

This document has been made available through Treasures at UT Dallas, a service of the Eugene McDermott Library. Please
contact libwebhelp@utdallas.edu for additional information.

Treasures at UT Dallas

Naveen Jindal School of Management

2011-9-15

Postrelease Testing and Software Release
Policy for Enterprise-Level Systems
Zhengrui Jiang, et al.

© 2012 INFORMS

Further information may be found at: http:// http://libtreasures.utdallas.edu/xmlui/handle/10735.1/2500

Information Systems Research
Vol. 23, No. 3, Part 1 of 2, September 2012, pp. 635–657
ISSN 1047-7047 (print) � ISSN 1526-5536 (online) http://dx.doi.org/10.1287/isre.1110.0379

© 2012 INFORMS

Postrelease Testing and Software Release Policy
for Enterprise-Level Systems

Zhengrui Jiang
College of Business, Iowa State University, Ames, Iowa 50011,

zjiang@iastate.edu

Sumit Sarkar, Varghese S. Jacob
School of Management, The University of Texas at Dallas, Richardson, Texas 75080

{sumit@utdallas.edu, vjacob@utdallas.edu}

Prior work on software release policy implicitly assumes that testing stops at the time of software release.
In this research, we propose an alternative release policy for custom-built enterprise-level software projects

that allows testing to continue for an additional period after the software product is released. Our analytical
results show that the software release policy with postrelease testing has several important advantages over
the policy without postrelease testing. First, the total expected cost is lower. Second, even though the optimal
time to release the software is shortened, the reliability of the software is improved throughout its lifecycle.
Third, although the expected number of undetected bugs is higher at the time of release, the expected number
of software failures in the field is reduced. We also analyze the impact of market uncertainty on the release
policy and find that all our prior findings remain valid. Finally, we examine a comprehensive scenario where in
addition to uncertain market opportunity cost, testing resources allocated to the focal project can change before
the end of testing. Interestingly, the software should be released earlier when testing resources are to be reduced
after release.

Key words : software reliability; market opportunity cost; market uncertainty; learning; Bayes risk principle
History : Ram Gopal, Senior Editor; Giri Kumar Tayi, Associate Editor. This paper was received on February 5,

2009, and was with the authors 13 months for 4 revisions. Published online in Articles in Advance
September 15, 2011.

1. Introduction
Virtually all organizations rely on information sys-
tems to support their daily activities, improve the
efficiency of business processes, or explore new busi-
ness opportunities. Take the financial industry as
an example. To reduce operating costs, most banks
allow customers to manage their accounts, access
monthly statements, and pay their bills online. To
expand their customer base, some financial institu-
tions now offer money market accounts or online
stock brokerage services to customers who are dif-
ficult to reach with traditional products or services.
Business operations of these types are unthinkable
without the support of modern information systems.
Unlike consumer or small business software, most
complex enterprise-level information systems cannot
be built by simply purchasing and installing a pack-
aged mass-market product. When a firm’s computing
needs or existing infrastructure is unique, customized
development may be the only viable option. Even if
some components of the systems can be purchased,
significant customization and integration efforts are

typically still required. We refer to such systems
as custom-built enterprise-level information systems,
which are developed to support an organization’s
own operations and are not for sale on the market.

Despite the advancements in information technol-
ogy, such systems are becoming increasingly costly to
build and maintain, given the range and complexities
of tasks they support. Today’s enterprise-level soft-
ware systems can contain up to millions of lines of
code and cost millions of dollars and years to develop.
In fact, many large organizations now spend a sig-
nificant portion of their annual budget on the devel-
opment and maintenance of such systems. Because of
the importance, complexity, and cost, when a new sys-
tem is developed, various process and project man-
agement decisions can impact not only the success of
the project, but also the firm’s overall position in the
marketplace.

The focus of this research is on the release policy
of custom-built enterprise-level information systems.
Although such a system is not build for sale, when
to put it into operation is still a very important, and

635

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
636 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

Figure 1 Release Policies with and Without Postrelease Testing

Testing duration Operation duration

Testing stops at release

Time

Release policy with no post-

Release policy with post-
Release time Testing stop time

Time

release testing

release testing

often difficult, decision to make. Our objective is to
develop a release policy that can help speed up the
release while reducing the risk and overall cost of the
system. The problem we consider is a typical decision
a project manager needs to make toward the end of
the development lifecycle, namely, when to stop test-
ing and release the system. The decision is difficult
because of the enormous risks associated with a too-
early or too-late release decision. If testing stops too
early, many critical bugs may remain undiscovered.
The firm thus risks dealing with dissatisfied users
and incurring a high cost if the system breaks down
during operation. For instance, software bugs have
caused system crashes to high profile firms such as
eBay and AT&T (Gross et al. 1999). It is estimated
that buggy software costs the U.S. economy $60 bil-
lion each year (Thibodeau 2002).

Reliability considerations would dictate that test-
ing should continue until all bugs are identified
and removed, but prolonged testing leads to delays
in software release, which is costly as well. Prior
research has shown that there is a diminishing return
to continued testing efforts (Dalal and Mallows 1988,
Pham 2000). Besides the cost of testing, market oppor-
tunity cost can constitute an even bigger portion of
the cost of late release. Although the systems we are
interested in are not built for sale, such systems are
used by organizations to improve the efficiency of
existing operations or to tap new market opportuni-
ties. Therefore, a delay in release results in a delay in
reaping the benefits of the new system, such as cost
reduction, improving market share, or enhancing cus-
tomer satisfaction. In a competitive environment, if
competitors introduce a similar system earlier, a firm
will risk falling into a disadvantageous competitive
position. For these reasons, all else being equal, a soft-
ware system delivered earlier is considered more
valuable. This is the primary reason that managers
sometimes choose to release a system even though

they know it may still contain undetected bugs (e.g.,
Baskerville et al. 2001). Determining optimal testing
stop time and release time, therefore, requires analysis
of the trade-off between improved software reliability
and costs of late release.

The economic consequences of an ad hoc release
decision could be enormous, and many attempts have
been made to formulate software release policies (e.g.,
Okumoto and Goel 1980, Dalal and Mallows 1988,
Ehrlich et al. 1993, Singpurwalla and Wilson 1994,
Pham and Zhang 1999, McDaid and Wilson 2001,
Arora et al. 2006, Rinsaka and Dohi 2006, Chiu et al.
2009). This stream of research on software release
policies is closely related to the broader software reli-
ability literature, summaries of which have been pro-
vided by Pham (2000, 2006). In all these studies, the
optimal release time is determined based on a cost-
benefit analysis—that testing should continue until
the expected gain from the improved reliability does
not justify the cost of continued testing. An implicit
assumption made in all these studies is that the test-
ing stop time and the software release time are the
same; i.e., formal testing stops completely at the time
of release. After release, the task of identifying soft-
ware bugs is shifted to the users, and bugs are iden-
tified and fixed only if they cause problems to users.

In this paper, we treat software release time and
testing stop time as two separate decision variables.
Within this context, we consider a new software
release policy that explicitly allows for active postre-
lease testing (or postrelease testing for short).1 As illus-
trated in Figure 1, the obvious difference between the
release policy with no postrelease testing (the NPT
policy) and the release policy with postrelease testing

1 We define active postrelease testing as the testing activities after
a software product is released that are geared toward the detec-
tion of bugs not yet encountered by users. This is distinct from the
additional testing effort that may be needed to discover the causes
of failures reported after release.

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 637

(the PT policy) is that with the latter, there will be a
period during which testers continue to test the soft-
ware while the software is in operation.

The key contribution of our research is the mod-
eling of postrelease testing and the analyses of the
release policy with postrelease testing considered.
Specifically, our research seeks to address several
questions. First, when should a software product be
released, given the trade-offs among market opportu-
nity cost, cost of testing, and cost of software failures
in the field? Is it worthwhile to continue testing after
release? We show that the existence of the market
opportunity cost makes postrelease testing beneficial.
Second, how does the release time for the PT policy
compare to that for the NPT policy? Also, how do
the testing stop times compare between the two poli-
cies? As one would expect, we find that the software
is released earlier in the PT policy than in the NPT
policy. Surprisingly, however, the testing stop time for
the PT policy occurs after the stop time for the NPT
policy. This is true even though a larger number of
bugs can be detected during the same period of time
in the PT policy because of the joint efforts of testers
and users after release. Third, we examine whether
users are exposed to a greater risk from the earlier
release of the software advocated by the PT policy. It
may appear that the earlier release (i.e., more remain-
ing bugs in the software at the time of release) would
result in more failures in the field over the lifetime
of the product. Interestingly, we show that that is not
the case; instead, the expected number of failures in
the field is lower under the PT policy. Fourth, we
analyze the impact of uncertain market opportunity
cost on the solution to the PT policy and propose a
method based on the Bayes risk principle to address
such uncertainty. All our prior findings remain valid,
and the PT policy continues to vastly outperform the
NPT policy. Finally, we analyze scenarios where in
addition to uncertain market opportunity cost, test-
ing resources allocated to the focal project can change
before the end of testing. Surprisingly, we find that
when testing resources are to be reduced after release
and the remaining testers’ cost effectiveness decreases
or remains the same, the software should be released
earlier.

There exist a few studies from the software release
policy literature that appear to be related to our
work. However, as discussed below, there are fun-
damental differences in the research questions we
address and those addressed by these studies. Arora
et al. (2006) justify the “release early and fix later”
practice for commercial off-the-shelf software. How-
ever, they do not model the detection of bugs by
users and testers and the related consequences, which
is one of the key aspects of our work. Our work

also provides a methodology to determine the opti-
mal release time and testing stop time based on
characteristics of the project and various cost fac-
tors, which Arora et al. do not address. Furthermore,
they do not explicitly model the various cost fac-
tors such as the cost of testing, cost of software fail-
ure in the field, and market opportunity cost; there-
fore, they do not address the research questions of
this study. The work by Rinsaka and Dohi (2006)
extends the prior release policy literature by propos-
ing a model to simultaneously determine the opti-
mal testing period and planned maintenance period.
The planned maintenance period refers to the time
between the testing stop time (release time) and the
time that the project team is dissolved, during which
the project team is kept in place to cope with soft-
ware failures that may occur. Similar to most prior
software release studies, Rinsaka and Dohi do not
model postrelease testing, nor do they consider the
impact of market opportunity on the software release
policy. The studies by Dalal and Mallows (1988),
Singpurwalla and Wilson (1994), McDaid and Wilson
(2001), and Chiu et al. (2009), among others, pro-
pose policies to determine the optimal release time
by taking into account the market opportunity costs.
However, none of them recognizes that incorporat-
ing market opportunity cost can result in a funda-
mentally different and superior policy with postre-
lease testing. Thus, these studies also do not address
any of our research questions. Table 1 summarizes
the key differences between this study and these
existing papers.

Table 1 Comparison Between This Study and Prior Research

Studies that
consider

This Arora et al. Rinsaka and opportunity
study (2006) Dohi (2006) cost∗

Modeling postrelease
testing

Yes No No No

Providing methods to
determine the optimal
release time and testing
stop time as two
separate decision
variables

Yes No No No

Considering opportunity
cost

Yes No No Yes

Considering the impact
of uncertain market
opportunity cost

Yes No No No

Considering the impact
of testing resource
reallocation

Yes No No No

∗ Source of data: Dalal and Mallows (1988, 1990), Singpurwalla (1991),
Vienneau (1991), Krishnan (1994), Singpurwalla and Wilson (1994), McDaid
and Wilson (2001), and Chiu et al. (2009).

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
638 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

2. Reliability Assumptions
The first two key software reliability assumptions are
commonly seen in the software reliability literature
(Goel 1985; Pham 2000, 2006); the third one is specific
to the environment we model in this study.

Assumption 1. The detection of each bug in a software
system is independent of the detection of others, and the
total bug-detection rate at any time is proportional to the
number of undetected bugs at that time.

The first part of this assumption is used in practi-
cally all software reliability models to ensure tractabil-
ity. Assumption 1 implies that the lifetime of each bug
follows an independent and identical exponential dis-
tribution. For instance, if we denote the failure rate of
each bug under testers’ testing by �, the distribution
of the lifetime of each bug is given by

f 4t5= �e−�t0

Thus, the probability that a bug will be detected by
time t equals

F 4t5= 1 − e−�t0 (1)

Assumption 2. Once a bug is detected, it is fixed per-
fectly without causing any additional errors.

This assumption is adopted for mathematical sim-
plicity. Suppose the expected number of bugs is N
just before the start of testing.2 With perfect debug-
ging, the number reduces to (N−1) after the first
bug is detected and removed, (N−2) after the sec-
ond bug is removed, and so on. In the absence of
perfect debugging, a discovered bug may not be
perfectly removed; occasionally removing a known
bug may even introduce new bugs. Over time, how-
ever, the expected number of bugs tends to decrease
with the amount of time spent in testing. Hence,
we can assume that a bug is removed with prob-
ability P after it is detected. Goel and Okumota
(1979) show that imperfect debugging is equivalent
to perfect debugging with transformed parameters
Ñ = N/P and �̃= P�. Ohba and Chou (1989) go on
to demonstrate that models with imperfect and per-
fect debugging are isomorphic; i.e., when the models
are being fitted to testing data, although the parame-
ters obtained using different models are different, the
cumulative number of detections at any given point
in time is expected to be the same under the two mod-
els. This implies that even if debugging is not perfect,
the perfect debugging model can still be used because
the parameter estimation procedure can incorporate

2 Consistent with the literature, bugs considered here refer to those
that can cause failure during operation and are not easy to detect;
they do not include minor problems such as typographic errors in
system outputs or hardware/software compatibility problems that
can be easily detected at the time of installation.

the imperfect debugging factor with revised parame-
ter values. Therefore, Assumption 2 is not as restric-
tive as it may appear, and the findings of this research
remain valid even under imperfect debugging.

Assumptions 1 and 2 are also the underlying
assumptions of the classic Goel-Okumoto nonho-
mogenous Poisson process model (Goel and Okumoto
1979). Because of its parsimonious setup and sound
performance (Ehrlich et al. 1993, Wood 1996), the
Goel-Okumoto model is frequently adopted in the
release policy literature (e.g., Pham and Zhang 1999,
McDaid and Wilson 2001, Xie and Yang 2003). We
denote the expected number of undetected bugs at the
time of release � by u4�5. Based on the Goel-Okumoto
model, we have

u4�5=Ne−�� 0 (2)

One way to interpret Equation (2) is that the expected
number of undetected bugs at the time of release
equals the product of the number of bugs at the begin-
ning of testing and the probability that a bug is not
detected by the time of release.

Because postrelease testing and users’ bug-detec-
tion behavior are important aspects of this study, we
make another assumption in this context.

Assumption 3. After release, if a bug is first detected
by users during operation, it causes only one software fail-
ure in the field; if a bug is first detected by testers during
postrelease testing, it is patched before it can cause any
software failure in the field.

The first part of the assumption follows from the
perfect debugging assumption. Once a failure occurs,
the relevant portion of the enterprise system will be
down until the bug is located and perfectly removed.
The second part is reasonable so long as the time it
takes to debug and install the patch is much shorter
than the expected amount of time it takes for users
to detect that specific bug. We expect this to be true
in most real-world scenarios because testers typically
follow well-defined testing procedures and can com-
municate more efficiently with developers, thus mak-
ing it easier to locate and fix bugs reported by testers.3

Note that testers’ and users’ bug-detection efficien-
cies, reflected by the bug failure rates under testers’
testing and users’ usage, are not expected to be equal.
First, the numbers of users and testers are typically
different. Second, the intensities of the work may be
different for testers and users. We denote the failure

3 In rare situations where this assumption is violated, we need to
estimate the probability (P5 that a bug detected by testers also
causes a software failure before it is patched. The expected cost sav-
ing per bug detected during postrelease testing can then be revised
to 41 − P5 of the cost saving obtained based on Assumption 3. Our
analyses in this research remain valid after this revision.

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 639

rate of a bug under testers’ testing by � and that dur-
ing users’ usage by �u = r�, where r is the ratio of bug
failure rate under users’ usage to that under testers’
testing. In practice, � and �u can be estimated based
on experience with prior projects that are comparable
in size and scope.

3. The Cost Model
To determine the optimal testing stop time and release
time, we consider those costs that have an impact on
these two decision variables. We identify four such
cost factors: cost of testing, cost of fixing a bug detected
during testing, cost of a software failure in the field, and
market opportunity cost.

The cost of testing refers to the cost of testers’ activ-
ities such as test planning, test case generation, test
execution, and analysis of testing results. As in prior
literature (e.g., in Ehrlich et al. 1993, Pham and Zhang
1999), we assume that the cost of testing is a linear
function of the amount of testing time.

The cost of fixing a bug detected during testing is the
direct cost of bug removal in the development team’s
workplace and is assumed to be linear with the total
number of bugs that testers detected. This assumption
is also commonly seen in the literature (e.g., Okumoto
and Goel 1980, Ehrlich et al. 1993). Furthermore, we
assume that the same team (testers and developers) is
kept during the entire testing process; hence this cost
remains the same during prerelease and postrelease
testing.

The cost of software failure in the field is incurred
when a failure occurs during operation. This cost
includes the direct cost associated with identifying
and fixing the bug, the loss of revenue due to system
down time, and other costs, such as liability cost and
loss of goodwill resulting from users’ dissatisfaction.
The cost of a software failure in the field is usually
orders of magnitude higher than the cost of fixing the
same bug if it is detected during testing. The total cost
of software failures in the field is assumed to be pro-
portional to the number of defects not discovered by
testers. This assumption has been widely adopted by
prior studies (e.g., Dalal and Mallows 1988, Ehrlich
et al. 1993, McDaid and Wilson 2001).

The market opportunity cost, denoted by m4t5, refers
to market-related cost or opportunity cost due to late
release. A similar opportunity cost has also been con-
sidered by Dalal and Mallows (1988), Singpurwalla
and Wilson (1994), McDaid and Wilson (2001), and
Chiu et al. (2009). Software systems are used to sup-
port existing operations and/or explore new market
opportunities. If a system is used to support existing
operations, because the bulk of the development cost
has already been incurred before the testing phase,
a delay in release simply reduces the time during

which an organization can reap the benefits of the
new system. In this case, the expected benefit per unit
of time can be assumed to be a constant once the
system is put into operation, and the resulting loss
due to late release is a linear function of the amount
of delay. If the new system is used to tap new mar-
ket opportunities, a delay in its release increases the
chance that the market may be exploited by com-
petitors. The diffusion of a new service or product4

generally follows an S-shaped curve (Bass 1969); i.e.,
the total number of adoptions increases at an increas-
ing rate until nearly half of the potential customers
are reached. Therefore, all else being equal, the first
mover will capture a larger market share, and the dif-
ference in market share between the competing firms
increases at an increasing rate with the amount of dif-
ference in release time. Furthermore, because of the
learning curve and economies of scale, a larger mar-
ket share may further lead to reduced cost per prod-
uct or per unit of service. Consequently, in such a
scenario the cost of late release is a strictly convex
function of the release time. Taking into considera-
tion the support of existing operations (linear mar-
ket opportunity cost) and/or the exploitation of new
market opportunities (strictly convex market opportu-
nity cost), we have m′4t5 > 0, m′′4t5≥ 0. The functional
form m4t5 can be obtained from experts familiar with
the environment the system is built to operate in. If it
is difficult to directly specify m4t5, the firm can first
estimate costs for different release time points and use
these estimates to approximate the cost curve.

We assume that the cost of installing patches is
negligible in this study for the following reasons. If
a complete reinstallation is not required, the process
may cause little or no interruption to the operation
of the system. Even if a new installation is required,
it may be scheduled during off-business hours, low-
traffic hours, etc. In addition, advances in telecom-
munication technologies have made remote patching
feasible. In certain situations, software developers
can directly access machines in different geographical
locations to make corrections to existing installations.
In other situations, software patches and instructions
can be sent to remote locations and the installa-
tions completed by local information technology sup-
port teams.

Once we know the various costs, the optimal
release policy is obtained by minimizing the sum
of the four costs. In the next two sections, we first
examine the NPT policy and then derive the optimal
release time and optimal testing stop time for the PT

4 Note that the service or product does not refer to the software
itself; instead, this refers to services or products enabled by the
software system.

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
640 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

Figure 2 Model Parameters

N—Expected number of bugs to be eventually detected
�—Bug failure rate due to testers’ testing, also referred to

as testers’ bug-detection effectiveness
�u—Bug failure rate during users’ usage, also referred to as

users’ bug-detection effectiveness
r—Ratio of bug failure rate under users’ usage to that under

testers’ testing
�—Release time
T —Testing stop time
u4�5—Expected number of undetected bugs at the time of

release
k—Cost of testing per unit time
a—Expected cost of one software failure in the field (including

the cost of bug fixing)
b—Expected cost of fixing a bug detected during testing
c—Difference between the expected cost of a software failure

in the field and the expected cost of fixing a bug detected
during testing (i.e., c = a− b)

policy. The parameters shown in Figure 2 are used in
the derivation of the various cost factors.

4. Total Costs for the
Two Release Policies

4.1. Release Policy with No Postrelease
Testing

When postrelease testing is not considered, testing
stops at the time of release, implying � = T . We derive
the various cost factors for the NPT policy.

(i) The expected cost of testing, denoted by C1
NPT4�5,

is assumed to be linear with the amount of testing
time; i.e.,

C1
NPT4�5= k�0

(ii) The expected cost of fixing bugs detected dur-
ing testing, denoted by C2

NPT4�5, is proportional to
the expected number of detected bugs at the time of
release; i.e.,

C2
NPT4�5= b6N −u4�57= bN41 − e−��50

(iii) The expected cost of software failures in the
field, denoted by C3

NPT4�5, is linear with the expected
number of undetected bugs at the time of release; i.e.,

C3
NPT4�5= au4�5= aNe−��

= bNe−��
+ cNe−�� 0

(iv) The market opportunity cost m4�), as discussed
in §3, is a function of the release time and satisfies the
convexity condition (including both strict convexity
and linearity).

Figure 3 Different Probabilities of Bug Detection in Three Time Intervals

t0

F1(�, T) F2(�, T) F3(�, T)

T�

By adding the four costs, we have the expected total
cost for the NPT policy:

CNPT4�5= bN + k� + cNe−��
+m4�50 (3)

Note that bN in (3) is a constant. Therefore, the opti-
mal release time depends on c, the difference between
the cost of a software failure in the field and the cost
of fixing a bug detected during testing, and not on
the absolute values of the two individual costs.

CNPT4�5 is a strictly convex function of � . The
optimal release time without considering postre-
lease testing, denoted by �∗

NPT, can be obtained by
minimizing (3) with respect to � . If the solution is
interior, the optimal solution can be obtained based
on the first-order condition; otherwise, �∗

NPT = 0. The
expected cost associated with the optimal release time
is denoted by C∗

NPT ≡CNPT4�
∗
NPT5.

4.2. Release Policy with Postrelease Testing
As illustrated in Figure 1, when postrelease testing is
considered, a software system is released before test-
ing stops. Therefore, the search for the optimal solu-
tion involves determining the values of two decision
variables: the optimal release time � and the optimal
testing stop time T . As shown in Figure 3, the time
horizon is divided into three periods under the PT
policy. We first determine the probability that a bug
is detected in each of the three periods.

(i) The probability that a bug is detected in the first
period [01 �], denoted by F14�1T 5, is given by

F14�1T 5= 1 − e−�� 0

(ii) In the second period [�1T], both testers and
users test the software; thus, the failure rate of a
bug becomes 4r + 15�. The probability of a bug being
detected in this period equals the probability that it
is not found in the first period times the probability
that the bug is detected in (T − �5 amount of time:

F24�1T 5= e−��41 − e−4r+15�4T−�55= e−��
− er��−4r+15�T 0

Note that in the second period, depending on who
first detects a particular bug, the cost is different. The
cost of a software failure in the field 4a5 is incurred if
users first detect it, and a lower bug-fixing cost 4b5 is
incurred if testers find it first. Based on Assumption 1

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 641

and the bug-detection ratio r , the lifetime of a bug
under users’ usage is an exponential random vari-
able X1 with failure rate r�; that under tester’s test-
ing is an exponential random variable X2 with failure
rate �. Given that a bug is detected in the second
period, the probability that it is detected by the users
before the testers is

P (Detected by users �Detection in second period)

=
r

r + 1
05 (4)

(iii) The probability that a bug is not detected until
the last period equals

F34�1T 5= e−��e−4r+15�4T−�5
= er��−4r+15�T 0

The expected number of bugs detected in each of the
three periods equals the product of the total number
of bugs and the three respective probabilities. The cost
of testing, C1

PT4�1T 5, the cost of fixing bugs detected
during testing, C2

PT4�1T 5, and the cost of software
failures in the field, C3

PT4�1T 5, are derived as:


































C1
PT4�1T 5= kT 1

C2
PT4�1T 5= bN

[

F14�1T 5+
1

r + 1
F24�1T 5

]

1 and

C3
PT4�1T 5= 4b+ c5N

[

r

r + 1
F24�1T 5+ F34�1T 5

]

0

The market opportunity cost under the PT policy
is a function of the release time � . Incorporating the
three derived probabilities into the above cost expres-
sions and summing over all four types of costs, we
obtain the total expected cost for the PT policy as

CPT4�1T 5 = bN + kT +
cNr

r + 1
e−��

+
cN

r + 1
er��−4r+15�T

+m4�50 (5)

Note that F24�1T 5—and hence CPT4�1T 5—is not mean-
ingful if � > T . However, we do not need to explicitly
impose a constraint of � ≤ T here because, as we show
in the next section, this constraint is always satisfied
by the optimal solution. Furthermore, we find that
CPT4�1T 5 has the following property.

Lemma 1. The expected cost for the PT policy
CPT4�1T 5 is a strictly convex function of release time � and
testing stop time T . (Proofs of all lemmas and propositions
are provided in the appendix.)

5 The derivation is shown in the appendix.

The strict convexity property of CNPT4�) and
CPT4�1T 5 helps in analyzing the PT policy.

Under the PT policy, the optimal release time,
denoted by �∗

PT, and the optimal testing stop time,
denoted by T ∗

PT, can be simultaneously determined by
minimizing CPT4�1T 5. The associated minimum cost
is C∗

PT ≡CPT4�
∗
PT1T

∗
PT5. From (5), we again observe that

the optimal solution depends on the value of c, the
difference between the cost of a software failure in
the field and the cost of removing a bug identified
during testing, instead of the absolute values of these
two individual parameters. In reality, the cost of a
software failure in the field is typically orders of mag-
nitude larger than the cost of fixing a bug detected
during testing. Therefore, we have c ≈ a. For exposi-
tional convenience, hereafter we refer to c as the con-
sequence of a software failure in the field.

5. Evaluating the Polices with and
Without Postrelease Testing

To begin with, we note that if T = � , CPT4�1T 5
becomes CNPT4�5. This confirms that the NPT policy
is a special case of the PT policy. We now derive the
solutions for the two policies.

5.1. Optimal Solutions
We consider both interior and boundary solutions in
this analysis. First, assume that all solutions are inte-
rior. For CNPT4�), the first-order condition gives

k−�cNe−��∗
NPT +m′4�∗

NPT5= 00 (6)

For CPT(� ,T 5, the two first-order conditions are

−
�cNr

r+1
e−��∗

PT +
�cNr

r+1
er��

∗
PTe−4r+15�T ∗

PT +m′4�∗

PT5=0 and

(7)

k−�cNer��
∗
PTe−4r+15�T ∗

PT =00 (8)

Closed-form expressions cannot be obtained for �∗
NPT,

�∗
PT, or T ∗

PT in general, which makes it difficult to
analyze the solutions in a straightforward manner.
Therefore, additional algebraic transformations are
needed to better understand the characteristics of the
solutions to the two policies. Equation (8) can be
rewritten as

�cNer��
∗
PTe−4r+15�T ∗

PT = k0 (9)

Substituting for k into Equation (7), we have

−
r

r + 1
�cNe−��∗

PT +
r

r + 1
k+m′4�∗

PT5= 00 (10)

Multiplying both sides of (10) by 4r + 15/r , we obtain

k−�cNe−��∗
PT +

r + 1
r

m′4�∗

PT5= 00 (11)

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
642 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

Table 2 Relationship Between the Optimal Solutions for PT and NPT Policies

Intervals I12 �cN ≤ k I22 k < �cN ≤ k +m′405 I32 k +m′405 < �cN ≤ k + 4r + 15/rm′405 I42 �cN > k + 4r + 15/rm′405

Solutions/Relationships � ∗

PT = 0 � ∗

PT = 0 � ∗

PT = 0 T ∗

PT > � ∗

NPT > � ∗

PT > 0

� ∗

NPT = 0 � ∗

NPT = 0 T ∗

PT > � ∗

NPT > 0

T ∗

PT = 0 T ∗

PT =
1

4r + 15�
ln
(

�cN

k

)

> 0 T ∗

PT =
1

4r + 15�
ln
(

�cN

k

)

Note. Interior solutions not explicitly shown here are numerically obtained from Equations (6), (8), and (11).

Note that Equation (11) includes only �∗
PT and is sim-

ilar in form to Equation (6). Although it still cannot
help us obtain a closed-form solution, Equation (11)
makes it easier to compare the PT policy with the NPT
policy and to help derive several interesting proper-
ties of the solutions.

It is also important to note that the optimal val-
ues obtained from the first-order conditions may not
always be feasible; i.e., some of the values may be less
than zero. In this case, the cost-minimizing feasible
value is always zero, which is a boundary solution.
After taking into consideration all solution scenarios,
we arrive at the following conclusions:

Proposition 1. If the market opportunity cost m(�5
equals zero, the optimal release time �∗

PT and optimal testing
stop time T ∗

PT for the PT policy both equal �∗
NPT, the optimal

release time for the NPT policy; i.e., �∗
PT = �∗

NPT = T ∗
PT.

Proposition 1 shows that the market opportunity
cost is what makes postrelease testing beneficial. In
the absence of market opportunity cost, postrelease
testing is not needed, and the optimal release time can
be determined based on the NPT policy.

Proposition 2. The optimal release time �∗
NPT for the

NPT policy and the optimal release time �∗
PT and opti-

mal testing stop time T ∗
PT for the PT policy always satisfy

�∗
PT ≤ �∗

NPT ≤ T ∗
PT. When all solutions are interior, the strict

inequality �∗
PT < �∗

NPT <T ∗
PT holds.

The finding that a software system should be
released earlier under the PT policy than under the
NPT policy is expected. With the PT policy, because
postrelease testing helps reduce the risk faced by
users, a firm can afford to release a system earlier
to minimize market opportunity cost. The conclusion
that testing should stop later under the PT policy than
under the NPT policy may not be obvious at first.
One may incorrectly think that when the PT policy is
followed, because more bugs can be detected per unit
of time as a result of the joint debugging efforts from
testers and users, testing should stop earlier. The rea-
son that testing should last even longer under the PT
policy is as follows. As testing continues, the expected
number of bugs detected in a unit of time and hence
the expected benefit of testing decreases monotoni-
cally with time. In the meantime, the cost of testing

and the market opportunity cost both increase with
time.

Under the NPT policy, testing should stop when
the marginal benefit of testing equals the sum of
the marginal cost of testing and the marginal mar-
ket opportunity cost. In contrast, when the PT policy
is considered, testing should stop when the marginal
benefit of testing equals just the marginal cost of test-
ing. Because the cost as a result of continued testing
after release is lower under the PT policy, it is optimal
to test for a longer period of time.

The optimal values for �∗
NPT, �∗

PT, and T ∗
PT, as well

as their relationships, are summarized in Table 2.
The detailed derivations are contained in the proof of
Proposition 2 in the appendix.

Table 2 summarizes the relationship between the
optimal solutions for the NPT and PT policies, and
the conditions under which interior or boundary solu-
tions apply. The intervals identified in the table reflect
the comparisons between the marginal benefit and
the marginal cost of delayed release or continued
testing at time zero; the intervals are further illus-
trated in Figure 4. On the benefit side, �cN repre-
sents the marginal benefit of testing, becasue �N is the
expected rate of bug detection by testers at time zero,
and c is the cost saving for each bug detected by
testers. On the cost side, k is the marginal cost of test-
ing and m′(0) is the marginal market opportunity cost
at time zero. As shown in the first column of the
table, when the marginal benefit cannot even cover
the marginal cost of testing at time zero, i.e., �cN ≤

k1 the product should be released immediately with-
out any testing, regardless of which policy is con-
sidered. In contrast, when the marginal benefit of
testing is greater than the cost of testing, i.e., �cN >
k, then a positive amount of testing will be needed
after release, if the PT policy is followed. Regarding
the NPT policy, as shown in the first two columns
of Table 2, the optimal release time should be zero if
the marginal benefit of continued testing is less than
or equal to the sum of the marginal cost of testing
and marginal market opportunity cost at time zero,
i.e., �cN ≤ k+m′405. Otherwise, a positive amount of
testing will be optimal under the NPT policy. Sim-
ilarly, we can infer from the first three columns of
the table that the optimal release time under the PT

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 643

Figure 4 Marginal Benefit from Testing (i.e., �cN) in Four Possible Intervals

k+ (1+1/r)m′(0)k k+m′(0)0

I1 I2 I3 I4

�cN

policy should be zero if �cN ≤ k + 64r + 15/r7m′405
and greater than zero otherwise. However, interpret-
ing this condition is not as straightforward. By virtue
of postrelease testing, only r/4r + 15 proportion of the
bugs is expected to cause software failures in the field
during the postrelease testing period. Furthermore,
because of the involvement of users in bug detection,
to achieve the same level of reliability, the cost of test-
ing under the PT policy is only r/4r +15 of that under
the NPT policy. Therefore, in determining the optimal
release time for the PT policy, we are actually trading
off 6r/4r + 157�cN and 6r/4r + 157k + m′405, which is
equivalent to comparing �cN with k+ 64r+15/r7m′405.
This logic is also evident in the transformation from
Equations (10) to (11).

We next show that the following testing stop rule is
always valid.

Proposition 3. Under the PT policy, it is optimal to
stop testing once the expected number of undetected bugs
drops to k/4�c).

It is interesting to note that although the optimal
release time and the optimal testing stop time depend
on users’ and testers’ bug-detection rates and the var-
ious cost parameters, the expected number of unde-
tected bugs at the optimal testing stop time is driven
solely by the consequence of a software failure in the
field (c5 and the testers’ cost effectiveness (represented
by k/�). Furthermore, we conclude from Proposition 3
that, in deciding whether to stop testing at a given
time, all we need to know is the expected number of
undetected bugs at that time: the testing history, i.e.,
when and by whom the known bugs were discovered,
is not needed in the decision. Therefore, this testing
stop rule provides an easily implementable way to
decide whether testing should stop at a given time.

5.2. Comparing PT Policy with NPT Policy
Table 2 provides a quantitative comparison between
the optimal solutions of the NPT and PT policies. In
this section, we compare the solutions for the two
policies along three dimensions that are of particular
importance to a firm: (i) the expected cost, (ii) the reli-
ability (represented by the expected number of unde-
tected bugs) throughout the software lifecycle, and
(iii) the expected number of software failures in the
field. We ignore the case where T ∗

PT = �∗
NPT = �∗

PT = 0
because the two policies are exactly the same for this
extreme case, and furthermore, unlikely to occur in
practice. Hereafter, we restrict our discussions to sce-
narios where the two policies do not lead to identical
solutions.

Proposition 4. The expected cost under the PT pol-
icy is strictly lower than that under the NPT policy; i.e.,
C∗

PT <C∗
NPT0

This follows from the convexity of the cost func-
tions, which implies the optimal solutions for both
policies are unique. Further, because the NPT policy
is a special case of the PT policy, and their optimal
solutions (and hence the associated costs) are differ-
ent, we must have C∗

PT <C∗
NPT.

Proposition 5. The expected reliability of the software
obtained under the PT policy is strictly higher than that
under the NPT policy from the release time of the PT policy.

This is illustrated in Figure 5. Because under the PT
policy users begin detecting bugs no later than they
do under the NPT policy, and testers’ testing lasts
longer under the PT policy than under the NPT pol-
icy, the expected number of undetected bugs under
the PT policy will never be higher than that under
the NPT policy. In fact, the reliability curves start to
separate from time �∗

PT until the end of the lifecycle.

Proposition 6. The expected number of software fail-
ures in the field under the PT policy is never larger than
that under the NPT policy; when the market opportunity
cost is strictly convex, the former is always lower than the
latter.

We believe that Proposition 6 is one of the most
interesting findings of this research. Because the soft-
ware is released earlier under the PT policy than
under the NPT policy, one major concern decision
makers may have regarding the PT policy is that
users are exposed to a less-reliable software product
and thus risk dealing with more software failures in
the field during operation. Interestingly, Proposition 6
shows that the opposite is true. We find that this is an

Figure 5 Number of Undetected Bugs over Time

Time

N
um

be
r

of
 u

nd
et

ec
te

d
bu

gs

*�PT

NPT policy

PT policy

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
644 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

outcome of postrelease testing. Under the PT policy,
although there are more undetected bugs when the
product is released, all bugs will not result in software
failures in the field to users—a portion of the bugs
will be detected by testers during postrelease testing
and be fixed before they cause problems to users. Fur-
thermore, because testing lasts longer under the PT
policy, the expected number of undetected bugs after
testing stops is lower under this policy. These two fac-
tors jointly lead to the surprising result that there will
be fewer expected software failures in the field under
the PT policy than under the NPT policy.

6. Impact of Parameters
In this section, we examine how each individual
model parameter impacts the optimal solution to the
PT policy. We consider only interior solutions because
they are more likely to occur in practice.6 The follow-
ing proposition summarizes the impact of the indi-
vidual parameters on the solution of the PT policy.

Proposition 7. When the optimal release time �∗
PT and

optimal testing stop time T ∗
PT are interior,

(i) �∗
PT and T ∗

PT both increase with c—the consequence
of a software failure in the field—and N—the number of
undetected bugs at the start of testing: The duration of
postrelease testing 4T ∗

PT −�∗
PT5 increases with c and N when

market opportunity cost is strictly convex and remains con-
stant with c and N when market opportunity cost is linear.

(ii) �∗
PT and T ∗

PT both decrease with k—the cost of testing
per unit time; 4T ∗

PT − �∗
PT5 decreases with k when market

opportunity cost is strictly convex and remains constant
with k when market opportunity cost is linear.

(iii) �∗
PT increases and 4T ∗

PT − �∗
PT5 decreases with r—the

ratio of bug failure rates under users’ usage and testers’
testing.

(iv) �∗
PT and T ∗

PT both decrease and 4T ∗
PT − �∗

PT5 increases
with m′4�5, the rate of increase in market opportunity cost.

From Proposition 7, we conclude that mission-
critical software (implying a larger c5 should be tested
more both before and after release. This is because
with a higher cost of failure, more bugs need to be
removed before exposing users to the risk. Further,
based on the testing stop rule (Proposition 3), fewer
bugs should remain after testing stops, thus requiring
a longer overall testing duration. Similarly, when a
software system is very complex or developed under
time pressure (implying a larger N5, more testing is
needed before release to limit the risk to users, and it
will take a longer testing time to reduce the number
of undetected bugs to meet the testing stop condition
described in Proposition 3.

6 As one can see from Table 2, when a particular solution is at the
boundary, a change in the value of a parameter within a certain
range will not change the optimal solution.

The impact of the cost of testing (k5 on the opti-
mal solution is the opposite of the impact of c and
N—with a higher testing cost, it is optimal to release
early and to stop testing sooner. The shorter overall
testing duration is expected. The earlier release time
can be explained as follows. As discussed in §5.1, the
optimal release time is the point where the marginal
benefit and cost of delaying the release are equal. The
marginal benefit is proportional to the instantaneous
bug-detection rate and decreases monotonically with
time. The marginal cost equals the sum of the cost
of testing and the rate of increase in market oppor-
tunity cost. Because a higher value of k increases the
marginal cost, the curves representing the marginal
benefit and marginal cost intersect earlier, implying a
quicker release.

The influence of r , the ratio between the bug fail-
ure rates under users’ usage and testers’ testing, is
also not obvious. When there are more users or when
the released software is used more frequently (imply-
ing a higher r5, users are more likely to detect a
bug before testers; to reduce the cost of failures in
the field, testing should last longer before software
release. Yet the optimal duration of postrelease testing
shortens. Proposition 3 again helps explain the impact
of r on the duration of postrelease testing. Based on
this proposition, the expected number of undetected
bugs at the optimal testing stop time does not change
when r increases. Given that more bugs have been
detected before release and users are more efficient
at bug detection, it will take less time after release to
reach the same level of reliability.

The impact of the rate of increase in market oppor-
tunity cost is the opposite to that of r . With a
higher m′4�5, the software should be released earlier
to reduce the market opportunity cost, and the soft-
ware will be less reliable when first released. Again,
based on Proposition 3, the expected number of unde-
tected bugs at the optimal testing stop time does not
change with m′4�5. Because there are more remain-
ing bugs at the time of release, postrelease testing
should last longer to reach the same level of reliability.
Nevertheless, because users start contributing to bug
detection earlier, the total duration of tester’s testing
is shortened because of the same reliability require-
ment at the end of testing.

7. Illustrative Example
In this section, we demonstrate how the models we
propose can be used to determine the optimal release
time and testing stop time. We adopt the set of param-
eters estimated based on testing data for a real-time
control system (Pham 2006, pp. 144–145). The system
contains approximately 200 modules; the average size
of these modules is 1,000 lines of code. The num-
ber of initial bugs N = 497 and the failure rate � =

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 645

000308 are estimated using the Goel-Okumoto model
(Goel and Okumoto 1979). The cost parameters are
set as follows: the cost of testing per unit of time
k = $500 per day; the cost of fixing a bug detected
during testing b = $200; and the cost of one software
failure in the field a = $501200. The consequence of
a software failure in the field c, i.e., the difference
between the cost of a software failure in the field and
the cost of fixing a bug detected during testing, equals
$50,000. The parameter r , the ratio of bug failure rates
under testers’ testing and users’ usage, is first set
equal to 1. We have tried other values, and the results
are qualitatively similar. Regarding the market oppor-
tunity cost, we adopt a quadratic functional form,
m4�5= � · 4� +v52, based on the opportunity cost pro-
posed by Chiu et al. (2009). We first present results for
� = $51000 and v = 500; results obtained using other
values of � and v are qualitatively consistent.

Substituting m′4�5 = 2�4� + v5 into (6) and (11), we
obtain the following solutions:

�∗

NPT = −v−
k

2�
+

1
�

Productlog
(

c�2N

2�
e4k+2�v5�/42�5

)

17

(12)

�∗

PT = −v−
kr

2�41 + r5

+
1
�

Productlog
(

c�2Nr

2�41+r5
e44kr+2�v+2�vr5�5/42�41+r55

)

0 (13)

Once �∗
PT is determined, T ∗

PT can be obtained based
on (8):

T ∗

PT =
1

4r + 15�
ln

�cN

k
+

r

r + 1
�∗

PT0 (14)

When a value obtained from these formulas is less
than zero, the boundary solution zero is used instead.

Based on the given parameters, we obtain the fol-
lowing solutions: �∗

NPT = 27064 days, �∗
PT = 17039 days,

and T ∗
PT = 127075 days. The associated costs are C∗

NPT =

$16005 million and C∗
PT = $9095 million. Under the

PT policy, the system is released approximately 10
days earlier, and testing is extended by 100 days.
By switching from NPT policy to PT policy, the firm
achieves a cost saving of 38%.

This example can also be used to illustrate the result
in Proposition 6. Based on the derivations in §4.2, we
find that the expected number of undetected bugs at
the time of release is 212 for the NPT policy and 291

7 The Productlog function used here is the inverse function of
f 4w5=wew . This function is not one of the elementary functions of
calculus and has some complex mathematical properties. In this
study, the argument of the function is always positive. Within this
range, Productlog is a monotonically increasing function of its argu-
ment and has a unique real value.

for the PT policy. Under the NPT policy, all 212 unde-
tected bugs will cause software failures in the field.
But under the PT policy, the testers are expected to
detect another 145 bugs during postrelease testing;
hence the expected number of failures in the field
reduces to 146. Therefore, the users actually face less
risk under the PT policy than under the NPT pol-
icy, although the software is less reliable when first
released under the PT policy.

The influences of the three important parameters c,
�, and r on the expected costs of the two policies are
shown in Figures 6, 7, and 8, respectively. As we can
see from Figures 6 and 7, the influence of c, the conse-
quence of a software failure in the field, and �, reflect-
ing the magnitude of the market opportunity cost,
are similar. In both cases, as the value of the respec-
tive parameter increases, the expected cost increases
for both policies, and their difference widens. The
impact of r , the bug-detection ratio between users
and testers, is different. As we can see from Figure 8,
the value of r has no impact on the expected cost of
the NPT policy; this is because postrelease testing is
not considered, so r is irrelevant. But the expected
cost associated with the PT policy increases mono-
tonically with r ; hence the performance gap between
the two policies narrows as r increases. In all three
figures, the expected cost for the PT policy is lower
than that for the NPT policy, which is consistent with
Proposition 4.

Figure 6 Impact of the Consequence of a Software Failure in the Field

0

10

20

30

40

50

60

C
os

t (
$

m
ill

io
n)

c

*CNPT

*CPT

400,000200,000100,00050,00025,00012,5006,250

Figure 7 Impact of Market Opportunity Cost

0

5

10

15

20

25

30

C
os

t (
$

m
ill

io
n)

�

*CNPT
*CPT

40,00020,00010,0005,0002,5001,250625

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
646 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

Figure 8 Impact of Bug Failure Rate Ratio

0

3

6

9

12

15

18

r

C
os

t (
$

m
ill

io
n)

*CNPT
*CPT

8.0004.0002.0001.0000.5000.2500.125

During postrelease testing, although users and
testers do not directly communicate with each other,
their bug-detection activities interact because they tar-
get the same set of undetected bugs—if a bug is first
detected by one group, the other group will not detect
it. To better understand the impact of this interaction
on the solution of the PT policy, we first vary the bug
failure rate under users’ usage (�u5 while keeping that
under testers’ testing (�) fixed, and then vary the bug
failure rate caused by testers’ testing (�) while keep-
ing that under users’ usage (�u5 fixed. The impact
of such changes on the optimal release time, optimal
testing stop time, and the duration of postrelease test-
ing, are shown in Figures 9 and 10. From Figure 9, we
conclude that as the users’ bug-detection effectiveness
(represented by �u5 increases, the time to release (�∗

PT5
increases to reduce the risk of software failures in the
field to users; the total testing time (T ∗

PT5, in contrast,
decreases because the expected number of undetected
bugs under the optimal solution can be reached ear-
lier. Hence, the duration of postrelease testing 4T ∗

PT −

�∗
PT5 decreases. The impact of testers’ bug-detection

effectiveness (represented by �) on the optimal solu-
tion, as shown in Figure 10, is not monotonic. When
� is small, �∗

PT, T ∗
PT, and 4T ∗

PT − �∗
PT5 all tend to increase

with �. When � is large, �∗
PT, T ∗

PT, and 4T ∗
PT − �∗

PT5 all
tend to decrease with �.

The results can be explained by considering the
two extremes of �. At an extremely low value of �,

Figure 9 Impact of Users’ Bug-Detection Effectiveness

0

50

100

150

200

250

0.002 0.004 0.008 0.015 0.031 0.062 0.123

T
im

e
(d

ay
s)

�u

TPT

TPT –�PT

�PT
*

*

**

Figure 10 Impact of Testers’ Bug-Detection Effectiveness

0

30

60

90

120

150

180

0.002 0.004 0.008 0.015 0.031 0.062 0.123

T
im

e
(d

ay
s)

TPT

TPT – �PT

�PT

�

*

*

* *

testing provides practically no benefits. Therefore, the
firm should release the product immediately to min-
imize the market opportunity cost. As � increases
from an extremely low value, the gains from testing
increase. We can infer from the testing stop condition
that fewer bugs should remain at the end of testing,
and therefore it becomes optimal to conduct addi-
tional testing to reduce the cost of software failures in
the field. Yet when � is extremely large, testers will be
able to detect almost all bugs in a very short period
of time. Therefore, prolonged testing again becomes
unnecessary.

8. Uncertainty in Market
Opportunity Cost

Because of the various uncertainties associated with
the market size and competitors’ market behavior,
market opportunity is often the most difficult cost fac-
tor to estimate. For instance, if a competitor enters the
market earlier than predicted, the market opportunity
cost is likely to increase faster than originally pro-
jected. Similarly, if the market size is underestimated,
the estimates for the market opportunity cost as well
as its rate of increase will be lower than their true val-
ues. In this section, we examine the implications of
uncertain market opportunity cost and develop meth-
ods to address such uncertainties.

8.1. Consequences of Over- or Underestimating
Market Opportunity Cost

From Equation (11), we infer that the rate of increase
in market opportunity cost, rather than the absolute
value of the cost, determines the optimal release time.
Further, we conclude based on Proposition 7 that
if the estimated rate of increase in market oppor-
tunity cost is higher (lower) than the actual rate of
increase, the recommended release time and testing
stop time will both be earlier (later) than the opti-
mal times, and the recommended duration of postre-
lease testing will be longer (shorter) than the optimal
duration.

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 647

To illustrate the impact of uncertain market oppor-
tunity cost on the solution to the PT policy, we again
adopt the quadratic market opportunity cost function
m4�5= �4�+v52. We call � the scale parameter, because
m(�) is proportional to � at any point in time. The
value of the scale parameter reflects, for instance, the
potential market size for a new product or service.
We name � the urgency parameter because all else
being equal, a higher � value is equivalent to shift-
ing a monotonically increasing cost curve to the left.
The value of the urgency parameter can be affected,
for instance, by a competitor’s market entry time. The
rate of increase in market opportunity cost, m′4�5,
depends on both the scale parameter and the urgency
parameter. All else being equal, m′4�5 increases with
a higher � or a higher �.

Suppose that the true market opportunity cost func-
tion is m4�5= 41000 · 4�+30052. Using the same param-
eter values as in §7, we obtain the optimal release
time and testing stop time as �∗

PT = 21059 days and
T ∗

PT = 129085 days; the optimal duration of postre-
lease testing is 108.26 days. If the market opportunity
cost is projected to be m̂4�5 = 61000 · 4� + 50052 (hence
m̂′4�5 > m′4�5 for all �), the recommended release
time and testing stop time would be �̂∗

PT = 15005 days
and T̂ ∗

PT = 126059 days, both earlier than the optimal
times obtained based on the true market opportunity
cost; the recommended duration of postrelease test-
ing would be 111.54 days, which is longer than the
optimal duration. Similarly, it can be shown that the
opposite is true when the projected rate of increase in
market opportunity cost is lower than the true rate of
increase, i.e., m̂′4�5 <m′4�5.

8.2. Bayes Risk Approach to Determine Release
and Testing Stop Times

Better information gathering and projection tech-
niques seem to be the logical solutions to resolve
uncertainty concerning the market opportunity cost,
but obtaining a precise estimate of this cost could be
difficult in practice. Therefore, we consider a method
to reduce the risks resulting from the uncertain mar-
ket opportunity cost using the Bayes risk principle
(Berger 1993, p. 17). This approach leads to solutions
that minimize the expected loss.

In our context, applying the Bayes risk principle
results in the release and testing stop times that min-
imize the expected total cost. For expositional con-
venience, we consider the market opportunity cost
a random function, denoted by M4t5, and use mi4t5
and pi to represent, respectively, the market opportu-
nity cost under market scenario i and the probability
associated with that scenario. The expected total cost,
with the uncertain market opportunity cost consid-
ered, then equals:

EM4t56CPT4�1T 57 = bN + kT +
cNr

r + 1
e−��

+
cN

r + 1
er��−4r+15�T

+
∑

i

pimi4�50

If we denote the optimal release time and the opti-
mal testing stop time obtained using the Bayes risk
principle by �B

PT and T B
PT, respectively, the following

inequality must hold:

EM4t56CPT4�
B
PT1T

B
PT57≤ EM4t56CPT4�1T 571 ∀0 ≤ � < T 0

Given the types of market opportunity costs we con-
sider in this research (defined in §3), each mi4�5 is
still a convex and increasing function for each market
scenario. Because it is the weighted sum of multiple
convex and increasing functions, the expected mar-
ket opportunity cost,

∑

i pimi4�5, also remains a con-
vex and increasing function of the release time, which
leads to the following conclusion:

Observation 1. When using the Bayes risk principle
to address uncertain market opportunity cost, all the math-
ematical properties and findings regarding the PT policy
remain valid.

Therefore, by replacing the market opportunity
cost m4t5 in (5) with the expected market opportu-
nity cost, the optimal solution can still be computed
using Table 2 and Equations (8) and (11). We call the
solution thus obtained the Bayes solution to the PT
policy.

Again based on the opportunity cost function pro-
posed by Chiu et al. (2009), we let mi4�5= �i4� + vi5

2.
The expected market opportunity cost equals

E6M4�57≡
∑

i

pimi4�5=
∑

i

pi�i4� + vi5
2
= �̃4� + ṽ52

+�1

where

�̃ =
∑

i

pi�i1 ṽ =

∑

i pi�ivi
∑

i pi�i
1 and

� =
∑

i

pi�iv
2
i −

4
∑

i pi�ivi5
2

∑

i pi�i
0 (15)

We name �̃ and ṽ the consolidated scale parameter
and the consolidated urgency parameter, respectively.
The consolidated scale parameter (�̃5 is simply the
expected value of the scale parameter with respect to
market uncertainly. The consolidated urgency param-
eter (ṽ5 is the weighted average of the individual
urgency parameters, with the weight being pi�i for

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
648 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

each vi. Depending on the source of market uncer-
tainty, there are two special cases:

I. The urgency parameter is known and the uncertainty
comes only from the scale parameter. This may occur if,
for instance, a firm is certain about its competitors’
market behavior (represented by a constant �) but
unsure about the market size. Using Equation (15),
the consolidated parameters reduce to

�̃ =
∑

i

pi�i1 ṽ = v0

II. The scale parameter is known and the uncertainty
comes only from the urgency parameter. This may occur
if, for instance, a firm is certain about the market size
(denoted by �) but unsure about its competitors’ mar-
ket behavior. Under this scenario, the consolidated
parameters reduce to

�̃ = �1 ṽ =
∑

i

pivi0

Because it is the rate of increase in the market
opportunity cost (instead of its absolute value) that
determines the optimal release and testing stop times,
to gain further insights we examine the derivative of
the expected market opportunity cost with respect to
the release time. Using Equation (15), we have

E6M4�57′� = 2�̃� + 2�̃ṽ0

Therefore, if the consolidated scale parameter and the
consolidated urgency parameter increase by the same
proportion, the increase in the scale parameter will
lead to a larger impact on the Bayes solution. Hence,
all else being equal, investing in obtaining a better
estimate of the scale parameter could be more benefi-
cial than estimating the urgency parameter.

We next illustrate how to obtain the Bayes solution.
Based on (15), the expected total cost equals

EM4t56CPT4�1T 57 = bN + kT +
cNr

r + 1
e−��

+
cN

r + 1
er��−4r+15�T

+ �̃4� + ṽ52
+�0

Because � is a constant, it does not affect the opti-
mal release time or the testing stop time. Therefore,
we can derive the solution to the PT policy using the

Table 3 Illustrative Parameter Values and Market Opportunity Cost Functions

Urgency parameter

Scale parameter � = 2 (prob.= 0025) � = 6 (prob.= 0040) � = 10 (prob.= 0035)

� = 11000 (prob.= 0030) m14� 5= 110004� + 252 m24� 5= 110004� + 652 m34� 5= 110004� + 1052

� = 31000 (prob.= 0050) m44� 5= 310004� + 252 m54� 5= 310004� + 652 m64� 5= 310004� + 1052

� = 51000 (prob.= 0020) m74� 5= 510004� + 252 m84� 5= 510004� + 652 m94� 5= 510004� + 1052

two consolidated parameters �̃ and ṽ. Based on Equa-
tions (13) and (14), we have

�B
PT =−ṽ−

kr

2�̃41+r5

+
1
�

Productlog
(

c�2Nr

2�̃41+r5
e4kr+2�̃ṽ+2�̃ṽr5�/42�̃41+r55

)

1 (16)

T B
PT =

1
4r+15�

ln
�cN

k
+

r

r+1
�B0 (17)

To illustrate, suppose the scale parameter and the
urgency parameter each has three possible values,
leading to the nine possible market opportunity cost
functions shown in Table 3. The probabilities asso-
ciated with the different parameter values are also
shown in the table. The other model parameters are
set to the same values as in the initial numerical
example in §7. From (15), we have �̃ = 31200 and
ṽ = 506. Based on (16), and (17), we obtain the Bayes
solution as �B

PT = 23043 and T B
PT = 130078. The expected

total cost CB
PT ≡ EM4t56CPT4�

B
PT1T

B
PT57= $11042 million.

8.3. Risk Analysis of Bayes Solutions to the PT
Policy and NPT Policy

Assuming the same market uncertainty, the solution
to the NPT policy is �B

NPT = 35002 days based on
the Bayes risk principle. The expected cost associated
with this solution is $13.88 million. Hence, by adopt-
ing the Bayes solution for the PT policy instead that
for the NPT policy, the firm can expect a cost saving
of 35.6%. To further compare the Bayes solutions for
the two policies, we compute the total costs associ-
ated with the policies under each of the possible mar-
ket opportunity costs. The results are summarized in
Table 4. For instance, the first row shows that if the
true market opportunity cost is m14t5, the solution for
the PT policy leads to a total cost of $6.86 M, and
the total cost under the NPT policy is $9.94 M; the
percentage difference between the two costs is 31.0%.
From this table, we see that the PT policy remains far
superior to the NPT policy for each of the possible
market opportunity costs, with cost reductions rang-
ing from 30.8% to 38.7%. We have also compared the
two policies for other values of the scale and urgency
parameters and their probabilities; the conclusions are
qualitatively consistent.

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 649

Table 4 Comparison Between Bayes Solutions for PT Policy and
NPT Policy

PT policy NPT policy Percentage
($) ($) diff. (%)

m14� 5= 110004� + 252 6.86 M 9.94 M 31.0
m24� 5= 110004� + 652 7.08 M 10.26 M 31.0
m34� 5= 110004� + 1052 7.33 M 10.60 M 30.8
m44� 5= 310004� + 252 8.15 M 12.68 M 35.7
m54� 5= 310004� + 652 8.81 M 13.62 M 35.3
m64� 5= 310004� + 1052 9.57 M 14.65 M 34.7
m74� 5= 510004� + 252 9.45 M 15.42 M 38.7
m84� 5= 510004� + 652 10.55 M 16.99 M 37.9
m94� 5= 510004� + 1052 11.80 M 18.71 M 36.9

9. Testing Resource Reallocation and
Uncertain Market Opportunity Cost

The analyses presented so far assume that testing
resources remain constant during the entire testing
duration. Postrelease testing leads to several impor-
tant benefits, but it also can severely strain a firm’s
testing resources, especially if it lasts long, as is the
case for the example discussed in §7. When new
projects are initiated, it may not be practical for a firm
to expand its testing capabilities in the short term. In
such situations, a portion of the available resources
may have to be reallocated to other projects. Simi-
larly, if other projects are completed ahead of sched-
ule, it may be possible to allocate testing resources
that become free to the focal project. In this section,
we examine the PT policy in the presence of such test-
ing resource reallocations. We consider the impact of
scheduled as well as unscheduled changes in resource
allocation for the focal project. To avoid overly com-
plicating the problem, we assume that once testing
stops, it is not resumed. Furthermore, we assume that
the release of a new system cannot be reversed; i.e.,
once users start using the new system, they cannot
return to an earlier system. In addition, we continue
to assume that the uncertainty about market oppor-
tunity cost still exists.

9.1. Scheduled Resource Reallocation
If it is known beforehand that some of the testing
resources will be reallocated at a future time, the
optimal release and testing stop times should still be
jointly determined to minimize the cost associated
with these decisions. Suppose that testing resource
reallocation occurs at time R. As a result, the cost of
testers’ testing per unit of time and the bug failure

Figure 11 Release Before R and Testing Stops After R

T0 �

F2(�, T) F3(�, T) F4(�, T)

R

F1(�, T)

t

rate due to testers’ testing both change after R. For
instance, if a portion of the testers is assigned to other
projects, then the values of the two parameters will
both decrease. We denote the two parameters before
R by k and �, and those after R by k̃ and �̃. Simi-
larly, we represent the Bayes solution without testing
resource reallocation by �B

PT and T B
PT and the solution

with testing resource reallocation considered by �̃B
PT

and T̃ B
PT. Although �B

PT and T B
PT can be determined as

described in §8, we need to develop new methods to
compute �̃B

PT and T̃ B
PT.

When testing resources are being reallocated, three
different scenarios need to be considered. First, if
�B

PT ≤ T B
PT < R, testing resource reallocation has no

effect on the new optimal solution, hence �̃B
PT = �B

PT
and T̃ B

PT = T B
PT. Second, if R ≤ �B

PT < T B
PT, we can treat

R as time zero and use the Bayes risk approach to
calculate �̃B

PT and T̃ B
PT based on the revised parameters

k̃ and �̃. The third scenario, when �B
PT < R ≤ T B

PT, is
more complex. In this case, the optimal solution with
resource reallocation considered could either result in
�̃B

PT< R ≤ T̃ B
PT or R ≤ �̃B

PT < T̃ B
PT. Therefore, we need to

obtain two separate candidate solutions, one satisfying
�̃B

PT < R ≤ T̃ B
PT and the other satisfying R ≤ �̃B

PT < T̃ B
PT,

and select the solution with the lower cost. Again,
the candidate solution satisfying R≤ �̃B

PT < T̃ B
PT can be

computed using the Bayes risk approach by treating R
as time zero. However, obtaining the candidate solu-
tion satisfying �̃B

PT <R ≤ T̃ B
PT requires additional anal-

ysis because the cost expression in Equation (5) is no
longer valid. We next derive the expected cost associ-
ated with the scenario where �̃B

PT <R≤ T̃ B
PT.

The time horizon is now divided into four intervals,
as shown in Figure 11. In contrast to the scenario
without resource reallocation, here the interactions
between testers’ and users’ testing processes change
during postrelease testing. Therefore, testing before
and after R needs to be examined separately. Fol-
lowing the same logic as in §4.2, we obtain the
probability of a bug being detected in each of these
intervals:



































F14�1T 5=1−e−��1

F24�1T 5=e−��41−e−4r+15�4R−�551

F34�1T 5=e−��e−4r+15�4R−�541−e−4r�+�̃54T−R551

F44�1T 5=e−��e−4r+15�4R−�5e−4r�+�̃54T−R50

(18)

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
650 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

For each bug detected during the second time inter-
val [�1R], the probability that the bug is detected by
users is r/41+r5; and for each bug detected during the
third time interval, the probability that it is detected
by users is r�/4r�+ �̃5. Therefore, the total cost asso-
ciated with the PT policy equals

CPT4�1T 5 = bN +kR+ k̃4T −R5

+cN

[

r

r+1
F24�1T 5+

r�

r�+�̃
F34�1T 5+F44�1T 5

]

+M4�51

where M4t5 still denotes the uncertainty in market
opportunity cost. Similarly, we let mi4t5 represent the
market opportunity cost under market scenario i,
and pi the probability associated with market sce-
nario i. The total expected cost, with respect to uncer-
tain market opportunity cost, takes the following
form:

EM4t56CPT4�1T 57

= bN + kR+ k̃4T −R5+ cN

[

r

r + 1
F24�1T 5

+
r�

r�+ �̃
F34�1T 5+ F44�1T 5

]

+
∑

i

pimi4�50 (19)

By analyzing the cost expression in (19), we find that
the testing stop rule remains valid under this scenario
as well.

Proposition 8. In the presence of testing resource real-
location and uncertain market opportunity cost, it is opti-
mal to continue testing after the reallocation until the
expected number of undetected bugs reaches k̃/4�̃c50

This new testing stop rule can be explained as fol-
lows. Regardless of whether the release time is optimal
for the decision or not, the optimal testing stop time is
computed based on the trade-off between the marginal
cost of postrelease testing and the marginal bene-
fit of postrelease testing after R. The marginal cost
of postrelease testing equals k̃. The marginal bene-
fit of postrelease testing equals the marginal decrease
in the expected consequence of software failures in
the field and is proportional to the expected num-
ber of undetected bugs at any point in time. Because
the number of undetected bugs decreases over time,
the marginal benefit also keeps decreasing. Therefore,
testing should stop once the marginal benefit of test-
ing equals the marginal cost of testing. If the num-
ber of undetected bugs at a given point in time is x,
then the marginal benefit of testing is c�̃x, because
the instantaneous bug-detection rate for testers is �̃x.
Letting c�̃x = k̃, we have x = k̃/4�̃c5. Therefore, testing
should stop when the expected number of undetected
bugs drops to k̃/4�̃c5. The uncertain market opportu-
nity cost does not play a role in this trade-off because

the software would have already been released by
then.

A closed-form solution cannot be derived based on
the cost expression in (19), but the optimal release
time and optimal testing stop time can be obtained
numerically. Assuming a reasonable granularity for
the release time � between 0 and R, for every value
of � , we calculate the corresponding testing stop time
T based on the testing stop rule specified in Propo-
sition 8 and record the associated cost. The optimal
solution is the pair {� , T } that leads to the lowest
expected cost. The method is efficient because we
only need to search a one-dimensional feasible region
[0, R5 for � .

To illustrate the PT policy with scheduled resource
reallocation, we adopt the parameter values for the
example discussed in §7: N = 497, � = 000308, k =

$500, b = $200, c = $501000, and r = 1. The uncer-
tain market opportunity cost has nine possible func-
tional forms (and associated probabilities), as shown
in Table 3. We first calculate the Bayes solution,
assuming that resource reallocation does not occur,
and obtain �B

PT = 23043, T B
PT = 130078, with an associ-

ated cost of CB
PT = $11042 M. Now suppose that 50% of

the testing resources (e.g., testing personnel) is sched-
uled to be removed from the current project at R =

35. Assuming that the cost and the abilities of all
testers are similar, the cost of testing per unit of time
will drop to k̃ = $250, and the bug failure rate due
to testers’ testing will reduce to �̃ = 000154 after R.
Because �B

PT <R≤ T B
PT, we first use the cost expression

in (19) to determine the revised optimal testing stop
time and obtain �̃B

PT = 21014, T̃ B
PT = 161017, and C̃B

PT =

$12035 M. This candidate solution is found to be better
than the one satisfying R≤ �̃B

PT < T̃ B
PT and hence is the

optimal solution. By comparing this solution with the
one for the scenario with constant testing resources,
we find that, as expected, if testing resources are to
be reduced in the future, testing lasts longer and
the total cost increases because users detect a higher
proportion of the bugs during postrelease testing. In
addition, one may expect that because testers will
detect fewer bugs during postrelease testing, release
should be delayed to reduce the risk to users. Surpris-
ingly, we find that the software should be released
even earlier when resources are scheduled to be
reduced.

To understand this counterintuitive finding, we
examine the changes in the marginal cost and the
marginal benefit with the release time � for two dif-
ferent reallocation levels and compare them with the
original allocation. The testing stop time T is cho-
sen such that the total cost is minimized for each
given � . The results are shown in Figure 12. In the
figure, the marginal benefit represents the marginal
decrease in the expected cost of software failures in

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 651

Figure 12 Marginal Benefits Affected by Testing Resource
Reallocation

0

5,000

10,000

15,000

20,000

25,000

20 21 22 23

~ ~

~~

24 25 26 27 28 29 30

M
ar

gi
na

l c
os

t/b
en

ef
it

Release time � (days)

Marginal cost
Marginal benefit (k=2k, �=2)
Marginal benefit (k, �)
Marginal benefit
(k=0.5k, �=0.5�)

the field. At all three resource levels, the marginal
benefit decreases monotonically as the release time
is further delayed. The marginal cost in the figure
equals the sum of the marginal market opportunity
cost and the marginal cost of testing and is practically
the same at all three resource levels; therefore, we
show only one marginal cost curve in the figure. As
expected, the marginal cost increases with the release
time primarily because of the convexity of the mar-
ket opportunity cost. The software should be released
when the marginal cost equals the marginal bene-
fit. From Figure 12, we see that the marginal bene-
fit is lower with reduced testing resources (k̃ = 005k,
�̃ = 005�) after reallocation. This is because testers’
instantaneous bug-detection rate decreases with fewer
resources. As shown in the figure, the lower marginal
benefit curve intersects the marginal cost curve at
an earlier release time. Similarly, the marginal bene-
fit and marginal cost curves meet at a later release
time with increased testing resources (k̃ = 2k, �̃ = 2�)
after reallocation. This explains why it is optimal for
the firm to release the software earlier when testing
resources are reduced after reallocation and to further
delay the release when resources are increased after
reallocation.

9.2. Unscheduled Testing Reallocation
We next examine the scenario where testing resource
reallocation occurs unexpectedly. If the reallocation is
made before release, the method to cope with it is
straightforward. We treat the time of change as time
zero and recompute the optimal release time and test-
ing stop time based on the revised cost of testing and
bug failure rate due to testing. However, if the real-
location occurs after release, we need to recompute
only the testing stop time. The cost formulation (19)
and the testing stop rule described in Proposition 8
remain valid under this scenario.

We denote the expected number of undetected bugs
at R by u4R5, which equals Ne−��e−4r+15�4R−�5, where

� is the release time. The revised optimal testing stop
time takes the following value:

T̃ B
PT =































R1 if u4R5≤ k̃/4�̃c51

R+ ln
(

�̃cu4R5

k̃

)

/

4r�+ �̃51

if u4R5 > k̃/4�̃c50

(20)

The solution shown in (20) follows from the test-
ing stop rule: If the expected number of undetected
bugs at time R already satisfies the testing stop rule
after R, then testing should stop at R; otherwise, test-
ing should continue until the rule is satisfied. Again,
because the software has already been released, the
uncertain market opportunity cost does not affect the
optimal testing stop time.

9.3. Impact of Testers’ Cost Effectiveness on
the Release Policy

Because testing resource reallocation does not change
the consequence of a software failure in the field (c5,
the testing stop condition is determined solely by the
testers’ cost effectiveness, i.e., the ratio between the cost
of testing per unit of time and the bug failure rate due
to testers’ testing (k/� or k̃/�̃5. Depending on whether
this ratio increases, decreases, or remains constant
after reallocation, the impact of testing resource real-
location on the testing stop decision and the risk to
users are different.

If testers’ cost effectiveness remains the same after
resource reallocation, i.e., k̃/�̃ = k/�, the expected
number of undetected bugs at the optimal testing
stop time does not change after testing resource real-
location. In this case, if the last phase of testing is
conducted using reduced testing resources, because
testers’ bug-detection rate decreases, testing will last
longer. Further, because testers are expected to detect
a smaller proportion of bugs after R, the expected cost
of software failures in the field will increase. In con-
trast, if the last phase of testing is conducted using
more testing resources, testing will be shortened and
testers will detect a larger proportion of the bugs, and
hence the expected cost of software failures in the
field will decrease. To better understand this impact,
we vary the values of k̃ and �̃ while keeping their
ratio fixed at the original level (k/�) and repeat the
numerical analysis. The solutions are summarized in
Figure 13. The first two data points in the figure repre-
sent reduced testing resources after reallocation, and
the last two represent increased resources after reallo-
cation. From this figure, we can see that as the testing
resources devoted to the focal project increase after
reallocation, the optimal testing stop time and the
expected number of software failures in the field both
decrease as expected. However, the optimal release

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
652 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

Figure 13 Impact of the Amount of Testing Resources after
Reallocation 4k̃/�̃= k/�5

0

40

80

120

160

200

0

40

80

120

160

200

240

N
o.

 o
f

fa
ilu

re
s

T
im

e
(d

ay
s)

Software
failures

B�PT
~

B~
TPT

~ ~
k < k, � < �

~ ~
k > k, � > �

~
�

0.2
46

40

0.1
23

20

0.0
61

60

0.0
30

80

0.0
15

40

0.0
07

70

0.0
03

85

time is delayed. This is consistent with the release
time phenomenon discussed in §9.1.

During testing resource reallocation, if the more
experienced and productive testers are assigned to
other projects, the remaining testers’ bug-detection
effectiveness may decrease proportionately more than
the cost of testers’ testing, thus leading to k̃/�̃ > k/�.
This implies that testers’ testing becomes more expen-
sive relative to their testing effectiveness. Based on
Proposition 8, more bugs will remain undetected after
testing stops. Yet assigning the less productive testers
to other projects can result in k̃/�̃ < k/�. This implies
that the remaining testers are less expensive relative
to testers’ effectiveness; hence fewer bugs will remain
after testing stops. Similar arguments follow if testing
resources freed from other projects are added to the
current project. To further examine how the testers’
cost effectiveness impacts the solution to the PT pol-
icy and the risk to users, we fix the cost of testing at
k̃ = $50, representing a decrease in testing resources
after reallocation, and vary �̃ from 0.00385 to 0.2464;
the solutions are shown in Figure 14. From the fig-
ure, we see that as testers become more effective rel-
ative to their cost, it is optimal to delay the release

Figure 14 Impact of Testers’ Bug-Detection Effectiveness with
Reduced Resources 4k̃ = 5005

Software
failures

B�PT
~

B~
TPT

~ ~
k/� > k/� ~ ~

k/� < k/�

30

70

110

150

190

0

40

80

120

160

200

N
o.

 o
f

fa
ilu

re
s

T
im

e
(d

ay
s)

0.0
03

85

0.0
07

70

0.0
15

40

0.0
30

80

0.0
61

60

0.1
23

20

0.2
46

40

~
�

time, the optimal testing stop time first increases and
then decreases, and the expected number of software
failures in the field decreases monotonically. Anal-
yses conducted for scenarios with increased testing
resources lead to similar results. The delay in release
time follows from the phenomenon discussed earlier.
The finding regarding the decreasing number of soft-
ware failures in the field is as expected. The non-
monotonic result regarding the testing stop time with
increasing �̃ is similar to the impact of testing stop
time due to increasing � as discussed in §7 (Figure 10).

10. Contributions, Managerial
Implications, and Future
Research Directions

Traditionally, firms may have had to delay the release
of their software to ensure reliability; however, this
could result in substantial market opportunity costs.
We propose a novel software release policy with
postrelease testing that helps mitigate this issue.
Specifically, we (i) formally analyze the bug-detection
behavior under such a policy, accounting for peri-
ods when bugs are detected just by testers, as well
as by both testers and users; (ii) develop a model
that can be used to determine the cost-minimizing
release and testing stop times; and (iii) analytically
show the advantages of the PT policy over the NPT
policy. We find that the software should be released
earlier and testing should stop later under the pro-
posed policy than under the NPT policy. Interestingly,
we also find that although the expected number of
undetected bugs is higher at the time of release, the
expected number of software failures in the field is
reduced under the proposed policy. We extend our
model to study the release policy under more com-
plex scenarios involving uncertain market opportu-
nity costs and testing resource reallocations. We show
that all our prior findings remain valid under uncer-
tain market opportunity costs. Surprisingly, we find
that the software should be released earlier when test-
ing resources are to be reduced after release.

The findings of this study have important impli-
cations for managing software projects, which have
a notorious track record for falling behind schedule
and/or over budget (Standish Group International
2001). Our analyses show that when opportunity costs
are significant, by delinking the testing stop time from
the release time, the development team can deliver
the system earlier and simultaneously reduce both the
risk of software failures in the field over the lifetime
of the product and the overall cost through extended
testing after release. Therefore, if the release and test-
ing stop times are determined based on the proposed
policy, project managers need not be concerned with
an early-release decision, because the risk will be

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 653

more than offset by the benefits of postrelease testing.
This additional flexibility can help significantly accel-
erate the release time and help firms gain an advanta-
geous position in a competitive marketplace. Further-
more, with existing release policies, new systems can
be significantly “undertested,” because project man-
agers fear the consequences of delaying release. Our
release policy, in contrast, allows firms to invest more
on software testing, eventually leading to a more reli-
able system. Besides reducing the chances of failure
in the field, a more reliable system helps the firm reap
intangible benefits such as increased user satisfaction
and customer loyalty. Last, our policy allows a firm
to better utilize its testing resources. If testing stops
immediately after a new system is put into operation,
testing resources are often underutilized or even com-
pletely idle between projects. If this is the case, firms
can test even longer to further improve the quality
of the system, because the marginal cost of testing is
relatively low.

The policy with postrelease testing can also be mod-
ified to incorporate the effect of investment in learn-
ing. Assuming that the effect of such investments
can be captured, our model can be extended to help
decide the optimal amount of investment in learn-
ing as well as the optimal release and testing stop
times. In a preliminary analysis, with the simplifying
assumption that to sustain the effect of learning the
investment in learning has to be continuous, we find
that it is optimal to release the software later with
greater investment in learning or when the invest-
ment in learning results in a higher rate of learning.
In addition, we find that when there are fewer test-
ing resources remaining after reallocation, the firm
is better off releasing the software earlier. Future
research could look at a more general approach to
learning, where one could model the cumulative ben-
efit of investment in learning over time. Possible
solution approaches such as dynamic programming
techniques could be used to determine the optimal
amount of investment in learning over time.

There are a number of other research directions
that merit further consideration. First, we currently
assume that the number of bugs and the failure
rates are known beforehand. It should be feasible to
develop multiperiod decision models that help orga-
nizations make better decisions based on software
quality information collected until each decision time.
Second, we consider only custom-built enterprise-
level information systems in this study. The desir-
able duration of public beta testing for commercial
off-the-shelf software could also be analyzed based
on the methodology we propose in this study. Third,
the cost of installing patches is assumed to be neg-
ligible in this research, because it is typically signif-
icantly smaller than the other costs we consider. For

those cases where the cost of patching is significant,
future research could model both postrelease testing
and patch management to minimize the total cost to
a firm. Fourth, when analyzing unscheduled testing
resource reallocation, the time of reallocation (R5 is
assumed to be known once the reallocation decision
is made. Future research could treat R as a random
variable and reexamine the decision problem. Finally,
future study could also consider multiple resource
reallocations during the testing period.

Appendix

A.1. Derivation of Equation (4)
Suppose X1 and X2 are two independent exponential ran-
dom variables with failure rates �1 and �2, respectively. The
probability that X1 fails before X2, given that at least one of
them fails before time D, equals

P8X1 <X21X2 <D9+ P8X1 <D1X2 >D9

1 − e−4�1+�25D
0

We next derive the two terms shown in the numerator of
the above expression.

P8X1 <X21X2 <D9 =

∫ D

0
P8X1 <X2 �X2 = x9�2e

−�2x dx

=

∫ D

0
P8X1 < x9�2e

−�2x dx

=

∫ D

0
41 − e−�1x5�2e

−�2x dx

=

∫ D

0
�2e

−�2x dx−

∫ D

0
e−�1x�2e

−�2x dx

= −e−�2x�
D
0 +

�2

�1 +�2
e−4�1+�25x�

D
0

= −e−�2D + 1 +
�2

�1 +�2
e−4�1+�25D

−
�2

�1 +�2
0

P 8X1 <D1X2 >D9 = 41 − e−�1D5e−�2D = e−�2D − e−4�1+�25D0

Therefore,

P8X1 <X21X2 <D9+ P8X1 <D1X2 >D9

1 − e−4�1+�25D

=
�1/4�1 +�2561 − e−4�1+�25D7

1 − e−4�1+�25D
=

�1

�1 +�2
0

A.2. Proof of Lemma 1
To prove that CPT(� ,T 5 is a strictly convex function of �
and T , we only need to show the following:























¡2CPT/¡�
2 > 01

¡2CPT/¡T
2 > 01

4¡2CPT/¡�
254¡2CPT/¡T

25− 4¡2CPT/¡�¡T 5
2 > 00

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
654 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

We first obtain the first-order derivatives:

¡CPT/¡� = −
�cNr

r + 1
e−��

+
�cNr

r + 1
er��e−4r+15�T

+m′4�51 and

¡CPT/¡T = k−�cNer��e−4r+15�T 0

The second-order derivatives are as follows:

¡2CPT/¡�
2
=

�2cNr

r + 1
e−��

+
r2�2cN

r + 1
er��e−4r+15�T

+m′′4�5 > 01

(21)

¡2CPT/¡T
2
= 4r + 15�2cNer��e−4r+15�T > 01 (22)

¡2CPT/¡�¡T = −�2rcNer��e−4r+15�T 0

Given the second-order derivatives, we have

4¡2CPT/¡�
254¡2CPT/¡T

25− 4¡2CPT/¡�¡T 5
2

= �4c2N 2re4r−15��e−4r+15�T

+m′′4�54r + 15�2cNer��e−4r+15�T > 00 (23)

From (21), (22), and (23), we conclude that CPT4�1T 5 is a
strictly convex function of � , T . �

A.3. Proof of Proposition 1
Without the market opportunity cost, we obtain from (6)
and (11) the following solution:

�∗

NPT = �∗

PT =
1
�

ln
�cN

k
0 (24)

From (7), we have

e−��∗
PT = er��

∗
PTe−4r+15�T ∗

PT ⇒ e−4r+15��∗
PT = e−4r+15�T ∗

PT

⇒ �∗

PT = T ∗

PT0

Therefore,

�∗

NPT = �∗

PT = T ∗

PT =
1
�

ln
�cN

k
0 (25)

The solution shown in (24) is valid only if the solu-
tion is interior, or equivalently if k < �cN . We next con-
sider the boundary solutions. From (24), we conclude
�∗

NPT = �∗
PT = 01 iff k ≥ �cN 0

Substituting �∗
PT with zero in (8), we obtain

T ∗

PT =
1

4r + 15�
ln
(

�cN

k

)

0 (26)

With the condition k ≥ �cN , T ∗
PT in (A6) is less than zero.

Hence T ∗
PT should also take the boundary value of zero. We

therefore conclude �∗
NPT = �∗

PT = T ∗
PT = 01 iff k ≥ �cN 0 �

A.4. Proof of Proposition 2
(i) We first prove �∗

PT < �∗
NPT for interior solutions. We define

the following two functions:

fNPT4�5= −�cNe−��
+m′4�51 and

fPT4�5= −�cNe−��
+

r + 1
r

m′4�50

From m′4�5 > 0 and m′′4�5≥ 0, we conclude

f ′

NPT4�5 > 01 f ′

PT4�5 > 01 fNPT4�5 < fPT4�51 ∀ �0 (27)

Substituting the two newly defined functions in (6) and
(11), we have

k+ fNPT4�
∗

NPT5= 01 (28)

k+ fPT4�
∗

PT5= 00 (29)

Equations (28) and (29) lead to

fNPT4�
∗

NPT5= fPT4�
∗

PT50 (30)

From (27) and (30), we conclude �∗
PT < �∗

NPT.
(ii) We next prove �∗

NPT < T ∗
PT for interior solutions. Note

that from (7), we have

er��
∗
PTe−4r+15�T ∗

PT = e−��∗
PT −m′4�∗

PT5
r + 1
�cNr

< e−��∗
PT

⇒ e−4r+15�T ∗
PT < e−4�+15�∗

PT ⇒ T ∗

PT > �∗

PT0

From (6) and (8), we obtain

k = �cNer��
∗
PTe−4r+15�T ∗

PT

= �cNe−��∗
NPT −m′4�∗

NPT51 or equivalently1

e−��∗
NPT − er��

∗
PTe−4r+15�T ∗

PT =m′4�∗

NPT5/4�cN50 (31)

From (7), we also have
r

r + 1
4e−��∗

PT − er��
∗
PTe−4r+15�T ∗

PT 5=m′4�∗

PT5/4�cN50 (32)

From �∗
PT < �∗

NPT and m′4�5 > 0, we conclude that the right-
hand side of (31) is greater than the right-hand side of (32);
therefore, we must have

e−��∗
NPT − er��

∗
PTe−4r+15�T ∗

PT >
r

r + 1
4e−��∗

PT − er��
∗
PTe−4r+15�T ∗

PT 51

⇔ e−��∗
NPT >

r

r + 1
e−��∗

PT +
1

r + 1
er��

∗
PTe−4r+15�T ∗

PT

⇔ e−��∗
NPT > e−�T ∗

PT

(

r

r + 1
e�4T

∗
PT−�∗

PT5 +
1

r + 1
e−r�4T ∗

PT−�∗
PT5

)

⇔ e−��∗
NPT > e−�T ∗

PT

(

r

r + 1
x+

1
r + 1

x−r

)

1 (33)

where x = e�4T
∗
PT−�∗

PT5 > 1 because T ∗
PT > �∗

PT.
If we let f 4x5 = r/4r + 15x + 14r + 15x−r , then we

havef 415= 1 and

f ′4x5=
r

r + 1
41 − x−r−15 > 01 ∀x > 10

Therefore,

f 4x5=
r

r + 1
x+

1
r + 1

x−r > 11 ∀x > 10 (34)

(33) and (34) jointly lead to

e−��∗
NPT > e−�T ∗

PT ⇒ �∗

NPT <T ∗

PT0

(iii) We now examine the boundary solutions for the
NPT policy and the PT policy. For both policies, boundary
solutions should be used if any of the values obtained from
the first-order conditions (6), (8), and (11) is less than zero.
We first derive the conditions under which boundary solu-
tions should be used.

Because CNPT(�) is strictly convex in � , �∗
NPT = 0 if and

only if C ′
NPT405= k−�cN +m′405≥ 0, or

�cN ≤ k+m′4050 (35)

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 655

For CPT(� , T 5, we conclude from (11) that �∗
PT = 0 if and

only if

�cN ≤ k+
r + 1
r

m′4050 (36)

Obviously, if (35) holds, (36) must also be true. We therefore
conclude that if �∗

NPT takes the boundary solution, �∗
PT must

also be at the boundary, i.e., �∗
NPT = 0 ⇒ �∗

PT = 0.
When �∗

PT equals zero, to decide the optimal solution for
T ∗

PT, we define

CPT04T 5≡CPT401T 5=bN +kT +
cNr

r+1
+

cN

r+1
e−4r+15�T

+m4050

If we allow T ∗
PT to take any real value, from the first-order

condition of CPT04T 5, we have

k−�cNe−4r+15�T ∗
PT = 0 ⇒ T ∗

PT =
1

4r + 15�
ln
(

�cN

k

)

0 (37)

We therefore conclude that T ∗
PT = 0 if and only if

�cN ≤ k0 (38)

Clearly, if (38) is satisfied, (35) and (36) must also hold.
Therefore,

T ∗

PT = 0 ⇒ 4�∗

NPT = 0 AND �∗

PT = 050

The following summarizes the boundary solution scenar-
ios and their corresponding conditions:

(a) When �cN ≤ k, �∗
PT = �∗

NPT = T ∗
PT = 0,

(b) When k < �cN ≤ k + m′405, �∗
PT = �∗

NPT = 0, T ∗
PT =

41/44r + 15�55 ln4�cN/k5 > 0, and
(c) When k +m′405 < �cN ≤ k + 44r + 15/r5m′405, �∗

PT = 0,
�∗

NPT > 0, T ∗
PT = 41/44r + 15�55 ln4�cN/k5 > 0.

The first two scenarios clearly satisfy �∗
PT ≤ �∗

NPT ≤ T ∗
PT. We

next prove that �∗
NPT <T ∗

PT holds for the third scenario. With
the solution values shown in (3), the following equality is
still valid:

�cNer��
∗
PTe−4r+15�T ∗

PT = k0 (39)

For ease of comparison, we denote the optimal solutions
obtained from the original first-order conditions (8) and (11)
by �0

PT (here �0
PT ≤ 0 = �∗

PT5 and T 0
PT. Therefore, �0

PT and T 0
PT

also satisfy

�cNer��
0
PTe−4r+15�T 0

PT = k0 (40)

Because �∗
NPT, �0

PT, and T 0
PT are obtained from the original

first-order conditions (6), (8), and (11), from Part (b) of the
proof of Proposition 2 we have

�∗

NPT <T 0
PT0 (41)

From (39) and (40), we conclude

er��
∗
PTe−4r+15�T ∗

PT = er��
0
PTe−4r+15�T 0

PT 0 (42)

(42) and �0
PT ≤ 0 = �∗

PT jointly lead to

T ∗

PT ≥ T 0
PT0 (43)

From (43) and (41), we conclude �∗
NPT <T ∗

PT. �

A.5. Proof of Proposition 3
Based on F3(� , T 5 derived in §4.2, the expected number of
undetected bugs at the optimal testing stop time, denoted
by u4T ∗

PT5, equals Ner��
∗
PTe−4r+15�T ∗

PT . From the first-order con-
dition (8), we have

u4T ∗

PT5=Ner��
∗
PTe−4r+15�T ∗

PT = k/4�c50

Therefore, the stopping rule is satisfied when the optimal
solution is interior.

Similarly, it can be verified that the three boundary solu-
tions scenarios shown in Table 2 all satisfy

u4T ∗

PT5≤ k/4�c50 �

A.6. Proof of Proposition 6
The expected number of software failures in the field under
the NPT policy is

SNPT =Ne−��∗
NPT 0 (44)

The expected number of software failures in the field
under the PT policy equals

SPT = N4F24�
∗

PT1T
∗

PT5
r

r + 1
+ F34�

∗

PT1T
∗

PT55

=
r

r + 1
Ne−��∗

PT +
1

r + 1
Ner��

∗
PTe−4r+15�T ∗

PT 0 (45)

As shown in Table 2, we need to compare SNPT and SPT

under three different solution scenarios: (i) T ∗
PT > �∗

NPT >
�∗

PT > 0; (ii) �∗
PT = 0, T ∗

PT > �∗
NPT > 0, and (iii) �∗

PT = 0, �∗
NPT = 0,

T ∗
PT > 0. The third scenario is straightforward. Therefore we

focus on scenarios (i) and (ii). We first consider the strictly
convex market opportunity cost function, i.e., m′′4�5 > 0.

(i) Under the T ∗
PT > �∗

NPT > �∗
PT > 0 scenario, all solutions

are interior. Based on (6), (8), and (11), we have

Ne−��∗
NPT =

k+m′4�∗
NPT5

�c
1 (46)

Ner��
∗
PTe−4r+15�T ∗

PT =
k

�c
1 (47)

Ne−��∗
PT =

k+ 44r + 15/r5m′4�∗
PT5

�c
0 (48)

From (44) and (46), we obtain

SNPT =
k+m′4�∗

NPT5

�c
0 (49)

Substituting (47) and (48) in (45) yields

SPT =
r

r + 1
k+ 44r + 15/r5m′4�∗

PT5

�c
+

1
r + 1

k

�c

=
k+m′4�∗

PT5

�c
0 (50)

From �∗
NPT > �∗

PT and m′′4�5 > 0, we have

m′4�∗

NPT5 >m′4�∗

PT50 (51)

From (49), (50), and (51), we conclude SPT < SNPT.

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
656 Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS

(ii) For the �∗
PT = 0, T ∗

PT > �∗
NPT > 0 scenario, only �∗

PT takes
a boundary solution. The expression shown in (49) for the
NPT policy is still valid, and we have

SNPT =
k+m′4�∗

NPT5

�c
>

k+m′405
�c

=
r

r + 1
k+m′405

�c
+

1
r + 1

k+m′405
�c

0

For SPT, by setting �∗
PT = 0 and T ∗

PT = 41/44r + 15�55
· ln4�cN/k5 in (45), we obtain

SPT =
r

r + 1
N +

1
r + 1

k

�c
0

Therefore,

SNPT − SPT >

(

r

r + 1
k+m′405

�c
+

1
r + 1

k+m′405
�c

)

−

(

r

r + 1
N +

1
r + 1

k

�c

)

=
r

r + 1
k+m′405

�c
+

1
r + 1

m′405
�c

−
r

r + 1
N

=
r

4r + 15�c

(

k+
r + 1
r

m′405−�cN

)

≥ 00

(52)

The last inequality holds because of the condition k +

m′405 < �cN ≤ k+ 44r + 15/r5m′405, which is required for the
solutions to satisfy �∗

PT = 0, T ∗
PT > �∗

NPT > 0. From (52), we
conclude SPT < SNPT.

Analogously, it can be shown that with a linear market
opportunity cost function, i.e., m′′4�5= 0, we have SPT = SNPT
for scenario (i) and SPT ≤ SNPT for scenario (ii). �

A.7. Proof of Proposition 7
(i) The impact of c and N . We first prove the conclu-
sion with respect to c. For expositional convenience, we
let fPT4�5= −�cNe−�� + 44r + 15/r5m′4�5. If the solutions are
interior, we know from (11) that k+ fPT4�

∗
PT5= 0. Now sup-

pose that the parameter c is changed to c̃ > c. To reflect this
change, we define a new function:

f̃PT4�5= −�c̃Ne−��
+

r + 1
r

m′4�50 (53)

These two functions have the following property:

f̃ ′

PT4�5 > 01 f ′

PT4�5 > 01 f̃PT4�5 < fPT4�51 ∀ �0 (54)

We denote the optimal solution associated with the new
parameter c̃ by �̃∗

PT and T̃ ∗
PT. If the new solution �̃∗

PT is still
interior, we must have k+ f̃PT4�̃

∗
PT5= 0.

Because k+ fPT4�
∗
PT5= 0 also holds, we have

f̃PT4�̃
∗

PT5= fPT4�
∗

PT50 (55)

(54) and (55) jointly lead to

�̃∗

PT > �∗

PT0 (56)

We now examine how 4T ∗
PT − �∗

PT5 changes with c. Let d =

T ∗
PT − �∗

PT and d̃ = T̃ ∗
PT − �̃∗

PT; from (8) we have

�c̃Ner��̃
∗
PTe−4r+15�4�̃∗

PT+d̃5 = �cNer��
∗
PTe−4r+15�4�∗

PT+d51 or

�c̃Ne−��̃∗
PTe−4r+15�d̃ = �cNe−��∗

PTe−4r+15�d0
(57)

Further, (55) is equivalent to

−�c̃Ne−��̃∗
PT +

r + 1
r

m′4�̃∗

PT5

= −�cNe−��∗
PT +

r + 1
r

m′4�∗

PT50 (58)

We first consider a strictly convex market opportunity
cost, i.e., m′′4�5 > 0. From (56), we have

r + 1
r

m′4�̃∗

PT5 >
r + 1
r

m′4�∗

PT50 (59)

From (58) and (59), we conclude

�c̃Ne−��̃∗
PT >�cNe−��∗

PT 0 (60)

(57) and (60) together lead to

e−4r+15�d̃ < e−4r+15�d
⇒ d̃ > d or

4T̃ ∗

PT − �̃∗

PT5 > 4T ∗

PT − �∗

PT50 (61)

From (56) and (61), we also conclude T̃ ∗
PT >T ∗

PT.
We next consider a linear market opportunity cost, i.e.,

m′′4�5 = 0. By reexamining (59) through (61), we conclude
that 4T̃ ∗

PT − �̃∗
PT5 = 4T ∗

PT − �∗
PT5 and T̃ ∗

PT > T ∗
PT hold when

m′′4�5= 0.
The conclusions with respect to N can be proved

analogously.
(ii) The impact of k. Assume k increases to k̃ > k. We

denote the new optimal solutions by �̃∗
PT and T̃ ∗

PT. If all solu-
tions are interior, from (11) and (29), we have

k̃−�cNe−��̃∗
PT +

r + 1
r

m′4�̃∗

PT5

= k−�cNe−��∗
PT +

r + 1
r

m′4�∗

PT51 (62)

k̃+ fPT4�̃
∗

PT5= k+ fPT4�
∗

PT50 (63)

Because k̃ > k, and f ′
PT4�5 > 0, from (63) we must have

�̃∗
PT < �∗

PT0
From m′′4�5≥ 0, we further conclude

r + 1
r

m′4�̃∗

PT5≤
r + 1
r

m′4�∗

PT50 (64)

Based on and (62) and (64), we have

k̃−�cNe−��̃∗
PT ≥ k−�cNe−��∗

PT ⇔ k̃− k

≥ �cNe−��̃∗
PT −�cNe−��∗

PT 0 (65)

Let d = T ∗
PT − �∗

PT and d̃ = T̃ ∗
PT − �̃∗

PT. From (8), we get

k̃−�cNer��̃
∗
PTe−4r+15�4�̃∗

PT+d̃5
= k−�cNer��

∗
PTe−4r+15�4�∗

PT+d5

⇒ �cNe−��̃∗
PTe−4r+15�d̃

−�cNe−��∗
PTe−4r+15�d

= k̃− k0 (66)

(65) and (66) lead to

e−��̃∗
PTe−4r+15�d̃

− e−��∗
PTe−4r+15�d

≥ e−��̃∗
PT − e−��∗

PT 0 (67)

All four terms in (67) are positive, so we must have

e−4r+15�d̃
≥ e−4r+15�d

⇒ d̃ ≤ d or

4T̃ ∗

PT − �̃∗

PT5≤ 4T ∗

PT − �∗

PT50 (68)

Further examining (64) through (68), we conclude that
4T̃ ∗

PT − �̃∗
PT5= 4T ∗

PT − �∗
PT5 holds if m′′4�5= 0 and 4T̃ ∗

PT − �̃∗
PT5 <

4T ∗
PT − �∗

PT5 holds if m′′4�5 > 0.
Because �̃∗

PT < �∗
PT, we conclude from (68) that T̃ ∗

PT <T ∗
PT0

Jiang, Sarkar, and Jacob: Postrelease Testing and Software Release Policy for Enterprise-Level Systems
Information Systems Research 23(3, Part 1 of 2), pp. 635–657, © 2012 INFORMS 657

(iii) The impact of r . Assume r increases to r̃ > r . We
denote the optimal solutions corresponding to r̃ by �̃∗

PT and
T̃ ∗

PT. Following a similar argument shown in (53) through
(56), we conclude that �̃∗

PT > �∗
PT holds with r̃ > r . Further,

from (8), we conclude

er̃��̃
∗
PTe−4r̃+15�T̃ ∗

PT = er��
∗
PTe−4r+15�T ∗

PT 0 (69)

Let d = T ∗
PT − �∗

PT and d̃ = T̃ ∗
PT − �̃∗

PT. Then (69) can be
rewritten as

e−��̃∗
PTe−4r̃+15�d̃

= e−��∗
PTe−4r+15�d0

Because e−��̃∗
PT < e−��∗

PT , we must have

e−4r̃+15�d̃ > e−4r+15�d
⇒ 4r̃ + 15d̃ < 4r + 15d ⇒ d̃ < d or

4T̃ ∗

PT − �̃∗

PT5 < 4T ∗

PT − �∗

PT50

(iv) The impact of the rate of increase in market oppor-
tunity cost. Assume we have a new market opportunity
cost function m̃4�5 with m̃′4�5 > m′4�5 ∀ � . We denote the
corresponding solution by �̃∗

PT and T̃ ∗
PT. Analogous to (53)

through (56), we have �̃∗
PT < �∗

PT.
Further, from (8), we get

er��̃
∗
PTe−4r+15�T̃ ∗

PT = er��
∗
PTe−4r+15�T ∗

PT 0 (70)

Because er��̃
∗
PT < er��

∗
PT , we must have

e−4r+15�T̃ ∗
PT > e−4r+15�T ∗

PT ⇔ T̃ ∗

PT <T ∗

PT0

Let d = T ∗
PT − �∗

PT and d̃ = T̃ ∗
PT − �̃∗

PT. Then (70) can be
rewritten as

e−��̃∗
PTe−4r+15�d̃

= e−��∗
PTe−4r+15�d0

From e−��̃∗
PT > e−��∗

PT , we conclude

e−4r+15�d̃ < e−4r+15�d
⇒ d̃ > d or

4T̃ ∗

PT − �̃∗

PT5 > 4T ∗

PT − �∗

PT50 �

A.8. Proof of Proposition 8
Even testing resource reallocation and uncertain market
opportunity cost, the optimal testing stop time under the
PT policy is always obtained by minimizing EM4t56CPT4�1T 57
as specified in (19), regardless of whether the release time
is optimally determined or not. Assuming that the release
time � is given, we next derive the optimal testing stop time
(T

′∗

PT5 that leads to the minimum expected cost. The first-
and second-order derivatives with respect to T are

dEM4t56CPT4�1T 57/dT

= k′
− c�′Ne−��e−4r+15�4R−�5e−4r�+�′54T−R51 (71)

d2EM4t56CPT4�1T 57/dT
2

= c�′4r�+�′5Ne−��e−4r+15�4R−�5e−4r�+�′54T−R5 > 00 (72)

From (71) and (72), we conclude that the optimal T
′∗

PT sat-
isfies

k′
− c�′Ne−��e−4r+15�4R−�5e−4r�+�′54T

′∗

PT−R5
= 0

⇒ Ne−��e−4r+15�4R−�5e−4r�+�′54T
′∗

PT−R5
= k′/c�′0 (73)

Note that (71) through (73) remain valid for any � before
time R. Ne−��e−4r+15�4R−�5e−4r�+�′54T ′∗

PT−R5 is the expected
number of undetected bugs at the optimal testing stop time.
Thus the proof is complete. �

References
Arora, A., J. P. Caulkins, R. Telang. 2006. Research note—Sell first,

fix later: Impact of patching on software quality. Management
Sci. 52(3) 465–471.

Baskerville, R., L. Levine, J. Pries-Heje, B. Ramesh, S. Slaughter.
2001. How internet software companies negotiate quality. IEEE
Comput. 14(4) 51–57.

Bass, F. M. 1969. A new product growth model for consumer
durables. Management Sci. 15(4) 215–227.

Berger, J. O. 1993. Statistical Decision Theory and Bayesian Analysis.
Springer-Verlag, New York.

Chiu, K., J. Ho, Y. Huang. 2009. Bayesian updating of optimal
release time for software systems. Software Quality J. 17(1)
99–120.

Dalal, S. R., C. L. Mallows. 1988. When should one stop testing
software? J. Amer. Statist. Assoc. 83 872–879.

Dalal, S. R., C. L. Mallows. 1990. Some graphical aids for deciding
when to stop testing software. IEEE J. Selected Areas Comm. 8(2)
169–175.

Ehrlich, W., B. Prasanna, J. Stampfel, J. Wu. 1993. Determining the
cost of a stop-test decision. IEEE Software 10(2) 33–42.

Goel, A. L. 1985. Software reliability models: Assumptions, limita-
tions, and applicability. IEEE Trans. Software Engrg. SE-11(12)
1411–1142.

Goel, A. L., K. Okumoto. 1979. Time-dependent error-detection rate
model for software and other performance measures. IEEE
Trans. Reliability R-28(3) 206–211.

Gross, N., M. Stepanek, O. Port, J. Carey. 1999. Software hell:
Glitches cost billions of dollars and jeopardize human lives.
How can we kill the bugs? Bussiness Week (December 6)
104–118.

McDaid, K., S. P. Wilson. 2001. Deciding how long to test software.
Statistician 50(2) 117–134.

Ohba, M., X. M. Chou. 1989. Does imperfect debugging affect
software reliability growth? Proc. 11th Internat. Conf. Software
Engrg., IEEE Computer Society Press, Washington, DC.

Okumoto, K., A. L. Goel. 1980. Optimum release time for software
systems based on reliability and cost criteria. J. Systems Software
1 315–318.

Pham, H. 2000. Software Reliability. Springer, Singapore.
Pham, H. 2006. System Software Reliability. Springer, London.
Pham, H., X. Zhang. 1999. Software release policies with gain in

reliability justifying costs. Ann. Software Engrg. 8(1–4) 147–166.
Rinsaka, K., T. Dohi. 2006. Optimal testing and maintenance design

in a software development project. Electronics Comm. Japan,
Part 3 89(6) 953–961.

Singpurwalla, N. D. 1991. Determining an optimal time interval
for testing and debugging software. IEEE Trans. Software Engrg.
17(4) 313–319.

Singpurwalla, N., S. Wilson. 1994. Software reliability modeling.
Internat. Statist. Rev. 62(3) 289–317.

Standish Group International, Inc. 2001. Extreme chaos. Retrieved
July 13, 2011, http://standishgroup.com/sample_research/
extreme_chaos.pdf.

Thibodeau, P. 2002. Study: Buggy software costs users, vendors
nearly $60B annually. Computerworld (June 25). Retrieved
July 13, 2011, http://www.computerworld.com/s/article/
72245/Study_Buggy_software_costs_users_vendors_nearly_60B
_annually.

Vienneau, R. L. 1991. The cost of testing software. Reliability Main-
tainability Sympos. (Jan. 29–31) 423–427.

Wood, A. 1996. Predicting software reliability. IEEE Comput. 29(9)
69–77.

Xie, M., B. Yang. 2003. A Study of the effect of imperfect debugging
on software development cost. IEEE Trans. Software Engrg. 29(4)
471–473.

