
Pseudopotential-based electron quantum transport: Theoretical formulation
and application to nanometer-scale silicon nanowire transistors

Jingtian Fang,a) William G. Vandenberghe, Bo Fu,b) and Massimo V. Fischetti
Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson,
Texas 75080, USA

(Received 30 September 2015; accepted 4 January 2016; published online 15 January 2016)

We present a formalism to treat quantum electronic transport at the nanometer scale based on

empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate

band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale

channel and body. Assuming externally applied potentials that change slowly along the electron-

transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary

conditions and to develop the transport equations. We construct the full-band open boundary condi-

tions (self-energies of device contacts) from the complex band structure of the contacts. We solve the

transport equations and present the expressions required to calculate the device characteristics, such

as device current and charge density. We apply this formalism to study ballistic transport in a gate-

all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length

of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device

exhibits a subthreshold slope (SS) of �66 mV/decade and a drain-induced barrier-lowering of

�2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA

architecture are able to meet the performance requirements of future devices in terms of SS swing

and electrostatic control. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939963]

I. INTRODUCTION

The complexity of studying electronic transport in a

quantum-mechanical formalism while accounting for the at-

omistic nature of nanostructures is notoriously daunting.

Several simplified models have been widely employed in the

past. Commonly found in the literature are models dealing

with ballistic transport using self-consistent open boundary-

conditions Schr€odinger/Poisson solvers based on the para-

bolic effective-mass approximation1–5 or models based on

empirical tight-binding models2,4,6,7 coupled to the non-

equilibrium Green’s function (NEGF) formalism.8 A few

studies based on pseudopotentials5,9–12 have also been pro-

posed. The NEGF method has been employed occasionally

in simple cases to calculate scattering rates and to study dis-

sipative transport in devices.1,13,14 However, each of these

approaches comes with its own limitations.

The parabolic effective-mass approximation has been

used to simulate ballistic and dissipative quantum transport

in silicon nanowire (SiNW) field-effect transistors (FETs)

with a 10 nm gate-length and a 3 nm silicon body thickness.1

However, the effective-mass approximation loses its ability

to accurately describe the electronic band structure and pre-

dict the device characteristics for silicon bodies thinner than

about 3 nm, due to the strong nonparabolicity of the energy

bands at this ultra-confined scale.2,4,7 Furthermore, the

effective-mass approximation method cannot resolve the at-

omistic features of devices, which are important when devi-

ces are scaled down to nanometer dimensions.15

For these reasons, a full-band empirical tight-binding

approach using a small atomic orbital basis (5–10 orbitals per

atom, such as sp3s* or sp3d5s*) within the NEGF transport

model has been widely employed to study carbon nanotube

(CNT) FETs, SiNWFETs, and graphene nanoribbon (GNR)

FETs.16–19 The small basis suggests a limited accuracy of the

energy dispersion relation and band gap, compared to the

results obtained using the plane-wave Density Functional

Theory (DFT) or the GW approximation, methods that use a

large number of plane-waves as the basis.20,21 Also, since em-

pirical tight-binding requires “tuning” the hopping parameters

and employs the empirically adjusted Hamiltonian matrix ele-

ments, no explicit wavefunctions are available. On the con-

trary, plane-wave methods can provide the full atomistic

wavefunctions. Another approach, strictly related to empirical

tight-binding, is based on self-consistent linear combinations

of atomic orbitals (LCAO),22 also referred to as the “density-

functional tight-binding” (DF-TB) approach, in which explicit

basis-functions are used. This method is usually applied to

study molecular electronic devices23 and, occasionally, small

transistors consisting of �1000 atoms.24

The use of pseudopotentials and a plane-wave basis

presents an attractive way to calculate band structures, to

obtain explicit wavefunctions, and predict current-voltage

characteristics accurately for ultra-scaled devices. However,

since plane-wave DFT calculations use a much larger number

of plane-waves, when compared to the empirical pseudopo-

tential method,25 a quantum transport formalism based on

local empirical pseudopotentials would be more feasible at

the moment. The empirical pseudopotential method is capable

of providing accurate band structures and band gaps and to

simulate efficiently devices at the nanometer scale, consisting
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of thousands of atoms. Another advantage of the empirical

pseudopotential method over the plane-wave DFT consists in

the possibility of “calibrating” empirical pseudopotential pa-

rameters in order to fit experimental results. Accurate values

of the band gap and effective masses, for example, are of par-

amount importance in transport studies. Of course, this comes

with some loss of predictive power when considering struc-

tures with a morphology significantly different from what is

used as the “calibration point.”

In very recent years, Esseni et al.,26 Hueting et al.,3 and

Wang et al.11,27 proposed methods based on the linear com-

bination of bulk bands (LCBB). In Ref. 11, a quasi-Fermi

level model and a top-of-barrier splitting model were both

applied to simulate quantum transport in 10 nm and 22 nm

double-gate ultra-thin-body MOSFETs. For the LCBB-

quasi-Fermi level model, local thermal equilibrium is

assumed. In small systems in off-equilibrium conditions,

however, since each state is coherent along the whole device,

the use of local states and of the local-thermal equilibrium

assumption becomes invalid. Thus, the use of the quasi-

Fermi level model results in a significant overestimation of

the subthreshold charge density inside the channel, as well as

of the current. The improved top-of-barrier model extracts

scattering-state information from the stationary solution of

the system. It then calculates the charge density and current.

Nevertheless, the top-of-barrier model uses periodic bound-

ary conditions and yields results agreeing well with those of

the empirical tight-binding-NEGF approach using scattering

state boundary conditions.27

In this paper, we present a quantum transport formalism

based on local empirical pseudopotentials with open bound-

ary conditions using an envelope-function approximation.

Figure 1 illustrates schematically the open-boundary-condi-

tion picture on which this method rests. The outline of the

formalism was presented by some of us in Ref. 28, and the

formalism has been verified previously by studying

SiNWs5,29 and armchair-edge GNRs (aGNRs)30 nþpþnþ-

doped nanostructures, but without gate control and only in a

one-dimensional (1D) model. Here, we extend the method to

three-dimensional (3D) simulations and account for the pres-

ence of a gate with an applied bias needed to control the

electrostatics of the channel. Recently, Garcia-Lekue and co-

workers12 have independently formulated the problem in a

similar way.

The paper is organized as follows. The calculation of

the band structure for nanostructures using the empirical

pseudopotential method is briefly introduced in Sec. II A. In

Sec. II B, we derive the quantum transport equations using

the supercell method and the envelope-wavefunction approx-

imation. The numerical implementation, such as the calcula-

tion of the complex band structure of the contacts and the

determination of injected waves and reflected waves, is dis-

cussed in Sec. II C. Finally, in Sec. III, we discuss the exam-

ple of a 3D simulation of one-dimensional electron transport

in a SiNWFET with a body-size of 0.39 nm, a gate length of

6.52 nm, and an effective oxide thickness of 0.43 nm. Details

about the derivations of the transport equation and of the

open boundary conditions (self energies) are presented in

Appendixes A and B, respectively.

II. THEORY

A. Empirical pseudopotential method for
nanostructures

The empirical pseudopotential method is a plane-wave

method, which relies on the periodicity of the structure to be

studied. Therefore, in order to deal with nanostructures,

instead of bulk solids, a cell containing many atoms is con-

sidered instead of the primitive lattice cell. By introducing

vacuum around the nanostructures, a (periodic) supercell is

obtained. For 1D nanostructures, we consider electrons con-

fined in the (x-y) plane and traveling along z, so that the elec-

tron wavevector k reduces to a wavenumber kz. The electron

wavefunction can be written in the Bloch form wðrÞ
¼ eikzz

P
G ukz

GeiG�r. Using empirical pseudopotentials, the

Schr€odinger equation giving the energy dispersion Ekz and

wavefunctions is written as

X
G0

�h2

2m
jkþGj2dG0;G þ V 1Dð Þ

G0;G

� �
ukz

G0
¼ Ekz

ukz

G; (1)

where k¼ (0, 0, kz) and G denotes the translation vectors in

the reciprocal space of the supercell. The number of G-vec-

tors NG depends on the cut-off energy Ecutoff employed. The

lattice potential has the form V
ð1DÞ
G;G0
¼ 1

X

P
a e�iðG�G0Þ�saXaVa

q ,

where X is the volume of the supercell, Xa is the volume of

ion a in the supercell, and Va
q is the pseudopotentials of ion a

depending on q ¼ jG�G0j. By solving Eq. (1) as an

FIG. 1. Schematic plane-wave full-

band quantum transport model. A

wave injected at a single energy from

the left contact, the multiple reflection

waves, and transmitted waves are illus-

trated and the (asymptotic) expressions

for the wavefunctions in the left and

right contacts, assumed to be zero-field

waveguides are shown.
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eigenvalue problem, we obtain the eigenenergy Ekz
and the

wavefunction ukz

G of each state k. Thanks to the periodicity of

the system along z, we need only to calculate the dispersion

Ekz
ðkÞ in the first Brillouin zone (BZ) of the supercell.

B. Full-band plane-wave quantum transport formalism

1. Envelope-wavefunction approximation

While the supercell method is suitable to study con-

fined systems, the envelope-wavefunction approxima-

tion31,32 offers the possibility of applying open-boundary

conditions to study electron transport within a full-band for-

malism. Within the approximation, the external potential is

assumed not to vary appreciably over the size of a unit cell,

precisely dV � Vpseudo �1 Ry. Similar to the Bloch theo-

rem, which expresses the Bloch wavefunction as a product

of a plane wave eik�r with the crystal moment k and a modu-

lating periodic function ukðrÞ, now the full wavefunction is

expanded as

wðrÞ ¼
X

G

/GðrÞeiG�r: (2)

Arbitrary boundary conditions at the contacts can be

applied to the envelope function components /GðrÞ. By cou-

pling the envelope-wavefunction approximation with the

supercell method, we can analyze structures which are ho-

mogeneous along the transport direction(s), but not necessar-

ily homogeneous along the confinement direction(s).

2. Schr€odinger equation for one-dimensional electron
transport

We now extend the formulation to the case, relevant

to devices, in which we introduce an external potential,

V(ext)(r), resulting from the bias applied at the contacts.

The Schr€odinger equation describing electronic states in

the presence of both the lattice potential energy V(lat)(r)

and the external (Hartree) potential energy V(ext)(r) can be

written as

� �h2

2m
r2 þ V latð Þ rð Þ þ V extð Þ rð Þ

� �
w rð Þ ¼ Ew rð Þ ; (3)

where E is the energy of the electron, w(r) is the electronic

wavefunction, and the Laplacian operator r2 ¼ d2=dx2

þd2=dy2 þ d2=dz2:
Inserting Eq. (2) into Eq. (3), we can expand the

Schr€odinger equation in a full-band plane-wave form

X
G

eiG�r �h2

2m
�irþGð Þ2 þ V latð Þ rð Þ þ V extð Þ rð Þ

� �
/G rð Þ

¼ E
X

G

/G rð ÞeiG�r : (4)

Following the derivation shown in Appendix A, Eq. (4) can

be written in the form

X
G0

�h2

2m
�irþGð Þ2 þ V extð Þ rð Þ

� �
dG;G0 þ V 1Dð Þ

G;G0

� �
/G0 rð Þ

¼ E/G rð Þ : (5)

For electron transport in 1D nanostructures, since

kx ¼ �id=dx ¼ 0; ky ¼ �id=dy ¼ 0, Eq. (5) becomes

X
G0

� �h2

2m

d2

dz2
� i�h2

m
Gz

d

dz

� �
dG;G0 þW 1Dð Þ

G;G0
zð Þ

� �
/G zð Þ

¼ E
nð Þ

kz
/G zð Þ ; (6)

where E
ðnÞ
kz

is the electron energy depending on kz and band

index n, /GðzÞ is the envelope wavefunction at the energy

state E
ðnÞ
kz

depending on z and G-vectors, and the term

W
ð1DÞ
G;G0ðzÞ is expressed as

W 1Dð Þ
G;G0

zð Þ ¼ V 1Dð Þ
G;G0
þ V extð Þ

Gjj�G0jj
zð Þ þ

�h2jGj2

2m
dG;G0 : (7)

The Hartree potential, V
ðextÞ
Gjj�G0jj

ðzÞ, represents the in-plane

Fourier transform of the external potential energy, V(ext)(r),

on the cross-section at z. This is given by the expression

V extð Þ
Gjj�G0jj

zð Þ ¼
1

A

ð
A

V extð Þ rð Þe�i Gjj�G0jjð Þ�rjjdrjj dGz;G0z ; (8)

where rjj represents the position on the cross-section at z and

A is the area of the cross-section.

Discretizing Eq. (6) in the interval [0, L] employing a

uniform mesh of N points and a “step size” D¼L/(N� 1),

we can rewrite Eq. (6) as

� �h2

2mD2
/G zlþ1ð Þ þ /G zl�1ð Þ
� 	

� i
�h2

2mD
Gz /G zlþ1ð Þ � /G zl�1ð Þ
� 	

þ �h2

mD2
/G zlð Þ þ

X
G0

W 1Dð Þ
G;G0

zlð Þ/G0 zlð Þ ¼ E
nð Þ

kz
/G zlð Þ (9)

at each point zl¼ (l� 1)D for l¼ 1,2,…, N for each G.

Applying closed boundary conditions (i.e., /GðzÞ ¼ 0 at

z1¼ 0 and zN¼ L) and recasting the equations in matrix

form, we reach the eigenvalue problem

� � � � � � �
� T� Dl�1 Tþ 0 0 �
� 0 T� Dl Tþ 0 �
� 0 0 T� Dlþ1 Tþ �
� � � � � � �

2
6666664

3
7777775

�
/ðzl�1Þ
/ðzlÞ

/ðzlþ1Þ
�

2
6666664

3
7777775

¼ E
ðnÞ
kz

�
/ðzl�1Þ
/ðzlÞ

/ðzlþ1Þ
�

2
6666664

3
7777775
: (10)
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The matrix on the left-hand-side, which we shall refer to as

the Hamiltonian H, is of block-tridiagonal form and repre-

sents the Hamiltonian of the closed system. The envelope

wavefunction /ðzlÞ ¼ ½/G1
ðzlÞ/G2

ðzlÞ � /GNG
ðzlÞ�T is a col-

umn vector with NG components. In the Hamiltonian H, the

discretized differential operator D
l at zl is expressed as

Dl ¼

Dl
Gl

W
ð1DÞ
G1;G2
ðzlÞ W

ð1DÞ
G1;G3
ðzlÞ �

W
ð1DÞ
G2;G1
ðzlÞ Dl

G2
W
ð1DÞ
G2;G3
ðzlÞ �

W
ð1DÞ
G3;G1
ðzlÞ W

ð1DÞ
G3;G2
ðzlÞ Dl

G3
�

� � � �

2
6666664

3
7777775
; (11)

with Dl
G ¼ �h2

mD2 þW
ð1DÞ
G;G0
ðzlÞ and

Tþ ¼

TG1
0 0 �

0 TG2
0 �

0 0 TG3
�

� � � �

2
66664

3
77775; (12)

with TG ¼ �ð �h2

2mD2 þ i �h2Gz

2mDÞ. Note that T� ¼ ðTþÞ† in Eq. (10).

Thus, the rank of the Hamiltonian H is NG � N.

3. Open boundary conditions

Since we are interested in the study of electron trans-

port in an open system, we must allow for electron injection

and reflection in the contact (seen as ideal reservoirs) of the

transistors. Therefore, open boundary conditions, instead of

closed boundary conditions, should be imposed at the

boundary points z1 and zN in order to solve Eq. (6).

Following the Quantum Transmitting Boundary Method

(QTBM),33 we derive the full-band open-boundary condi-

tions in Appendix B.

The self-energy matrices giving information about how

the structure of the reservoirs affects the wavefunctions

inside the device are written as

½R�S ¼ T�½u�SR½a�SR½u�
�1
SR (13)

for the source contact, and

½R�D ¼ Tþ½u�DR½a�DR½u�
�1
DR (14)

for the drain contact. In Eq. (13), the matrix [u]SR is a

NG � NG matrix composed of the elements ukSR

G in Eq. (B13),

where G is the row index indicating the G-vector and kSR is

column index indicating the reflected wavevector in the

source. This matrix represents the NG Bloch components of

the NG reflected waves (or NG transmitted waves) in the

source contact at an energy E
ðnÞ
kz
¼ EðkSRÞ when electrons are

injected from the source (or from the drain). For the reflected

propagating waves, the wavevector kSR has a real value

while for the reflected evanescent waves, kSR is complex. In

Eq. (14), the matrix [u]DR is the analog of [u]SR for the drain

contact, which represents the NG Bloch components of the

NG transmitted waves (or NG reflected waves) in the drain

contact at the energy E
ðnÞ
kz
¼ EðkDRÞ when electrons are

injected from the source (or from the drain). For the trans-

mitted propagating waves, kDR is real while for the transmit-

ted evanescent waves kDR is complex. The matrix ½u��1
SR is the

inverse of [u]SR and ½u��1
DR is the inverse of [u]DR. The matrix

[a]SR and [a]DR are NG � NG diagonal matrices with the ele-

ments e�ikSRD and e�ikDRD on their diagonals, respectively.

The terms ½R�S and ½R�D are the NG � NG matrices resulting

from the matrix multiplication.

The inhomogeneous terms representing electron injec-

tions are

½r:h:s:�inj
S ¼ ð½R�S � T�½e�ikSID�Þ½ukSI

G � (15)

for the injection from the source reservoir and

½r:h:s:�inj
D ¼ ð½R�D � Tþ½eikDID�Þ½ukDI

G � (16)

for the injection from the drain reservoir. The matrix [ukSI

G ] is

a matrix of size NG � NkSI
representing the NG Bloch compo-

nents of the NkSI
waves injected from the source contact at

the energy E
ðnÞ
kz
¼ EðkSIÞ. The injected waves are propagating

waves with real wavevector kSI. The matrix [ukDI

G ] is a matrix

of size NG � NkDI
representing the NG Bloch components of

possibly NkDI
waves injected from the drain contact at the

energy E
ðnÞ
kz
¼ EðkDIÞ. The wavevectors kDI are real. Thus,

½r:h:s:�inj
S and ½r:h:s:�inj

D are matrices of rank NG � NkSI
and

NG � NkDI
, respectively.

The term ½R�S is added to D
1 and ½R�D is added to the D

N

in Eq. (11), and Eq. (6) is transformed into a linear system

ðH� E
ðnÞ
kz

Iþ ½R�S þ ½R�DÞ/ ¼ ½r:h:s:�
inj
S þ ½r:h:s:�

inj
D ; (17)

when we apply the open boundary conditions. In Eq. (17), I

is the identity matrix, and / ¼ ½/ðz1Þ/ðz2Þ � /ðzNÞ�T.

4. Charge and potential distribution

By solving Eq. (17) for an injection state k¼ (0, 0, kz) at

the band n with an energy E
ðnÞ
kz

, the full wavefunction wðnÞkz
ðrÞ

is calculated from /kz

GðzÞ using Eq. (2) and the electron den-

sity is computed as

n rð Þ ¼ 1

p

X
n

X
�¼S;D

ð
1stBZ

jw nð Þ
kz

rð Þj2 f E
nð Þ

kz
;E�F


 �
dkz: (18)

In this expression, the sum is performed only over the occu-

pied states in the conduction band, since the charge of the

occupied valence states is already implicitly accounted for

by the empirical nature of the pseudopotentials we employ.

We account for electron injection from the source (�¼ S)

and drain (�¼D) contacts. The occupation of the injected

state at energy E
ðnÞ
kz

is determined by its thermal-equilibrium

Fermi-Dirac occupation, f ðEðnÞkz
;E�FÞ, via the Fermi level E�F

in the contacts.

In order to treat transport self-consistently, we start from

a initial guess of V(ext)(r) and solve Eq. (17). The density

n(r) is then obtained from Eq. (18). To obtain a new V(ext)(r)
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for the next iteration, we use Newton’s method to solve the

Poisson equation

J � dVðextÞðrÞ ¼ dqðrÞ (19)

and obtain the change of external potential energy as

dVðextÞðrÞ. In Eq. (19), J is the Jacobian matrix and qðrÞ ¼
NDðrÞ �nðrÞ � NAðrÞ þ pðrÞ, where ND (r) is the donor den-

sity, NA (r) is the acceptor density in the device, p(r) is the

hole density calculated in a way similar to n(r). We solve

Eq. (17) with the new V(ext)(r) and iterate the procedure till

convergence with a criterion on the error of dV(ext)(r) is

reached. The numerical implementation yielding conver-

gence, such as the specific form of the Jacobian matrix J,

will be discussed in detail in Sec. II C 3.

5. Device characteristics

Once a self-consistent solution is found, the device cur-

rent can be calculated from the known envelope wavefunc-

tions. The current flowing from the source contact to the

drain contact is given by the expression

IS!D zð Þ ¼ 1

p

X
n

ð
1stBZ

j
nð Þ

kz
zð Þf E

nð Þ
kz
;ES

F


 �

� 1� f E
nð Þ

kz
;ED

F


 �h i
dkz : (20)

A similar expression holds for the current flowing from the

drain to the source, ID!SðzÞ. The total device current is

obtained by adding the two currents, IðzÞ ¼ IS!DðzÞ
�ID!SðzÞ. In Eq. (20), j

ðnÞ
kz
ðzÞ is the current density

j
nð Þ

kz
zð Þ ¼ i�h

2m

X
G

/kz

G zð Þ

 �? d/kz

G zð Þ
dz

þ iGz/
kz

G zð Þ
� �

: (21)

The transmission and reflection coefficients for the

injected waves also provide information about the tunneling

probability in the device. For the source contact injection,

the transmission coefficient is given by the expression

TS!DðEðnÞkz
Þ ¼

X
NkSI

½vkDR
�j½u��1

DR½/
kSI

G ðLÞ�j
2=vkSI

; (22)

where vkDR
is the group velocity of the transmitted propagat-

ing wave, /kSI

G ðLÞ are the envelope functions at the drain con-

tact, and vkSI
is the group velocity of the injected wave. The

reflection coefficient is given by

RSðEðnÞkz
Þ ¼

X
NkSI

½vkSR
�j½u��1

SRð½/
kSI

G ð0Þ� � ½u
kSI

G �Þj
2=vkSI

; (23)

where vkSR
is the group velocity of the reflected propagating

wave, and /kSI

G ð0Þ are the envelope functions at the source

contact.

C. Numerical implementation

The flow chart for solving Eq. (17) self-consistently is

shown in Fig. 2. Assuming that a starting external potential

VðextÞðrÞ is somehow given (from a semiclassical solution, a

solution at a previous bias, etc.), we can build the Hartree

potential at first using Eq. (8). Then, the band structure of the

source contact is obtained from Eq. (1), adding to it

V
ðextÞ
Gjj�G0jj

ð0Þ, and the band structure of the drain contact is sim-

ilarly solved using Eq. (1) including V
ðextÞ
Gjj�G0jj

ðLÞ. This yields

the energy E
ðnÞ
kz

of electrons injected from the reservoirs. For

the energy state E
ðnÞ
kz

, the self-energies and inhomogeneous

injection terms are constructed from the Bloch eigenvectors

u
kSp

G and u
kDp

G (p¼ I for injected waves and p¼R for reflected

waves) of the source and drain contacts using Eqs. (13)–(16).

In Sec. II C 1, we shall show how these eigenvectors can be

calculated from the complex band structure of both contacts.

We also discuss how to select propagating waves (including

the injected waves and part of the reflected waves) with a

real kS(D)p and evanescent waves (part of the reflected waves)

with a complex kS(D)p from the eigenvalues we obtain in Sec.

II C 2. In Sec. II C 3, we discuss how to achieve the conver-

gence in the self-consistent calculation.

1. Discretized band structure calculation, real and
complex

When formulating the open-boundary-condition Schr€odinger

problem using a single-band model (e.g., the effective-mass

FIG. 2. Flow chart for solving the one-dimensional full-band plane-wave

quantum transport Schr€odinger equation and the three-dimensional

Poisson’s equation self-consistently.
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approximation), only propagating waves—injected,

reflected, and transmitted—need to be considered. This is

not true when using a multi-band model, since the reflected

and transmitted waves can be superpositions of propagating

and evanescent waves, the latter ones corresponding to com-

plex wavevectors. Therefore, the problem must be formu-

lated so as to allow the contacts to absorb not only

propagating waves but also evanescent waves. This, in turn,

obviously requires the knowledge of the energy dispersion

not only for real but also for complex wavevectors. In other

words, we need to calculate the full complex band structure

of the contacts in order to account properly for the open

boundary conditions. We obtain the complex band structure

following the method presented in Ref. 34.

From the discretized form of Eq. (17), we must consider

the transport equation

T�/ðzl�1Þ þ ðDl � E
ðnÞ
kz

IÞ/ðzlÞ þ Tþ/ðzlþ1Þ ¼ 0 (24)

at the point zl. Since /ðzlþ1Þ ¼ eikzD/ðzlÞ and /ðzl�1Þ ¼
e�ikzD/ðzlÞ hold for traveling Bloch waves, replacing /ðzlþ1Þ
and /ðzl�1Þ in Eq. (24) leads to

ðe�ikzDT� þ Dl þ eikzDTþÞ/ðzlÞ ¼ E
ðnÞ
kz

/ðzlÞ : (25)

We can calculate the discretized band structure by solving

this equation. Similarly, by replacing /ðzlþ1Þ ¼ e2ikzD/ðzl�1Þ
and /ðzlÞ ¼ eikzD/ðzl�1Þ in Eq. (24), we obtain

0 I

�T�ðTþÞ�1 � ðDl � E
ðnÞ
kz

IÞðTþÞ�1

" #
/ðzl�1Þ

eikzD/ðzl�1Þ

" #

¼ eikzD
/ðzl�1Þ

eikzD/ðzl�1Þ

" #
; (26)

which is also an eigenvalue equation whose solution yields

the discretized complex band structure at zl�1.

For the electron injection from the source contact, solv-

ing Eq. (26) at the energy E
ðnÞ
kz

both at the source contact

(l¼ 1, z0¼�D) and at the drain contact (l¼N,

zN� 1¼L�D), we obtain 2NG eigenvalues aS ¼ eikSD; 2NG

Bloch eigenvectors /ðz0Þ, and the same number of eigenval-

ues aD ¼ eikDD and eigenvectors /ðzN�1Þ.

2. Determination of injected, reflected, transmitted,
and evanescent waves

In order to construct the self-energies, Eqs. (13) and

(14), we need to choose the NG solutions (out of the 2NG sol-

utions of aS from Eq. (26)) corresponding to injected and

reflected components (propagating or evanescent) at the

source contact, and similarly at the drain contact.

We can first determine whether the waves are propagat-

ing or evanescent from the magnitude of aS; jaSj, and the

magnitude of aD; jaDj. For propagating waves with a real kS

and kD; jaSj and jaDj are unity. On the contrary, evanescent

waves in the contacts are associated to a complex kS and kD,

with jaSj > 1 for reflected evanescent waves in source

contact and jaDj < 1 for the transmitted evanescent waves in

drain contact.

Among the propagating waves at the source contact, we

determine if they are injected waves or reflected waves from

the group velocity vkS
or equivalently the probability current-

density. The probability current density is calculated from

Eq. (21), but replacing /kz

GðzÞ with the eigenvectors /ðz0Þ or

/ðzN�1Þ obtained from Eq. (26). For the source contact, the

probability current density at z1¼ 0 is

j
nð Þ

kz
0ð Þ ¼ i�h

2m

X
G

/ z1ð Þ
� 
? d/ z1ð Þ

dz
þ iGz/ z1ð Þ

� �

¼ i�h

2m

X
G

aL/ z0ð Þ
� 
? a2

L� 1

2D
/ z0ð Þþ iGz

a2
Lþ 1

2
/ z0ð Þ

� �
;

(27)

since /ðz1Þ ¼ eikSD/ðz0Þ ¼ aS/ðz0Þ. The wave packet eikSD

represents an injected wave if j
ðnÞ
kz
ð0Þ > 0 and we label it as

aSI ¼ eikSID with a group velocity vkSI
and the eigenvector is

½ukSI

G � ¼ aSI/ðz0Þ. If j
ðnÞ
kz
ð0Þ < 0, it is a reflected propagating

wave. We label the determined reflected evanescent waves

and reflected propagating waves as aSR ¼ eikSRD with a group

velocity vkSR
and the eigenvector is ½ukSR

G � ¼ aSR/ðz0Þ. The

group velocity of the evanescent waves vkSR
is 0 since they

do not carry current.

The current density at zN¼L, j
ðnÞ
kz
ðLÞ, is calculated in the

same way as Eq. (27), but replacing /ðz1Þ with /ðzNÞ
¼ aD/ðzN�1Þ. The wave packet eikDD represents a transmitted

propagating wave if j
ðnÞ
kz
ðLÞ > 0. We label these transmitted

propagating waves and evanescent waves as aDR ¼ eikDRD

with the group velocity vkDR
. The eigenvectors ½ukDR

G � are

equal to aDR/ðzN�1Þ. For the transmitted evanescent waves,

the group velocity vkDR
is 0 since they do not carry any cur-

rent. The open boundary conditions for the drain contact

injection can be constructed in the same way.

3. Self-consistent calculation

As shown in Fig. 2, the self-consistent procedure is per-

formed by iteratively updating VðextÞðrÞ and n(r). The itera-

tion procedure stops when the root-mean-square of dVðextÞðrÞ
is less than a set convergence criterion.

Specifically, having solved the transport equation, we

perform a 3D Fourier transform of /kz

GðzÞ for each slice at z,

thus obtaining the full wavefunction wkzðrÞ. In the spirit of

the envelope-wavefunction approximation, we then consider

a coarse-grained averaged electron density by averaging

over a unit cell along z the squared amplitude of the full

wavefunction. The induced charge density and potential are

smooth enough to enable convergence of the self-consistent

calculation. To solve Poisson equation, Newton’s method

and the semiclassical Jacobian matrix

J ¼ r2 � e2

�

dq rð Þ
dV extð Þ rð Þ

� r2 � e2

�

n rð Þ
kBT

(28)

based on random phase approximation are used. A uniform

dielectric constant � is assumed.
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It is worth mentioning that the method for charge den-

sity calculation described above is different from what is

proposed in Sec. II B 4. We should comment why performing

a cell-average along z of the electron density (a choice dif-

ferent from the “ideal” method described in Sec. II B 4) is

not only consistent with the envelope approximation but also

necessary for numerical reasons. The discretization step D
along z has to satisfy simultaneously two opposite require-

ments. On one hand, it should be small enough to resolve the

variation of the electron density at the atomic scale and also

to guarantee an accurate numerical integration of the trans-

port equation. On the other hand, a value of D much smaller

than the lattice constant corresponds to values of the wave-

vector (or wavenumber kz) outside the first Brillouin zone.

This would result in the appearance of “ghost states” associ-

ated with unphysical spurious states outside the first BZ.

This is due to the finite number of reciprocal lattice vectors

we employ, and the associated loss of periodicity along z.

This is not a problem in the calculation of the band structure

of bulk crystals, since one usually employs a “moving

sphere” centered around the k-point of interest and with ra-

dius determined by the energy cutoff. In our case, instead, in

order to obtain a manageable size of the problem, we must

consider only G-vectors corresponding to a unit cell along

the axial (transport) direction and the use of a “moving

sphere” is prevented by the fact that kz is replaced by �irz.

Therefore, we must abandon the idea of obtaining the charge

density at an atomic resolution and employ a value of D of

the order of the lattice constant. This avoids the problem of

dealing with spurious solutions. At the same time, this choice

provides a sufficiently accurate resolution of the external

potential that, by our initial assumption on which the enve-

lope approximation is based, varies slowly over a unit cell.

III. RESULTS

We apply the formalism introduced in Sec. II to study a

gate-all-around (GAA) (3� 3)-SiNWFET with electron

transport along the [001] axial direction. The device length

is 21.72 nm, the gate length, LG, is 6.52 nm, the effective ox-

ide thickness is 0.43 nm, and the body size characterized

with the NW side length is 0.39 nm. The device is nþpþnþ

doped along z. The donor density in the source and the drain

contacts is 1.0� 108 m�1, and the acceptor density in the

gate contact is 1.0� 108 m�1.

A. Atomic structure of the channel material and
energy band structure

The model of the [001]-oriented SiNW channel with a

square cross-section and hydrogen-passivated {110} surfaces

is shown in Fig. 3. Since the wire consists of three monolayers

along both sides of the square, we denote it as a (3� 3)-SiNW.

The body size of the nanowire is defined by its side-length of

0.386 nm. The terminating hydrogen atoms are located at posi-

tions which still maintain the original tetrahedral coordination

with a Si-H bond length 0:158
ffiffiffi
3
p

a0 ¼ 0:149 nm, where

a0¼ 0.543 nm is the lattice constant of bulk silicon. The vac-

uum distance, including the spacing of the hydrogens, between

the sides of the supercell is 0.768 nm, which is large enough to

suppress the interaction between neighboring wires, since there

is no electronic wavefunction overlap.

Ignoring the structural relaxation of the atomic configu-

rations, which may be significant especially for the surface

atoms, and by solving Eq. (1) using the local empirical pseu-

dopotentials,35,36 the band structure of the nanowire is calcu-

lated using a cutoff energy Ecutoff of 4.5 Ry, resulting in

NG ¼ 783. This is shown in Fig. 4. The electronic states in

this nanowire are strongly confined and exhibit significant

valley-splitting.37 The band gap takes a value of 4.6 eV,

much larger than the gap of bulk Si, because of quantum

FIG. 3. Atomistic model of a (3� 3) [001]-oriented SiNW with {110} surfa-

ces. The cross-section has a square shape and the side length of the nanowire

body is 0.386 nm. The distance from the sides of the nanowire to the sides of

the square supercell is also 0.386 nm. The translation vector along z is the

lattice constant of bulk silicon, 0.543 nm.

FIG. 4. Band structure of a (3� 3)-SiNW only considering the lattice poten-

tial using Ecutoff¼ 4.5 Ry. The six lowest-energy conduction bands are

shown. Energy of the bottom of the conduction band is set to zero. The sec-

ond conduction band is �300 meV away from the bottom of the conduction

band. For low-energy electron transport, only the lowest conduction band is

occupied.
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confinement. And the gap is indirect since the valence band

reaches its maximum when the wavevector (wavenumber) is

at the zone edge, while the conduction band minimum is

located at the center of the BZ (that is, at the C symmetry

point).

B. Transport characteristics of (3 3 3)-SiNWFET

In order to solve numerically the transport equation, the

device is discretized into N¼ 81 slices along z with a mesh

size D¼ 21.72/80¼ 0.27 nm, which is half of the lattice con-

stant. In order to solve Poisson equation, a 2D triangular

finite-element mesh is generated in each slice, and the 3D

finite-element mesh with prismatic elements is obtained by

extruding the 2D mesh along z. Dirichlet boundary condi-

tions are applied at the gate contact. A uniform k-space

mesh with the discretization step Dkz¼ 0.005(2p/a0) results

in 94 injection energy states from the bottom of the conduc-

tion band Ec to Ecþ 10kBT. A uniform dielectric constant of

3.48 is assumed to obtain the effective oxide thickness of

0.43 nm.

The iteration to obtain a self-consistent solution starts

with V(ext)(r)¼ 0. After solving the transport equation for all

the injection energies, the corresponding envelope wave-

functions are obtained. In Fig. 5, we show the squared ampli-

tude of the envelope wavefunctions averaged over a unit cell

as a function of z for a few selected injection energies at

VGS¼ 0 V and VDS¼ 0.1 V. These wavefunctions are

obtained by summing the coefficients j/kz

GðzÞj
2

over all the

G-vectors. As expected, low-energy electrons exhibit long

wavelengths and the amplitude of the associated wavefunc-

tions decays in the potential barrier. On the contrary, the

wavefunctions associated with high-energy electrons exhibit

an almost constant amplitude close to unity.

The charge density and potential energy profile along

the transport direction are shown in Fig. 6. Charge neutrality

is preserved near the contacts, thanks to the Neumann bound-

ary conditions imposed on the Poisson equation. This choice

of boundary conditions is equivalent to the shift of the Fermi

level employed by Poetz.38 The problem of maintaining

charge neutrality near the contacts in quantum ballistic simu-

lations has been discussed at length by Frensley39 and

Fischetti.40 To evaluate the drain-induced barrier-lowering

(DIBL), in Fig. 7, we show the potential energy profile at

VGS¼ 0 V and different VDS. The potential barrier is lowered

with an amount of 0.48 mV when VDS is increased from

0.01 V to 0.2 V, corresponding to a negligible DIBL of

2.5 mV/V on average, which indicates that there is an excel-

lent electrostatic control on the gate for the GAA architec-

ture of the device.

The reflection and transmission coefficients are plotted in

Fig. 8. In general, the transmission coefficient increases as the

electron injection energy increases. However, it is interesting

to note the appearance of resonances in the transmission prob-

ability. These are loosely related to the Wigner-Breit resonan-

ces41 and are due to the interference of incoming waves with

waves reflected by the sharp drop of the potential energy at

the channel-drain junction. Similar effects have been observed

experimentally in Fowler-Nordheim tunneling in SiO2 films.42

Ultimately, since this sharp drop is due to the excellent elec-

trostatic control of the gate on the channel potential, these
FIG. 5. Square of the envelope functions along z at several energy states for

the source contact injection at VGS¼ 0 V and VDS¼ 0.1 V.

FIG. 6. (a) One-dimensional charge density distribution, obtained by averag-

ing the three-dimensional charge density n(r) in each cross-section, along z
at VDS¼ 0.1 V and VGS ranging from �0.15 V to 0.05 V. (b) One-

dimensional potential energy profile along z. The short dashed line below

the energy profile is the Fermi level in the source and drain contact,

respectively.

035701-8 Fang et al. J. Appl. Phys. 119, 035701 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  129.110.241.33 On: Mon, 25 Jul 2016

16:29:41



resonances emphasize the good quality of the GAA geometry.

Of course, they appear only when the electron coherence is

maintained over the entire length of the channel, so it is

doubtful whether these resonances lead to any observable

effect.

The IDS–VGS and IDS–VDS characteristics of the device

are shown in Fig. 9, indicating that the device has a subthres-

hold slope (SS) of 66 mV/dec. From Fig. 9(b), we see that

the current increases linearly at low VDS and saturates at

high VDS. For VGS¼ 0.05 V in the subthreshold region, the

saturation current is 0.28 lA. When scaling it to the circum-

ference of the nanowire, the current density is 190 lA/lm. In

the calculation, obviously, the k-space discretization affects

the number of injection energy states. We have verified that

modifying the number of injected waves by changing the kz-

spacing Dkz from 0.005(2p/a) to 0.01(2p/a), and so using 47

instead of 94 injection energies at the source contact, the cur-

rent does not change appreciably.

Regarding the numerics of the simulation, the rank of

the block-tridiagonal matrix is NG � N ¼ 783� 81 ¼
63 423 and the number of non-zero element in the sparse

matrix is N2
G � N þ ðN � 1Þ � 2NG ¼ 49 785 489. We per-

formed the computation on an IBM P55 POWER 7 cluster.

When 94 energies states are injected from either contact,

we assign 94 cores to solve the transport equation in paral-

lel. For each injection energy from the source or drain

contact, about 300 s are required to construct the open-

boundary conditions. Using a linear-system sparse matrix

solver UMFPACK,43 the large-scale linear equation is

solved efficiently in about 300 s. Therefore, for a single

self-consistent loop considering both source and drain

contact injections, about 1200 s are required to solve the

transport equations. In total, approximately �10 hours

are required to reach convergence in 28 self-consistent

loops for the potential energy with a criterionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N3D
jdVðextÞðrÞj2=N3D

q
< 10�6 eV at a single VDS and

VGS, where N3D is the number of points in r-space of the de-

vice. The maximum memory requirement for each core is

about 6GB during the UMFPACK LU factorization.

IV. CONCLUSIONS

We have presented a full-band plane-wave quantum

transport formalism based on empirical pseudopotentials.

We have shown how to construct open-boundary conditions

using the full complex band structure at the contacts and

how to calculate the charge density and device current from

FIG. 7. One-dimensional potential energy profile along z at VGS¼ 0 V and

VDS ranging from 0.01 V to 0.20 V.

FIG. 8. Energy-dependent reflection and transmission coefficient for the

source contact injection at VGS¼ 0 V and VDS¼ 0.1 V. At certain energies,

the electron waves resonate inside the device.

FIG. 9. (a) IDS–VGS characteristics of the (3� 3)-SiNWFET. The device has

a subthreshold slope �66 mV/dec. (b) IDS–VDS characteristics of the (3� 3)-

SiNWFET at VGS¼ 0 V and 0.05 V. The current is linearly increasing at low

VDS and saturates at high VDS.
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the electronic wavefunctions obtained from the transport

equation. As an example, we have applied this formalism to

a GAA SiNWFET with an extremely small body size and a

short channel length.
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APPENDIX A: DERIVATION OF THE TRANSPORT
EQUATION

Multiplying Eq. (4) by e�iG0 �r on both sides for each G

and integrating over r over a single cell with the origin at rl,

the first term on the left-hand side (l.h.s) becomes

�h2

2m

ð
Xc

dr ei G�G0ð Þ�r �irþGð Þ2/G rð Þ; (A1)

where Xc is the volume of a unit cell. Thanks to the assump-

tion that /GðrÞ is slowly varying over a unit cell along the z-

direction, we can treat it as a constant over a unit cell when

integrated over the fast-oscillating function eiG�r. Then, Eq.

(A1) is simplified to

�h2

2m
�irþGð Þ2/G rlð Þ

ð
Xc

dr ei G�G0ð Þ�r

¼ Xc
�h2

2m
�irþGð Þ2 /G rlð Þ dG;G0 : (A2)

Similarly, the third term at the l.h.s of Eq. (4) can be written

as

ð
Xc

dreiðG�G0Þ�rVðextÞðrÞ/GðrÞ ¼ XcVextðrlÞ/GðrlÞdG;G0 :

(A3)

Integrating V(lat)(r) over a unit cell yields

ð
Xc

dreiðG�G0Þ�rVðlatÞðrÞ/GðrÞ ¼ XcVG0�G/GðrlÞ: (A4)

The integration on the right-hand side (r.h.s.) of Eq. (4)

yields

ð
Xc

dr eiðG�G0Þ�r /GðrÞ ¼ Xc /GðrlÞdG;G0 : (A5)

Gathering all terms, Eq. (4) takes the form of an eigenvalue

problem

X
G

�h2

2m
�irþGð Þ2 þ V extð Þ rð Þ

� �
dG;G0 þ VG0�G

� �
� /G rð Þ

¼ E/G0 rð Þ: (A6)

APPENDIX B: FULL-BAND OPEN BOUNDARY
CONDITIONS

We consider a wire which is in contact with a source

reservoir (z< 0) denoted as S afterwards and a drain reser-

voir (z>L) denoted as D. Their chemical potentials are held

at 0 and VDS, respectively. If the complex band structure of

the reservoirs is known, the respective Bloch eigenvectors

u
kSp

G and u
kDp

G are also known. Here, p denotes the band index,

running over NG bands, which takes I for injected waves and

R for reflected waves. Considering a 1D contact, we inject a

wave with amplitude 1, wkSIðrÞ, with a wavenumber kSI in

(sub-) band n at an energy E ¼ EðnÞðkSIÞ from the source res-

ervoir. The injected wave is partially reflected into the source

contact as a wave wkSRðrÞ and partially transmitted into the

drain contact as a wave wkDRðrÞ. The wave in the region

z< 0, a superposition of the injected wave and the reflected

wave, is then

wlðrÞ ¼ wkSIðrÞ þ wkSRðrÞ ¼ eikSIz
X

G

ukSI

G eiG�r

þ
X
kSR

RkSR
ðEÞeikSRz

X
G

ukSR

G eiG�r: (B1)

Here, the quantities kSR represent the (in general complex)

wavevectors of the reflected waves. They satisfy the condi-

tion E(kSR)¼E. The quantities RkSR
ðEÞ are coefficients that

remain to be determined. The wave in the region z> L is just

the transmitted wave

wkDRðrÞ ¼
X
kDR

TkDR
ðEÞeikDRz

X
G

ukDR

G eiG�r; (B2)

where kDR are the wavevectors that satisfy the condition

E(kDR)¼E� eVDS. The quantities TkDR
ðEÞ are also coeffi-

cients that remain to be determined. Comparing Eq. (B1)

with the wavefunctions expressed using the envelope

approach wðrÞ ¼
P

G /kSI

G ðzÞeiG�r for the source reservoir

injection, we have

X
G

/kSI

G ðzÞeiG�r ¼ eikSIz
X

G

ukSI

G eiG�r

þ
X
kSR

RkSR
ðEÞeikSRz

X
G

ukSR

G eiG�r: (B3)

Equating the coefficients of the expansion over eiG�r term-

by-term, we obtain

/kSI

G ðzÞ ¼ eikSIzukSI

G þ
X
kSR

RkSR
ðEÞeikSRzukSR

G : (B4)

Therefore, the wavefunction at z1¼ 0 is

/kSI

G ð0Þ ¼ ukSI

G þ
X
kSR

RkSR
ðEÞukSR

G ; (B5)

and the one at z0¼�D is

/kSI

G ð�DÞ ¼ e�ikSIDukSI

G þ
X
kSR

RkSR
ðEÞe�ikSRDukSR

G : (B6)
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Defining

rG ¼
X
kSR

RkSR
ðEÞukSR

G (B7)

so that /kSI

G ð0Þ ¼ ukSI

G þ rG and

qG ¼
X
kSR

RkSR
ðEÞe�ikSRDukSR

G ; (B8)

so that /kSI

G ð�DÞ ¼ e�ikSIDukSI

G þ qG, we have

RkSR
ðEÞ ¼

X
G

ðukSR

G Þ
�1rG: (B9)

Inserting Eq. (B9) into Eq. (B8), we obtain

qG ¼
X
kSR

ukSR

G

X
G0
ðukSR

G0 Þ
�1rG0e

�ikSRD

¼
X
kSR

ukSR

G

X
G0
ðukSR

G0 Þ
�1ð/kSI

G0
ð0Þ � ukSI

G0
Þe�ikSRD:

(B10)

The above expression permits us to express the wavefunction

inside the contact /kSI

G ð�DÞ in terms of the wavefunction in

the device.

Considering Eq. (9) at l¼ 1 (i.e., z1¼ 0) for the energy

E¼E(n)(kSI), we obtain the equation which relates the source

reservoir to the device as

� �h2

2mD2
/G z2ð Þ þ /G z0ð Þ
� 	

� i
�h2

2mD
Gz /G z2ð Þ � /G z0ð Þ
� 	

þ �h2

mD2
� E

� �
/G z1ð Þ þ

X
G0

W 1Dð Þ
G;G0

z1ð Þ/G0 z1ð Þ ¼ 0:

(B11)

Inserting /Gðz0Þ ¼ /kSI

G ð�DÞ into the equation above, the

relation between the wavefunctions inside and outside the

device is

� �h2

2mD2
þ i

�h2

2mD
Gz

� �
/G z2ð Þ þ

�h2

mD2
� E

� �
/G z1ð Þ

þ
X

G0
W 1Dð Þ

G;G0
z1ð Þ þ R Sð Þ

G;G0


 �
/G0 z1ð Þ

¼ �h2

2mD2
� i

�h2

2mD
Gz

� �
� e�ikSID ukSI

G þ
X

G0
R Sð Þ

G;G0
ukSI

G0
;

(B12)

where the term

R Sð Þ
G;G0 ¼ �

�h2

2mD2
� i

�h2

2mD
Gz

� �X
kSR

ukSR

G ukSR

G0


 ��1

e�ikSRD

(B13)

can be viewed as the source-contact self-energy matrix. This

tells us how the structure of the source reservoir affects the

wavefunctions inside the device. This term is added to the

block D
1 in Eq. (10), so that the r.h.s term of Eq. (B12)

becomes an inhomogeneous term representing the injection

from the source reservoir, transforming the eigenvalue prob-

lem to be a linear system.

Comparing Eq. (B2) with the wavefunction expressed

using the envelope approach wðrÞ ¼
P

G /kSI

G ðzÞeiG�r for the

same source-reservoir injection, we have

X
G

/kSI

G ðzÞeiG�r ¼
X
kDR

TkDR
ðEÞeikDRz �

X
G

ukDR

G eiG�r: (B14)

Comparing the coefficient of eiG�r term-by-term, we have

/kSI

G ðzÞ ¼
X
kDR

TkDR
ðEÞeikDRz � ukDR

G : (B15)

Thus, the wavefunction at zNþ 1¼ LþD is

/kSI

G ðzNþ1Þ ¼
X
kDR

TkDR
ðEÞeikDRðLþDÞukDR

G ; (B16)

and at zN¼L is

/kSI

G ðzNÞ ¼
X
kDR

TkDR
ðEÞeikDRLukDR

G : (B17)

Therefore, the coefficient TkDR
ðEÞ can be written as

TkDR
ðEÞ ¼

X
G

/kSI

G ðzNÞðukDR

G Þ
�1e�ikDRL: (B18)

Inserting Eq. (B18) into Eq. (B16), the wavefunction inside

the right contact is expressed using /kSI

G ðLÞ as

/kSI

G ðzNþ1Þ ¼
X
kDR

ukDR

G

X
G0

/kSI

G0 ðzNÞðukDR

G0
Þ�1eikDRD: (B19)

Considering Eq. (9) at l¼N (i.e., zN¼L) for the energy

E¼E(n)(kSI), the equation that relates the drain reservoir to

the device is

� �h2

2mD2
/G zNþ1ð Þ þ /G zN�1ð Þ
� 	

� i
�h2

2mD
Gz /G zNþ1ð Þ � /G zN�1ð Þ
� 	

þ �h2

mD2
� E

� �
/G zNð Þ þ

X
G0

W 1Dð Þ
G;G0 zNð Þ/G0 zNð Þ ¼ 0:

(B20)

Inserting Eq. (B19) into the equation above, we have

� �h2

2mD2
� i

�h2

2mD
Gz

� �
/G zN�1ð Þ þ

�h2

mD2
� E

� �
/G zNð Þ

þ
X

G0
W 1Dð Þ

G;G0 zNð Þ þ R Rð Þ
G;G0


 �
/G0 zNð Þ ¼ 0;

(B21)

where the term
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R Rð Þ
G;G0 ¼ �

�h2

2mD2
þ i

�h2

2mD
Gz

� �X
kDR

ukDR

G ukDR

G0


 ��1

eikDRD

(B22)

is the device/right-contact self-energy matrix. As we saw for

the source reservoir, this matrix tells us how the structure of

the drain reservoir affects the wavefunctions inside the de-

vice and is to be added to the block D
N in Eq. (10).
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