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ABSTRACT 
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The epidemics of diabetes and obesity, along with unhealthy and stressful lifestyles, have highly 

contributed to the increased number of patients with heart failure in recent times. As the saying 

goes, “Prevention is better than cure”, detecting heart abnormalities accurately in initial stages can 

save patients from severe consequences and expensive surgeries. Hence, in the past few years there 

has been extensive research in beat detection and real-time cardiac monitoring to determine 

algorithms that can detect heart beat location and analyze whether the distance between two beats 

are normal or not. Such a regular check on the health of the heart using a device that could give 

real-time cardiac monitoring outside the hospital helps to ensure early diagnosis of any kind of 

abnormality that the cardiac system of an individual might be facing or is prone to face in the near 

future. 

Various QRS complex detecting algorithms have been implemented into smart watches and fitness 

trackers, which has led to the commercialization of various wearable heart beat monitoring devices 

that have been effective to quite an extent. However, various factors like unwanted noise and 

inconsistency in differentiating beat locations, may reduce the accuracy of such devices. Hence, it 
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is necessary to ensure that any algorithm maintains accurate precision during both software and 

hardware testing. 

Therefore, this thesis aims towards analyzing and confirming the accuracy of the hardware 

implementation of a Real-time QRS complex detector and Heart Beat classifier using an algorithm 

based on the modified Pan Tompkins algorithm, which sets a threshold for detecting the peak 

locations and then classifies them as normal or ventricular. The algorithm, which is a single-lead, 

first derivative based heart-beat detector and classifier, has been coded in MATLAB. Then using 

MATLAB’s HDL Coder and System Generator applications, it was converted to VHDL. VHDL 

is the hardware descriptive language that can communicate with our FPGA board in Xilinx ISE 

14.7. All analysis and conclusions have been verified using the SPARTAN-6 FPGA board 

specifications. 
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CHAPTER 1 

INTRODUCTION 

In today’s digitalized fast paced world, keeping track of one’s health is a challenge in itself. Hence, 

when manual entries of cardiac activity got digitalized to automated monitoring in the late 20th 

century, heart-rate monitors began to be used widely by performers of various types of physical 

exercise [1,2]. Slowly it got commercialized into wearable devices that monitor and record a 

person’s fitness activities on a regular basis. Now considering this as a foundation, there has been 

advancement towards bringing the Electrocardiography (ECG) technology out of the hospitals and 

emergency care centers in the form of non-invasive wearable ECG sensors, that can give real time 

reports of any abnormality detected in the heart [3].  If these reports are accurate then, can save 

numerous people from sudden cardiac arrests, arrhythmias or heart failures. Another point that is 

to be noted is that as individuals wear the ECG sensors on a continual basis while performing daily 

activities, there is a high probability that external noise might corrupt the signals obtained from 

these sensors, resulting in the beat detection process to be error prone and difficult to analyze. 

External noise here can be defined as, human-made unwanted sound due to movements during an 

individual’s routine activity, wireless signal transmission interferences, muscle movements, 

baseline wander, etc., resulting in reduction of the quality of the vital ECG information. Hence the 

denoising and data-cleaning parts of the beat detecting algorithm must be fool-proof, taking into 

consideration all worst-case scenarios and ensuring that there are minimal false detections. Also, 

to ensure real-time monitoring, the algorithm should be capable of adapting to varying heart rates 

exhibited by various cardiac arrhythmias when present. The algorithm should also be capable of 

distinguishing an arrhythmic heart beat from noise, as arrhythmia being an abnormal sequence of 
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heart beats can be mistaken as noise [3,4,5,6]. In this research, the algorithm is already coded and 

checked for its correctness in software using either MATLAB and LabVIEW [3,4], after which 

the code was converted into VHDL for testing the algorithm on hardware. This is because software 

processes ideally run on a virtual environment, which is often easy to deal with. Hence to ensure 

real-time effective analysis, one of the most reliable hardware interfaces to ensure that every part 

of the algorithm works the same way as in software, is the Xilinx ISE [7]. In the present study, the 

specifications of the very powerful FPGA- Spartan6 were used to confirm the accuracy and 

implementation of the algorithm on hardware. The algorithm was tested on data from the MIT-

BIH Arrhythmia database. 

1.1 Analyzing the Electrocardiograph 

Electrocardiograph measures the electrical activity of the heart. To make sure that the heart is 

working fine it is necessary to understand the various abnormalities which differ from a normal 

heart beat [2]. It is known that the electrical conduction through the heart follows a set pathway 

under normal conditions. The Electrocardiogram signal depicted below in Fig. 1.1 shows the 

pattern that a normally functioning heart should have a particular pattern. Even slight disturbance 

in the electric conduction will alter the pathway of depolarization and change the time of the 

electrical events. Such alteration in the ECG signal might mean that the heart is suffering from a 

major problem. According to previous research every interval and duration of the signal must be 

in a specific range to be considered as a normal heart beat [8,9], which plays an important role 

when writing algorithms for accurate beat detection and classification. Hence, to ensure that the 
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threshold values analyzed by a beat detection algorithm are precise, the following major 

calculations regarding the intervals and durations should be strictly taken into consideration: 

 

Fig. 1.1: A normal two-cycle ECG tracing  

• PR Interval: The PR interval is measured from the beginning of the P wave to the 

beginning of the QRS complex. The electrical vector spreading from the right atrium to the 

left atrium gives the P wave during atrial depolarization. This interval corresponds to the 

atrioventricular (AV) node delay. This delay is responsible for activating the AV node to 

control the heart rate. This interval provides initial symptoms of certain cardiac 

arrhythmias. The normal range of this interval is supposed to be between 0.12 to 0.20 

seconds. 

• QRS Duration- The QRS duration gives the information of time taken for Ventricular 

Depolarization. As the ventricles possess more muscles mass than the atria, the electric 

signal has more conduction velocity which results in high spiked R peaks. These R peaks 

are usually the most common criteria for detecting a heartbeat in beat detecting algorithms 
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as it has a very steep peak and can be distinguished easily from noise. The normal length 

of the QRS complex should be maintained between 0.06 to 0.10 seconds (60 to 100ms).  

•  ST Segment – While QRS complex denotes the start of ventricular depolarization, the ST 

segment which follows the QRS complex is the time at which both ventricles are 

completely depolarized. This segment is important in the diagnosis of ventricular ischemia 

or hypoxia because under those conditions, the ST segment can become either depressed 

or elevated. Total time of ventricular depolarization is up to 0.43 seconds. 

• QT Interval- The QT Interval reflects the total duration of depolarization and 

repolarization which means it denotes the time the heart takes to contract and then refill 

with blood before beginning the next contraction. This interval should not be more than 

440ms which means 0.44 seconds.  

• T wave – The ventricular repolarization which in general terms is stated as ventricular 

recovery is represented by the T- wave. The shape of the T-wave is sharply or bluntly 

rounded with amplitude of less than 5mm. The duration of the T wave is usually supposed 

to be between 0.10- 0.25 seconds. Abnormalities of the T-wave can be associated with life 

threatening diseases like hyperkalemia and hence perfect denoising of the ECG signal 

becomes very important when it comes to dealing with peaks with such low amplitudes so 

that they do not get missed during diagnosing an ECG through the wearable ECG sensors. 

• R-R Interval- It is the time between QRS complexes. This interval plays an important role 

in determining instantaneous heart rate in modern wearable ECG sensors. The R-R interval 
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should be in the range of 0.6 to 1 second. This is referred to the fact that a heart rate is 

considered normal if it is in the range of 60 to 100 beats per minute.  

The R-R interval checks for the ventricular rhythm while the P-P interval checks for the atrial 

rhythm. Ensuring that these intervals remain the same throughout the ECG is important, else 

unrhythmic beats gives early symptoms of heart problems [10]. 

 

1.2 Motivation 

Analyzing the ECG signals at hospitals and health care centers have been a usual necessity when 

a person falls sick or feels pain in the left chest area. But the human body like any other machine 

or engine needs regular maintenance and to prevent fatal conditions like sudden cardiac attacks 

[11] from arising it is important, that medical check-ups are done at regular intervals.   Today, we 

have a wide range of wearable fitness trackers, using different algorithms and some different 

technologies altogether. ECG sensors have got fitted to devices as small as finger rings. Watches 

and wristbands monitor heart rates without using the 12-Lead system use the Photoplethysmogram 

technology [12] which illuminates the skin and measures the change in light absorption. Now the 

main need and challenge are that algorithms should be capable of removing unwanted noise 

altogether very accurately ensuring that beat detection and classification are precise, as it’s the 

matter of life or death for an individual. Also, when it comes to hardware implementation, the 

algorithm should not be using too many resources. 

Beat detection and classification algorithms today are based on various theories, which was started 

as an idea using an algorithm based on first and second derivatives originally developed by Balda 

et.al [13] which was then constructively modified by Pan and Tompkins [4,5] who designed an 
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algorithm based on digital filtering and Fourier Transform which had an accuracy of 99.14% when 

tested on the MIT-BIH database. But this particular algorithm used up more than 72% of the 

hardware resources [14] which leads to excessive power dissipation [15] along with memory 

usage, is definitely not a good choice. Next, an algorithm was proposed by Li et al. [16] based on 

the concept of Wavelet Transform, which was a possible improvement as wavelet can be localized 

both in time and frequency whereas Fourier transform gives values only in the time domain. That 

means, more data for analysis, hence more accuracy. As the popularity of Machine Learning 

increased, Armato et al. in the research work [17] proposed a QRS features extraction using 

unsupervised learning of neural networks. But again, implementing machine learning algorithms 

on hardware calls for high end parallel computing which leads to model-training performed on 

graphic cards (rather than only on the CPU) [18]. More effective advancements would include 

using well designed filters with the wavelet transform concept, which would lead to more effective 

hardware implementation, which is the basic concept of our research. 

 

1.3 Contribution and Thesis Organization 

We propose the SPARTAN-6 FPGA hardware implementation of an algorithm which is based on 

detecting the threshold during the de-noising of pre-processing of the incoming ECG signal [3]. 

This threshold determination from the de-noised ECG signal helps in reducing the number of 

comparisons of a fiducial mark for being a QRS complex or not. Also, it saves memory space as 

the algorithm does not require a secondary threshold detection as in [4,5]. The MATLAB code for 

the algorithm is converted to VHDL using System Generator and HDL Coder, which is a 

MATLAB application. 
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 We also propose to use an additional bi-directional Butterworth filter for the denoising and 

data cleaning stage to prevent cases like baseline wander and to effectively differentiate noise from 

ventricular arrhythmic beats.  

 Finally, we provide the simulation and hardware resource usage results after implementing 

the VHDL code on the SPARTAN-6 using Xilinx ISE. We also compare our accuracy with the 

previously established algorithms and power consumption characteristics to analyze the 

performance of our algorithm.  
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CHAPTER 2 

BEAT DETECTION AND CLASSIFICATION ALGORITHM 

The approaches for beat detection and classification of ECG signals require an expanded 

knowledge of signal processing, physics, biology and complex algebra. By linking all these fields 

together, mixing and matching various theories from them, over the past 40 years QRS detection 

algorithms have varied from genetic algorithms, digital filtering [4,5,6], wavelet transform [6,16] 

to heuristic methods of supervised or unsupervised neural networks [17,18] and non-linear 

transformation [19].  

Even though the logic behind every algorithm varies and generates different levels of 

accuracy, the basic framework of the beat detection process has almost remained the same.  The 

entire process can be simplified and broken down into two broad parts which then have sub-parts. 

The advantage here in having such stages is that each stage has a specific purpose and it does not 

matter how that purpose is solved, but what matters is at the end of that specific stage, the outcome 

should match the already established results, that are universally accepted, both biologically and 

scientifically [20]. 

Here we have relied on data from the MIT-BIH arrhythmia database which has ECG signal 

recordings of 10 seconds to 1-hour long. It also contains data related to all kinds of arrhythmias 

and provides the specification of each record, e.g. if Record-100 is chosen from the MIT database 

as an input to the algorithm, then the result that is generated as an output of the beat detection 

algorithm should match with the already existing results that the MIT database states about that 

particular record. If the database states that this particular record has a total of 2273 beats, then the 
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result of the algorithm should match that beat number. If the output of the algorithm is more or 

less than the already stated value, the difference will become the error and determine the accuracy 

of the algorithm.  

The following block diagram shows the basic outline around which algorithms for QRS 

analysis are usually based upon. The two main stages that every algorithm must have is the pre-

processing stage and the decision-making stage [14]. As our algorithm also classifies the beat a 

normal and ventricular, we also have a stage after peak detection as the beat classifier. 

Fig. 2.1:  Generalized backbone of a QRS analysis algorithm  

Most of the algorithms have different strategies while generating the logic for the pre-

processing stage. An incoming ECG signal is prone to noise and other vulnerabilities, hence every 

beat detecting algorithm is written with taking worst scenarios in to consideration. This is where 

the concepts of Digital filtering, Wavelet Transform and machine learning play their role and 

contribute towards improving the accuracy of the entire system. We in this section will be 

elaborating on the algorithm that we designed and highlight the differences our algorithm has from 

the other popular algorithms for ECG beat detection. We have divided our algorithm in to 4 parts, 

namely- Data Cleaning, Pre-Processing, Peak-detection and Beat Classification. 
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In our algorithm, pre-processing is considered the main function which then calls the 

remaining three functions of data-cleaning, peak-detection and ventricular-beat detection.  

 

2.1 Data Cleaning and De-noising of the Signal 

As it was pointed out earlier unwanted noise attributed to artifacts due to continuous unrhythmic 

movement, improper placement of the device or interferences can hamper the output result even if 

the logic of the peak- detecting algorithm is correct.  Hence it is necessary that the technique used 

for data-cleaning algorithm is robust enough to differentiate a heart-beat from noise. That said, 

most of the arrhythmias have extreme unrhythmic beat patterns which might be confused with 

noise also. This is when the actual challenge comes. Below in Fig. 2.2, we have provided the 

comparison between a noisy ECG signal and a few Arrhythmias, so as to show how close these 

cases actually are and how such cases can determine the accuracy and robustness of an algorithm. 

 The foundation of any algorithm is its logic, and if the following worst-case scenarios are 

analyzed from Fig. 2.2 (a), (b) and (c), unless an ECG signal is appropriately filtered it becomes 

next to impossible to give correct results. All the three signals are part of the un-cleaned MIT 

database record 105 and can be labelled as irregular ECG signals but narrowing the classification 

in to noise and arrhythmic signals is what the actual challenge is. We cannot take the risk to 

labelling a noisy peak just because it has a high amplitude as a heart-beat nor can we let a 

ventricular arrhythmic beat be unnoticed considering it as noise. For example, in Fig. 2.2 (b) is a 

case of Baseline wander [20] which can be categorized as noise due to respiration, motion of the 

individual or even the instrument. If we ignore all the peaks during this low frequency activity of 

the ECG signal and label them as noise, the entire algorithm will flop. That’s the reason why, while 
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Fig. 2.2: (a) Unfiltered ECG signal with noisy peaks in Record 105 of MIT arrhythmia database. 

(b) Baseline wander noise in the same record. (c)Ventricular Arrhythmic beats which look 

similar to noisy peaks. 

planning the de-noising algorithm, it is necessary to have sound knowledge of signal processing 

as that helps to understand which filters would best suit the processing of such noisy ECG signals. 

 For our algorithm for the initial stage of data cleaning we used the Bi-directional 

Butterworth filter [21] as it works like the wavelet transform concept [16]. Just as wavelet 

transform separates out frequency bands along time, the bi-directional Butterworth filter can be 

used to extracts out the ECG signal which usually ranges between 0.05 to 40 Hz [20] and filters 

out the remaining signals as noise. Also, Butterworth filters have better roll offs, which means that 

it provides better attenuation in the “reject band” [21]. Moreover, for hardware implementation, 

this bi-directional filter consumes lesser hardware resources than wavelet transform. So, all in all, 

choosing the Butterworth filter for our initial stage of data cleaning makes a good choice. Although 
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the signal now is not completely noise free, omitting out all the other signal frequencies apart from 

the actual range of the ECG signal, narrows down the chances of error. The difference of the 

Butterworth filtered signal from the initial input ECG signal can be seen as follows: 

 

Fig. 2.3:  Original signal of Record 100 from MIT-BIH Arrhythmia Database cleaned after 

passing through Bi-directional Butterworth filter 

The Fig. 2.3 shows our results after passing the Record 100 data from the MIT arrhythmia 

database through the first stage of data smoothing and cleaning using the bi-directional 

Butterworth filter. This smoothened signal will then be passed through further filters to nullify the 

presence of any kind of noise which would ensure the accuracy of our algorithm.  

To further enhance the preciseness, a low-pass filter to cut out any remaining high 

frequency noise is placed after the bi-directional filter. Additional prevention from low frequency 

noise requires a high pass filter which we used along with the low pass filter. Both the filters are 

of order 1 and are cutting off the frequencies above 30 Hz and 0.05 Hz respectively. Also, we 
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padded our signal with about 32 values of zeros just to increase the length of our signal and get 

more data, which in turn means more accurate results [3]. Finally, our de-noised signal was squared 

to convert if any negative values to positive and as we are considering just the R-R peaks here, 

squaring the peaks lesser than the amplitude of 1.0 will reduce their heights further and make the 

R-R peaks more prominent for beat detection. 

If we actually have to make a logic, to confirm that denoising is done right, it can be 

inferred that if in a clear signal when the distance between the R-R peaks are less than 225 

milliseconds [4,5] or the amplitude of the T or P wave is outstandingly high as discussed in the 

introduction, then those beats are surely arrhythmic beats and immediate action must be taken in 

such cases. Even though a ventricular beat having a high peak might be very close to an actual R-

peak, it is usually a negative high peak, which should be easily distinguishable if noise is removed 

efficiently. Hence, accurate de-noising of the real-time acquired ECG signal can save an individual 

from suffering for any kind of severe cardiac arrests. 

 

2.2 Beat Detection Logic 

It has often been seen that an ECG signal might have inverted waves or intervals. This does not 

mean that there is some problem in the heart, but it’s just that the lead might be negatively oriented. 

Hence while analyzing a particular feature of the heart’s electrical activity, it is important that we 

understand the standard 12- Lead ECG design and which Lead to choose for reference while 

collecting results. Lead refers to an imaginary line between two ECG electrodes [22]. The 12-lead 

ECG provides the heart’s electrical activity by recording information through 12 different 

perspectives on 12 separate graphs on ECG paper.  
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As mentioned earlier, our algorithm is single-lead first derivative based and as per previous 

work [10], Lead II is a good option to count and characterize the distinct R-R peaks. The Fig. 2.4 

below shows the ECG output of the hearts’ electrical activity in the frontal plane. 

 

Fig. 2.4: QRS complexes from the frontal leads, which shows that Lead II is most suitable for R-

peak detection  

 In Lead II, most of the heart’s electrical current flows towards its positive axis and this lead 

can justify the pattern of an ECG in the best possible way [22]. Lead II requires electrodes to be 

placed on the Right arm, left leg and left arm. This placement also provides the bi-polarity required 

for ECG monitoring. Choosing the limbs as electrode locations is a safe option as there is no 

muscle there to generate action potentials that obscure the hearts activity [22]. The Fig. 2.5 shows 

that Lead II connects the left leg as positive to the right arm’s negative, while the right leg is used 

a ground. Lead II gives a clear view of events moving up or down which means, the action and 

coordination between the atrium and the ventricle. 
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Fig. 2.5: Lead II electrode placement for ECG analysis  

 For real-time generation of input signals to our hardware, we would need to place the 

electrodes similar to the Fig. 2.5. The number of R peaks gives the total count of beats, whereas 

the distance between those peaks determines whether the beat is a normal or ventricular beat.  

 

2.2.1 Determining the threshold for the ECG signal 

For a peak in the ECG to be labelled an R-peak, it should abide by certain specifications so that 

the particular QRS complex which contains the R-peak can be considered as a beat. Thus, the beat-

detection algorithm needs to begin with a learning period that studies the incoming ECG signal, 

then analyzes the highest and lowest peaks after which it generates a logic which is the basis on a 

threshold amplitude value based on which the algorithm is going to decide the further R peaks in 

the signal. As our QRS detector works real-time, having a good learning period becomes really 

important for accurately detecting the beats.  

Neutral/ground 
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 For our algorithm the input data is a 30 minutes long signal, which we are taking from the 

MIT-BIH Arrhythmia database [11]. We then divided this 30-minute-long input data into chunks 

which are 10 seconds long. This means that there are 180 chunks in total each chunk being of 10 

seconds. Our algorithm has a sliding window which de-noises and reads 2 chunks at a time. During 

each window, our algorithm scans through all the possible high peak values and decides on an 

average value above which all peaks determined in the further chunks would be labelled as an R 

peak. Although the threshold value completely depends on the incoming signal, on an average 

high amplitude peak can be labelled as an R peak if its amplitude is more than 75% greater than 

the peaks on the either sides [25].  

MATLAB has a built-in function called ‘findpeaks()’ which is used as a basis for the beat-

detection logic. The function ‘findpeaks(data)’ [23] returns a vector with the local maxima (peaks) 

of the input signal. As explained above this function compares the two neighboring samples, and 

checks whether it is greater than them, if it is, then the function checks if the peak is almost equal 

or around the previous point which was labeled a peak and returns back the peak locations. Hence 

with regular comparison, the findpeaks() function helps in determining the R-peaks locations in 

our algorithm. This function is implemented on the clean signal and is called in the 

peak_detection() function. But the threshold determination takes place during the pre-processing 

stage itself. The peak_detection() is called by the pre-processing() function. The peak_detection() 

function calculates and sends back the threshold value back to the pre-processing() function and 

after the pre-processing of the signal is done in the first 20 seconds, this threshold value is stored 

in a variable, and then is used for future analysis of the R-peaks. The concept of R-peak threshold 

determination and adaption are taken from [3] and modified in MATLAB. Hence, this summarizes 
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the pre-processing() function- calling the de-noising function which has all the linear and non-

linear filters to give out a clean signal and determining the threshold of the beats in the ECG signal 

for further peak detections. 

The peaks detection() function has a sliding window of 10 seconds which detects the peaks 

based on the threshold value and then moves to the next chunk to determine the peaks. This loop 

is continued till all the peaks in the 180 chunks of the signal are labelled. But also, here as we are 

dealing with real-time biological signals where a very minute difference in the time-length of a 

peak or interval can mean, the electric signals are not being transmitted as they should, which 

might again mean, something serious. That is why any algorithm that is used for ECG beat 

detection must be adaptive in nature in order to follow the variations in the pattern of the waveform. 

After the peaks are decided, it is very necessary that before defining them as beats, the distance 

between the peak before and after it is measured. It is to be noted that the distance between the 

beats must not be less than 225 milliseconds and any peak detected within that 225-millisecond 

distance must be discarded as it is highly improbable to have two QRS complexes so close to each 

other [14]. Added to that if the distance between two peaks is too large, may be more than 1500 

milliseconds which is 1.5 seconds, the algorithm should have the capability to understand that a 

beat is missing. Adaptive search-back logic has also been incorporated in our algorithm based on 

the algorithm elaborated in [3,14]. 

 

2.2.2 Reducing False Positives and False Negatives Beat Detections 

A false positive beat detection would mean that a peak has been wrongly labelled as a QRS 

complex. The peak that was detected as an R-peak, might either be a noisy peak or some high 
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amplitude T-wave. A noisy peak detection can be avoided by proper de-noising of the signal, 

which we effectively do in our algorithm. Also, detecting a high amplitude T-wave as an R-peak 

is avoided in our algorithm by placing the restriction that the distance between any two consecutive 

peaks cannot be less than 225 milliseconds. Hence, even if the peak-detection() function 

determines an high amplitude peak wrongly, the back-up logic of the minimum distance between 

two peaks being 225 milliseconds will surely prevent false detections of the QRS complex. Also, 

a high amplitude T-wave might mean a severe case of arrhythmia [2], here our main focus is on 

beat detection and classification, so any detection of irregular peaks has been considered as noise. 

 Talking about false negatives, a false negative beat detection means that the QRS detecting 

algorithm missed detecting a R- peak or the QRS complex. Using the Adaptive Search-back logic, 

our algorithm makes sure that if a high threshold is acquired by the threshold adapting algorithm 

depending on the previous beats, then sudden appearance of a low peak beat should not be missed 

assuming it a noisy peak [1]. 

 False positive and False negative beat detection can hamper the accuracy of a beat detecting 

algorithm to massive extents [9,19]. Hence, taking into consideration every possible worst-case 

scenario is very important. As in our QRS complex detecting algorithm, we made sure the 

conditions that lead up to such cases are removed altogether by narrowing down the specifications 

for heart-beat detection. 

 

2.3 Classifying the Detected Beats 

Our algorithm follows a logic [3] which classifies the detected beats as normal or pre-mature 

ventricular, as based on the information provided in the MIT-BIT Arrhythmia database [11]. As 



 

19 

per Mayo Clinic, the cases for Ventricular pre-mature (PVC) beats are very common, with almost 

3 million US cases per year [10]. Such beats are termed as extra beats which are initiated by either 

of the lower ventricles and disrupt the normal electrical activity of the heart. At times, this might 

result in a skipped beat or feeling a flutter in the chest as shown in Fig. 2.6 [2].  

 

Fig. 2.6: Ventricular beat detected in the record 105 using our algorithm 

The premature discharges might be caused by electrolyte imbalance, high blood pressure, 

lack of oxygen or a minor heart attack and immediately after this pre-mature contraction, the 

electric system of the heart almost resets but it still can be felt at times. The symptoms of PVCs 

are pounding, loss of breath or increased awareness of the heart-beat [2]. But quite often a person 

who might not be aware might leave it unnoticed.  PVC due to lack of oxygen or blood pressure 

might not be dangerous initially and can be ignored, but for case like PVC after a heart attack with 

conditions like Bigeminy (Every other beat is a PVC) or trigeminy (Three consecutive beats are 

PVC) [3] proper diagnosis is essential. Such cases come under the definition of Ventricular 

Tachycardia, which if prolonged may lead to Ventricular Fibrillation, which is a fatal condition 

and is almost incurable [20]. Hence using our algorithm when implemented as a wearable device, 

a regular monitoring over the heart’s health can help in an early detection of heart problems and 
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result in saving a person’s life. After all, having proper medication and taking needed precautions 

are much worthier than a painful death. 
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CHAPTER 3 

FLOATING POINT TO FIXED POINT CONVERSION IN MATLAB 

Our algorithm which is software-coded in MATLAB has functions based on floating point data 

types, which means such data types can take in numbers that have fractional parts too. But as we 

had to implement this algorithm on an FPGA and test it for hardware accuracy, we needed to 

convert the floating-point based functions to fixed point. This is because embedded hardware 

systems with the tight cost constraints and more focus on increasing throughput rates [25] prefer 

not having a floating-point hardware take in Embedded hardware system like the Field 

Programmable Gate Array. 

 Hence it became important to determine the fixed-point data type of each variable in the 

function, namely the word length, truncation mode and overflow mode [26]. For this the entire 

MATLAB code had to be scanned and changes had to be made so that the conversion of the code 

could be successfully done to VHDL using the HDL Coder [27] and Simulink.  

 As MATLAB does not need the declaration of the various variables used in the code, while 

going through each stage of the HDL Coder application of MATALB, which helps in automatically 

converting MATLAB code to VHDL, we faced multiple errors, where we had to go back to the 

locations where the variables were either not declared or the fixed-point conversion got missed. 

The basic functions for the Low-pass and High-pass filters were automatically converted by 

MATLAB to fixed point but the functions that we created using our own logic were to be converted 

from floating point data-type to fixed point manually. MATLAB in one of its documentations also 

informs us that it has a specific set of fixed-point run-time library functions from the Fixed-Point 
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Designer [24] and that we must have all our functions from the list that is already in that 

documentation. This restriction narrowed down our MATLAB to VHDL code conversion. We had 

to make sure that we maintained the logic but also at the same time abide the rules of the HDL 

coder. Analyzing that HDL Coder being a pretty recent application offered by MATLAB, might 

not be a good choice while converting the complex algorithm with multiple functions to VHDL. 

 Also, when it comes to manual fixed-point programming, we had to be very careful, 

making sure overflows were avoided and the integer words must be scaled such that there is almost 

null loss of precision [26]. Added to that determining the number of shifts is a difficult task and is 

time consuming. 

 

3.1 Error in Floating point to Fixed point conversion 

Errors in any form may lead to unwanted results. And if after positive software testing of the 

algorithm, we get errors, while preparing for the hardware testing where the error is not in the logic 

of the algorithm but in just a basic step of fixed point conversion, then the results will surely be 

disastrous. Fixed point conversion has always been quite prone to errors, as it can be seen from 

the Fig. 3.1 below, where, an IIR filter as a floating-point data type is converted to fixed point, and 

the error during the conversion is also shown. This is just for one filter, if every linear or non-

linear filter that we use, gives such a high error rate, our algorithm would have failed right at the 

De-noising stage itself.  

 With a lot of research in this particular field of Floating point to fixed point conversion 

(FFC), today there are strong and stable algorithms which have improved the conversion accuracy. 



 

23 

As FFC is a very important feature of embedded system design, various software have been made 

available to reduce the manual workload and problems faced while implementing a fixed-point 

algorithms on hardware like FPGA. 

 

Fig. 3. 1: Floating to Fixed point conversion with error  

 

4.2 Fixed-Point Designer 

 To make our floating to fixed point problem a bit easier, we relied on the Fixed-Point 

Designer which is again an application provided by MATLAB itself. We also separated our 

algorithm in parts and worked upon each function separately [24]. Fixed-Point Designer then 

helped us log the minimum and maximum values of all the named and intermediate variables. 

Based on these logged values the fixed-point code is generated where it takes into consideration 

the required overflow and scaling. 
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Then using Code Analyzer, a report is generated that identifies the calls to the functions 

and checks for the data types which got converted and which are not supported by Fixed-Point 

Designer. In our case it was just one function based which was the Wavelet Transform function, 

which we had initially used for the De-noising section. As this function did not support Fixed-

point conversion using MATLAB, we planned to replace the Wavelet Transform function with the 

Butterworth bi-directional filter, which easily got converted to a Fixed-point code. Hence using 

automatic as well as manual methods we got our MATLAB code prepared for VHDL code 

conversion. Testing on the SPARTAN-6, which does not support floating-point hardware, might 

have taken us through the struggle of converting the floating-point data-types to fixed-point. But 

with improved technology and the system on chip getting smaller, it will be soon when FPGAs too 

get equipped with such peripherals. 

 Moving further in the following chapter we will be explaining, how we implemented this 

modified code in a Simulink block module so that Xilinx can interact with Simulink through 

System Generator to give the final outcome of the VHDL code for our beat detection algorithm 

whose functionality is the exact same as the MATLAB code. 
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CHAPTER 4 

HARDWARE IMPLEMENTATION 

For this research we implemented the modified version of the Pan-Tomkins beat-detection 

algorithm [3,4] that we have explained in the previous chapters, on a SPARTAN-6 FPGA board 

to ensure that the algorithm works accurately on hardware and also to analyze the performance of 

our algorithm in practical environment. As our beat-detection algorithm is mainly based on digital 

filtering where most of the filters have integer coefficients, the accuracy of our algorithm on 

hardware is assured to quite an extent already. Hence our focus is more on analyzing the various 

parameters on which efficiency of any hardware is determined upon like power consumption, heat 

dissipation, time constraints and memory usage. It is also very important to ensure that an 

algorithm is designed such that it does not use more than 50% of the hardware resources [13] as it 

can help in multi-tasking, adding new features to the algorithm in future and contribute in speeding 

up of the system. First, we will be discussing the software that we used to communicate with the 

hardware and then discuss the block diagram of our design. 

 

4.1 Simulink and System Generator 

The MATLAB 2017b [27] update has certain new updates and libraries which helps to generate 

portable, and synthesizable Verilog and VHDL code from MATALB functions. The HDL Coder 

and the latest version of System Generator helped us to customize our design block-wise with low-

power consuming filter designs and storage units. As our algorithm is complicated with a top-

module and more than 5 sub-modules, having an application like HDL coder to support and 

accelerate the MATLAB to VHDL conversion reduces the chances of missing out on important 
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parts of the logic and the block design using Xilinx System Generator makes sure that the circuitry 

is properly connected.  

 

Fig. 4.1: Block system calling the Fixed-point generated MATLAB code in Simulink 

 Simulink is a platform for designing and simulating electronic systems which contain a 

main model with various sub-systems, then after testing the system in hardware environment, it 

automatically helps in generating VHDL code using the Xilinx block set via system generator. In 

the above Fig. 4.1, we created a Simulink environment in which we are giving input from a ECG 

signal selector [28] which is a set of pre-recorded and simulated ECG signals where all the signals 

are having a sampling rate of 360 Hz. This input is given to a function block which calls the fixed-

point QRS detector code. Then System Generator assigns Xilinx Blocks to each of the filters which 

are then generated as sub-modules under the top-module of the design which gives out the vector 

location of the peaks and classified category of either ventricular or normal beats.  

 

4.2  Step-wise Design Approach and Implementation 

As our design is divided into two parts- the pre-processing and the decision-making modules (see 

Fig. 4.2), we started with modelling our Denoising module. The Bi-directional Butterworth Filter 

takes in the initial noisy ECG signal and gives the first round of cleaning of the data by separating 
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the generalized ECG bandwidth of 0.05 to 40 Hz. Next the signal is fed to a Low Pass and High 

Pass filter respectively to further narrow down the possibilities of noise effecting the signal. Then 

to increase the signal length, it is padded with a series of zeros, 32 in our case. The last stage of 

denoising is squaring and smoothing of the signal. This cleaned data signal is then given to the 

peak-detector and classifier algorithm that we discussed in the previous chapter. When it comes to 

hardware, storing the desired output in correct locations is very important. Hence, we reserved 

 

Fig. 4.2: Detailed Hardware System for the Beat Detection Model 
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enough registers, to make sure we do not run out of memory locations while storing the beat vector 

location values. Also, we have a separate module for our sliding window, which reads the first 20 

seconds for threshold detection and there after reads 10 secs of real-time data at a time, and then 

slides to read the next set of the signal. We will be explaining each of the block diagrams in the 

further section. 

 

4.2.1  Data Cleaning Stage- Butterworth Filtering  

As discussed before, the incoming ECG signal is first cleaned by passing it through a Butterworth 

filter. It is the part of the pre-processing stage, which functions similar to the Wavelet Transform 

function but uses less hardware resources. As the Fig. 4.3 below shows that the smaller and 

irregular peaks have been removed by the Butterworth filter to reduce errors while peak-detection. 

 

Fig. 4.3: Original ECG input (above) and the signal cleaned by the Butterworth Filter (below) 
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4.2.2 Low-Pass Filtering 

We used a first order low-pass filter [14] in our design that had a transfer function of – 

 

This simple design of our Low-pass filter helps in ensuring that the output cuts off all frequencies 

above 30 Hz (see Fig. 4.4), as the usual range of an ECG signal is from 0.05 Hz to 30 Hz. Hence 

the Low-pass filter removes all the high-frequency noise from the ECG signal. 

 

Fig. 4.4: Low-Pass filter output of our ECG signal 

 

4.2.3 High Pass Filtering  

Real-time ECG signal does not always remain at the same D.C. level, which is why conditions like 

Baseline wander happen. Hence placing the high-pass filter after the low-pass filter ensures the 
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removal of D.C. offset signals and lower frequencies and sets it to zero level as in Fig. 4.5 [20]. 

For our design we used a first order high-pass filter with a cut-off frequency of 0.05 Hz. This 

filtering magnifies the R-peaks and flattens down all other peaks, which rules out any possibilities 

of choosing wrong peak as beats. The blocks for the first-order Low-pass filter and high-pass filter 

have been taken from MATLAB’s existing Simulink block functions and included in our ECG 

signal analysis system. 

 

Fig. 4.5: High-pass filter results on our processed signal. 

 

4.2.4 Squaring, Smoothing and Padding zeros to the ECG signal 

The main purpose of padding zeroes to any signals is to produce longer result vectors, as a larger 

set of data contributes to lesser error possibilities. The squaring multiplier block, is used to produce 

a 40-bit output as a square-value of the input. Here in our design, the squaring logic has three main 

purposes. The first is to give the negative parts of the QRS complex positive values, which again 
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contributes to the assurance of noise-removal and gives a uniform pattern to the QRS complex that 

in turn reduces the possibilities of confusion in labeling the peaks. The second purpose of squaring 

is to further double and increase the amplitude of the already existing R-peaks to stand them out 

from the smaller peaks, ensuring proper beat detection. The third need for squaring was to further 

reduce the amplitude of the peak which are below 1mV, which will again ensure in giving better 

results. Also, as the Fig. 4.6 shows, smoothening down a signal gives a clearer analyzing criteria 

on determining the peak values, contributing to the accuracy of beat-detection. The output of this 

stage is the output of the pre-processing stage. 

 

Fig. 4.6: Result of our Squared and Smoothened ECG signal 

 

4.3 Xilinx SPARTAN-6 Memory and Shifting Window block implementation 

Field Programmable Gate Arrays which were invented by Xilinx, are today a very powerful device 

which provide strong hardware support for complex circuit designs and also provide a possibility 

to update any system without the need to add or remove parts of the hardware. The FPGA board 
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on which we decided to test our algorithm is SPARTAN-6 which is built on the proven and 

improved 45 nm technology with industry-level leading connectivity features [26] and advanced 

I/O protocols.  

 

4.3.1 Memory Allocation Stage 

The Memory allocation module is based around the resources that the SPARTAN-6 board 

provided to us. From previous research [14], it can be understood that there can be a delay of 

around 60 samples between the signal at peak detection and the same signal at band-pass stage, 

hence taking in to consideration the worst cases, our memory module has a size of 60x40 bits 

which stores the oldest value in the 0th position and the last value is stored in the 59th location. 

Also, this memory module handles all our clock specification and the overall slack and delay 

calculation of our module. 

 

Fig. 4.7: Memory block for our ECG system designed in Xilinx 

 As Fig. 4.7 shows we are storing 40-bit 60 output peak location vectors at a time in the 

RAM. From the RAM the older values get stored safely for long term in storage register so that 
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newer values can be loaded to the RAM and the older vector peak locations detectors can be moved 

to the less used memory register locations. The ‘w’ is the write enable and ‘r’ is the read enable 

which provide permission to access the stored data accordingly.  

 

4.3.2 Sliding Window Block  

As discussed before the input data from the MIT arrhythmia database is usually 30-minute long. 

Hence for real-time analysis our algorithm is designed such that the first 20 seconds of input data 

is read and processed giving a certain threshold value, then a sliding window moves to the next 10 

seconds chunk and compares the threshold value of the current chunk to that of the previous, to 

make sure beats are not skipped or to prevent sudden noise interference. ECG is biological signal, 

because of which measurements of such signals vary primarily due to environmental conditions 

like presence of glands and blood vessels, different tissue fat levels or electrode displacements, 

which is why keeping a check on the threshold value for peak detection of the ECG signal is 

necessary every 10 seconds of data (Fig. 4.8). 

 

Fig. 4.8: Block diagram with input and output pins of the Sliding window block 
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The blocks described above have their own HDL code elaborated in several modules which 

were converted from MATLAB to VHDL using Xilinx system generator and HDL Coder.  In the 

following chapter we will be discussing the performance of the system as a whole and compare its 

accuracy with the software implemented design. The hardware algorithm was simulated in Xilinx’s 

own simulation environment and implemented in the SPARTAN 6 environment specifying on 

timing constraints, memory usage, speed and power consumption. 
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CHAPTER 5 

SIMULATION RESULTS AND COMPARISONS 

Once each module of our algorithm was converted to VHDL, our main aim was to test the system 

as a whole. Xilinx ISE 14.7 gave us positive simulation results in complete SPARTAN-6 

environment with all the design utilities along with the RTL schematic, pre and post mapping, 

placement and routing of the design on the FPGA. The RTL schematic of the entire system consists 

of multiple small blocks combined together. The complex schematic with all input, intermediate 

and output blocks has been shown below in Fig.5.1. 

 

5.1 RTL Schematic of our ECG beat Detecting algorithm 

The Register-Transfer Level design abstraction gives the flow of the digital signal between the 

hardware registers and logical operations performed by the signals at each stage. 

 

Fig. 5.1: The complete Beat Detection System RTL Schematic 
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 The above Fig. 5.1 elaborates on the block connections of our design. It has all the pre-

processing, peak-detection logic, memory allocation and sliding window modules embedded and 

connected in it. After Placement and routing of the signal, input and output pins are assigned 

according to the pin and port location of the SPARTAN-6 board. Fig. 5.2 gives the peak-detection 

block of our algorithm which we named ‘ecgnew’ as we kept modifying and improving our code. 

 

Fig. 5.2: Beat-detection Block of our algorithm with the I/O pins 

 The main two input pins of our beat detection block are the 40-bit input data and the sliding 

window that selects a specific chunk of 10 seconds of data, processes it at the positive edges of a 

synchronous clock, enabled with the ‘ce’ pin then gives the 20-bit long vector peak locations 

labelled as beats as output and ‘rmem’ gives the memory location registers in which the vector 

values are stored so that we can directly read from any particular memory location and match our 

results with the software implementation.  

 For the complete block diagram, we analyzed the Floor-Plan design of our algorithm. This 

is the stage of assigning pin and ensuring that no pin is over-lapped or remains undefined. We also 

generated Mapped, Translation and Power Reports which is shown in Fig. 5.3. The Mapped and 
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Translation Reports give the details of the percentage of Hardware resources used on the 

SPARTAN-6 FPGA. The Power report was generated by X-Power Analyzer which gives power 

consumption and heat dissipation results for our algorithm after being burnt on the FPGA. We will 

be discussing in detail and comparing the various reports after ensuring that our algorithm is 

accurate and is giving precise results. 

 

Fig. 5.3: Design summary after Implementation and synthesis of our Design 

 

5.2 Analyzing results to check Accuracy Rate   

To analyze and confirm the accuracy of our results, we created a test-bench with sample data from 

the following records of the MIT-BIH Arrhythmia database [11]- 100, 101, 105,117, 119 and 200. 

The MIT-Database along with input ECG signal data provides the characteristics of all its signals 

i.e. it also contains information regarding the total number of beats, the number of beats which 

have Pre-Ventricular Contraction and whether or not the signal is affected by noise. We 

programmed our test-bench to provide a .txt file of all the vector point locations that have been 
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determined as heart-beats by our hardware system and the result generated gave the same count 

and same vector values for the location as in our software implementation, which confirms that we 

were capable of maintaining the accuracy of our design in hardware too. Also, to visualize the 

classification oh the beats as normal and ventricular, we added in our test bench the logic to mark 

the normal beats in green and the ventricular beats in red. We also added the code to count the 

number of beats marked in green or red and both together. Then we compared our results with the 

MIT database to analyze our accuracy rate. We generated the beat classification waveform using 

Modelsim software [13] which is also a HDL simulation environment but is more flexible in 

generating varied signal outputs rather than Xilinx ISE. We will be discussing our Modelsim 

simulation results in the following section.  

 

5.2.1 Analysis of Record 100 of MIT database using our beat-detection algorithm 

In Record 100, the upper signal for ECG is generated through a modified limb lead II (MLII), 

which is obtained by placing the electrodes on the chest. The lower signal is V5 of a male aged 69 

[11]. The following output was generated Modelsim for our algorithm.  

 

Fig. 5.4: Normal beats of Record 100 detected in Green and Ventricular in Red 
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 Record 100 is a pretty clean signal with not much noise contamination. It is to be noted 

that we classify only normal and ventricular beats, any other arrhythmia type like Atrial Premature 

Complexes (APC) would get classified as normal beat, as we did not code for pattern detection of 

an APC in ECG. The MIT database classifies beats as normal, VPC and APC, where as we classify 

beats only as normal and ventricular.  

 

Fig. 5.5: Premature Ventricular beat detected in Record 100 of the MIT-database 

 Our algorithm detected the total heart beat count in Record 100 as 2273, which matches 

exactly with values given in the MIT-database website. It classifies 1 beat in the signal as 

ventricular and so as ours. The ventricular beat shown above in our result is the only beat that our 

algorithm also detected as a ventricular beat. The remaining beats have been detected as normal. 

If a person has such a situation having just 1 or two Premature Ventricular beats in their ECG, then 

the heart is still considered normal and this one VPC detection can be ignored. 

    Ventricular Premature Arrhythmic Beat (VPC) 

      Normal Heart Beat QRS Complex 
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 Comparing our results with the values of this record in the MIT-database our algorithm 

can be tagged as accurate. But the main purpose of determining the accuracy of an algorithm is 

that how robust it can be and how much precise results are obtained in worst case scenarios. In our 

case worst case situations would be a signal which is highly noise contaminated or there are too 

many ventricular beats, because at certain points the algorithm might confuse normal beats with 

Ventricular beats.  

 

5.2.2 Analysis of Record 105 of MIT Arrhythmia Database 

Record 105 has quite a bit of noise contamination and that too, the noise frequency in this case lies 

quite a lot in the 10-20Hz range, which made it next to impossible for us to get rid of the noise in 

the range. There were about 40 segments of 10 second chunks which were reported to be noisy 

and difficult to remove. 

 

Fig. 5.6: Beats classified for the 30-minute signal of Record 105 of MIT database 
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 Starting with Baseline-wander noise, the Record 105 reports a couple of segments with 

baseline wander noise. Our algorithm cleaned up the signal enough to create distinguishable peaks 

and label them as beats. But varying frequency noise which lies in the signal range gave us a tough 

time detecting proper peaks and classifying them as normal or ventricular. 

 

Fig. 5.7: Baseline-wander noise cleaned, and peaks detected by our algorithm 

 As the baseline wander noise was still manageable, other parts of the signal had some 

serious noise interference which has also been mentioned in the MIT-BIH arrhythmia database. 

MIT database states that the pre-dominant feature of this tape of record 105 is high grade noise 

and artifact [11]. It states that for record 105 out of total 2572 beats detected, 5 are unclassified, 

2526 of them being normal and 41 ventricular beats. If these values are to be considered accurate, 

our algorithm gives errors while classifying the beats. For record 105 we got a total count of 2568 

beats out of which our logic labelled 2400 beats as normal while 168 of the beats were classified 

as Ventricular beats. The leads to about 4% decrease in accuracy. Noise that lies in the most 

Cleaning of Baseline-wander noise 
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sensitive ECG frequencies become a big hurdle to overcome. But compared to the high percentage 

of noise present in the signal, our algorithm performed pretty well giving 95.01% accuracy. The 

extent of noise invading the ECG signal is presented in Fig. 5.8 below.  

 

Fig. 5.8: Noise interference in the ECG frequency range, leads to error in results for Record 105 

 It seems like quite a few noisy peaks got detected as ventricular by our algorithm, which 

in ideal conditions should have been neglected. Record 105 comes in the league of the worst ECG 

data sets and for such an input set, a 95.01% accuracy seems affordable but further research will 

surely be continued for improvements. 

 

5.2.3 Analysis of Record 119 from MIT-BIH Arrhythmia Database 

Record 119 of the MIT database can be defined as a ECG of a person suffering from acute 

Ventricular Bigeminy or even in some instances Ventricular Trigeminy [12]. Such a condition of 

an ectopic beat every second or third beat may arise due to drugs like caffeine or anxiety, but 
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usually it is mainly the patient suffered previously from hypokalemia, hypomagnesemia and 

ischemia [8] being an important cause.  The symptoms of Ventricular Bigeminy or Trigeminy 

initially start with palpitations and dizziness which then moves on to more severe symptoms, hence 

it is advisable to approach medical help once such symptoms show up on regular basis. 

 

Fig. 5.9: Normal and Ventricular beat locations for Record 119  

 This record is a clean data set with almost no noise interference. It is purely infected with 

Premature Ventricular Complexes which our algorithm accurately identified by obtaining 100% 

accuracy in counting the number of PVCs when compared with the values on the MIT database. 

The MIT database for record 119 states that out of the total 1987 beats detected, 1543 have been 

tagged normal whereas 444 of the beats have been labelled as ventricular which mean almost every 

other beat is a premature ventricular beat, which causes non-rhythmic beating of the heart and also 

irregular pumping of blood to the body. Our algorithm could identify all the 444 ventricular beats 

accurately but detected 1989 beats in total, which means that our algorithm detected a couple of 
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false positives, which gives an error of 0.01% for this particular record. The difference of normal 

peaks from ventricular peaks can be easily viewed through this record. 

  

Fig. 5.10: Ventricular beat pattern clearly visible in Record 119 

 As we see that our algorithm provides almost accurate results when it comes to detecting a 

heartbeat and analyzing whether it is a Premature Ventricular beat. There are a few cases of false 

detection, but getting ideal results becomes next to impossible in the real-world scenario where 

ECG signal are very much prone to noise contamination and other related factors. For a 

summarizing analysis we did a table-based comparison of our results with that of the MIT database 

and also calculate the total accuracy and error rate of our algorithm.  

 After the accuracy of the algorithm the main factor of concern that comes next is how fast 

is the algorithm going to give results? Also, the hardware resources used, and power consumed or 

dissipated play an important role while aiming for a good, stable long-term hardware. Our Timing-
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constraints report, Mapping, Place and Route, Power and Pin Layout report will elaborate on how 

effective our design is in the next section. 

Table 5.1: Comparing our accuracy rates with MIT database results 

Our Results Noise MIT Arrhythmia Database 

Results 

Failure 

Record # Total Beats 

Detected 

Ventricular 

Beats 

Presence 

of Noise 

Total Beats 

Detected 

Ventricular 

Beats  

% Failed 

Detection 

100 2273 1 No 2273 1 0 

101 1866 0 No 1865 0 0 

105 2568 68 Yes 2572 41 0.49 

117 1536 0 No 1535 0 0.01 

119 1989 444 No 1987 444 0.01 

200 2601 816 Yes 2601 826 0.21 

Total 

Beats 

12830 1329  12833 1312 0.72 

                             Failure Rate= No. of False Detections =  45              = 0.0032% 

                                                             Total Beats             12830    

 

 Table 5.1 presents our algorithm’s failure rate to be 0.0032% which means the accuracy of 

our algorithm is 99.68%. As our algorithm is a modification over the Pan Tompkins algorithm, we 

compared our accuracy rate with the previously established algorithm which has an accuracy rate 

of 99.14% [3, 14]. Hence our algorithm is an improvement over the Pan Tomkins algorithm for 

beat-detection in terms of accuracy by 0.54%. We chose to compare the records present in the table 

as they have distinct and different characteristics from each other. Record 100 and 117 are pretty 

clean tapes and helped us understand a pattern in the ECG signal. Record 101 has atrial premature 

beats, which we wanted to test whether our algorithm detects or not.  Record 105 as discussed 

above has fairly high amount of noise contamination along with a couple of regions with uniform 

x 100 
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PVCs. Record 119 and 200 on the other hand are very high on PVCs, and also had noise 

contamination in the lower channels. We also checked our failure rates for other records, but as 

we are focusing on hardware implementation, efficient hardware usage is also an important goal. 

Now we are going to discuss our algorithm’s improvement in terms hardware resource utilization 

and speed. 

 

5.3 Device Resource Utilization 

As stated previously we chose the SPARTAN-6 family for our research out of which results were 

performed on the XC6SLX16 device clubbed with the CS324 package and as we did not wish to 

compromise on performance, we chose the speed grade to be -3[29]. After carefully going through 

the datasheet for the SPARTAN-6, we made sure that we do not exceed the resource utilization 

specifications provided by the datasheet. We burned our VHDL code on the NEXYS 3 

manufactured by Digilent Inc. The FPGA board has the Xilinx Spartan6 XC6LX16-CS324 

embedded in the center with high quality peripherals such as- 16Mbyte Micron Cellular RAM, and 

16Mbyte Micron Parallel PCM (Phase Change Memory). 

 Table 5.2 shows the summary of the total resources occupied by our design on the Spartan6 

kit. It can be seen that overall resource utilization is less than 30%. Only the number of bonded 

Input/ Output buffers seem to be above 50% and it is expected that having fewer IOBs increases 

the speed of the hardware, but in our case as we have quite a lot of variables, the design 

automatically allotted IOBs to the intermediate signal variables too, although we have only 27 

exterior pins or bonded IOBs, the remaining are not connected to the exterior pins and just have 

been declared. This would be an advantage to us in future when we modify the circuit. 
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Table 5.2: Design Summary of our Beat-Detection Algorithm 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 299 18,224 1% 

Number of Slice LUTs 501 9,112 5% 

Number of fully used LUT-FF pairs 207 499 41% 

Number of MUXCYs used 300 4,556 6% 

Number of Bonded IOBs used 152 232 65% 

Number of BUFG used 1 16 6% 

Number of Occupied Slices 141 2,278 6% 

Average Fanout 3.29 

  

 When we compared the resource utilization of our algorithm with the Pan Tompkins 

algorithm, we found that our algorithm uses around 20% less hardware resources as compared to 

the latter algorithm which uses almost 55% of the FPGA board resources [10]. The idea behind 

such improvement would be the fact that we used in-built software designs for all our components 

which helped us to get a compact design due to the automation and also, as we used the latest kit 

from the Spartan family, we could take advantage of the improved model of the FPGA board.  

 

5.3.1 Synthesis Report 

Synthesis of our design gave zero errors but came with thirteen warnings which were, basic 

precautions taken to ensure proper connections throughout the design after it is burnt on the FPGA. 

This report gives the Macro-statistics and advanced HDL synthesis reports which contain the type 

of RAM being used, that in our case is 8x1 single-port Read Only RAM, then the detailed use of 

number of adders, subtractors and multiplexors. After Macro Processing and Low-Level Synthesis, 
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the final Register report of Macro-Statistics came out to be that 289 registers and flip-flops were 

used. The REAL time to simulation completion took 9 seconds while the CPU time to read and 

reach simulation completion for our design took 8.48 seconds. The total memory usage by our 

design is 344600 kilobytes. Further, detailed table of the synthesis report is provided in the 

appendix. 

 

5.3.2 Timing Constraints Report 

No timing constraints were found, and our timing constraints report just presents default 

enumeration. All our setup and hold times are positive and above 2ns which gives the data path 

enough time to travel from the external FPGA pin to the internal register that captures the data. 

Negative values of timing constraints mean that the design cannot be implemented, and the 

synthesis would be aborted. The minimum period of data travel for our design was- 4.103ns with 

a maximum frequency of 243.731MHz. Each block in our design has its own gate delay and clock 

specifications mainly based on the levels of logic which is provided with complete details in the 

appendix. The peak memory usage to analyze the static timing was 278 MB. A few overall timing 

details are present in the Table 5.3 below- 

Table 5.3: Timing Details and Constraints for our Design 

Timing Parameters Values 

Minimum input arrival time before clock 6.414ns 

Maximum output required time after clock 7.206ns 

Maximum combinational path delay 7.781ns 

Worst case Slack 0.409ns 

Best case Achievable 4.738ns 
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5.3.4 Power Reports 

Power Consumption and dissipation are very important factors while determining whether a 

hardware is functioning efficiently or not. Power dissipation in our design is determined by the 

thermal dissipation in the form of heat.  

                       Thermal Dissipation = Junction Temperature- Ambient Temperature                [15] 

The Thermal resistance for our design is 84.4 C/W. The Junction temperature provided in our 

design summary is 27.8 C and the ambient temperature is 25.6 C. If all these values are placed in, 

then the power dissipation comes out to be 0.026W or 260mW. Previous research has records that 

power dissipation while using Pan Tomkins algorithm is 566.88mW, which is almost 50% more 

dissipation as compared to our design as shown in Table 5.4.  

Table 5.4: Power Supply and Consumption Summary of our Design 

Supply Power 

Consumed 

(mW) 

Total Dynamic Power Static Power 

20.38 0.48 19.90 

Hence, analysis based on power also gives positive results for our design, making it an 

acceptable design in all forms. The on-chip power summary is given in details in the Appendix. 

While previous software simulation through MATLAB took about 3 minutes for complete 

analysis, the hardware simulation took 2 minutes 35 seconds to generate results. This simulation 

time is good enough to generate real-time heart beat analysis. Considering parameters of accuracy, 

speed and resource utilization, our algorithm passed all the tests for being labelled as an effective 

algorithm for heart-beat detection. 

Thermal Resistance 
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CHAPTER 6 

CONCLUSION AND SUGGESTED FURTHER IMPROVEMENT 

The main goal of this research was to implement, test and analyze our beat-detection algorithm on 

hardware, so we can ensure that when our algorithm is implemented on wearable devices, the 

accuracy and consistency is maintained with results similar to that of the software accuracy. We 

successfully attained hardware accuracy of 99.68% which matched with the software accuracy 

rate. Further, we designed the hardware for our algorithm such that it used less than 40% of 

hardware resources. Consequently, the design consumes less power and acquires good sufficient 

speed to be practical.  

 For the de-noising preprocessing stage of our algorithm, we initially had planned to use 

Wavelet Transform [6], but the function for wavelet transform showed errors during fixed point 

conversion, which let us to use the bi-directional Butterworth filter instead. Comparing the output 

results of the bi-Butterworth filter with that of the wavelet transform results, we found that both 

gave the same waveform as an output and moreover the bi-directional Butterworth filter has a more 

compact design structure as compared to that of the wavelet transform algorithm hardware design, 

which led us to finally choose bi-directional filter for the data-cleaning stage of pre-processing. 

 The code conversion to VHDL was assisted by Simulink, System Generator and HDL 

Coder which had around 6 sub-modules as our design is based on many functions, that were created 

as blocks in Simulink, then called by System Generator which provided the environment for our 

design. The updated versions of these software packages helped us make accurate conversions and 

produce exact same results as that in software. Our results matched with almost all the results 
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published in the MIT database and the design is quick enough to give real-time analysis within 2 

minutes. 

6.1  Future Work and Improvements 

In order to make our algorithm resistant to noise, we had linear and non-linear filters placed in the 

pre-processing stage, which aim to extract the ECG signal band from noise interference, but when 

the noise frequency becomes same as the ECG signal frequency as in record 105, our algorithm 

mis-interprets a few noisy beats as Premature Ventricular Complexes. We are still working on 

improving our algorithm and finding ways to get rid of the noise without hampering the ECG 

signal in the 5-20Hz range. Adding more adaptive techniques to understand and predict the beat 

rate changes in the ECG signal, like introducing machine learning or deep learning to our algorithm 

could make our algorithm more efficient.   

 This research work is highly important in today’s world, where the age range of having 

heart problems is limited not just to the senior citizens of our community. Eating disorders, 

pollution or even a heathy eating style but a large amount of stress could lead to fatal conditions. 

That’s where daily monitoring of the heart comes into action and the way today’s technology has 

reduced the size of health monitoring devices, it has become obligatory that we provide even more 

advanced and accurate algorithms to the world. This algorithm could be made versatile by adding 

logic to find and inform individuals about the other kinds and forms of arrhythmia that could help 

them prevent life-threatening situations from happening rather than finding a cure for it later. 
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APPENDIX  

Synthesis and Implementation Reports 

This Appendix includes the synthesized and implemented design reports in detail. 

A.1 Design Utilization Summary 

Device Utilization Summary 

Slice Logic Utilization Used Available Utilization Note(s) 

Number of Slice Registers 299 18,224 1%   

    Number used as Flip Flops 287       

    Number used as Latches 8       

    Number used as Latch-thrus 0       

    Number used as AND/OR logics 4       

Number of Slice LUTs 447 9,112 4%   

    Number used as logic 405 9,112 4%   

        Number using O6 output only 236       

        Number using O5 output only 60       

        Number using O5 and O6 109       

        Number used as ROM 0       

    Number used as Memory 0 2,176 0%   

    Number used exclusively as route-thrus 42       

        Number with same-slice register load 40       

        Number with same-slice carry load 2       

        Number with other load 0       

Number of occupied Slices 141 2,278 6%   

Number of MUXCYs used 300 4,556 6%   

Number of LUT Flip Flop pairs used 499       

    Number with an unused Flip Flop 240 499 48%   

    Number with an unused LUT 52 499 10%   

    Number of fully used LUT-FF pairs 207 499 41%   

    Number of unique control sets 10       
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    Number of slice register sites lost 

        to control set restrictions 
17 18,224 1%   

Number of bonded IOBs 152 232 65%   

    IOB Flip Flops 2       

    IOB Latches 1       

Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%   

Number of BUFG/BUFGMUXs 1 16 6%   

    Number used as BUFGs 1       

    Number used as BUFGMUX 0       

Number of DCM/DCM_CLKGENs 0 4 0%   

Number of ILOGIC2/ISERDES2s 0 248 0%   

Number of IODELAY2/IODRP2/IODRP2_MCBs 0 248 0%   

Number of OLOGIC2/OSERDES2s 3 248 1%   

    Number used as OLOGIC2s 3       

    Number used as OSERDES2s 0       

Average Fanout of Non-Clock Nets 3.29       

 

A.2 Synthesis Reports 

Release 14.7 - xst P.20131013 (nt64) 

Copyright (c) 1995-2013 Xilinx, Inc.  All rights reserved. 

--> Parameter TMPDIR set to xst/projnav.tmp 

Total REAL time to Xst completion: 0.00 secs 

Total CPU time to Xst completion: 0.13 secs 

--> Parameter xsthdpdir set to xst 

Total REAL time to Xst completion: 0.00 secs 

Total CPU time to Xst completion: 0.13 secs 

--> Reading design: ecg_beat_detection.prj 

TABLE OF CONTENTS 

  1) Synthesis Options Summary 

  2) HDL Parsing 

  3) HDL Elaboration 

  4) HDL Synthesis 

       4.1) HDL Synthesis Report 

  5) Advanced HDL Synthesis 

       5.1) Advanced HDL Synthesis Report 

  6) Low Level Synthesis 

  7) Partition Report 

  8) Design Summary 

file:///C:/Users/riagh/beat_detection_please/ecgnew_med_map.xrpt?&DataKey=IOBProperties
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       8.1) Primitive and Black Box Usage 

       8.2) Device utilization summary 

       8.3) Partition Resource Summary 

       8.4) Timing Report 

            8.4.1) Clock Information 

            8.4.2) Asynchronous Control Signals Information 

            8.4.3) Timing Summary 

            8.4.4) Timing Details 

            8.4.5) Cross Clock Domains Report 

 

========================================================================= 

*                      Synthesis Options Summary                        * 

========================================================================= 

---- Source Parameters 

Input File Name                    : "ecg_beat_detection.prj" 

Ignore Synthesis Constraint File   : NO 

 

---- Target Parameters 

Output File Name                   : "ecg_beat_detection" 

Output Format                        : NGC 

Target Device                         : xc6slx16-3-csg324 

 

---- Source Options 

Top Module Name                  : ecg_beat_detection 

Automatic FSM Extraction     : YES 

FSM Encoding Algorithm       : Auto 

Safe Implementation               : No 

FSM Style                               : LUT 

RAM Extraction                     : Yes 

RAM Style                             : Auto 

ROM Extraction                     : Yes 

Shift Register Extraction        : YES 

ROM Style                             : Auto 

Resource Sharing                   : YES 

 

Shift Register Minimum Size : 2 

Use DSP Block                      : Auto 

 

 

---- Target Options 

LUT Combining                      : Auto 

Reduce Control Sets                : Auto 

Add IO Buffers                        : YES 

Global Maximum Fanout         : 100000 

 

Register Duplication               : YES 

Optimize Instantiated Primitives   : NO 

Use Clock Enable                        : Auto 
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Use Synchronous Set                   : Auto 

Use Synchronous Reset               : Auto 

Pack IO Registers into IOBs        : Auto 

Equivalent register Removal        : YES 

 

---- General Options 

Optimization Goal                       : Speed 

Optimization Effort                     : 1 

Power Reduction                         : NO 

Keep Hierarchy                           : No 

Netlist Hierarchy                         : As_Optimized 

RTL Output                                 : Yes 

Global Optimization                    : AllClockNets 

Read Cores                                  : YES 

Write Timing Constraints           : NO 

Cross Clock Analysis                  : NO 

Hierarchy Separator                    : / 

Bus Delimiter                              : <> 

Case Specifier                             : Maintain 

Slice Utilization Ratio                : 100 

BRAM Utilization Ratio            : 100 

DSP48 Utilization Ratio             : 100 

Auto BRAM Packing                 : NO 

Slice Utilization Ratio Delta      : 5 

 

========================================================================= 

 

 

========================================================================= 

*                          HDL Parsing                                  * 

========================================================================= 

Parsing VHDL file "C:\Users\riagh\Test_code_ise\ecg_beat_detection.vhd" into library work 

Parsing entity <ecg_beat_detection>. 

Parsing architecture <Behavioral> of entity <ecg_beat_detection>. 

 

 

========================================================================= 

*                           HDL Synthesis                               * 

========================================================================= 

 

Synthesizing Unit <ecg_beat_detection>. 

    Related source file is "C:\Users\riagh\Test_code_ise\ecg_beat_detection.vhd". 

        width39 = 39 

        width19 = 19 

        back = 76 

    Register <med_en> equivalent to <w_med> has been removed 

    Found 40-bit register for signal <mx>. 

    Found 3-bit register for signal <c_state>. 
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    Found 40-bit register for signal <th>. 

    Found 40-bit register for signal <ivalue>. 

    Found 20-bit register for signal <peakv>. 

    Found 20-bit register for signal <reg2<0>>. 

    Found 20-bit register for signal <reg2<1>>. 

    Found 1-bit register for signal <w_med>. 

    Found 40-bit register for signal <to_med>. 

    Found 32-bit register for signal <count2>. 

    Found 32-bit register for signal <counter>. 

    Found 21-bit subtractor for signal <n0130> created at line 249. 

    Found 32-bit adder for signal <counter[31]_GND_6_o_add_1_OUT> created at line 82. 

    Found 20-bit adder for signal <counter[19]_GND_6_o_add_52_OUT> created at line 269. 

    Found 32-bit adder for signal <count2[31]_GND_6_o_add_91_OUT> created at line 308. 

    Found 20-bit subtractor for signal <GND_6_o_GND_6_o_sub_54_OUT<19:0>> created at line 269. 

    Found 40-bit adder for signal <n0113> created at line 106. 

    Found 40-bit adder for signal <n0118> created at line 118. 

    Found 8x1-bit Read Only RAM for signal <c_state[2]_GND_7_o_Mux_70_o> 

    Found 1-bit 6-to-1 multiplexer for signal <c_state[2]_n_state[1]_Mux_87_o> created at line 183. 

    Found 1-bit 6-to-1 multiplexer for signal <c_state[2]_n_state[0]_Mux_89_o> created at line 183. 

    Found 32-bit comparator greater for signal <n0003> created at line 84 

    Found 40-bit comparator lessequal for signal <mx[39]_ipt[39]_LessThan_4_o> created at line 85 

    Found 32-bit comparator greater for signal <GND_6_o_counter[31]_LessThan_17_o> created at line 

104 

    Found 40-bit comparator greater for signal <th[39]_ipt[39]_LessThan_44_o> created at line 208 

    Found 40-bit comparator greater for signal <ivalue[39]_ipt[39]_LessThan_46_o> created at line 227 

    Found 41-bit comparator greater for signal <ipt[39]_GND_6_o_LessThan_48_o> created at line 233 

    Found 20-bit comparator greater for signal <GND_6_o_GND_6_o_LessThan_51_o> created at line 

249 

    Found 32-bit comparator greater for signal <count2[31]_GND_6_o_LessThan_57_o> created at line 

286 

    Summary: 

inferred   1 RAM(s). 

inferred   7 Adder/Subtractor(s). 

inferred 288 D-type flip-flop(s). 

inferred   9 Latch(s). 

inferred   8 Comparator(s). 

inferred  19 Multiplexer(s). 

Unit <ecg_beat_detection> synthesized. 

 

========================================================================= 

HDL Synthesis Report 

 

Macro Statistics 

# RAMs                                                                  : 1 

 8x1-bit single-port Read Only RAM                     : 1 

# Adders/Subtractors                                              : 7 

 20-bit adder                                                            : 1 

 20-bit subtractor                                                     : 1 
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 21-bit subtractor                                                     : 1 

 32-bit adder                                                            : 2 

 40-bit adder                                                            : 2 

# Registers                                                               : 11 

 1-bit register                                                           : 1 

 20-bit register                                                         : 3 

 3-bit register                                                           : 1 

 32-bit register                                                         : 2 

 40-bit register                                                         : 4 

# Latches                                                                 : 9 

 1-bit latch                                                               : 9 

# Comparators                                                         : 8 

 20-bit comparator greater                                       : 1 

 32-bit comparator greater                                       : 3 

 40-bit comparator greater                                       : 2 

 40-bit comparator lessequal                                   : 1 

 41-bit comparator greate                                        : 1 

# Multiplexers                                                         : 19 

 1-bit 2-to-1 multiplexer                                          : 13 

 1-bit 6-to-1 multiplexer                                          : 2 

 20-bit 2-to-1 multiplexer                                        : 2 

 40-bit 2-to-1 multiplexer                                        : 2 

 

========================================================================= 

 

========================================================================= 

*                       Advanced HDL Synthesis                          * 

========================================================================= 

 

Synthesizing (advanced) Unit <ecg_beat_detection>. 

The following registers are absorbed into counter <count2>: 1 register on signal <count2>. 

The following registers are absorbed into counter <counter>: 1 register on signal <counter>. 

INFO:Xst:3212 - HDL ADVISOR - Asynchronous or synchronous initialization of the register <c_state> 

prevents it from being combined with the RAM <Mram_c_state[2]_GND_7_o_Mux_70_o> for 

implementation as read-only block RAM. 

    ----------------------------------------------------------------------- 

    | ram_type           | Distributed                         |          | 

    ----------------------------------------------------------------------- 

    | Port A                                                             

    |     aspect ratio   | 8-word x 1-bit                          |          | 

    |     weA            | connected to signal <GN           | high     | 

    |     addrA          | connected to signal <c_state      |          | 

    |     diA            | connected to signal <GND>        |          | 

    |     doA            | connected to internal node          |          | 

    ----------------------------------------------------------------------- 

Unit <ecg_beat_detection> synthesized (advanced). 

 

========================================================================= 
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Advanced HDL Synthesis Report 

 

Macro Statistics 

# RAMs                                                                         : 1 

 8x1-bit single-port distributed Read Only RAM         : 1 

# Adders/Subtractors                                                     : 5 

 20-bit adder                                                                  : 1 

 20-bit subtractor                                                           : 2 

 40-bit adder                                                                  : 2 

# Counters                                                                     : 2 

 32-bit up counter                                                          : 2 

# Registers                                                                     : 224 

 Flip-Flops                                                                     : 224 

# Comparators                                                               : 8 

 20-bit comparator greater                                             : 1 

 32-bit comparator greater                                             : 3 

 40-bit comparator greater                                             : 2 

 40-bit comparator lessequal                                         : 1 

 41-bit comparator greater                                             : 1 

# Multiplexers                                                               : 19 

 1-bit 2-to-1 multiplexer                                                : 13 

 1-bit 6-to-1 multiplexer                                                : 2 

 20-bit 2-to-1 multiplexer                                              : 2 

 40-bit 2-to-1 multiplexer                                              : 2 

 

========================================================================= 

 

========================================================================= 

*                         Low Level Synthesis                           * 

========================================================================= 

 

Optimizing unit <ecg_beat_detection> ... 

 

Mapping all equations... 

Building and optimizing final netlist ... 

Found area constraint ratio of 100 (+ 5) on block ecg_beat_detection, actual ratio is 6. 

FlipFlop w_med has been replicated 1 time(s) to handle iob=true attribute. 

 

Final Macro Processing ... 

 

========================================================================= 

Final Register Report 

 

Macro Statistics 

# Registers                                            : 289 

 Flip-Flops                                            : 289 

======================================================================== 
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========================================================================= 

*                           Partition Report                            * 

========================================================================= 

 

Partition Implementation Status 

------------------------------- 

 

  No Partitions were found in this design. 

 

------------------------------- 

 

========================================================================= 

*                            Design Summary                             * 

========================================================================= 

 

Top Level Output File Name         : ecg_beat_detection.ngc 

 

Primitive and Black Box Usage: 

------------------------------ 

# BELS                             : 958 

#      GND                         : 1 

#      INV                           : 6 

#      LUT1                        : 63 

#      LUT2                        : 120 

#      LUT3                        : 9 

#      LUT4                        : 168 

#      LUT5                        : 122 

#      LUT6                        : 13 

#      MUXCY                   : 280 

#      VCC                          : 1 

#      XORCY                    : 175 

# FlipFlops/Latches          : 298 

#      FD                             : 4 

#      FDE                           : 242 

#      FDR                           : 43 

#      LD                             : 9 

# Clock Buffers                 : 1 

#      BUFGP                      : 1 

# IO Buffers                       : 151 

#      IBUF                          : 88 

#      OBUF                        : 63 

========================================================================= 

A.3 Timing Report 

Timing Summary: 

--------------- 
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Speed Grade: -3 

 

   Minimum period: 4.103ns (Maximum Frequency: 243.731MHz) 

   Minimum input arrival time before clock: 6.414ns 

   Maximum output required time after clock: 7.206ns 

   Maximum combinational path delay: 7.781ns 

 

Timing Details: 

--------------- 

All values displayed in nanoseconds (ns) 

 

===================================================================== 

Timing constraint: Default period analysis for Clock 'clk' 

  Clock period: 4.103ns (frequency: 243.731MHz) 

  Total number of paths / destination ports: 14638 / 325 

------------------------------------------------------------------------- 

Delay:               4.103ns (Levels of Logic = 22) 

  Source:            mx_1 (FF) 

  Destination:       mx_0 (FF) 

  Source Clock:      clk rising 

  Destination Clock: clk rising 

 

  Data Path: mx_1 to mx_0 

                             

    ---------------------------------------- 

    Total   Delay              4.103ns (1.736ns logic, 2.367ns route) 

                                       (42.3% logic, 57.7% route) 

 

===================================================================== 

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk' 

  Total number of paths / destination ports: 6395 / 198 

------------------------------------------------------------------------- 

Offset:              6.414ns (Levels of Logic = 9) 

  Source:            ipt<27> (PAD) 

  Destination:       counter_0 (FF) 

  Destination Clock: clk rising 

 

  Data Path: ipt<27> to counter_0 

                                 

    ---------------------------------------- 

    Total Delay                 6.414ns (2.413ns logic, 4.001ns route) 

                                       (37.6% logic, 62.4% route) 

 

===================================================================== 

Timing constraint: Default OFFSET IN BEFORE for Clock 'Mram_c_state[2]_GND_7_o_Mux_70_o' 

  Total number of paths / destination ports: 553 / 9 

------------------------------------------------------------------------- 

Offset:              5.430ns (Levels of Logic = 23) 
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  Source:            ipt<0> (PAD) 

  Destination:       rw (LATCH) 

  Destination Clock: Mram_c_state[2]_GND_7_o_Mux_70_o falling 

 

  Data Path: ipt<0> to rw 

                             

    ---------------------------------------- 

    Total Delay                 5.430ns (2.580ns logic, 2.850ns route) 

                                       (47.5% logic, 52.5% route) 

 

===================================================================== 

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk' 

  Total number of paths / destination ports: 648 / 62 

------------------------------------------------------------------------- 

Offset:              7.206ns (Levels of Logic = 23) 

  Source:            counter_0 (FF) 

  Destination:       peakd<19> (PAD) 

  Source Clock:      clk rising 

 

  Data Path: counter_0 to peakd<19> 

    ---------------------------------------- 

    Total Delay                 3.648ns (3.069ns logic, 0.579ns route) 

                                       (84.1% logic, 15.9% route) 

===================================================================== 

Timing constraint: Default path analysis 

  Total number of paths / destination ports: 275 / 20 

------------------------------------------------------------------------- 

  Delay:               7.781ns (Levels of Logic = 24) 

  Source:            fromwin1<0> (PAD) 

  Destination:       peakd<19> (PAD) 

 

  Data Path: fromwin1<0> to peakd<19> 

    ---------------------------------------- 

    Total Delay               7.781ns (5.081ns logic, 2.700ns route) 

                                       (65.3% logic, 34.7% route) 

=================================================================== 

Total REAL time to Xst completion: 9.00 secs 

Total CPU time to Xst completion: 8.48 secs 

--> 

Total memory usage is 344600 kilobytes 

Number of errors   :    0 (   0 filtered) 

Number of warnings :   13 (   0 filtered) 

Number of infos    :    2 (   0 filtered) 

=================================================================== 

A.4    Translation Report 

Release 14.7 ngdbuild P.20131013 (nt64) 
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Copyright (c) 1995-2013 Xilinx, Inc.  All rights reserved. 

Command Line: C:\xilinxnew\14.7\ISE_DS\ISE\bin\nt64\unwrapped\ngdbuild.exe 

-intstyle ise -dd _ngo -nt timestamp -i -p xc6slx16-csg324-3 ecg_beat_detection.ngc 

ecg_beat_detection.ngd 

 

Reading NGO file "C:/Users/riagh/beat_detection_please/ecg_beat_detection.ngc" ... 

Gathering constraint information from source properties... 

Done. 

 

Resolving constraint associations... 

Checking Constraint Associations... 

Done... 

Checking expanded design ... 

 

Partition Implementation Status 

------------------------------- 

  No Partitions were found in this design. 

------------------------------- 

NGDBUILD Design Results Summary: 

  Number of errors:     0 

  Number of warnings:   0 

 

Total memory usage is 224920 kilobytes 

 

Writing NGD file "ecg_beat_detection.ngd" ... 

Total REAL time to NGDBUILD completion:  4 sec 

Total CPU time to NGDBUILD completion:   3 sec 

 

Writing NGDBUILD log file "ecg_beat_detection.bld"... 

=================================================================== 

 

 

A.5 Mapping Report 

Release 14.7 Map P.20131013 (nt64) 

Xilinx Mapping Report File for Design 'ecg_beat_detection' 

 

Design Information 

------------------ 

Command Line   : map -intstyle ise -p xc6slx16-csg324-3 -w -logic_opt off -ol 

high -t 1 -xt 0 -register_duplication off -r 4 -global_opt off -mt off -ir off 

-pr off -lc off -power off -o ecg_beat_detection_map.ncd ecg_beat_detection.ngd ecg_beat_detection.pcf  

Target Device  : xc6slx16 

Target Package : csg324 

Target Speed   : -3 

Mapper Version : spartan6 -- $Revision: 1.55 $ 

Mapped Date    : Tue Mar 20 23:56:55 2018 
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Peak Memory Usage:  461 MB 

Total REAL time to MAP completion:  26 secs  

Total CPU time to MAP completion:   23 secs  

 

=================================================================== 

 

A.6 Power Report 

--------------------------------------------------------------------------------------------------------------------- 

|                                                                  Xilinx XPower Analyzer                                                                  

-------------------------------------------------------------------------------------------------------------------------------

----------------------------- 

| Release                | 14.7 - P.20131013 (nt64)                                                                                                        

| 

| Command Line           | C:\xilinxnew\14.7\ISE_DS\ISE\bin\nt64\unwrapped\xpwr.exe -intstyle ise -ol std 

ecg_beat_detection.ncd ecg_beat_detection.pcf -o ecg_beat_detection.pwr  | 

-------------------------------------------------------------------------------------------------------------------------------

-------------------------------- 

|      Table of Contents       | 

-------------------------------- 

| 1.  Settings                 | 

| 1.1.  Project                | 

| 1.2.  Device                 | 

| 1.3.  Environment            | 

| 1.4.  Default Activity Rates | 

| 2.  Summary                  | 

| 2.1.  On-Chip Power Summary  | 

| 2.2.  Thermal Summary        | 

| 2.3.  Power Supply Summary   | 

| 2.4.  Confidence Level       | 

| 3.  Detailed Reports         | 

| 3.1.  By Hierarchy           | 

| 4.  Warnings                 | 

-------------------------------- 

 

1.  Settings 

---------------------------------------------- 

1.1                   Device                     | 

------------------------------------------------- 

| Family           | Spartan6                   | 

| Part                | xc6slx16                   | 

| Package          | csg324                     | 

| Temp Grade   | C-Grade                   | 

| Process           | Typical                    | 
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| Speed Grade   | -3                             | 

| Characterization | Production,v1.3,2011-05-04 | 

------------------------------------------------- 

1.2.  Environment 

--------------------------- 

|       Environment       | 

--------------------------- 

| Ambient Temp (C)  | 25.0 | 

| Use custom TJA?    | No   | 

| Custom TJA (C/W) | NA   | 

| Airflow (LFM)        | 0    | 

| Heat Sink                  | None | 

| Custom TSA (C/W) | NA   | 

--------------------------- 

1.3.  Default Activity Rates 

---------------------------------- 

|     Default Activity Rates     | 

---------------------------------- 

| FF Toggle Rate (%)         | 12.5  | 

| I/O Toggle Rate (%)        | 12.5  | 

| Output Load (pF)             | 5.0    | 

| I/O Enable Rate (%)        | 100.0 | 

| BRAM Write Rate (%)    | 50.0  | 

| BRAM Enable Rate (%)  | 50.0  | 

| DSP Toggle Rate (%)      | 12.5  | 

---------------------------------- 

 

2.  Summary 

2.1.  On-Chip Power Summary 

----------------------------------------------------------------------------- 

|        On-Chip        | Power (mW) |  Used  | Available | Utilization (%) | 

----------------------------------------------------------------------------- 

| Clocks                |       0.48 |      3  |    ---  |       ---     | 

| Logic                  |       0.00 |  447  | 9112 |           5   | 

| Signals               |       0.00 |    606 |    ---  |       ---     | 

| IOs                     |       0.00 |    152 |  232  |           66 | 

| Static Power      |      19.90 |          |          |                 | 

| Total                  |      20.38 |          |          |                 | 

----------------------------------------------------------------------------- 

2.2.  Thermal Summary 

------------------------------ 

| Effective TJA (C/W) | 27.8 | 

| Max Ambient (C)     | 84.4 | 

| Junction Temp (C)   | 25.6 | 

------------------------------ 

 

2.3.  Power Supply Summary 

--------------------------------------------------------- 
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|                      | Total | Dynamic | Static Power | 

--------------------------------------------------------- 

| Supply Power (mW)    | 20.38 | 0.48    | 19.90        | 

--------------------------------------------------------- 

 

--------------------------------------------------------------------------------------------------------------- 

|                                            Power Supply Currents                                            | 

--------------------------------------------------------------------------------------------------------------- 

|     Supply Source     | Supply Voltage | Total Current (mA) | Dynamic Current (mA) | Quiescent Current 

(mA) | 

--------------------------------------------------------------------------------------------------------------- 

| Vccint                 |          1.200 |                    6.51 |                            0.40 |                            6.11 | 

| Vccaux                |          2.500 |                   3.03 |                            0.00 |                            3.03 | 

| Vcco25                |          2.500 |                   2.00 |                            0.00 |                            2.00 | 

--------------------------------------------------------------------------------------------------------------- 
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