ X , |S| = r1, |V | = r2, A1, A2.

Sub-optimality with accuracy guarantees is defined as follows. Let S⇤, V ⇤, A⇤
1, A

⇤
2 be the optimal

solution as defined above. The matrices S⇤⇤, V ⇤⇤, A⇤⇤
1 , A⇤⇤

2 satisfying S⇤⇤ ⇢ X , |S⇤⇤| = r1, |V ⇤⇤| =

r2 are the sub-optimal solution with the parameters ✏ and µ if:

⇥(X � S⇤⇤A⇤⇤
1 � V ⇤⇤A⇤⇤

2 )  ⇥(X � S⇤A⇤
1 � V ⇤A⇤

2) + ✏µ

Observe that a sub-optimal solution with ✏ = 0 is an optimal solution.

5.3.2 The algorithm

It was shown in (Arai et al., 2015, 2016) that the CSSP can be converted into a graph search

problem. Here we show that a similar approach can be used with the DLRR. We create the same

column subsets graph as in (Arai et al., 2015, 2016), where nodes correspond to column subsets,

and there is an edge from subset S
i

to subset S
j

if adding one column to S
i

creates S
j

. The graph

generated for the matrix X = (x1, x2, x3) is shown on the right side of Figure 5.1.

The A⇤ algorithm is shown on the left side of Figure 5.1. It keeps a fringe list L of nodes that

need to be examined, and a list C of closed nodes, containing nodes that need not be visited again.

It also uses a pruning value P , known to be an upper bound on the error of the desired solution.

We proceed to define the function f 0. We need the following terminology that, whenever

possible, is taken to be identical or similar to (Arai et al., 2016). The DLRR problem is specified

in terms of the pair of integers r1, r2. The column subset at node n
i

is denoted by S
i

, and it is of
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Input: X ,r1,r2.
Each node n

i

has a subset S
i

of size k
i

.
Initialization: Put an empty subset into L.

1 while L is nonempty do
2 Pick n

i

with the smallest f 0
i

from L.
3 if k

i

= r1 then
4 stop and return n

i

as the solution node.
5 else
6 Add n

i

to C.
7 for all children n

j

of n
i

do
8 if n

j

is not in C or L then
9 if f 0

j

> P then
10 put n

j

in C.
11 else
12 put n

j

in L.
13 end
14 end
15 end
16 end
17 end
18 Here L is empty. Solution was not found.

{}

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

{x1, x2, x3}

Figure 5.1: The A⇤ algorithm and an example of the column subsets graph of 3 columns.

size k
i

. The function f
i

calculates the matrix V
i

of size r1 + r2 � k
i

, and the matrices A1, A2 of

appropriate size. It returns the following value:

f
i

(r1, r2) = min

A1,A2,|Vi|=r1+r2�ki

⇥(X � S
i

A1 � V
i

A2) = min

|Vi|=r1+r2�ki

e(S
i

|V
i

) (5.2)

The key idea behind the algorithm is that the desired solution is obtained at the first time the

visited node n
i

has exactly r1 columns. We prove this result for the sub-optimality case that has

exact optimality as a special case with ✏ = 0.

Theorem 2: Let n⇤ be an optimal solution node for the DLRR, with the corresponding values

S⇤, V ⇤, A⇤
1, A

⇤
2. Suppose the nonnegative function µ

i

can be computed at each node n
i

. Define:

f 0
i

(r1, r2) = f
i

(r1, r2) + ✏µ
i

, ✏ � 0
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Then the algorithm in Figure 5.1, will terminate with a sub-optimal solution node n⇤⇤ satisfying:

⇥(X � S⇤⇤A⇤⇤
1 � V ⇤⇤A⇤⇤

2 )  ⇥(X � S⇤A⇤
1 � V ⇤A⇤

2) + ✏µmax (5.3)

where µmax = max

i

µ
i

. We begin with two easy claims.

Claim 1: f
i

is monotonically increasing along any path.

Proof of Claim 1: Suppose n
j

is a child of n
i

, so that S
j

= (S
i

|x), where x is the added column.

We need to show the following:

f
j

(r1, r2) = min

|Vj |=r1+r2�ki�1
e(S

i

|x|V
j

) � min

|Vi|=r1+r2�ki

e(S
i

|V
i

) = f
i

(r1, r2)

and this follows because the minimum on the right hand side is computed over more instances than

the minimum on the left hand side. ⌅

Claim 2: Suppose the theorem is false. Then for any node n
z

on the path from the root to n⇤ the

following condition holds: f 0
z

(r1, r2) < f 0
⇤⇤(r1, r2).

Proof of Claim 2: Define:

g
i

(r1, r2) = min

|V |=r2

e(S
i

|V ) (5.4)

Clearly, at a solution node i where k
i

= r1 we have: g
i

(r1, r2) = f
i

(r1, r2). Furthermore, the

assumption that Theorem 2 is false can be written as g⇤⇤(r1, r2) > g⇤(r1, r2) + ✏µmax. The claim

can now be proved by the following chain of equalities / inequalities.

f 0
⇤⇤(r1, r2) = f⇤⇤(r1, r2) + ✏µ⇤⇤ = g⇤⇤(r1, r2) + ✏µ⇤⇤

> g⇤(r1, r2) + ✏µmax + ✏µ⇤⇤ (from the assumption)

= f⇤(r1, r2) + ✏µmax + ✏µ⇤⇤ � f
z

(r1, r2) + ✏µmax + ✏µ⇤⇤ (from Claim 1)

� f
z

(r1, r2) + ✏µ
z

= f 0
z

(r1, r2) ⌅

Proof of Theorem 2: If the theorem is false then from Claim 2 it follows that all nodes on the path

from the root to n⇤ have smaller f 0 values than f 0
⇤⇤(r1, r2). Since at any given time at least one of
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them is in the fringe list, they should all be selected before n⇤⇤ is selected. But this means that n⇤

is selected as the solution and not n⇤⇤.

We point out that the proof does not use any properties of the error criterion ⇥. It is also easy

to see that this theorem generalizes the results of (Arai et al., 2015, 2016). Specifically, the proof

in (Arai et al., 2015) is for the Frobenius case with r2 = 0 and ✏ = 0. The proof in (Arai et al.,

2016) is for the Frobenius case with r2 = 0. ⌅

5.3.3 Pruning

Line 9 of the algorithm implements pruning. The idea is to use an upper bound on the value of the

desired solution, and prune all nodes with a larger value. In (Arai et al., 2015) the upper bound was

obtained using formulas that hold only for the Frobenius norm. To implement pruning in arbitrary

norms we use the following process:

1. Use one of the known (and non-optimal) column subset selection algorithms to obtain a

candidate solution.

2. Use the error of the candidate computed in 1. as the value of P in the A⇤ algorithm.

In our implementation we used the pivoted QR algorithm in Step 1. See Chapter 5 in (Golub and

Van-Loan, 2013).

5.4 Efficient implementation with unitarily invariant monotonic functions

Even though the algorithm show in in Figure 5.1 makes no assumptions about the error criteria, it

does not provide a practical method for calculating the function f
i

as defined in Equation 5.2. In

this section we show how to calculate f
i

for unitarily invariant monotonic functions. The idea is

that the same steps used in (Arai et al., 2015) for the Frobenius norm can still be used in the more

general case considered here. Recall that

f
i

(r1, r2) = min

A1,A2,|Vi|=r1+r2�ki

⇥(X � S
i

A1 � V
i

A2)
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Table 5.1: Four algorithms solving CSSP and DLRR.

Name Problem Parameters
Optimal A⇤ CSSP r2 = 0, ✏ = 0

Sub-optimal A⇤ CSSP r2 = 0, ✏ > 0

Optimal A⇤ DLRR r2 > 0, ✏ = 0

Sub-optimal A⇤ DLRR r2 > 0, ✏ > 0

Table 5.2: Dataset description.

Dataset m (examples) n (features)
libras 360 90
sepctf 267 45
vehicle 846 18

The optimization can be computed in the following sequential way:

1. Compute A1 = argmin

A1 ⇥(X � S
i

A1).

2. Compute X1 = X � S
i

A1.

3. Compute V
i

= argmin|Vi|=r1+r2�ki ⇥(X1 � V
i

A2)

4. Compute A2 = argmin

A2 ⇥(X1 � V
i

A2).

5. Compute f = ⇥(X1 � V
i

A2).

From Part 1 of Theorem 1 it follows that A1 = S+
i

X , and A2 = V +
i

X1. From Part 2 of Theorem 1

it follows that V
i

can be taken as the r1 + r2 � k
i

top eigenvectors of X1.

5.5 Experimental Results

We implemented four algorithms to solve the CSSP and the DLRR by choosing different para-

menters for the algorithm in Figure 5.1. These parameters are listed in Table 5.1.

Following (Arai et al., 2016) we took µ
i

to be the function g
i

as defined in Equation (5.4). The

experiments were performed on several datasets from the UCI ML Repository (Lichman, 2013).

The dataset information is shown in Table 5.2.
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Figure 5.2: Run-time results on the dataset libras with optimal A⇤ to minimize the Schatten p-Norm
with p = 0.25. Left panel shows improvements over exhaustive search. Further improvements in
speed with sub-optimal A⇤ are shown in the middle and right panels. Notice the scale of the time
axis in all three panels.

5.5.1 Run-time comparisons

Figure 5.2 shows the run-time results for the dataset libras. In the left panel we observe that

Optimal A⇤ is about four orders of magnitude faster than exhaustive search (while still finding the

optimal subset). The middle panel shows that sub-optimal A⇤ is significantly faster than optimal

A⇤. Comparison between running time for different values of the parameter ✏ are shown in the

right panel. It is not that clear how ✏ affect the run-time with different choices of k.

5.5.2 Accuracy comparisons

Accuracy comparisons are shown between the optimal A⇤, the sub-optimal A⇤, and a recently

published algorithm ARSS (Zhu et al., 2015) that can handle Schatten p-norms. The error criteria

used are Schatten p-norm with p = 0.25, nuclear norm (which is the Schatten p-norm with p = 1),

Frobenius norm (p = 2) and Spectral norm. Table 5.3 shows this comparison. (The algorithm

in (Zhu et al., 2015) solves a convex relaxation of the subset selection problem.) Table 5.4 shows
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Table 5.3: Accuracy results for optimal A⇤, sub-optimal A⇤ and ARSS. The best results are high-
lighted.

Error Criterion r1 A⇤ Sub-optimal Sub-optimal Sub-optimal ARSS
✏ = 0.2 ✏ = 0.4 ✏ = 0.8
Dataset vehicle

Schatten (0.5) 5 1.252E+02 1.252E+02 1.252E+02 1.252E+02 1.731E+02
Nuclear 5 1.399E+03 1.403E+03 1.569E+03 1.569E+03 3.466E+03

Frobenius 5 2.229E+05 2.983E+05 2.983E+05 2.983E+05 4.296E+06
Spectral 5 247.58 326.12 326.12 326.12 -

Schatten (0.5) 10 5.799E+01 5.799E+01 5.799E+01 5.799E+01 1.086E+02
Nuclear 10 4.668E+02 5.202E+02 5.202E+02 5.202E+02 1.682E+03

Frobenius 10 3.603E+04 4.731E+04 4.731E+04 5.064E+04 4.138E+05
Spectral 10 112.19 138.8 144.99 144.99 -

Dataset spectf
Schatten (0.5) 4 3.857E+02 3.857E+02 3.862E+02 3.857E+02 4.084E+02

Nuclear 4 4.029E+03 4.029E+03 4.029E+03 4.033E+03 4.735E+03
Frobenius 4 5.759E+05 5.759E+05 5.759E+05 5.759E+05 9.450E+05

Spectral 4 278.300 300.943 312.813 312.813 -
Schatten (0.5) 5 3.719E+02 3.720E+02 3.724E+02 3.722E+02 3.976E+02

Nuclear 5 3.814E+03 3.814E+03 3.817E+03 3.817E+03 4.598E+03
Frobenius 5 5.118E+05 5.131E+05 5.147E+05 5.169E+05 6.551E+05

Spectral 5 252.658 257.912 290.597 290.597 -
Dataset libras

Schatten (0.5) 3 5.391E+01 5.392E+01 5.392E+01 5.393E+01 5.452E+01
Nuclear 3 8.116E+01 8.122E+01 8.122E+01 8.105E+01 9.179E+01

Frobenius 3 5.601E+02 5.601E+02 6.299E+02 6.323E+02 1.523E+03
Spectral 3 13.516 13.621 13.716 13.866 -

Schatten (0.5) 4 5.074E+01 5.074E+01 5.075E+01 5.076E+01 5.452E+01
Nuclear 4 6.844E+01 6.853E+01 6.853E+01 6.848E+01 9.179E+01

Frobenius 4 3.576E+02 3.627E+02 3.963E+02 3.963E+02 1.523E+03
Spectral 4 8.558 9.954 9.954 9.954 -

comparison to the Gu and Eisenstat algorithm (Gu and Eisenstat, 1996). Clearly that the optimal

A⇤ algorithm performs better than Gu and Eisenstat algorithm in terms of accuracy.

5.5.3 Experiments with double low-rank representations (DLRR)

Table 5.5 shows the result of using the optimal A⇤ algorithm for computing double low-rank rep-

resentations. We compare the error obtained by the optimal algorithm to the error obtained by first
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Table 5.4: Error comparison with Gu Eisenstat algorithm for spectral norm.

r1 A⇤ Gu Eisenstat
Dataset vehicle

5 351.43 371.17
6 247.58 248.58
7 206.59 228.03

Dataset spectf
3 317.52 382.58
4 278.30 510.18
5 252.65 348.23

Dataset libras
3 13.51 18.66
4 8.55 11.86

computing the optimal CSSP and then approximating the remainder error with PCA. The error is

measured in the appropriate norm of the residual matrix. The results clearly show that the optimal

algorithm is better.

5.6 Discussion

Column subset selection is an important problem that has attracted a lot of attention. While there

are many algorithms that address speed and accuracy, few come with a guarantee on optimality.

We wish to point out that some previous studies have a different interpretation of optimality than

the one discussed here. Consider the following two error measures:

e1(X, k) = min

V,A

⇥(X � V A), with |V | = k

e2(X, k) = min

S,A

⇥(X � SA), with S ⇢ X , |S| = k

Here e1 the the PCA error, and e2 is the CSSP error. Clearly e1(X, k)  e2(X, k), and it may

be interesting to determine how bad is e2 when compared to e1 in the worst case. Many studies

addressed this problem by searching for a function p(k,m, n) independent of X such that:

e1(X, k)  e2(X, k)  P (k,m, n)e1(X, k) for all X.
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Table 5.5: Error comparision between DLRR and CSSP followed by PCA.

Error Criterion r1 r2 Optimal DLRR Optimal CSSP
followed by PCA

Dataset vehicle
Schatten (p = 0.5) 4 6 5.490E+01 5.649E+01

Nuclear 4 6 4.187E+02 4.438E+02
Frobenius 4 6 2.942E+04 3.170E+04

Spectral 4 6 1.004E+02 1.028E+02
Schatten (p = 0.5) 6 4 5.538E+01 5.672E+01

Nuclear 6 4 4.266E+02 4.531E+02
Frobenius 6 4 3.057E+04 3.415E+04

Spectral 6 4 1.019E+02 1.095E+02
Schatten (p = 0.5) 6 6 3.547E+01 3.646E+01

Nuclear 6 6 2.292E+02 2.476E+02
Frobenius 6 6 1.131E+04 1.294E+04

Spectral 6 6 7.085E+01 7.317E+01
Dataset spectf

Schatten (p = 0.5) 2 3 3.561E+02 3.604E+02
Nuclear 2 3 3.443E+03 3.547E+03

Frobenius 2 3 3.920E+05 4.262E+05
Spectral 2 3 2.035E+02 2.348E+02

Schatten (p = 0.5) 3 2 3.599E+02 3.631E+02
Nuclear 3 2 3.523E+03 3.670E+03

Frobenius 3 2 4.138E+05 4.680E+05
Spectral 3 2 2.070E+02 2.717E+02

Schatten (p = 0.5) 3 3 3.440E+02 3.466E+02
Nuclear 3 3 3.280E+03 3.399E+03

Frobenius 3 3 3.593E+05 3.948E+05
Spectral 3 3 1.918E+02 2.338E+02
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See, e.g., (Boutsidis et al., 2009; Deshpande and Rademacher, 2010; Guruswami and Sinop, 2012).

Among the results that were obtained in this line of study it was shown that for the Frobenius norm

the smallest possible is P (k,m, n) =
p
k + 1. This suggests that an algorithm that can guarantee

error =
p
k + 1 e1(X, k) is optimal. This is very different from our result since for most matrices

X the value of e2(X, k) can be much smaller than
p
k + 1 e1(X, k).

The algorithms developed in this chapter compute the optimal column subset selection much

faster than exhautive search. There are currently no alternatives to these algorithms when one is

interested in obtaining the best possible selection in anything but the Frobenius norm. Current

state-of-the-art algorithms cannot provide a guarantee on the optimality of a solution even in situ-

ations where such a solution is found.
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CHAPTER 6

TWO-STAGE FEATURE SELECTION WITH UNSUPERVISED SECOND STAGE

A common technique for reducing the run time of feature selection is to perform it in two stages.

In the first stage a fast and simple filter is applied to select good candidates. These candidates are

further reduced in the second stage by an accurate algorithm that may run significantly slower.

It is common to distinguish between supervised and unsupervised feature selection. In the

supervised case features are selected for predicting a set of labels. Such label information is not

used in the unsupervised case.

We describe a general framework that can use an arbitrary off-the-shelf unsupervised algorithm

for the second stage. The algorithm is applied to the selection obtained in the first stage weighted

appropriately. Our main technical result is the computation of these weights. We show that the

weights can be found as the solution to a small quadratic optimization problem. The solution is

deterministic, and improves on previously published studies that use probabilistic ideas to compute

the weights. To the best of our knowledge our approach is the first technique for converting a

supervised feature selection problem into an unsupervised problem.

Complexity analysis shows that the proposed technique is very fast, can be implemented in a

single pass over the data, and can take advantage of the data sparsity. Experimental results show

its accuracy to be comparable to that of much slower techniques.

Portions of this chapter are the results of collaboration with Hiromasa Arai and Crystal Maung.

The results are published in International Conference on Tools with Artificial Intelligence (ICTAI),

2017.

6.1 Introduction

The selection of a small number of useful features for applications such as machine learning and

data mining is computationally challenging even for moderate size data (Guyon and Elisseeff,
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Table 6.1: Cases of two-stage algorithms.

Case Original Problem Stage Comment1 2
1 s s s Typical case
2 s s u This dissertation
3 s u s Others
4 s u u This dissertation
5 u s s X
6 u s u X
7 u u s X
8 u u u This dissertation and others

2003). The problem becomes much harder with the increase in data size. A common approach for

reducing the run time is to perform the selection in two stages. An initial selection is computed in

the first stage by a fast and simple feature selection technique, followed by a second stage that uses

a more accurate and time consuming method.

To properly describe the relationship between the original feature selection problem and al-

gorithms used in the first and second stage we need the distinction between supervised and un-

supervised feature selection. The input to the supervised case is labeled features, and for the

unsupervised case it is unlabeled features. In the supervised case the goal is to select features that

can be used to approximate the labels. In the unsupervised case there are no labels, and features

are typically selected for estimating the data itself.

Since each algorithm can be either supervised or unsupervised there are 8 cases relating the

original selection problem to the algorithms in the two stages. They are shown in Table 6.1.

The entry “s” indicates supervised, and “u” indicates unsupervised. We are not aware of studies

corresponding to cases 5,6,7.

Case 1 is the most common. The problem is supervised, and it is typically addressed by filters in

the first stage followed by embedded methods in the second stage. See, e.g., (Guyon and Elisseeff,

2003; Guyon et al., 2004; Tang et al., 2007; Javed et al., 2012; Liao et al., 2014; Fan and Lv, 2008).
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Case 3 uses an unsupervised algorithm in the first stage instead of the supervised algorithm of

Case 1. This may have speed advantage, since some of the unsupervised algorithms are faster than

the supervised filters. See, e.g., (Drineas et al., 2010; Dasgupta et al., 2007; Paul and Drineas,

2016; Muthukrishnan, 2011).

Case 8 solves the unsupervised case by concatenating two unsupervised algorithms. To the best of

our knowledge an algorithm of this type was first proposed in (Boutsidis et al., 2009).

The results presented in this dissertation improve previous results in Case 8. They are also

applied successfully in cases 2 and 4. We are not aware of any previous work on these cases,

where the original supervised problem is solved with an unsupervised second stage algorithm.

The main idea

We begin with the idea of (Boutsidis et al., 2009) that strongly influenced our approach. Consider

their solution to the unsupervised problem of selecting k out of the n columns from the matrix X .

a. Compute a probability p
i

for each column x
i

.

b. Select k1 � k columns according to this distribution.

c. If x
j

is selected, compute its weight as w
j

= 1/
p
p
j

.

d. Create the matrix X1 from the k1 columns w
j

x
j

.

e. Run unsupervised method to select k columns from X1.

The key idea of Boutsidis et. al. is that with a smart choice of the p
i

the matrix X1 approximates X

“in some sense”. From this it follows that a good selection from X1 should also be a good selection

from X .

The main idea behind our result is the following: Regardless of how the columns are selected

in Step b, it is always possible to compute the “best” weights so that X1 approximates X . We

show that finding the best weights involves quadratic optimization. Furthermore, in this setting

the columns of X1 do not have to be columns of X . Thus, it is possible to consider a generalized

setting where k columns of X are chosen to approximate a different matrix Y , consisting of label

information.
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As we show, this generalized setting includes unsupervised as well as supervised feature selec-

tion. The supervised case includes both the standard setting where there is a single label associated

with each data item as well as the more general case where many labels are associated with each

data item.

Chapter organization

The chapter is organized as follows. Notation and the algorithm are introduced in Section 6.2. The

computation of the weights is discussed in Section 6.3. An upper bound on the algorithm accuracy

in terms of the errors that are explicitly minimized is shown in Section 6.4. Runtime analysis is

performed in Section 6.5. Experimental results are discussed in Section 6.6.

6.2 Problem statement and notation

There are two main approaches to unsupervised feature selection. The first approach considers a

feature to be redundant if it is similar to another feature that has already been selected (e.g., (Li

et al., 2012)). The second approach considers a feature to be redundant if it can be approximated by

a linear combination of other features that have already been selected (e.g., (Golub and Van-Loan,

2013; Jimenez-Rodriguez et al., 2007)). The second approach is sometimes called the Column

Subset Selection Problem (CSSP). We follow the second approach as it fits into the following

general setting:

Let X be a “dictionary” matrix of m rows and n columns. Let Y be the labels matrix of m

rows and N columns. Let S1 be matrix of size m⇥ k1 formed from the columns selected from X

in the first stage. Let S2 be matrix of size m⇥ k2 formed from the columns selected from S1 in the

second stage. We wish to minimize the error of approximating the matrix Y in terms of S2:

e = min

A

|Y � S2A|2
F

(6.1)

Observe that unsupervised feature selection (CSSP) is the special case where Y =X , and the stan-

dard supervised feature selection corresponds to the case where Y is a single column (N=1). With
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Input: X , Y , k2.

Design parameters: k1, Alg1, Alg2.

Output: S2.

1. Use Alg1 with input X , Y , k1 to compute S1.
(if Alg1 is unsupervised, it ignores Y .)

2. Use S1, Y to compute the weights w1, . . . , wk1 .
Create the m⇥ k1 matrix X1 as follows:
Column j of X1 is column j of S1 scaled by w

j

.

3. Use Alg2 with input X1, k2 to compute S2.

Figure 6.1: The two-stage algorithm.

N>1 we have the multi-label case that has drawn a lot of interest recently (e.g., (Tsoumakas et al.,

2011)). Other studies that use and analyze the case where columns of X are selected to approxi-

mate an entire matrix Y include (Boutsidis et al., 2013; Tropp et al., 2006; Chen and Huo, 2006;

Cotter et al., 2005).

In describing the algorithm we assume the availability of two algorithms. Alg1 is used in the

first stage. It can be either supervised or unsupervised. Its input is the matrices X, Y and the

parameter k1, and its output is the selected columns S1. (If Alg1 is unsupervised, it does not use

the matrix Y .) Alg2 is the unsupervised algorithm of the second stage. It takes as input the matrix

X1 and the parameter k2, and returns the selected columns S2. The two-stage algorithm is shown

in Figure 6.1. The problem considered here is how to calculate the weights in Step 2. Our

solution is described in Section 6.3.

6.3 Computing the weights

This section describes our main result: an algorithm for computing the weights in Step 2 of the

two-stage algorithm. We begin by observing that the approximation error of (6.1) depends only

on Y Y T and not directly on Y . This implies that the weights should be chosen so that the matrix

X1 in the algorithm satisfies: X1XT

1 ⇡ Y Y T . Measuring the quality of the approximation in the
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Frobenius norm we show that the optimal weights can be computed by quadratic optimization. In

Section 6.4 we prove that minimizing the approximation error in Steps 2 and 3 of the two-stage

algorithm indeed minimizes the desired error e of Equation (6.1).

Proposition-1. Let Y, S be two matrices. Suppose e = min

A

kY � SAk2
F

. Then for any matrix

Q with orthonormal columns that forms a basis to the column space of S:

e = Trace{(I �QQT

)Y Y T

(I �QQT

)}

Proof: Since S and Q have the same column space we have: e = min

A

kY � QAk2
F

. In this

expression the minimizing A is given by: A = QTY , so that:

e = kY �QQTY k2
F

= k(I �QQT

)Y k2
F

The proposition now follows from the relation between the Frobenius norm and the trace. (For any

matrix M , the following relation holds: kMk2
F

= Trace{MMT}.) ⌅

From Proposition-1 it follows that the error e depends on Y Y T and not directly on Y . There-

fore, any matrix X1 (not necessarily created from Y columns) which satisfies X1XT

1 = Y Y T

can be used instead of Y in Equation (6.1). This suggests that X1 should be chosen satisfying

X1XT

1 ⇡ Y Y T . (These arguments are quantified in Theorem-2.) Specifically, we propose to de-

termine the weights needed in Step 2 of the two-stage algorithm by minimizing kX1XT

1 �Y Y Tk
F

.

The minimization procedure can be done efficiently as explained in Theorem-1.

Theorem-1. Let S1 =

✓
s1, . . . , sk1

◆
be an arbitrary m ⇥ k1 matrix. Let w =

✓
w1, . . . , wk1

◆
T

be a weights vector. Create the m ⇥ k1 matrix X1 as follows: column j of X1 is w
j

s
j

. Define the

k1 ⇥ k1 matrix H and the k1 vector h by:

H = (H
ij

), H
ij

= (sT
i

s
j

)

2, h = (h
j

), h
j

= |Y T s
j

|2
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Let z be a k1 vector. Consider the following two optimization problems:

wopt = argmin

w

kX1X
T

1 � Y Y Tk2
F

zopt = argmin

z

zTHz � 2hT z,

subject to z
j

� 0, j = 1, . . . , k1

Then H is positive semidefinite and the coordinates of the two solutions are related by:

wopt(j) =
q
zopt(j), j = 1, . . . , k1

Proof: Define: z
j

= w2
j

and B
j

= s
j

sT
j

for j = 1, . . . , k1. With this notation we have X1XT

1 =

P
k1

j=1 zjBj

. Plugging this into the first optimization problem gives:

e1 = k
k1X

j=1

z
j

B
j

� Y Y Tk2
F

= Trace{(Y Y T

)

2}+ Trace{(
k1X

j=1

z
j

B
j

)

2}� 2Trace{
k1X

j=1

z
j

B
j

Y Y T}

The first trace expression is independent of z. Manipulating the second trace expression gives:

Trace{(
X

j

z
j

B
j

)

2} =

X

ij

z
i

z
j

Trace{B
i

B
j

}

=

X

ij

z
i

z
j

(sT
i

s
j

)

2

= zTHz

where we have used the easily provable identity: Trace{B
i

B
j

} = (sT
i

s
j

)

2. Manipulating the third

trace expression gives:

Trace{
X

j

z
j

B
j

Y Y T} =

X

j

z
j

Trace{Y T s
j

sT
j

Y }

=

X

j

z
j

Trace{sT
j

Y Y T s
j

}

=

X

j

z
j

|Y T s
j

|2

= hT z
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This shows that

min

w

kX1X
T

1 � Y Y Tk2
F

= Trace{(Y Y T

)

2}+min

z

zTHz � 2hT z

which proves the second part of the theorem. It remains to show that H is positive semidefinite.

Observe that the following matrix is positive semidefinite:
P

j

z
j

B
j

. This is also true for its square.

Therefore, from the second trace expression zTHz is the trace of a positive semidefinite matrix,

and must be nonnegative. ⌅

From the theorem it follows that the weights can be calculated as a solution to a constrained

quadratic optimization problem. We have experimented with an implementation of (Goldfarb and

Idnani, 1983), as well as with a simple heuristic that solves the unconstrained problem and zeroes

out the negative coordinates. In our experiments there was little difference in the quality of the

solutions obtained by these two methods. Observe that the unconstrained problem has a closed

form solution. The minimizer zopt can be found as the solution to system of linear equations

Hz = h (Golub and Van-Loan, 2013). This system of linear equations can be solved reliably and

efficiently.

Since the matrix H may be singular the optimizing solution may not be unique. It is standard

practice to add a regularization term which makes H positive definite, guarantees a unique solution,

and increases the stability of the optimization.

The formulas in Theorem-1 give the algorithm shown in Figure 6.2, where a regularization

term controlled by � > 0 is added for stability. Observe that the computation of h is rearranged so

that it is calculated in one pass over Y .

6.4 Error bounds

The algorithm error (6.1) is affected by the error of approximating Y Y T and by the error of the

algorithm in the Stage-2. In this section we investigate how these errors are related.
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Input: S1 = (s1, . . . , sk1), Y .

Design parameters: � > 0 (the regularization parameter).

Output: the weights vector w.

0. Initialize the vector h to 0.

1. In one pass over Y , for j = 1, . . . , N , read the vector y
j

for i = 1, . . . , k1 increment h
i

by (sT
i

y
j

)

2.

2. for i, j = 1, . . . , k1 set H
ij

= (sT
i

s
j

)

2.

3. for i = 1, . . . , k1 increment H
ii

by �.

4. Solve the linear system Hz = h for the unknown z.

5. for j = 1, . . . , k1 if z
j

< 0 set z
j

= 0.

6. for j = 1, . . . , k1 wj

=

p
z
j

.

Figure 6.2: Algorithm for calculating the weights.

Theorem-2. Let ✏1 be the error minimized by the quadratic optimization step for computing the

weights. Let ✏2 be the error minimized by the unsupervised algorithm in the second stage. Let ✏ be

the error of the two-stage algorithm. Let m be the number of rows of X . Then:

✏ 
p
m✏1 + ✏2

Proof: Using the notation of Section 6.3 we have: ✏1 = kE1k2
F

, where E1 = X1XT

1 � Y Y T .

Let the matrix Q2 be an orthogonal basis to the column space of S1. From Proposition-1 we have:

✏2 = Trace{(I �Q2QT

2 )X1XT

1 (I �Q2QT

2 )}. Similarly, ✏ can be written as:

✏ = Trace{(I �Q2Q
T

2 )Y Y T

(I �Q2Q
T

2 )}

= Trace{(I �Q2Q
T

2 )(X1X
T

1 � E1)(I �Q2Q
T

2 )}

= ✏2 � Trace{(I �Q2Q
T

2 )E1(I �Q2Q
T

2 )}

= ✏2 � Trace{QT

3E1Q3}

where Q3 is the orthogonal complement of Q2. Let �1, . . . ,�m

be the eigenvalues of E1. It is

known that Trace{QT

3E1Q3} � �
P

m

j=1 |�j

|. (See, e.g., (Coope and Renaud, 2009)). Therefore,
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m - number of rows of both X and Y .
n - number of X columns
N - number of Y columns
k1 - number of columns selected in Stage-1
k2 - number of columns selected in Stage-2
Z

S

- number of nonzero values in Stage-1 selection.
Z

X

- number of nonzero values in X .

Figure 6.3: The relevant complexity parameters.

to prove the theorem it remains to show that
P

m

j=1 |�j

|  p
m✏1. Since ✏1 = kE1k2

F

=

P
m

j=1 �
2
j

it

is enough to establish the inequality:
P

m

j=1 |�j

| 
q
m
P

j

�2
j

. This inequality follows from one

of the generalized means inequalities (Hardy et al., 1952) which states that:

P
m

j=1 |�j

|
m



sP
m

j=1 �
2
j

m

⌅

6.5 Runtime analysis

In this section we analyze the running time of the two-stage algorithm. The relevant parameters

are shown in Figure 6.3. We consider both the dense and the sparse case. In the sparse case the

“dictionary” matrix X sparse, containing only Z
X

nonzero values (Z
X

⌧ mn). In this case the

selection S1 in the first stage would have Z
S

nonzero values (Z
S

⌧ mk1).

6.5.1 Stage-1 feature selection

In typical large datasets the most important complexity parameter is n. The first stage reduces n to

k1. Several options for fast algorithms that we experimented with and their complexity, are listed

in Table 6.2.

The “Random” algorithm performs the selection uniformly at random. In typical storage mod-

els that allow skipping (e.g. hard drives which allow seeks) there is no need to read the entire data.
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Table 6.2: Some Stage-1 algorithms. The “s/u” label indicates whether or not the algorithm is
supervised.

Algorithm Dense Sparse passes
Random-u O(k1) O(k1) 1
FKV-u O(mn) O(Z

X

) 1
Leverage-u O(k1mn) O(k1ZX

) 1
Pearson-s O(mn) O(Z

X

) 1
Filter-s O(Nmn) O(NZ

X

) 1
QRP-u O(k1mn) O(k1mn) k1

This is, by far, the fastest approach. The FKV algorithm (Frieze et al., 2004) is unsupervised. It

selects candidates with probability proportional to their squared norm. The Leverage Score algo-

rithm is unsupervised. It uses probabilities computed from a truncated SVD of X (Boutsidis et al.,

2009). The complexity we specify assumes the availability of fast truncated SVD algorithms (e.g.,

(Halko et al., 2011)). Pearson is a classic filter technique (e.g., (Guyon and Elisseeff, 2003)). In its

standard form it can only be applied to one label. More general filters, similar to Pearson, can be

constructed to handle the multiple label case. Their dominant computational step is the product of

the matrix Y with each one of X columns. They are efficient for a small N (number of labels), but

otherwise become quite expensive. The one we implemented is a single iteration of the Orthogonal

Matching Pursuit algorithm (Mallat, 1999). The last algorithm, the QRP, performs the selection

using the pivoted QR factorization (Golub and Van-Loan, 2013). Unlike the other algorithms it

removes redundancies in the initial selection, but requires more than a single pass.

6.5.2 Stage-2 feature selection

The unsupervised algorithm in Stage-2 performs selection of k2 columns from the matrix S1 of

size m⇥ k1. Here the most relevant parameters are k1 and m. We assume that k1 is small enough

so that S1 can fit in memory and the number of passes is no longer relevant.

Some of the algorithms and their complexity are listed in Table 6.3. We also list some classic

supervised algorithms that can be used in Stage 2 without the calculation of weights. (They are the

“competitors”.)
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Table 6.3: Some Stage-2 algorithms. The “s/u” label indicates whether or not the algorithm is
supervised.

Algorithm s/u Dense Sparse
GKS u O(k1k2m) O(k2ZS

)

GE u O(k1m2
) O(k1m2

)

FS s O(k1k2mN) O(k1k2mN)

SVM-RFE s O(m3k2
1) O(m3k2

1)

The GKS algorithm (Golub and Van-Loan, 2013) is unsupervised. It performs pivoted column

selection in the leveraged space. The GE algorithm is unsupervised. It was established in (Gu and

Eisenstat, 1996), and has the best guarantee on accuracy when measured in the spectral norm.

The FS (Forward Selection) algorithm is supervised. Even though it is greedy, it appears to

perform very well in practice. There are recent theoretical and experimental results that explain

the good performance and show that under some conditions it produces a selection very close to

the optimal. See (Das and Kempe, 2011), and extended version in (Das and Kempe, 2011).

The SVM-RFE was established in (Guyon et al., 2002). The expensive step is the solution of

a quadratic programming problem, that takes in the worst case O(m3k1) (see (Chapelle, 2007)).

This has to be repeated k1 times.

6.5.3 Computing the weights

Calculating the weights involves calculating the matrix H , the vector h, and solving a quadratic

optimization problem. Calculating H takes k1(k1 + 1)/2 = O(k2
1) dot products of m vectors.

Calculating h takes Nk1 dot products of m vectors. Solving the constrained quadratic optimization

takes O(k4
1). The unconstrained case takes O(k3

1). This shows that solving the exact quadratic

optimization dominates the complexity when k2
1 > m, which is very likely. As discussed in

Section 6.3 we use the unconstrained solution which gives the following running times:

Dense running time: O(k1m(N + k1))

Sparse running time: O((k1 +N)Z
S

+ k3
1)
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Table 6.4: Dataset description.

Dataset Size Labels Availability
CNAE-9 1,080⇥ 857 - UCI
TechTC01 163⇥ 29,261 - Technion
Day1 20,000⇥ 3,231,957 - UCI
Isolet5 1,559⇥ 618 1 UCI
Gisette 6,000⇥ 5,000 1 UCI
Arcene 100⇥ 10,000 1 UCI
Enron 1,702⇥ 1,001 53 Mulan
Medical 978⇥ 1,449 45 Mulan

When the GKS is used in Stage-2, the running time is dominated by the computation of the

weights. This gives a running time much faster than the FS for sparse case, and for the dense case

with large values of N . It should also be noted that for very sparse data the value of Z
S

is O(k1),

so that the running time is dominated by the solution of the system of linear equations Hz = h,

with a positive definite H . For this case there are known iterative techniques that may obtain an

approximate solution much faster. See, e.g., (Golub and Van-Loan, 2013).

6.6 Experimental evaluation

We conducted an extensive set of experiments to evaluate the proposed two-stage approach. Some

of these results are shown here and some others are available as additional material. The datasets

we used are publicly available, with the details shown in Table 6.4:

The first experiment is for unsupervised feature selection. The results are shown in Table 6.5.

Our goal was comparing our method of computing weights to the one described in (Boutsidis et al.,

2009) which we call the BMD. The BMD was implemented as suggested by the authors, computing

the best result in 40 random runs. In all cases the Stage-1 classifier was Leverage Score, and the

Stage-2 classifier was the GE. The reported error is the ratio between the computed error and the

initial error with no features selected. The only difference between the BMD and our algorithm

was the way in which the weights were calculated. It is clear that our results are more accurate in

all test cases.
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Table 6.5: Comparison between the BMD two-stage method of Boutsidis et al. and our method.
k1 = 4k2.

k2
CNAE-9 TechTC01 Day1

BMD ours BMD ours BMD ours

25 0.110 0.093 0.057 0.050 0.225 0.208
50 0.082 0.068 0.023 0.018 0.195 0.176
75 0.068 0.052 0.008 0.007 0.174 0.158

100 0.057 0.042 0.003 0.003 0.164 0.146

The second experiment is for the supervised case, where there is a single label associated with

each data item (N=1). The results are shown in Table 6.6. The algorithm used in Stage-1 is shown

in the first row, and the algorithm used in Stage-2 is shown in the second row. The first two columns

describe “competitors”, where Stage-2 is implemented with supervised algorithms. Observe that

the last two columns correspond to the case where both the Stage-1 and the Stage-2 algorithms are

unsupervised. While there are many cases where the competitors beat our method, the results are

very similar.

The third experiment is for the multi-label case, where there are multiple labels associated with

each data item. The results are shown for the Enron dataset (in Figure 6.4) and for the Medical

dataset (in Figure 6.5). Each Stage-1 algorithm was tested with two Stage-2 algorithms: the GKS

and the FS. The results obtained with the FS are our competitors. Since the “Random” and the

“FKV” methods depend on random drawings, they were repeated 20 times and averaged.

It is clear that typically using the FS in the second stage gives more accurate results, but the

difference is very small. As shown in Section 6.5 using the FS comes with the heavy price of a

much slower run time.

6.7 Discussion

In situations where feature selection is too slow one may be forced into compromising accuracy

for speed. This leads to the widely used two-stage approach, where an initial pass over the data
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Figure 6.4: Error comparison among different algorithms on the Enron dataset. k1 = 10k2.

0 5 10 15 20 25 30

1

1.5

2

2.5

·10�2

k2

Er
ro

r

Filter-FS
Filter-GKS
QRP-FS
QRP-GKS
Random-FS
Random-GKS
FKV-FS
FKV-GKS

Figure 6.5: Error comparison among different algorithms on the Medical dataset. k1 = 10k2.
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Table 6.6: Experiments with supervised feature selection, predicting a single label. k1 = 4k2,

k2
Pearson FKV LEV

SVM FS GE GKS GE GE

Isolet (1, 559⇥ 618)
10 - 0.249 0.279 0.289 0.188 0.207
20 0.179 0.163 0.244 0.220 0.172 0.192
30 0.212 0.136 0.200 0.173 0.155 0.168
40 0.195 0.125 0.199 0.168 0.137 0.162
50 0.145 0.117 0.192 0.162 0.125 0.150

Gisette (6, 000⇥ 5, 000)
10 - 0.810 0.828 0.826 0.600 0.456
20 - 0.679 0.772 0.771 0.510 0.363
30 - 0.626 0.741 0.742 0.445 0.341
40 - 0.590 0.709 0.709 0.378 0.319
50 - 0.573 0.692 0.698 0.390 0.297

Arcene (100⇥ 10000)
10 0.812 0.656 0.850 0.850 0.665 0.615
20 0.595 0.490 0.501 0.501 0.471 0.401
30 0.414 0.257 0.412 0.410 0.388 0.283
40 0.332 0.168 0.376 0.394 0.312 0.214
50 0.233 0.094 0.246 0.210 0.234 0.140

selects candidate features that are evaluated more thoroughly in a second stage. The obvious reason

why one may want to use unsupervised feature selection in the second stage is that unsupervised

algorithms may be faster than supervised algorithms. However, it was not previously known that

it is possible to use unsupervised algorithms in a general setting. The results of (Boutsidis et al.,

2009) have shown such a case for a particular (randomized) algorithm in Stage-1, and the approach

appeared to be closely tied to that particular algorithm.

In this chapter we describe a general approach that enables combining two off-the-shelf algo-

rithms for performing the selection. (The algorithm for the second stage must be unsupervised.)

As we show, this requires the nontrivial computation of weights. The runtime analysis shows the

advantage of this approach, especially for the multi-label case and for highly sparse data. In terms

of accuracy, we compared the results to a typical setting where Stage-2 is implemented with a
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supervised algorithm. Our results show that using unsupervised Stage-2 algorithms with weights

calculated by our method is almost as accurate as using supervised algorithms, while at the same

time it may be significantly faster.

At the moment it is not clear what particular choice of selection algorithms should work well

with our approach. We expect additional studies to discover algorithm pairs that work well to-

gether. We also expect that using more accurate feature selection algorithms for the second stage

may allow significant improvement in the overall accuracy.
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CHAPTER 7

FORWARD SELECTION FOR MULTI-LABEL CLASSIFICATION WITH UNIVARIATE

MONOMIAL KERNELS

In multi-label learning, each sample is associated with a set of labels. It has attracted a lot of

interest in recent years. As an effective data preprocessing step, feature selection plays an impor-

tant role as removing irrelevant and redundant features will enhance the performance of classifiers.

Most current multi-label feature selection algorithms involve a regularization term in the objective

function to achieve feature selection. The solution is obtained iteratively until convergence. In

this chapter, we describe an algorithm to address multi-label classification problem by selecting

features using forward selection. It is numerically stable and efficient. The best number of features

to use can be determined by cross-validation. The forward selection algorithm is further gener-

alized by adding monomial kernels which depend on a single variable. Experimental results on

real-world data demonstrate the effectiveness of the proposed algorithms.

7.1 Introduction

Nowadays, multi-label classification has attracted great interest where each instance is associated

with multiple labels simultaneously. It is involved in the areas such as image annotation (Boutell

et al., 2004), protein function classification (Diplaris et al., 2005) and text categorization (Katakis

et al., 2008). Multi-labeled data often has noisy, irrelevant and redundant features of high dimen-

sionality. Feature selection can be used to reduce the high dimensional space. Previous studies

utilize a regularization term to achieve feature selection. In (Nie et al., 2010), the robust feature se-

lection method minimizes the joint `2,1-norm on both loss function and regularization. It is robust

to outliers in data points and is able to select features across all data points with a joint sparsity.

In (Jian et al., 2016), it exploits the label correlations in the output space to find features that are

shared across multiple labels. A novel convex algorithm for large-scale multi-label feature selec-

tion is proposed in (Chang et al., 2014). These solutions are solved iteratively until convergence.
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Input: X, Y, k. Output: S.

0. S = {}
1. Run iteration j = 1, . . . , k:

1.1 For i = 1, . . . , n :

compute f(x
i

), a criterion to evaluate x
i

.
1.2 x

sj = argmax f(x
i

). Add x
sj to S.

Figure 7.1: The greedy framework for feature selection.

By contrast, we propose an algorithm that achieves feature selection using a greedy approach

named “forward selection”, which is numerically stable and efficient. The best number of features

to use can be determined by cross-validation. The proposed algorithm is further generalized by

adding monomial kernels which depend on a single variable. Experimental results show that with

the monomial kernels, less features are needed and the accuracy is comparable to current state of

the art.

7.2 Forward selection for multi-label classification

7.2.1 Forward selection

Let X be a dictionary matrix of size m ⇥ n. Let Y be a data matrix of size m ⇥N . The problem

we consider is to select k columns from X to approximate the matrix Y , where k is a relatively

small number. In Frobenius norm the approximation error is:

min

A

kY � SAk2
F

(7.1)

Here S is the selected subset and A is the coefficients matrix.

In many situations, the optimal solution is known to be NP-hard (Çivril, 2017; Shitov, 2017).

Common approaches compute an approximate solution using greedy strategy. Among the classic

greedy algorithms, forward selection is slightly expensive but more accurate than Matching Pur-

suit (Mallat and Zhang, 1993) and Orthogonal Matching Pursuit (Davis et al., 1994). In literature,

63



the naming of the various greedy algorithms is a little bit confusing. Forward selection is also

called OMP(e.g.(Gharavi-Alkhansari and Huang, 1998)), OOMP(e.g. (Rebollo-Neira and Lowe,

2002)) and OLS(e.g. (Chen et al., 1989)) .

The general framework of the greedy algorithms is shown in Figure 7.1. It run k iterations to

select k features. At each iteration, evaluate each feature based on a certain criteria f and select

the best among all the features. Specifically, in forward selection the measurement f(x
i

) is defined

as the error reduction to approximate Y after adding the feature x
i

.

Let x
sj be the selected column at iteration j. Let S

j

be the selected columns after iteration

j, define S
j

= (S
j�1, xsj). Let Q

j

be the orthogonal basis of S
j

and let q
j

be the last column

of Q
j

, so that Q
j

= (Q
j�1, qj). Based on the definition, q

j

is the vector (I � Q
j�1QT

j�1)xsj after

normalization. Let R
j

denote the remaining matrix needs to be approximate after iteration j. Then:

kR
j

k2
F

= min

A

kY � S
j

Ak2
F

= kY �Q
j

QT

j

Y k2
F

= kY �Q
j�1Q

T

j�1Y � q
j

qT
j

Y k2
F

= kR
j�1k2

F

� kqT
j

Y k2
F

= kR
j�1k2

F

� kqT
j

R
j�1k2

F

(7.2)

Before the iteration j starts, j � 1 columns have already been selected. Thus R
j�1 is fixed.

Equation 7.2 shows that the criterion f(x
i

) should be defined as kqT
i

R
j�1k2

F

. The best selection

x
sj satisfies the condition that x

sj = arg max
xi

kqT
i

R
j�1k2

F

. After adding the feature x
sj , the error to

approximate matrix Y is decreased by kqT
j

R
j�1k2

F

.

7.2.2 Forward selection for multi-label classification

The procedure of the training phase for multi-label classification using forward selection is shown

in Figure 7.2. The training data are the features matrix X
train

and labels matrix Y
train

. A forward

selection algorithm is then applied on the training data to select a certain number of features. With

the selected features, the linear regression models A in Equation.7.1 can be solved easily. Each

column in A can be viewed as a predictor. The optimal thresholding is then applied to determine

the threshold for label classification.
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Input: X
train

: the feature matrix for training, size m⇥ n
Y
train

: the label matrix for training, size m⇥N
k: number of features to be selected.

Output: The selection S and N predictors for each label.

1. Run the Forward Selection Algorithm on X
train

, Y
train

to obtain k selected features.

2. S = {the indices of selected features}.

3. For each target attribute y
i

in Y
train

:
Train a predictor using y

i

and the k selected features from X
train

.

4. Output S and the N predictors.

Figure 7.2: Training phase for multi-label classification using forward selection.

Input: x
test

: a test sample, size 1⇥ n
S: the indices of selected features
N predictors for each label

Output: Prediction for the N labels, size 1⇥N

1. Use S to get the selected features in x
test

.

2. For i = 1, . . . , N :
Predict a label attribute using the selected features in x

test

and predictor i.

3. Output the prediction for the N labels.

Figure 7.3: Testing phase for multi-label classification using forward selection.

Figure 7.3 shows the procedure of the testing phase. The prediction is obtained using the

selected features in the test samples.

The best number of features to use can be determined by cross validation. Given a set of

examples, one round of cross-validation involves partitioning the data into complementary sub-

sets, performing the training on one subset following the steps in Figure 7.2 , and validating the

analysis on the other subset as shown in Figure 7.3. To reduce variability, multiple rounds of cross-

validation are performed using different partitions and the validation results are averaged over the

rounds. The k that produces the smallest classification error is the desired best number of features

to use.
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Table 7.1: Dataset description.

Dataset Instances Features Labels
emotions 391 72 6
medical 978 1449 45
scene 1211 294 6
yeast 1500 103 14

We show the fine-tuning process by cross validation on benchmark datasets from Mulan repos-

itory (Tsoumakas et al., 2011). The details of these datasets are shown in Table 7.1. The classi-

fication error is evaluated in hamming loss. It computes the fraction of labels that are incorrectly

predicted, defined as follows.

HammingLoss(y, ŷ) =
1

|D|

|D|X

i=1

xor(y, ŷ)
|N |

Here |D| is the number of examples, N is the number of labels, y are the ground truth labels and ŷ

are the predicted labels.

Figure 7.4 shows that with the increasing number of selected features the classification error

goes down first, then up to a certain point, the error becomes bigger and bigger. It is the classic

overfitting problem in machine learning, that the model fits the training data well but fails to gen-

eralize to the unseen data. Therefore, it is very important to determine the best number of features

to use. Typically using a small number of features is better than using the entire feature set.

We evaluate the algorithm with the best k obtained in the fine-tuning process. The competitors

are the current state-of-the-art feature selection methods MIFS (Jian et al., 2016) and RFS (Nie

et al., 2010). For a fair comparison, we tune the regularization parameters for the two methods

with a grid-search strategy. Parameter values are varied in the range of {0.0001, 0.001, 0.01, 0.1,

0.2, 0.4, 0.6, 0.8, 1, 10}. We report the results with the best parameters. Experiments are run with

5-fold cross validation and repeated 10 times with different shuffles then averaged. The labels are

classified by linear regression models with optimal thresholding.

The results are shown in Table 7.2. Forward selection is comparable with these methods. We

discuss an algorithm that improves the performance next section.
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(a) dataset emotions (b) dataset scene

(c) dataset yeast (d) dataset medical

Figure 7.4: Fine-tune the best number of features with Forward Selection on Mulan datasets.

Table 7.2: Comparison with MIFS and RFS.

Dataset MIFS RFS Forward Selection
emotions 0.197 0.215 0.207
medical 0.009 0.044 0.010
scene 0.109 0.120 0.107
yeast 0.197 0.197 0.203
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Input: X, Y, k, p. Output: S.

0. S = {}
1. Run iteration j = 1, . . . , k:

1.1 For each feature x
i

:
1.1.1 Create monomial features x2

i

, x3
i

, . . . , xp

i

from x
i

. Let T
i

= {x
i

, x2
i

, x3
i

, . . . , xp

i

}.
1.1.2 Orthogonalize the features in T

i

.
1.1.3 For each feature xt

i

in T
i

: compute f(xt

i

).
1.2 x

sj = argmax

P
p

t=1 f(x
t

i

). Add x
sj , x

2
sj
, . . . , xp

sj
to S.

Figure 7.5: Improved Forward selection with univariate monomial kernels.

7.3 Forward selection for multi-label classification with univariate monomial kernels

Kernel features are widely used in many machine learning algorithms, e.g. support vector machine

(Suykens and Vandewalle, 1999) and neural network (Demuth et al., 2014). We consider creating

monomial kernel features to enhance the performance of the classifiers. Once a feature is selected,

the monomial features generated by it can also be used. Specifically, these monomial features are

computed by taking the values of the feature vector to a certain power p element-wise.

As shown in Equation 7.2, at one iteration, the feature that reduces the error the most to ap-

proximate the remaining matrix will be selected. With the monomial kernels, we proposed a new

selection criterion. The importance of a feature is evaluated by itself and the monomial features

generated by it.

The procedure of the improved forward selection with univariate monomial kernels is shown

in Figure 7.5. For a specific feature x
i

, let T
i

be the feature set contains feature x
i

and all the

monomial features generated by x
i

. The key point is to orthogonalize the monomial features in T
i

.

Under such condition, the contribution of T
i

for reducing the approximation error can be computed

as the summation of the contribution of each individual feature in the set T
i

.

Fine-tune the best number of features to use and the best power p to generate univariate mono-

mial kernels proceed similarly as before. The results are shown in Figure 7.6. When p is set to be

1, it indicates that no monomial kernels are used. The best k becomes smaller with a larger p. A
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(a) dataset emotions (b) dataset scene (c) dataset yeast

Figure 7.6: Fine-tune the parameters for the improved forward selection algorithm on Mulan
datasets.

Table 7.3: Comparison with RFS, MIFS and FS.

Dataset RFS MIFS FS Improved FS
emotions 0.199 0.211 0.211 0.198

scene 0.113 0.129 0.111 0.099
yeast 0.198 0.199 0.206 0.202

higher power typically makes the problem of overfitting worse. For dataset emotions and scene,

the best power to use is 2. For dataset yeast, the best power to generate the monomial features is 3.

Table 7.3 shows the comparison with RFS, MIFS and Forward Selection (FS) with the fine-

tuned parameters. The results are averaged over 10 runs of 5-fold cross validation. The proposed

algorithm performs the best on the datasets emotions and scene. For dataset yeast, it outperforms

than forward selection and is comparable with RFS and MIFS. The advantage of the improved

forward selection algorithm over RFS and MIFS is that it does not require regularization to achieve

feature selection, thus in practice it runs much faster.

7.4 Discussion

In this chapter, we proposed an algorithm that can effectively select features for multi-label classi-

fication. Unlike other studies that achieve feature selection by regularization, our method solves an

optimization problem which is numerically stable. We come up with the idea that the best number

of features to use can be determined by cross validation. Experimental results show that using a
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small set of features outperforms using the entire feature set. The proposed algorithm is further

generalized by using univariate monomial kernel features. Specifically, these monomial features

are generated from a single feature vector and can be viewed as almost “free” to use. The best

number of features to use is further reduced. The proposed algorithms are shown experimentally

to be comparable to the current state of the art.
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CHAPTER 8

GREEDY SPARSE APPROXIMATION OF A MATRIX IN TERMS OF ANOTHER

MATRIX UNDER UNITARILY INVARIANT CRITERIA

Chapter 5 describes the solution for column subset selection under unitarily invariant criteria. Here

we study a more general case that approximates a matrix in terms of a small number of columns

selected from a dictionary under such error criteria. The column subset selection problem can be

viewed as a special case when the dictionary is the same as the given matrix. There are known

greedy algorithms for the problem that minimize the error in Frobenius norm. We generalize this

approach and describe a fast greedy algorithm for a large family of unitarily invariant criteria. In

particular we show minimizing Schatten p-norms with 0 < p < 1 can be used to solve the outlier-

robust PCA problem. The standard methods for rank minimization are gradient-based, using con-

vex nuclear norm. Several recent studies utilize non-convex Schatten p-norms to approximate the

rank function. The greedy approach we proposed is different from the previous work. The algo-

rithm is very efficient and only requires a single pass of eigenvalue decomposition. Experimental

results show that our algorithm outperforms other convex-based outlier-robust PCA method. We

also show the application to multi-label classification problem using the proposed approach.

Portions of this chapter are the results of collaboration with Tongyi Cao.

8.1 Introduction

Let X be a dictionary matrix of size m⇥n and let Y be a data matrix of size m⇥N . The problem

that we consider is to select a subset S from X to approximate the matrix Y , where S consists of

k columns.

Y ⇡ SA (8.1)

Each column of Y is approximated by a linear combination of the k columns in S, and A is the

coefficients matrix. Let R = Y � SA be the error matrix of the approximation (8.1). The most
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common criterion to evaluate the approximation in Equation (8.1) is using kRk
F

, the Frobenius

norm of R. Find the subset S which gives the smallest kRk
F

is known to be NP-hard even for

N = 1 (Natarajan, 1995). A common approach is to obtain an approximate solution using greedy

algorithm. Previous studies that use this approach includes (Soussen et al., 2013), which analyzes

cases where the greedy approach is capable of recovering the exact signal. (Das and Kempe, 2011)

shows that the greedy forward selection produces nearly optimal results. (Maung and Schweitzer,

2015) shows how to implement the forward selection algorithm efficiently.

We are interested in error criteria other than the Frobenius norm. For example, the nuclear norm

attracts a lot of attention as convex surrogate for rank minimization problem (Candès and Tao,

2010). It shows promising results in Robust PCA (Candès et al., 2011) (Xu et al., 2010). However,

since nuclear norm is the `1 norm of the singular values, it tends to over-penalize large entries.

A more accurate approximation of the rank function can be obtained by Schatten p-norms with

0 < p < 1. It outperforms the nuclear norm in various problems including matrix completion (Nie

et al., 2012) (Marjanovic and Solo, 2012) and images recovery (Lu and Zhang, 2015).

These studies mentioned above avoid the discrete rank function and sparsity constraints by

relaxing them to obtain a continuous regularization problem. The continuous problem is then

solved using gradient-based optimization approaches, either convex or non-convex. We adopt a

different approach and show how the greedy selection algorithm can be generalized to minimize a

general class of unitarily invariant criteria, including the Schatten p-norms. In particular we show

that our algorithm can be applied to outlier-robust PCA problem (Xu et al., 2010), i.e. to separate

a matrix to a low rank component and a column sparse component. To the best of our knowledge,

there is no greedy method of Schatten p-norms minimization for Robust PCA. Our algorithm is

very efficient and only requires a single pass of Eigenvalue Decomposition (EVD), while most of

the gradient-based optimization methods require SVD or EVD for every iteration.

The problem being addressed

Our goal is to compute a selection S that gives good approximation in Equation (8.1) with various
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�(A) - eigenvalues of a matrix A.
k · k⇤ - nuclear norm
k · k

p

- Schatten p-norms
k · k

p,q

- `
p,q

norm
X+ - generalized inverse of matrix X
S - a subset of matrix X

Figure 8.1: The relevant notation.

error criteria. Let ⇥ be an error function ⇥ : Rm⇥n 7! R. We wish to determine a selection S

from the dictionary matrix X such that ⇥(R) is small, where R = Y � SA. This problem can be

written in an equivalent form.

min

C

⇥(Y �XC)

s.t. kCkrow-0  k

(8.2)

Here kCkrow-0 stands for the number of non-zero rows in C. Each non-zero row corresponds to

a column in the selection S. Clearly, ⇥ can be any matrix norm, but one may be interested in error

criteria that are not norms. The function can be non-smooth and even discontinuous such as the

unitarily invariant monotonic functions defined in Chapter 5. The approach that we proposed is to

generalize the greedy algorithm used in previous studies to such error criteria.

Notation

The relevant notation in this chapter is shown in Figure 8.1.

Chapter organization

The chapter is organized as follows. First we introduce a classic greedy method named Forward

Selection. Then we generalized the Forward Selection algorithm and describe an efficient method

for calculating the selection. Lastly, we show an application of the proposed algorithm on out-

lier robust PCA problem and present experimental results with comparison to the state-of-the-art

method.
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8.2 Generalized forward selection

8.2.1 Forward selection

The greedy approach we consider here is the Forward Selection algorithm introduced in Chapter 7

Section 2. Let x
sj be the selected column at iteration j. Let S

j

be the selected columns after

iteration j, define S
j

= (S
j�1, xsj). Let Q

j

be the orthogonal basis of S
j

and let q
j

be the last

column of Q
j

, so that Q
j

= (Q
j�1, qj). Based on the definition, q

j

is the vector (I�Q
j�1QT

j�1)xsj

after normalization. Let R
j

denote the remaining matrix needs to be approximate after iteration j.

Recall that the problem is:

kR
j

k2
F

= min

A

kY � S
j

Ak2
F

= kY � S
j

(S+
j

Y )k2
F

= kY �Q
j

QT

j

Y k2
F

= Trace((R
j-1 � qT

j

R
j-1)(Rj-1 � qT

j

R
j-1)

T

)

= kR
j-1k2

F

� kqT
j

R
j-1k2

F

(8.3)

Observe that we do not need to calculate the remaining matrix R
j

explicitly and the cost of

evaluating a feature is simply a dot product. This is due to the fact that the Frobenious norm can

be expressed as trace, which is linear.

To generalize the Forward Selection algorithm to unitarily invariant criteria, two issues need to

be solved. First, the solution of the optimization problem in equation 8.3 relies on the generalized

inverse. It is true when the error is measured in Frobenious norm. For other error criteria such

as unitarily invariant functions, it is proved in Chapter 5 Section 2 that the generalized inverse is

the optimal solution. Second, error functions other than the Frobenious norm typically do not hold

the property of linearity. Compute the remaining matrix R
j

and its singular values for each x
i

is

pretty expensive. We describe a fast algorithm for computing the singular values without explicitly

calculating R
j

by exploiting a special structure.
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8.2.2 The efficient calculation of the eigenvalues

We use a similar technique to (Arai et al., 2015) that computes the singular values efficiently

without calculating R
j

. The main idea is to perform the calculation on a matrix related to R
j

that

has a special structure which allows fast calculation. The method utilizes the information in the

previous iteration and only requires a single pass of eigenvalue decomposition in the beginning.

There are three different types of eigenvalue calculation involved. The first is calculated once

for the initialization step, the second is calculated after a column is selected, and the third is calcu-

lated for the evaluation of each column.

Initial eigenvalue decomposition

In the beginning we compute the eigenvalues and the eigenvectors of the matrix Y Y T .

Y Y T

= V ⇤V T

Here V are the eigenvectors, and ⇤ are the corresponding eigenvalues. If the rank of Y is r, then

the dimension of V is m⇥ r and ⇤ is r ⇥ r.

Eigenvalue decomposition for selected columns

This eigenvalue and eigenvector calculation is performed at step 1.2 of the algorithm shown in

Figure 7.1, note that it is calculated after a column is selected. To prepare for the next iteration, we

need both the eigenvectors and the eigenvalues of the matrix R
j

RT

j

.

Eigenvalues for evaluating columns

The evaluation of columns x
i

at step 1.1 shown in Figure 7.1 is the most time consuming part of the

algorithm. We show how to compute these values efficiently from the eigenvalue decomposition

in the previous iteration.
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Let the eigenvectors and eigenvalues calculated in the j-1 iteration be V
j-1 and ⇤

j-1. At iteration

j we have:

�(R
j

RT

j

) =�
⇣
(I � q

j

qT
j

)R
j-1R

T

j-1(I � q
j

qT
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⌘
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(I � q

j

qT
j

)V
j-1⇤j-1V

T

j-1

⌘

=�(⇤
j-1 � zzT )

Here z = ⇤

1/2
j-1 V

T

j�1qj . The derivation above is straight forward considering the invariance of eigen-

values under cyclic permutation and q
j

is a unit vector. Since the matrix R
j

RT

j

can be expressed as

rank-1 updates to a diagonal matrix, its eigensystem can be calculated fast by specialized routines.

See, e.g (Bini and Robol, 2014; Melman, 1998; Golub, 1973). For evaluating the column we only

need the eigenvalues. After a column is selected we calculate its eigenvalues also by the special-

ized routines to prepare for the next iteration. Our implementation uses Gragg’s method (Melman,

1998). This is an iterative procedure with fast convergence speed.

8.2.3 Pruning

The Gragg’s method (Melman, 1998) calculates the eigenvalues of the children in descending

order. Thus we have a lower bound on the function value of a column when a portion of the

eigenvalues are calculated. Note that we only need to select the column with the smallest value. If

the lower bound is larger than the smallest value in the previously calculated columns, we are sure

that this column will not be selected, and the rest of the calculation for that column can be pruned.

8.3 Outlier-Robust PCA

We proceed to show an application of the Generalized Forward Selection algorithm on the outlier-

robust PCA problem.

Principle component analysis is one of the most important tools for high dimensional data

analysis and is well known for its sensitivity to outliers. A classic result shows that it is possible to
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recover the low rank structure from an arbitrarily but sparsely corrupted data matrix (Candès et al.,

2011). However this method fails when the entire data point or columns are corrupted, which is

common due to the error in data collection process or because a few points do not conform with

the low rank subspace of the majority. This problem was first suggested in (Xu et al., 2010), where

they named these columns outliers. They present an algorithm named Outlier Pursuit that adopts a

convex optimization approach. The algorithm has been successfully applied on various problems

including collaborative filtering (Chen et al., 2011) and image annotation (Dong et al., 2013). New

theoretical analysis shows that the algorithm has a more extensive working range than it was shown

previously (Zhang et al., 2015).

We show how the Generalized Forward Selection algorithm can be used to partition the matrix

into a low-rank and a column-sparse component by Schatten p-norms minimization. It is different

from the Outlier Pursuit algorithm in two aspects. First, it uses Schatten p-norms to approximate

the rank function while the Outlier Pursuit uses the nuclear norm. The Schatten p-norms has

been shown to outperform the nuclear norm in other rank minimization problems including matrix

completion (Nie et al., 2012) (Marjanovic and Solo, 2012) and images recovery (Lu and Zhang,

2015). Second, the previous work in Robust PCA (e.g.(Candès et al., 2011) (Xu et al., 2010))

relax the discrete sparsity constraints to continuous norms that can promote sparse solutions, and

solve the regularization problem using gradient-based optimization methods. We adopt a different

approach and enforce the sparsity by selecting a few columns greedily.

The Schatten p-norms are defined as the p norms of the vector of the singular values of a matrix:

kAk
p

=

0

@
rank(A)X

i=1

�p

i

(A)

1

A
1/p

(8.4)

It contains some common norms such as Frobenius norm (p = 2), nuclear norm (p = 1) and

spectral norm (p ! 1). For p < 1 the triangular inequity is violated and it is no longer a norm.

But clearly for any p 2 (0,1), equation 8.4 is a unitarily invariant monotonic function. It can be

used as error criteria for the Generalized Forward Selection algorithm.
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8.3.1 From sparse approximation to robust PCA

The classic Frobenious norm Forward Selection is an algorithm for sparse approximation. The

assumption for sparse approximation is that the data matrix Y can be well approximated by linear

combination of a few columns in the dictionary X . We minimize the Frobenius norm of the

remaining matrix as the noise is expected to be small in magnitude. When the Schatten p-norms

are used as error criteria, instead of expecting the remaining matrix to be small in magnitude, we

expect it to be low rank. The subset is selected to let the remainder matrix become low rank.

Both the selection and the remaining matrix can be arbitrary in magnitude, and the selection part

is column sparse. This is the same idea as outlier-robust PCA.

8.3.2 Problem setup

Assume the data matrix M consists of a true low rank component L and a column sparse outliers

K. (Conventionally the sparse component is denoted as S. Here it has been used for the selection.)

M = L+K (8.5)

The goal is to recover the column space of L and the column support of K. To achieve this

goal the Outlier Pursuit algorithm (Xu et al., 2010) uses the following objective function:

min

L,K

kLk⇤ + �kKk2,1

s.t. M = L+K

(8.6)

The nuclear norm and the `2,1 norm are the convex surrogates of the rank and the number

of non-zero columns of a matrix respectively. We can recast the regularization problem as the

following problem:

min

L

kLk⇤

s.t. M =L+K, kKk2,0  k

(8.7)
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We consider the above formulation is more clear to represent the problem. The separation of a

low-rank and a column sparse matrix suffers from identifiability problem. A matrix with only one

non-zero column is both column sparse and low rank. The column incoherence property used in

(Xu et al., 2010) dose not clear this ambiguity. Besides it is not clear what value a column in L

will have the corresponding non-zero columns in K. Formulation 8.7 does not have such problem

and it is always well defined. Since only L is involved in the objective function, the columns in L

that correspond to non-zero columns in K will be zero. Thus the non-zero columns of K are the

same as the corresponding columns in M .

We have the following observation. Let e
i

be the ith coordinate vector. L can be written as

L = (I �
X

i2col-supp(K)

e
i

eT
i

)M (8.8)

Here col-supp(K) is the set of the indices of the non-zero columns in K. This is equivalent

to selecting a subset from an n ⇥ n identity matrix I . Finally, we use the Schatten p-norms with

p < 1 to approximate the rank function, replacing the nuclear norm:

min

C

kM � ICk
p

,

s.t. |C|row-0  k

(8.9)

It has the same form as the goal function 8.2. We can use the Generalized Forward Selection

algorithm to solve this problem. The selection corresponds to outliers and the remaining matrix

R
k

corresponds to the low rank component L.

There are two points to notice. First, after selection, the singular values of the remaining matrix

are already calculated, so the PCA of the low rank matrix L comes with no extra cost. Second,

the dictionary used here is orthogonal. For standard greedy selection under the Frobenius norm,

this means that the selection can be found in one pass and it is optimal. But it is no longer true for

general error criteria due to the non-linearity.
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8.3.3 The number of selection

The goal of outlier-robust PCA is to recover the column space of L while identifying the out-

liers. These two tasks are complementary. Given the outliers, the column space is the PCA on the

remainder of the matrix. Given the true column space, setting a simple threshold on the approxi-

mation error of each column will give the outliers.

The key point is that the number of selection k does not need to be exact. The true column

spaces can be recovered as long as k is an upper bound of the number of outliers. A post-processing

threshold can be applied to identify the outliers. Note that the Outlier Pursuit algorithm also

requires applying threshold to the column sparse matrix K to identify outliers, since for the real

world data none of the columns in K is exactly zero.

8.3.4 Experimental results

We perform various experiments to see the performance of the proposed algorithm for outlier-

robust PCA problem. We compare our algorithm with Outlier Pursuit algorithm on synthetic

datasets.

A toy example

First, we demonstrate the selection of outliers and the minimization of the objective function by

running the algorithm on data from a 2D line with a few outliers. We test on both noiseless case

and noisy cases. There are 50 normal points lying on the true subspace and 10 ouliers that are not.

We set p = 0.1. k is set to be 50% more than the true number of outliers. The result is shown in

Figure 8.2. We show the selection points with the order in which they are selected, and show the

decrease of the error in Schatten p-norms for each iteration.

The selection minimizes the objective function in both cases. We can see that p = 0.1 is a very

good approximation of the rank function. There is a steep jump after the outliers are all selected

in the noiseless case, as the rank is reduced from 2 to 1. For the noisy case, there is no jump but
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(a) Selection (b) Error

(c) Selection (d) Error

(e) Selection (f) Error

(g) Selection (h) Error

Figure 8.2: The selection of outliers in a noiseless and noisy lines with different p. The selected
points are marked with "cross" and the order in which they are selected is shown. We show how
the value of the error function decreases as the points are selected.
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we can still see the difference before and after the selection. In both cases, even when we select

more than the real number of outliers, the true subspace is still recovered. Putting a threshold on

the approximation error will give the true outliers. Apparently the value of p is crucial for the

algorithm. When p = 0.7, the algorithm fails to select all the outliers, and error decrease stably.

Phase transition property

The phase transition property shows the working range of the algorithm. We adopt the same setting

as in (Zhang et al., 2015). We fix m = n = 400 and test on different ratio of outliers � and ratio

of the dimension of the subspace r. The low rank component is composed as L = GHT , where

each entry in G,H 2 Rn⇥r is drown independently from the distribution N (0, 1). The sparse

component S 2 Rm⇥n has each entry drown from N (0, 1) for �n columns and the rest are zero.

The data matrix M = L+ S.

We try different values of p and the results are compared to the Outlier Pursuit algorithm. We

set the regularization parameter � = 1/
p

log(n) for the Outlier Pursuit algorithm as suggested

by the new theoretical analysis (Zhang et al., 2015) and obtain similar result as they reported. For

greedy selection we count it as a failure if any column is selected before an outlier. The experiment

is repeated for 10 times. The area is marked as black if any failure occurs. The results are shown

in Figure 8.3.

The proposed algorithm has significantly larger working range than the Outlier Pursuit Algo-

rithm. It can find all the outliers when the true subspace is 50% of the ambient space and the

outliers consist of 70% of the data points with p = 0.1. When p is increased, working range

becomes smaller.

8.4 Application to multi-label classification problem

In Chapter 7, features are selected by forward selection under Frobenius norm for multi-label clas-

sification. It is interesting to see the performance when selecting features under the unitarily invari-
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(a) Outlier Pursuit (b) p = 0.1

(c) p = 0.3 (d) p = 0.7

Figure 8.3: Phase transition property of the Outlier Pursuit algorithm (a), and of the outlier selec-
tion algorithm for different p values (b) (c) (d).

ant criteria. Experiments are performed on benchmark datasets from Mulan repository (Tsoumakas

et al., 2011). The properties of these datasets are shown in Table 8.1. Experimental results are ob-

tained by 10 folds cross-validation using linear regression as classifier. The error is evaluated in

hamming loss, which measures the percentage of wrongly classified labels. Hamming loss is de-

fined as follows:

HammingLoss =
1

mN

mX

i=1

NX

j=1

I(ŷi
j

6= yi
j

)

83



Table 8.1: Dataset description.

Dataset Instances Features Labels
emotions 593 72 6
medical 978 1449 45
enron 1702 1001 53
scene 2407 294 6

where m is the number of examples, N is the number of labels, ŷ is the predicted labels and y is

the ground truth labels.

We consider the error using Frobenius norm (p = 2) as baseline. For all the other p, we compute

the percentage of error decreased compared to the baseline. From the results shown in Figure 8.4,

we can see that the percentage of the decreasing error is 8% for dataset medical when k is set to

be 75 and p is 1.6. Figure 8.5 shows that the percentage of the decreasing error is around 6%

for dataset emotions when k is 4 and p is 4.8. For dataset enron and scene (Figure 8.6, 8.7), the

reduced error is not that significant. It is roughly 1% and 2% respectively. For dataset emotions,

when k is 4, using a bigger p reduces the error significantly. However, the best p is about 1.2 when

k is 8. It shows that best p is dependent on the number of selected features k. For dataset enron,

when k is 14, the performance becomes better with an increasing p. While for dataset emotions, a

smaller p produces better results. The best p can be determined by cross-validation.

8.5 Discussion

We generalized a classic Forward Selection algorithm and describe a fast algorithm to handle a

general class of unitary invariant error criteria. We show that the algorithm can be used to solve the

outlier-robust PCA problem by Schatten p-norms minimization. The solution is novel and is very

different from previous approaches. Experimental results show that our algorithm outperforms

the convex optimization based method. The algorithm also can be applied to address the multi-

label classification problem. Experimental results show that the best subset of features are not

necessarily selected under Frobenius norm. Instead, using Schatten p-norms performs better. The
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(a) k = 65 (b) k = 75

Figure 8.4: Performance on dataset medical with different p.

(a) k = 4 (b) k = 8

Figure 8.5: Performance on dataset emotions with different p.
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(a) k = 14 (b) k = 30

Figure 8.6: Performance on dataset enron with different p.

(a) k = 10 (b) k = 15

Figure 8.7: Performance on dataset scene with different p.
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work described here can be extended in several ways. It is interesting to identify other unitary

invariant functions that allow new application of the greedy method. It is also interesting to study

the theoretical guarantee for the greedy method under different error criteria.
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CHAPTER 9

CLEANING THE NULL SPACE: A PRIVACY MECHANISM FOR PREDICTORS

In standard machine learning and regression setting feature values are used to predict some desired

information. The privacy challenge considered here is to prevent an adversary from using available

feature values to predict confidential information that one wishes to keep secret. We show that this

can sometimes be achieved with almost no effect on the quality of predicting desired information.

We describe two algorithms aimed at providing such privacy when the predictors have a linear

operator in the first stage. The desired effect can be achieved by zeroing out feature components

in the approximate null space of the linear operator.

Portions of this chapter are the results of collaboration with Tongyi Cao and Swair Shah. The

results are published in (Xu et al., 2017).

9.1 Introduction

Consider a company that develops technology for predicting desired information from raw data.

As a trivial example the raw data may be the height, weight, and sex of a child, with the desired

information being the child’s age. The company may obtain the data from a client, use it to predict

the desired information, and send that information back to the client.

The privacy concern we address is the potential inappropriate use of the client data to predict

confidential information that the client does not wish to expose. In our trivial example such infor-

mation may be the child weight (which is part of the data), or whether or not the child is obese.

It appears that the current approach in similar situations is to encrypt the raw data sent to the

company so that it requires a secret password to be accessed. This, however, does not provide

significantly improved privacy. Someone who works at the company and knows the password may

still access the data, and an adversary may still gain access to both the encrypted data and the

password.
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Another possible solution is to provide the client with the software that computes the desired

information, so that the raw data need not be sent to the company. This solution is sometimes

inappropriate because of the following two reasons. First, the software may be too big and require

special hardware. Secondly, giving the program away may allow the client to use it in cases not

agreed upon by the company. Similar arguments are made in (Tramèr et al., 2016).

We propose a privacy mechanism to minimize the exposure of confidential information that

the client may wish to keep private even from the company. We show how to “clean” the data

before sending it to the company in such a way that allows its usage for predicting the desired

information. At the same time the accuracy of predicting confidential information from the cleaned

data is significantly reduced.

The main idea behind our approach can be easily understood in terms of feature selection.

Clearly, it makes no sense to provide the company data that is not needed for predicting the de-

sired information. Unfortunately, if accurate prediction of desired labels is necessary, the removal

of an entire feature may not be appropriate. Even “mostly irrelevant” features may contribute

“something” to the prediction. Instead, we show how to remove unnecessary feature components.

Our idea is to use knowledge about the predictor of desired information to help hide confiden-

tial information. In particular, if the predictor has a linear operator in the first stage then there is a

transformation of the data that reveals feature components not needed for the prediction. Specif-

ically, combinations of features that lie in the operator null space do not affect the prediction and

need not be provided. Removing this information is what we call cleaning.

9.2 Problem statement

The problem we consider involves three entities: the cleaner, the ally, and the adversary. In the

example discussed earlier the cleaner is the client and the ally is the company. The cleaner has a

single feature vector denoted by x. In addition to x the cleaner has knowledge of the linear operator
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of the predictor used by the ally. The cleaner cleans x and produces x̃. We write the computation

performed by the cleaner as:

x̃ = clean(x) (9.1)

The ally has a predictor f
d

that can predict desired information, denoted by y
d

, from the uncleaned

data x. This can be expressed as: y
d

= f
d

(x). The ally receives the cleaned feature vector x̃

from the cleaner without knowledge of whether or not it was cleaned, or how it was cleaned. The

computation performed by the ally is always the same, applying the predictor to the data:

ỹ
d

= f
d

(x̃) (9.2)

The adversary attempts to predict confidential information denoted by y
c

. It does not know x, but

it knows everything else. In particular it knows the cleaned feature vector x̃, the method clean()

which was used by the cleaner, and the method f
d

() which was used by the ally. In addition,

the adversary may have training data in the form of (xi, yi
c

), relating uncleaned feature vectors to

confidential information. We assume that the training data is good enough to infer an accurate

predictor of the form: y
c

= f
c

(x). In order to discover the confidential information the adversary

calculates a predictor ˜f
c

and produces the following approximation:

ỹ
c

=

˜f
c

(x̃) (9.3)

9.2.1 Evaluation criteria

We wish to obtain algorithms for “clean()” such that the vector x̃ produced by the cleaner satisfies:

f
d

(x̃) = ỹ
d

⇡ y
d

, eutility = |ỹ
d

� y
d

|2

˜f
c

(x̃) = ỹ
c

6⇡ y
c

, eprivacy = |ỹ
c

� y
c

|2
(9.4)

We say that the cleaning method has high utility if eutility is guaranteed to be small, and that it has

high privacy if eprivacy is guaranteed to be large. We describe algorithms that provide a guarantee
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on utility but not for the worst case privacy. Specifically, for any given ✏ and x the algorithms

guarantee cleaning that satisfies:

eutility = |ỹ
d

� y
d

|2  ✏ (9.5)

In our model, the adversary knows everything except for the feature vector x. It is impossible

to guarantee privacy in the worst case because of the following argument. If y
c

= y
d

then the

adversary can use the predictor f
d

to predict the confidential information. Therefore, in this worst

case high utility would imply low privacy. Instead of considering the worst case we attempt to

maximize eprivacy while still satisfying the constraint on eutility. We present two algorithms. The first

maximizes the “expected privacy error” that will be defined later. The second attempts to learn

the predictor used by the adversary and maximize the privacy protection against that particular

predictor.

9.2.2 Our results

Our cleaning algorithms require that the predictor f
d

() starts with a linear operator. This means

that it can be written as: f
d

(x) = f1(AT

d

x), where A
d

is a matrix. (Extensions to the nonlinear case

are nontrivial.) Here are several examples of commonly used predictors that can be expressed in

this way.

1. Linear regression (e.g., (Miller, 2002; Hastie et al., 2009)).

2. Many approaches to multi-label classification start with linear regression. The regression results

are then followed by thresholding or other classification schemes, converting the real valued

data to discrete values. See, e.g. (Zhang and Zhou, 2014; Tsoumakas et al., 2011).

3. Multi-layer neural nets start with a linear operator applied to the input data. (See, e.g., (Hastie

et al., 2009)).

4. Algorithms that use linear dimensionality reduction such as PCA. See, e.g., (Jolliffe, 1986).

We describe two cleaning algorithms that work intuitively as follows. The algorithms take as input

the feature vector x and the matrix A
d

(used by the ally in the initial linear step). The cleaning

91



Table 9.1: A toy example.

(x1, x2)
cleaned
(x1, x2)

y
d

y
c

(3,1) (1,-1) 2 5
(4,2) (1,-1) 2 8
(5,1) (2,-2) 4 7
(6,5) (0.5,-0.5) 1 16

of x is achieved by subtracting from it projections on the approximate null space of AT

d

. These

projections are irrelevant to the prediction of the desired information. Both algorithms remove

components in the exact null space. They behave differently in identifying the approximate null

space.

9.2.3 A toy example

To illustrate the main ideas behind our approach consider the toy example show in Table 9.1. There

are two features x1, x2, one desired label y
d

, and one confidential label y
c

. Both y
d

and y
c

can be

calculated exactly from x1, x2:

y
d

= x1 � x2, y
c

= x1 + 2x2

Clearly, the desired information y
d

can be predicted exactly from x1, x2 with zero error. However,

y
c

is exposed. Here the prediction model of y
d

is AT

d

= (1,�1), with the vector (1, 1) in its null

space. Thus, the vector (x1, x2) can be cleaned by zeroing out projections on the direction (1, 1).

This amounts to subtracting the mean of x1 and x2 from each coordinate.

After cleaning, the same linear model can still be used to predict y
d

from the cleaned features.

On the other hand there is no predictor for computing y
c

exactly from the cleaned features, since

two different values of y
c

must be inferred from two identical cleaned feature vectors (lines 1,2).
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9.2.4 Relation to previous work

Adapting machine learning terminology of a learning and a testing phase, our goal is protecting

the privacy of information during the testing phase. It is different from studies concerned with

the privacy of training data, such as differential privacy e.g., (Dwork and Roth, 2014; Sarwate and

Chaudhuri, 2013), where noise is added to blur the distinction between individual items in the

training data.

There are several studies that investigate feature selection as a tool for obtaining privacy of

training data. See, e.g., (Pattuk et al., 2015; Jafer et al., 2015; Banerjee and Chakravarty, 2011).

The idea is not to release the entire information in the data, but only selected features.

Unlike these studies we consider the privacy of information that can be extracted from a single

feature vector. Clearly, to increase privacy we can add noise to the feature vector or use fewer fea-

tures. However, with no distinction between desired and and confidential information the increase

in privacy would imply a decrease in accuracy.

Recent studies (Enev et al., 2012; Hamm, 2015; Whitehill and Movellan, 2012) consider a set-

ting similar to ours. They also make the distinction between desired and confidential information.

In (Hamm, 2015), the ally (data aggregator) and the user (data contributor) participate in the data

filtering. The goal is to prevent the adversary from predicting the private information of user while

maintaining the utility of the data. The framework proposed in (Enev et al., 2012) transforms the

data in a way that the covariance between the data and the desired information is increased, while

the covariance between the data and confidential information is decreased. The most important

difference between our approach and these approaches is in the treatment of the predictors. They

make different (or no) assumptions about the predictors, while we assume knowledge of these

predictors, which yields different algorithms.
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The Fractional Knapsack
1. Input: G1, . . . , Gn

, nonnegative H1, . . . , Hn

, ✏.

2. Output: ↵1, . . . ,↵n

that solve the following problem:

3. Maximize
P

j

↵
j

G
j

.

4. Subject to:
P

j

↵
j

H
j

 ✏,

5. 0  ↵
j

 1.

Figure 9.1: The Fractional Knapsack Problem.

1. If H
j

= 0 set ↵
j

= 1.

2. Sort the pairs (G
j

, H
j

) in decreasing order of G
j

/H
j

.
Let (j) be the location of (G

j

, H
j

) in this order.

3. Compute the index t such that:P
t

(j)=1 H(j) < ✏,
P

t+1
j=1 H(j) � ✏

4. Set r = (✏�
P

t

(j)=1 H(j))/H(t+1)

5. Set ↵(j) =

8
><

>:

1 1  (j)  t

r (j) = t+ 1

0 otherwise

Figure 9.2: Solving the Fractional Knapsack.

9.3 Optimization tool

The algorithms we propose require an optimization tools that is detailed in this section. The prob-

lem to be optimized is a variation on the classical fractional Knapsack problem (in Figure 9.1),

originally discussed by Dantzig in (Dantzig, 1957). See also (Goodrich and Tamassia, 2002).

The standard algorithm for the optimal solution to this problem is shown in Figure 9.2. We

need the following variation of the fractional knapsack.

Augmented objective function and equality constraint. Here both the objective function in

line 3 and the equality constraint in line 4 (Figure 9.2) are replaced by:
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Input: x: the feature vector to be cleaned,
A

d

: the known predictor,
✏: the desired value of eutility.

Output: the cleaned feature vector x̃.

1. Compute eigenvectors/eigenvalues of B
d

= A
d

AT

d

.

2. For each eigenvector/eigenvalue pair (v
j

,�
j

) compute: a
j

= vT
j

x, �
j

= �
j

a2
j

.

3. For j = 1, . . . , n, solve the Augmented Fractional Knapsack problem
G

j

= 1, H
j

= �
j

, ✏ to determine ↵
j

.

4. Output x̃ = x�
P

n

j=1 ↵j

a
j

v
j

.

Figure 9.3: Algorithm 1 for cleaning a feature vector x.

3. Maximize
P

j

↵2
j

G
j

.

4. Subject to:
P

j

↵2
j

H
j

 ✏.

The only change needed in the algorithm of Figure 9.2 is in line 4.

4. Set r =
q
(✏�

P
t

(j)=1 H(j))/H(t+1)

9.4 Cleaning

In this section we describe the algorithms for cleaning the feature components in the approximate

null space of the linear predictor. As in the previous section we denote the feature vector by x, and

the cleaned feature vector by x̃. To simplify the discussion and the notation we assume that the

predictor f
d

is linear, so that f
d

(x) = AT

d

x.

9.4.1 Algorithm 1

The first algorithm is shown in Figure 9.3. It identifies t eigenvectors and a fraction ↵
t+1 of another

eigenvector that are in the approximate null space of A
d

. Zeroing out the projection of the feature

vector x on these eigenvectors produces the desired cleaned feature vector.
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Theorem 1: Let x̃ be the result of cleaning x by Algorithm 1. Set y
d

=AT

d

x, ỹ
d

=AT

d

x̃, and eutility =

|y
d

� ỹ
d

|2. Then eutility  ✏.

Proof: With the notation of Algorithm 1:

y
d

� ỹ
d

= AT

d

x� AT

d

x̃ = AT

d

(x� x̃) = AT

d

nX

j=1

↵
j

a
j

v
j

Therefore:

eutility = |y
d

� ỹ
d

|2 = (

nX

i=1

↵
i

a
i

vT
i

)B
d

(

nX

j=1

↵
j

a
j

v
j

)

=

nX

i=1

�
i

↵2
i

a2
i

=

tX

i=1

�
i

a2
i

+ �
t+1a

2
t+1r

2  ✏ ⌅

The last inequality follows from the promise of the Fractional Knapsack.

We proceed to analyze the privacy properties of Algorithm 1. Ideally, an algorithm should be

designed with the following criterion:

maximize inf eprivacy

where the infimum is over all possible algorithms. While this cannot be shown in our model, we

can show that Algorithm 1 maximizes the following related criterion:

maximize Exp {eprivacy} (9.6)

where the expectation is over the probability distribution defined below. Suppose the adversary

uses the linear model A
c

to predict the confidential labels from x. Let AX be the set of all pairs

that can be obtained from the pair (A
c

, x) by rotation. Specifically, the pair (A1, x1) belongs to

AX if there is an orthogonal matrix Q1 such that A1 = Q1Ac

and x1 = Q1x. The probability

distribution in (9.6) is the uniform distribution over the elements of AX . (Multiplication by an

orthogonal matrix can be viewed as a change of the coordinate system.)
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Lemma 1: Let v1, . . . , vn be an orthogonal basis of Rn, and let (A, x) be a random variable in

AX . Then:

Exp

�
xTv

i

vT
i

AATv
j

vT
j

x
 

is independent of i, j,

where the expectation is with respect to the uniform distribution defined over the elements of AX .

Proof: For any orthogonal matrix Q we have:

Exp

�
xTv

i

vT
i

AATv
j

vT
j

x
 

=

Z
xTv

i

vT
i

AATv
j

vT
j

x prob((A, x))d((A, x))

=

Z
vT
j

xxTv
i

vT
i

AATv
j

prob((A, x))d((A, x))

=

Z
vT
j

QxxTQTv
i

vT
i

QAATQTv
j

prob((QA,Qx))d((QA,Qx))

=

Z
vT
j

QxxTQTv
i

vT
i

QAATQTv
j

prob((A, x))d((A, x))

= Exp

�
vT
j

QxxTQTv
i

vT
i

QAATQTv
j

 

= Exp

�
xTQTv

i

vT
i

QAATQTv
j

vT
j

Qx
 

(9.7)

(The integrals are computed over AX .) To prove the lemma for the case where i=j we need to

show that Exp
�
xTv

i

vT
i

AATv
i

vT
i

x
 

= Exp

�
xTv

k

vT
k

AATv
k

vT
k

x
 

for 1  k  n. This follows

immediately by applying Equation (9.7) with any orthonormal matrix Q satisfying v
k

= QTv
i

.

For the case where i 6=j we need to show that Exp
�
xTv

i

vT
i

AATv
j

vT
j

x
 

= Exp

�
xTv

k

vT
k

AATv
l

vT
l

x
 

for 1  k, l  n, k 6= l. This follows immediately by applying Equation (9.7) with any orthonor-

mal matrix Q satisfying v
k

= QTv
i

, v
l

= QTv
j

. Such orthogonal matrix Q always exists since

there is always a “change-of-basis” orthogonal matrix that maps one basis of Rn to another. ⌅

Theorem 2: Suppose the predictor of confidential information from x is linear, represented by

the matrix A
c

. Let AX be the set of all rotations of the pair (A
c

, x), and consider a uniform

probability distribution over the elements of AX . Then the cleaned vector produced by Algorithm 1

maximizes the expected privacy error.

97



Proof: As in the proof of Theorem 1 we have:

eprivacy = |y
c

� ỹ
c

|2

= xT

(

nX

i=1

↵
i

v
i

vT
i

)A
c

AT

c

(

nX

j=1

↵
j

v
j

vT
j

)x

=

X

ij

↵
i

↵
j

xTv
i

vT
i

A
c

AT

c

v
j

vT
j

x

Taking expectations gives:

Exp {eprivacy} = b
X

ij

↵
i

↵
j

= b(
X

j

↵
j

)

2

where b = Exp

�
xTv

i

vT
i

AATv
j

vT
j

x
 

which according to Lemma 1 is independent of i, j. There-

fore, maximizing Exp {eprivacy} in terms of the ↵
j

requires solving the following optimization prob-

lem:

Maximize
X

j

↵
j

s.t. 0  ↵
j

 1,
X

j

↵2
j

�
j

 ✏

And this can be solved as the Augmented Fractional Knapsack. ⌅

9.4.2 Algorithm 2

The second algorithm is shown in Figure 9.4. The cleaner uses its own training data to estimate

a linear predictor A
c

for the confidential labels. It then proceeds similarly to Algorithm 1, but the

approximate null space is computed in terms of generalized eigenvectors and eigenvalues.

Theorem 3: Let x̃ be the result of cleaning x by Algorithm 2. Set y
d

=AT

d

x, ỹ
d

=AT

d

x̃, and eutility =

|y
d

� ỹ
d

|2. Then eutility  ✏.

Proof: Identical to the proof of Theorem 1. ⌅

We proceed to analyze the privacy properties of Algorithm 2.
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Input: x: the feature vector to be cleaned,
A

d

: the known predictor,
✏: the desired value of eutility,
training data: (xi, yi

c

).

Output: the cleaned feature vector x̃.

1. Use the training data to compute the predictor A
c

so that yi
c

⇡ AT

c

xi.

2. For B
d

= A
d

AT

d

, B
c

= A
c

AT

c

, solve the generalized eigenvalue problem: B
d

v = �B
c

v.
The result is (v1, �1), . . . , (vn, �n).

3. For j = 1, . . . , n: compute a
j

= vT
j

x, �d

j

=vT
j

B
d

v
j

, �d
j

=�d

j

a2
j

, �c

j

=vT
j

B
c

v
j

, �c
j

=�c

j

a2
j

.

4. For j = 1, . . . , n: solve the Augmented Fractional Knapsack for G
j

= �c
j

, H
j

= �d
j

, ✏ to
determine ↵

j

.

5. Output x̃ = x�
P

n

j=1 ↵j

a
j

v
j

.

Figure 9.4: Algorithm 2 for cleaning a feature vector x.

Theorem 4: If the Adversary uses the linear predictor A
c

as computed by the cleaner then the

cleaned vector produced by Algorithm 1 maximizes the privacy error.

Proof: The generalized eigenvalues �
j

satisfy:

�
j

= �d

j

/�c

j

, where �d

j

= vT
j

B
d

v
j

, �c

j

= vT
j

B
c

v
j

Following the same derivation as in Theorem 1 we have:

eutility =

nX

j=1

↵2
j

�d
j

eprivacy =

nX

j=1

↵2
j

�c
j

Therefore, the optimization problem that needs to be solved to maximize the privacy error is:

Maximize
nX

j=1

↵2
j

�c
j

s.t. 0  ↵
j

 1,
X

j

↵2
j

�d
j

 ✏

And this problem is solved by Algorithm 2 using the Augmented Fractional Knapsack. ⌅
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Table 9.2: Dataset description.

Dataset Instances(m) Features(n) Labels(N )
scene 2407 294 6
wq 1060 16 14

oes97 334 263 16
CAL500 502 68 174

9.5 Experimental results

We evaluated the proposed algorithms on benchmark datasets from Mulan repository (Tsoumakas

et al., 2011) shown in Table 9.2. Experimental results are averaged over 10 runs. In each run 90%

of the dataset is chosen randomly to compute the model of the ally. The rest is used as testing

data, where each individual sample is evaluated independently of the other samples. We ran three

experiments with each dataset, varying the number of desired and confidential labels:

1) one desired label and all the rest are confidential labels.

2) randomly select half of the labels as desired and the other half as confidential.

3) one confidential and all the rest are desired labels.

In the tables N
d

and N
c

denote the number of desired and confidential labels respectively. The

results are shown in Table 9.3. Observe that in almost all cases eutility is exactly ✏ and eprivacy is

much bigger than eutility. The special case happens on dataset CAL500 when N
d

is 1 and N
c

is 173.

To provide further insight into the performance of the cleaning mechanism we count the test

cases for which the cleaning achieves “linear privacy”. The criterion for linear privacy is defined

as follows.

If the error of predicting y
c

using x̃ is greater than the error of predicting y
c

from the mean
feature vector, then linear privacy has been achieved.

From the definition of linear privacy, if the adversary takes random guess, then the probability that

the prediction is better than the prediction computed from the mean feature vector is 0.5. Therefore,

we consider 50% is the best possible linear privacy. In Table 9.3, LP denotes the percentage of

test cases for which the cleaner achieves linear privacy. We observe that in most of the cases the
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Table 9.3: Results with no attack, ✏ = 0.01, Almost all the cases eutility is exactly ✏, and eprivacy is
much bigger than eutility. LP denotes the percentage of test samples which achieves linear privacy.

Dataset N
d

N
c

Algorithm 1 Algorithm 2

eutility eprivacy LP eutility eprivacy LP

scene
1 5 0.01 0.796 81.8% 0.01 0.796 81.8%
3 3 0.01 1.358 80.6% 0.01 1.296 80.7%
5 1 0.01 4.259 82.3% 0.01 3.659 82.3%

CAL500
1 173 0.009 0.845 85.7% 0.01 5.3E+10 100.0%

87 87 0.01 0.156 63.5% 0.01 1.741 79.9%
173 1 0.01 0.034 46.0% 0.01 2.188 59.6%

wq
1 13 0.01 2.654 52.6% 0.01 2.654 52.6%
7 7 0.01 2.172 58.8% 0.01 1.956 57.8%

13 1 0.01 2.265 74.8% 0.01 1.403 45.5%

oes97
1 15 0.01 5.11E+7 65.4% 0.01 5.11E+7 65.4%
8 8 0.01 4.23E+7 63.0% 0.01 4.23E+7 63.0%

15 1 0.01 6.02E+7 47.0% 0.01 6.02E+7 47.0%

adversary would be no more advantageous using the cleaned feature vector x̃ than using the mean

feature vector.

In some cases, Algorithm 1 and Algorithm 2 have the same performance (e.g. dataset scene and

oes97). In other cases (e.g. dataset CAL500 and wq), the two algorithms perform differently. It is

because both the algorithms will clean feature vector x with the eigenvectors/generalized eigenvec-

tors in the nullspace first. These vectors are identical to the two algorithms. After such cleaning

eutility maintains 0. To achieve the desired value of eutility, both the algorithms will keep clean-

ing x with other vectors/generalized eigenvectors. This is the procedure where Algorithm 1 and

Algorithm 2 diverges. Algorithm 2 selects vectors obtained by taking into consideration the pre-

dictor model A
c

for confidential information, while Algorithm 1 selects vectors obtained without

considering such information.

It is possible that the adversary uses a model other than A
c

which may be better suited for

predicting confidential labels. We discuss such a scenario next.
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Input: xt: a test example,
training data: (xi, yi

c

).

Output: Attempted prediction of yt
c

from xt.

1. Repeat for each feature vector xi:
Apply the cleaning algorithm to get a cleaned feature vector x̃i.

2. Use the cleaned training data to build a prediction model.

3. Use the model created in step 2 to predict yt
c

from xt.

Figure 9.5: A proposed attack on the cleaning algorithms.

9.5.1 A proposed attack

We assume the adversary knows the cleaning algorithms. Therefore, the adversary can acquire a

dataset and obtain cleaned features. With the information of confidential labels and features after

cleaning, a new model can be inferred for predicting y
c

. Given a test example, the adversary would

apply the new model to make prediction. The procedure is shown in Figure 9.5.

The experiments with the proposed attack show that eutility is still exactly ✏ for both algorithms

in almost all the cases. Due to the limitation of table size, here eutility is not shown. Other results are

shown in Table 9.4. eprivacy is still considerably higher than eutility. In some cases the rate of linear

privacy is 40%. That shows the cleaned feature vector provides no more confidential information

than the mean feature vector for 40% of the test samples.

It is to be noted that for some datasets eprivacy becomes extremely high (e.g. oes97) and for

some datasets eprivacy is relatively small. This is dependent on the dataset as well as the desired and

confidential labels. A higher privacy (at the expense of utility) can be obtained by increasing the

value of ✏.

9.5.2 Experiments with non-linear SVM

The adversary may use predictors other than the linear operators. We discuss the case when the

adversary uses non-linear SVM as the prediction model. In particular, we show the results that
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Table 9.4: Results with the proposed attack. ✏ = 0.01. LP is the percentage of test cases that
achieves linear privacy. Still eprivacy is bigger than eutility in most of the cases.

N
d

N
c

Algorithm 1 Algorithm 2

eprivacy LP eprivacy LP
scene dataset (n = 294)

1 5 0.289 51.0% 0.289 51.0%
3 3 0.235 44.7% 0.233 44.5%
5 1 0.047 41.0% 0.043 41.8%

CAL500 dataset (n = 68)
1 173 0.230 48.6% 0.005 58.9%

87 87 0.081 56.9% 0.008 55.9%
173 1 0.068 44.0% 0.029 44.4%

wq dataset (n = 16)
1 13 0.308 48.9% 0.308 48.9%
7 7 0.132 39.2% 0.164 38.7%

13 1 0.092 31.9% 0.086 30.9%
oes97 dataset (n = 263)

1 15 4.67E+6 39.4% 4.67E+6 39.4%
8 8 7.48E+6 43.6% 7.48E+6 43.6%

15 1 1.16E+7 18.2% 1.16E+7 18.2%

predicting confidential information via the SVM model with RBF kernel. The feature vectors are

cleaned under the setting ✏ = 0.01 for both Algorithm 1 and Algorithm 2. The experimental results

are shown in Table 9.5. Observe that eprivacy is considerably higher then eutility and around 50% of

the test samples achieve LP.

Table 9.6 shows the results with non-linear SVM model under the proposed attack. Instead of

building a linear model at the step 2 of the attack algorithm shown in Figure 9.5, a non-linear SVM

prediction model is built using the cleaned training data. The overall LP is around 30%.

9.5.3 Comparison with a differential privacy mechanism

The goal of differential privacy is protecting the individual entry of a database while allowing

accurate statistical analysis of the entire database. A standard way to achieve differential privacy

is the Laplace Noise (Dwork and Roth, 2014). Carefully adding noise drawn from a Laplace
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Table 9.5: Results with non-linear SVM model. LP is the percentage of test cases that achieves
linear privacy.

N
d

N
c

Algorithm 1 Algorithm 2

eprivacy LP eprivacy LP
scene dataset (n = 294)

1 5 0.229 42.0% 0.229 42.0%
3 3 0.271 45.0% 0.267 45.0%
5 1 0.255 46.5% 0.249 46.3%

CAL500 dataset (n = 68)
1 173 0.233 52.3% 0.059 52.2%

87 87 0.132 46.4% 0.071 48.7%
173 1 0.124 46.1% 0.238 49.4%

wq dataset (n = 16)
1 13 1.048 41.3% 1.048 41.3%
7 7 1.159 43.2% 1.159 43.2%

13 1 2.305 52.4% 2.305 52.4%
oes97 dataset (n = 263)

1 15 159.7 38.3% 159.7 38.3%
8 8 155.9 38.5% 155.9 38.5%

15 1 185.5 36.3% 185.5 36.3%

distribution to the features would achieve differential privacy but at the cost of utility. On the other

hand if one adds noise to the feature vector while attempting to keep eutility small, then eprivacy would

also remain very small, thus privacy is sacrificed.

In the experiments, we adjust the Laplace noise parameter mean and scale to produce the same

eutility as Algorithm 1. The results are shown in Table 9.7. Observe that even with the proposed

attack our approach achieves better linear privacy compared to the Laplace noise. Thus for the

same value of utility our approach provides much better privacy.

9.6 Discussion

The problem considered here is protecting the privacy of predictors. It is different from studies

concerned with the privacy of the training data, such as differential privacy. Recent studies about

balancing utility and privacy propose similar models with different (or no) assumptions about the
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Table 9.6: Results with non-linear SVM model under the proposed attack. LP is the percentage of
test cases that achieves linear privacy.

N
d

N
c

Algorithm 1 Algorithm 2

eprivacy LP eprivacy LP
scene dataset (n = 294)

1 5 0.189 18.2% 0.189 18.2%
3 3 0.193 19.0% 0.193 19.0%
5 1 0.167 22.0% 0.167 22.4%

CAL500 dataset (n = 68)
1 173 0.065 49.9% 0.050 49.3%

87 87 0.050 44.5% 0.025 44.3%
173 1 0.074 43.5% 0.017 43.4%

wq dataset (n = 16)
1 13 0.332 33.3% 0.332 33.3%
7 7 0.257 33.6% 0.246 33.5%

13 1 0.254 33.2% 0.229 32.9%
oes97 dataset (n = 263)

1 15 179.8 36.0% 179.8 36.0%
8 8 113.2 35.9% 113.2 35.9%

15 1 91.98 34.4% 91.98 34.4%

Table 9.7: Comparison with the Laplace Noise. LP is the percentage of test cases that achieves
linear privacy. For dataset scene, N

d

is 1, N
c

is 5. For dataset oes97, N
d

is 8, N
c

is 8. Our approach
provides much better privacy for the same value of utility.

Dataset eutility
Laplace Noise Alg 1 with no attack Alg 1 with attack

eprivacy LP eprivacy LP eprivacy LP

scene
0.01 0.009 31.5% 0.796 81.8% 0.289 51.0%
0.02 0.019 31.4% 0.772 81.8% 0.289 50.3%
0.03 0.027 31.3% 0.770 81.8% 0.289 51.1%

oes97
0.01 0.015 24.6% 4.23E+7 63.0% 7.48E+6 43.6%
0.10 0.162 24.6% 4.23E+7 63.0% 7.48E+6 43.6%
1.00 1.698 24.6% 4.23E+7 63.0% 7.48E+6 43.5%
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predictors. By contrast, we assume partial knowledge of these predictors, which may provide

sharper results.

The proposed algorithms can be applied to models that start with a linear operator. We observe

that projections on the null space of the predictors do not change the prediction value. These

projections give out unnecessary information for the prediction. Therefore, cleaning the data by

zeroing out projections on the null-space will not affect the prediction accuracy but will increase

the privacy. The more distortion in feature vectors, the higher privacy and the lower utility. The

trade-off between utility and privacy can be controlled by adjusting the ✏ parameter.
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CHAPTER 10

CONCLUSIONS

The work presented in this dissertation addressed two important problems in data analytics: feature

selection and data privacy. The algorithms developed in Chapter 4 address the classical column

subset selection problems with improved accuracy when compared to the current state of the art.

The algorithms run slower than some numerical linear algebra/randomized techniques, but are still

practical for large datasets. It should be a preferred choice when an increase in running time can

be tolerated.

The algorithms shown in Chapter 5 compute an optimal solution for column subset selection

under unitarily invariant criteria that are much faster than exhaustive search. One version of the

algorithms is optimal and the other gives exact bounds on optimality. While there are many studies

that address speed and accuracy for the column subset selection problem, few come with a guar-

antee on optimality. There are currently no alternatives to the algorithms described in Chapter 5

when one is interested in obtaining the best possible selection in anything but the Frobenius norm.

Chapter 6 describes an approach that performs feature selection in two stages where the second

stage is unsupervised. It was not previously known that it is possible to use unsupervised algo-

rithms in the second stage in a general setting. We compared the results to a typical setting where

the second stage is implemented with a supervised algorithm. Our method is almost as accurate as

using supervised algorithms, while at the same time it may be significantly faster.

The greedy approaches discussed in Chapter 7 can effectively select features for multi-label

classification. Many studies achieve feature selection by regularization and the solutions are ob-

tained iteratively until convergence. By contrast, our method is numerically stable and efficient.

The accuracy of our algorithms is comparable with current state of the art. The generalization of

the error criteria to unitary invariant functions for a classic greedy approach is described in Chap-

ter 8, where the new algorithm is used to solve the outlier-robust PCA problem. The solution is
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novel and is very different from previous studies. Experimental results show that our algorithm

outperforms a well-known outlier-robust PCA method that uses convex optimization.

Chapter 9 describes algorithms that protect the privacy of predictors that start with a linear

operator. Our model is different from studies concerned with the privacy of the dataset, such as

differential privacy. Recent studies about balancing utility and privacy propose similar models with

different (or no) assumptions about the predictors. By contrast, we assume partial knowledge of

these predictors, which may provide sharper results. In a nutshell, the projections on the null space

of the predictors give out information that is unnecessary for the prediction. Therefore, cleaning

the data by zeroing out projections on the null-space will not affect the prediction accuracy but will

increase the privacy. The more distortion in feature vectors, the higher privacy and the lower utility.

The trade-off between utility and privacy can be controlled by adjusting a user defined parameter.
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