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Angle-domain common-image gathers (ADCIGs) are an important product from reverse time 

migration (RTM). Using the Poynting vector (PV) to calculate propagation angles is efficient but 

suffers from instability problems. First, the PV can give only a single direction per grid point per 

time step, and thus it fails to give the multiple directions at wavefield overlaps. Second, the 

current PV formula is only kinematically correct, which leads to an undefined propagation angle 

at the magnitude peak of the wavefield. Third, the receiver wavefield reconstructed from the 

observed data is often not as stable as the source wavefield simulated from the synthetic source. 

We address the first two issues by proposing a dynamically-correct multidirectional PV (MPV) 

that decomposes the wavefield into several vector bins in the frequency-wavenumber (ω-k) 

domain and then uses PV to calculate the propagation directions of each decomposed wavefield 
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in the time-space (t-x) domain. We also provide an improved flow to calculate the ADCIGs by 

using the source wavefield propagation direction and the reflector normal in the k domain.  

We propose an improved system for the elastic RTM, which involves three parts. For the P/S 

wave mode separation, we put forward a scheme to relax the assumption of the (locally) constant 

shear modulus caused by the Helmholtz theorem. We also give the elastic imaging conditions 

based on multidirectional vectors, which can give the correct polarities for PP, PS, SP, and SS 

images without using the reflector normal. For the ADCIG calculation, we give two methods to 

calculate the multiple propagation directions.  

For full waveform inversion (FWI), we propose a new scheme that provides a self-contained and 

physically-intuitive derivation which establishes a natural connection between the amplitude-

preserved RTM, the Zoeppritz equations (the amplitude versus [reflection] angle [AVA] 

inversion) and the reflectivity-to-impedance inversion and combines them into a single 

framework to produce a preconditioned inversion formula. The formula also works for inverting 

only the velocity. For impedance inversion, we propose using rock-physics information to 

separate the impedance into velocity and density for wavefield extrapolation. Because of the 

complexity of the rock-physics relationship in the real world, we also suggest combining 

Machine Learning with this scheme for future development. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation and objectives 

Angle-domain common-image gathers (ADCIGs) are an important output from reverse 

time migration (RTM). The Poynting vector (PV) is an efficient way to calculate the propagation 

direction of the propagating wavefield that can be further used to produce ADCIGs. However, 

the widely-used PV formula in acoustic media suffers two problems: First, the PV, that works in 

the time-space domain, can give only a single direction per grid point per time step, and thus it 

cannot give the correct multiple directions at wavefield overlaps. Second, this formula is only 

kinematically-correct, and the propagation direction at the magnitude peak of the wavefield is 

undefined. Besides these two theoretical problems, in practice, the receiver wavefield, which is 

reconstructed from the observed data, is often as not stable as the source wavefield that is 

simulated from the synthetic source. There are algorithms to use the source wavefield 

propagation directions and the reflector normal to calculate ADCIGs but they have some 

problems. We try to address these three problems by proposing new and improved algorithms. 

The elastic RTM generally involves three main parts: the wave mode separation, the 

imaging conditions, and the ADCIG calculation. The P/S wave mode separation that is based on 

the Helmholtz theorem, involves the assumption of (locally) constant shear modulus, and thus 

we try to develop an improved decoupling system to relax this assumption. We also try to give 

new or improved imaging conditions to calculate the correct PP, PS, SP and SS images. For the 
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ADCIG calculation, we try to extend our multidirectional PV from acoustic media to the elastic 

media.  

Besides the RTM, the full waveform inversion (FWI) is also an important research area 

in computational seismology. The FWI is often based on solving an optimization problem of 

minimizing the L2 norm of the residual between the calculated data and the observed data. 

Because of the complexity of the problem, approximations are often made during the derivation 

of the inversion formula. These approximations may not correspond to clear physical meanings. 

We try to develop a derivation process for the inversion formula based on physical concepts. 

1.2 Overview 

 Chapters 2 and 3 contain the calculation of the RTM image and ADCIGs in acoustic 

media. Chapter 2 gives a two-step data flow to calculate angle-domain common-image gathers 

(ADCIGs) from reverse time migration, which makes use of the reflector normal and addresses 

several issues including overlapping wavefields, backscattering artifacts, and Fourier truncation 

artifacts that reduce reliability of ADCIGs. During imaging, we use a multidirectional Poynting 

vector to calculate the propagation vectors of the source wavefield at each time step and output 

intermediate source-angle-domain CIGs (SACIGs), during which an improved imaging condition, 

wavefield decomposition plus angle-filter (WD-AF), is used to remove the backscattering 

artifacts. After imaging, we use an anti-truncation-artifact Fourier transform (ATFT) to convert 

SACIGs to ADCIGs in the wavenumber domain.  

Chapter 3 introduces a dynamically-correct multidirectional PV, which decomposes the 

wavefield into several vector bins in the ω-k domain and then uses PV to calculate the 

propagation directions of each decomposed vector bin in the t-x domain. We also prove that the 



 

3 

decomposition result of the wavefields with either positive- or negative-frequencies are 

conjugate. Because we need only the real part of the decomposition result, we can apply the 

approximate wavefield decomposition to the wavefield with only the positive frequencies and the 

multiply the real part of the decomposition result by two.  

 Chapter 4 develops an improved flow for elastic RTM (E-RTM), that decouples elastic 

waves into P and S modes in non-smooth elastic models, gives the multidirectional-vector-based 

elastic imaging conditions, and calculates the propagation directions either by multidirectional 

Poynting vectors or by converting the decomposed particle velocities that are obtained by 

applying the amplitude-preserved approximate wavefield decomposition to the decoupled P and 

S particle velocities, into propagation vectors. This flow considers the converted waves during 

P/S wave mode separation, gives the correct polarities for E-RTM images, and produces high-

quality ADCIGs. 

 Chapters 5 and 6 propose a new full-waveform-inversion (FWI) scheme that provides a 

self-contained and physically-intuitive derivation which establishes a natural connection between 

the amplitude-preserved reverse time migration (RTM), the Zoeppritz equations (the amplitude-

versus-(reflection)angle [AVA] inversion) and the reflectivity-to-impedance inversion, and 

combines them into a single framework to produce a preconditioned inversion formula. In this 

scheme, the relative impedance update is a phase-modified and deconvolved RTM image 

obtained with the residual data. The rock-physics information is used to separate the impedance 

into the velocity and density for wavefield extrapolation. Machine learning is also suggested to 

address the complexity of the rock-physics relationship in the real world. If we ignore the density, 
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the impedance inversion formula becomes the velocity inversion formula. Chapter 5 discusses 

the velocity inversion and Chapter 6 discusses the impedance inversion.  

 My contributions to Chapters 2~6 include initiating the ideas, proposing and improving 

the data flow, programming the codes, and writing and revising the corresponding papers. The 

work is in cooperation with my advisor George A. McMechan, whose contributions mainly focus 

on revising the papers. George also provides some advice during the testing of the data flows.  

1.3 Publication status 

I. Chapter 2: Tang C. and G. A. McMechan, 2017, Combining multidirectional source vector 

with anti-truncation-artifact Fourier transform to calculate angle gathers from reverse 

time migration in two steps: Geophysics, 82, no. 5, S359-S376. Copyrighted by Society 

of Exploration Geophysicists. Permalink: https://doi.org/10.1190/geo2016-0408.1 

II. Chapter 3 comes from the following two papers: 

(a) Tang C. and G. A. McMechan, 2016, Multidirectional slowness vector for computing 

angle gathers from reverse time migration: Geophysics, 81, no. 2, S11-S24. Copyrighted 

by Society of Exploration Geophysicists. Permalink: https://doi.org/10.1190/geo2015-

0134.1 

(b) Tang C. and G. A. McMechan, 2018, The dynamically-correct formula of Poynting 

vector for acoustic media with application in calculating the multidirectional propagation 

vector to produce angle gathers from reverse time migration: Geophysics. (Accepted). 

Copyrighted by Society of Exploration Geophysicists. Permalink: 

https://doi.org/10.1190/geo2017-0331.1 
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III. Chapter 4: Tang C. and G. A. McMechan, 2018, Multidirectional-vector-based elastic reverse 

time migration and angle-domain common-image gathers with approximate wavefield 

decomposition of P and S waves: Geophysics, 83, no. 1, S57-S79. Copyrighted by 

Society of Exploration Geophysicists. Permalink: https://doi.org/10.1190/geo2017-

0119.1 

IV. Chapter 5: Tang C. and G. A. McMechan, 2017, From classical reflectivity-to-velocity 

inversion to full-waveform inversion using phase-modified and deconvolved reverse time 

migration images: Geophysics, 82, no. 1, S31-S49. Copyrighted by Society of 

Exploration Geophysicists. Permalink: https://doi.org/10.1190/geo2016-0033.1 

V. Chapter 6: Tang C. and G. A. McMechan, 2017, From classical reflectivity-to-impedance 

inversion to full waveform impedance inversion using phase-modified, deconvolved 

reverse-time-migration image and rock-physics information: 87th International Meeting, 

SEG, Expanded Abstracts, 1578-1582. Copyrighted by Society of Exploration 

Geophysicists. Permalink: https://doi.org/10.1190/segam2017-17791370.1 

Note, from I to IV, only the publications in, or accepted by, Geophysics are listed. Please 

see Section 1.4 for the declaration.  

1.4 Declaration 

 Most or all contents of this dissertation come from the papers that have already been 

published or submitted. These papers have also been presented at, or will be submitted to, SEG 

annual meetings, as expanded abstracts. These are identified by an asterisk at the title of the 

relevant chapter. The introductory material to the published papers (above) describes my 

contribution to the work (and acknowledges the contribution of other coauthors). The signatures 
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of the Supervising Committee which precede all other material in this manuscript attest to the 

accuracy of this statement.  
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CHAPTER 2  

COMBINING MULTIDIRECTIONAL SOURCE VECTOR WITH ANTI-

TRUNCATION-ARTIFACT FOURIER TRANSFORM TO  

CALCULATE ANGLE GATHERS FROM REVERSE  

TIME MIGRATION IN TWO STEPS* 

2.1 Summary 

Angle-domain common-image gathers (ADCIGs) are an important product from reverse 

time migration. Because receiver wavefields reconstructed from observed data are not as stable 

as synthetic source wavefields, the source propagation vector and the reflector normal have often 

been used to calculate angle-domain common-image gathers (ADCIGs) from reverse time 

migration (RTM). However, the existing data flows have three main limitations: 1) Calculating 

the propagation direction only at the maximum amplitudes of wavefields ignores multi-arrivals; 

using the cross-correlation imaging condition at each time step can include the multi-arrivals but 

will result in backscattering artifacts. 2) Neither amplitude picking nor Poynting-vector 

calculations are accurate for overlapping wavefields. 3) Calculating the reflector normal in space 

                                                 

* Tang C. and G. A. McMechan, 2017, Combining multidirectional source vector with anti-truncation-artifact 
Fourier transform to calculate angle gathers from reverse time migration in two steps: Geophysics, 82, no. 5, 
S359-S376. Copyrighted by Society of Exploration Geophysicists. Permalink: https://doi.org/10.1190/geo2016-
0408.1 

  Tang C. and G. A. McMechan, 2016, Combining multidirectional-source vector with revised antileakage Fourier 
transform to calculate angle gathers from reverse time migration in two steps: 86th International Meeting, SEG, 
Expanded abstracts, 4378-4382. Copyrighted by Society of Exploration Geophysicists. Copyrighted by Society of 
Exploration Geophysicists. Permalink: https://doi.org/10.1190/segam2016-13879599.1 

  Tang C., 2014, Combining source direction vectors with wavefield decomposition to calculate angle gathers: 84th 
International Meeting, SEG, Expanded abstracts, 3831-3836. Copyrighted by Society of Exploration 
Geophysicists. Permalink: https://doi.org/10.1190/segam2014-0454.1 
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is not accurate for a structurally complicated reflection image and calculating it in the 

wavenumber (k) domain may give Fourier truncation artifacts. We address these three 

limitations in an improved data flow with two steps: During imaging, we use a multidirectional 

Poynting vector (MPV) to calculate the propagation vectors of the source wavefield at each time 

step and output intermediate source-angle-domain CIGs (SACIGs). After imaging, we use an 

anti-truncation-artifact Fourier transform (ATFT) to convert the SACIGs to ADCIGs in the k 

domain. To achieve the new flow, another three innovative aspects are included. In the first step, 

we develop an angle-tapering scheme to remove the Fourier truncation artifacts during the wave 

decomposition (of MPV) while preserving the amplitudes, and use a wavefield decomposition 

plus angle-filter imaging condition to remove the backscattering artifacts in the SACIGs. In the 

second step, we compare two algorithms to remove the Fourier truncation artifacts that are 

caused by the plane-wave assumption. One uses an anti-leakage FT (ALFT) in local windows; 

the other uses an anti-truncation-artifact FT which relaxes the plane-wave assumption and thus 

can be done for global space. The second algorithm is preferred. Numerical tests show this new 

flow (source-side MPV plus ATFT) gives high-quality ADCIGs. 

2.2 Introduction 

Reverse time migration (RTM), the concept of which is initially proposed by Baysal et al. 

(1983), McMechan (1983), and Whitmore (1983), has become increasingly mature during the 

past decade. RTM uses full wavefield extrapolation and thus is more accurate than conventional 

one-way wave-equation migration (e.g., Claerbout, 1971) and ray-based migration algorithms 

(e.g., Berkhout, 1985), especially for complicated geological structures. An important extension 

of RTM is angle-domain common-image gathers (ADCIGs), also known as angle gathers. The 
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ADCIGs have a variety of applications such as migration velocity analysis (e.g., Biondi and 

Symes, 2004; Shen and Symes, 2008; Zhang et al., 2012), scattering-angle-based full waveform 

inversion (e.g., Alkhalifah, 2015; Xie, 2015), amplitude-preserved migration (e.g., Zhang et al., 

2007; Xu et al., 2011), illumination and migration aperture compensation (e.g., Shen et al. 2011; 

Yan et al., 2014), surface energy compensation (e.g., Zhang et al., 2014), and amplitude-versus-

angle (AVA) inversion (e.g., Rabben and Ursin, 2011).  

 Calculating ADCIGs from wavefield extrapolation is not as natural as from ray-based 

migration (e.g., Gray and Bleistein, 2009), because the extrapolation engines do not 

automatically provide or use the propagation-angle information. The ADCIGs can be calculated 

either during or after prestack migration. In the post-migration category, Sava and Fomel (2003) 

calculate local offset-domain CIGs (ODCIGs) during 2D migration and then convert them into 

ADCIGs after migration. As there may be wavefield overlaps in the offset gathers, the 

conversion from local ODCIGs to ADCIGs needs to be done by using plane-wave 

decomposition; e.g. in the wavenumber (k) domain (by Fourier transforms) or in the τ-p domain 

(by τ-p transforms), which both produce truncation artifacts when these extended images are not 

dominated by a few plane waves. The artifacts are similar to those produced when using the local 

plane-wave decomposition to calculate ADCIGs during migration (Jin et al., 2014). Sava and 

Fomel’s (2003) method is elegant in 2D, but the corresponding 3D implementation requires a 5D 

Fourier transform (FT) (Fomel, 2004). Time-shift CIGs (Sava and Fomel, 2006) can decrease the 

cost in 3D, but need to be combined with the local offsets for calculating azimuth angles (Sava 

and Vlad, 2011), because the time-shift CIGs are always in the reflection plane and thus they do 

not contain azimuth information.  
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Calculating ADCIGs during migration requires computing propagation directions during 

wave extrapolation. The algorithms can be generally divided into two types: local plane-wave 

decomposition (LPD) (e.g., Xu et al., 2011), and energy-direction-based methods such as 

Poynting vectors (PVs) (Červený, 2001; Yoon et al., 2004; Dickens and Winbow, 2011). 

Modifications and alternatives such as least-squares optimization (Yan and Ross, 2013), time-

shifting (Tang et al., 2013a; Tang et al., 2017a) and optical flow (Zhang, 2014; Tang et al., 

2017a), are useful to increase the stability of PVs in acoustic media.  

 A representative LPD algorithm developed by Xu et al. (2011) calculates reflection and 

azimuth angles by convolving plane-wave components of source and receiver wavefields in the 

frequency-wavenumber (ω-k) domain. In this method, the forward FT needs to be done in local 

spatial windows, because the algorithm has a constant-velocity assumption; decomposing the 

wavefield into small angle bins implies sharp truncations in the k domain, which further implies 

that the waves propagating in local windows should be dominated by plane-wave components to 

suppress Fourier truncation artifacts.  Furthermore, the application of anti-leakage Fourier 

transforms (ALFTs) (e.g., Xu et al., 2010) is suggested to decrease the size of the convolution. In 

Theory, the LPD has similarity with the plane-wave migration (PWM) that is efficient way to 

calculation ADCIGs (Tang et al., 2013b); the LPD is much more expensive because it extracts 

local plane wave information from the full wavefield extrapolation but the PWM uses plane-

wave-based extrapolation which is often less accurate than the full wavefield extrapolation in 

complex media. 

 In isotropic media, the PV has the same direction as the slowness vector (SV) in the time-

space (t-x) domain; both give only a single propagation vector that is the sum of all the plane-
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wave components, so it is necessary to separate overlapping wavefields before calculating their 

directions. Tang and McMechan (2016) propose decomposition of a wavefield into several 

approximate direction bins in ω-k (or in t-k by using complex-valued wavefields), and then 

using SV/PV to recalculate the directions within each bin in t-x. Richardson and Malcolm (2015) 

propose a similar approach but use LPD to decompose the overlapped wavefields. Note, in 

anisotropic media, the PV and SV do not have the same direction and a conversion from the 

group angle to the phase angle is required; refer to McGarry and Qin (2013). 

 Another issue for the extraction of ADCIGs is that, in practice, the receiver wavefield, 

which is reconstructed from the observed data, is not as stable as the synthetic source wavefield 

that originates from a simulated source. To address this problem, Yoon et al. (2011) and Vyas et 

al. (2011) propose to use the source propagation vector and the reflector normal to calculate 

ADCIGs, which avoids using the propagation direction of the receiver wavefield in sorting 

ADCIGs; Zhang and McMechan (2011) have a similar idea but use the source polarization 

vector. However, these data flows have three main limitations.  

 The first limitation relates to the imaging condition (picking the maximum amplitude 

from all time steps or using the cross-correlation imaging condition at each time step). Zhang and 

McMechan (2011) assume that there is only one arrival at each grid point during the wave 

propagation; they pick the corresponding maximum amplitude of the propagating wavefields to 

locate the time of this arrival, and thus ignore multi-arrivals. Yoon et al. (2011) and Jin et al. 

(2014) propose to pick more than one maximum amplitude, but it is still not automatic to include 

multi-arrivals. Picking the maximum amplitude does not work well for overlapping wavefields 

and the velocity model needs to be smoothed to avoid overlaps of the incident and reflected 
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waves at each reflection point. Using the cross-correlation imaging condition at each time step 

(e.g., Chattopadhyay and McMechan, 2008) automatically includes the multi-arrivals; however, 

it also produces backscattering artifacts (e.g., Liu et al., 2011; Tang and Wang, 2012a). 

 The second limitation relates to the calculation of the propagation (or polarization) 

angles. The PV method cannot accurately calculate the propagation directions where there are 

wavefield overlaps. Using the LPD to calculate propagation angles is expensive and also suffers 

from Fourier truncation artifacts if the propagation waves in local windows are not strictly plane 

waves (Jin et al., 2014). 

 The third limitation relates to the calculation of the reflector normal. Calculating the 

reflector normal in the x domain, including using the instantaneous wavenumber or phase (Zhang 

and McMechan, 2011; Jin et al., 2014) and the method of Zhao et al. (2012), gives only one 

reflector-normal direction (for each grid point) and cannot deal with truncations or overlaps in 

the reflection image. Although Vyas et al. (2011) calculate the reflector normal in the k domain, 

they do not give a method to suppress the Fourier truncation artifacts in the ADCIGs. These 

artifacts are associated with the plane-wave assumption of the partitioned images when they are 

transformed into the k domain by using the global spatial forward FTs and then are sorted into 

ADCIGs which are finally transformed back to the x domain by inverse FTs. 

 To address these limitations, we propose an improved data flow, in which a 

multidirectional source vector is combined with an anti-truncation-artifact Fourier transform 

(ATFT) to calculate ADCIGs from RTM in two steps. The first step uses multidirectional source 

vectors to calculate intermediate source-angle-domain CIGs (SACIGs) during the migration; the 

second step transforms these SACIGs into ADCIGs by calculating the reflector normal in the k 
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domain after migration, for which the ATFT is used. Several acronyms are used in this chapter; 

see Table 2.1. 

Table 2.1. Full names of the acronyms 
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2.3 Theory 

 This section is divided into four subsections to introduce a new data flow, which solves the 

three limitations stated at the end of the previous section. The first subsection addresses the first 

and second limitations by using a multidirectional Poynting vector (MPV) and a wavefield 

decomposition plus angle-filter (WD-AF) imaging condition, to output intermediate SACIGs 

during migration. The second subsection presents calculation of ADCIGs from SACIGs 

(including the solution of the third limitation) after the migration is complete. The third and 

fourth subsections illustrate two algorithms to remove the Fourier artifacts caused by image 

truncations in the k domain. The formulas are for both 2D and 3D; the numerical examples are in 

2D. 

2.3.1 Using multidirectional PVs to calculate SACIGs 

 In this subsection, we address the first and second limitations defined at the end of Section 

2.2 “Introduction”. In the first limitation, using the cross-correlation imaging condition at each 

time step will generate backscattering artifacts in the SACIGs. These artifacts will have a 

strongly negative influence in calculating the reflector normal from the SACIGs, and in the 

subsequent transformation of SACIGs into ADCIGs. In the second limitation, the single-

direction PV fails at overlapping wavefields which have multiple directions. To address both the 

two limitations, we use the MPV (Tang and McMechan, 2016) to calculate SACIGs, which 

involves a WD imaging condition to remove the backscattering artifacts. 

 Following Tang and McMechan (2016), we can use a MPV to give the multidirectional 

propagation vector for a single location x in a propagating wave u in space at time t, 
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      1 2 3 -1, , , , , ,i n n  p p ,p p p p ,p         (2.1) 

where each component (in the decomposed wavefield) 
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is a time-shift PV calculated from each decomposed wavefield iu (where i is the reference index 

and n is the total number of vector bins), and lt  is a variable time-shift to increase the stability of 

the PVs, which is determined by picking the maximum-magnitude of the time derivative of iu  

within a short time window; in the examples below, we use a quarter of the dominant period of 

the source wavelet as half of the width of the time-shift search window. The variable time-shift is 

to improve the stability of the PV and MPV; see Tang et al. (2017a) for details. This goal can 

also be achieved by using the optical flow in the multidirectional scheme to produce a 

multidirectional optical flow (Tang et al., 2017a). The iu  is obtained by the inverse FT of a 

vector bin of the analytic (positive-frequency) wavefields in t-k, 
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where  1 2,   are the “approximate” propagation-angle pairs used to decompose the wavefield 

and are different from  1 2,   below in heterogeneous media.  U t ,k  is the complex-valued 

analytic wavefield in the t-k domain, which can be obtained by transforming the propagating 

wavefields at all the time-steps from the t domain to the ω domain (used in the implementation 

of the 2D examples in this chapter), using complex-valued wavefield extrapolation of the 
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analytic source wavelet and the analytic observed data (e.g., Tang and McMechan, 2016) [this 

can be combined with source wavefield reconstruction (e.g., Tang and Wang, 2012b)], or using 

low-rank wavefield extrapolation (e.g., Zhang and Zhang, 2009; Fomel et al., 2013) which can 

naturally provide the analytic propagating wavefields.   means taking the real part of a complex 

value. In equation 2.3, the FTs are performed for the global space (rather than in local windows), 

because although the global FT can give only “approximate” propagation directions for 

heterogeneous velocity, the wavefield decomposition in the k domain is used only to separate the 

overlapping wavefields. Accurate propagation angles for sorting SACIGs are recalculated by 

PVs for each separated source wavefield, ip  (where the subscript i denotes the reference number 

of the angle bin): 
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where 1  and 2  are polar and azimuth (propagation) angles that describe the wave propagation 

direction in 3D; i xp  , i yp  , and i zp   are the components of a source vector bin ip  in the x-, y-, 

and z-axis, respectively.  

 In 2D, only the polar (propagation) angle   exists 
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where the range of   is  0 360 ， .  The atan2 is a mathematical function that is included in the 

math.h of the C standard library. Because the reflection angle is equivalent to the included angle 

between the incident wave and the reflector normal, which is always within  0 90 ， , the 

constrained propagation angle 

     
,                 0 180 ,

180 ,   180 360 ,
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 

   
  

     
        (2.6) 

can be used to replace the propagation angle    to denote the source vector in 2D (see Figure 

2.1). A combination of equations 2.5 and 2.6 is equivalent to 
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      (2.7) 

Either of equations 2.5~2.6 and equation 2.7 can be used to calculate   , the range of which is 

 0 180 ，  (see Figure 2.1). This decreases the storage requirement of SACIGs and the 

computation time of transforming SACIGs into ADCIGs by half. Because the range of the 

constrained propagation angle is  0 180 ， , it can also be calculated by the polarization vector 

which has the same, or opposite, direction with the propagation direction. The CIGs sorted by 

source-side constrained propagation angle are also referred to as SACIGs in the present context. 

 The MPV (that consists of equation 2.1 to 2.3) does not require a plane-wave assumption. 

To avoid the Fourier truncation artifacts caused by the angle-limited FT in equation 2.3, which 

has sharp truncations in the k domain, amplitude tapering needs to be done around the two 
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boundaries of each angle bin to smooth the (amplitude) truncations. To preserve the total 

amplitude while doing the taper, the choice of taper functions for two adjacent vector bins should 

satisfy a condition that the tapering weight of each vector bin forms a partition of unity at each 

angle; see Appendix 2A (Section 2.8).  

 

Figure 2.1. Schematic diagram of the relationship between the P-wave propagation and 

polarization vectors. The double-headed arrow in Panel (c) consists of the two single-head 

arrows in Panels (a) and (b). Because 1 2 3   , all the three arrows give an equivalent 

reflection angle. Therefore, for calculating reflection ADCIGs, we can include the SACIG at 1  

into the SACIG at 2  and vice versa. This decreases the angle range of SACIGs from 

 0 ,360   to  0 ,180  .  

 Figure 2.2 shows a wavefield decomposition example of using twelve vector bins and 

tapering windows with a width of 10 . Most of the overlapping wavefields in the input wavefield 

in Figure 2.2a have been separated in Figures 2.2b-2.2m. By using the tapering function in 

equation 2A-1, there are not strong Fourier truncation artifacts in Figures 2b-2m. The Fourier 

truncation artifacts can be further decreased by using wider tapering windows in the angle 

domain to make the amplitude-tapering smoother, but this reduces the resolution of the 

approximate wavefield decomposition (WD). For example, a tapering window of 10°-width 

enlarges the original range of the vector bin  30 ,60   to  25 ,65  ; although the amplitudes in 

the tapering region are progressively weakened, they still influence the resolution. 
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Figure 2.2. A complicated source-wavefield snapshot a), and the decomposition results using 

twelve vector bins, b) to m). The angles are not the propagation angles, but the “approximate” 

propagation angles which are only used for separating the overlapping wavefields.  
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Figure 2.3. Schematic diagram using four vector bins to separate source and receiver wavefields. 

The shaded regions are the shared angle-tapering regions. 

 Based on the approximate WD in equation 2.3, a WD imaging condition 

            
,

, ,

1, 1

1 , , ,
i N j M

ij s i r j

i j

I dt u t u t
 

 

 x x x         (2.8) 

is applied to reduce the backscattering artifacts, where i and j are the indices of the vector bins of 

the source wavefield su  and the receiver wavefield ru , respectively; N and M are the total 

numbers of vector bins for the source and receiver wavefields, respectively. The  1 ij  means 

excluding the cross-correlation of source and receiver wavefields propagating in the same/similar 

directions, because this cross-correlation gives backscattering artifacts [e.g., Liu et al. (2011) use 

up- and down-going wavefields (regarded as a two-vector-bin case of MPV) to explain the 

reason]. For the four-vector-bin case in Figure 2.3, we can cross-correlate region A of the source 

wavefield with regions B, C and D of the receiver wavefield. 

 Equation 2.8 is a general expression for the WD imaging condition, which can remove most 

of the backscattering artifacts. However, this method cannot remove the backscattering artifacts 
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in the shared amplitude-tapering region of two adjacent vector bins (the shaded regions in Figure 

2.3), because source and receiver wavefields in the same/similar directions cross-correlate in 

these shared bins. For the modified Marmousi model in Figure 2.4a, using a four-vector-bin 

MPV gives the representative SACIGs in Figure 2.5b, which contain backscattering artifacts in 

the vertical direction (see the detailed analysis in Appendix 2B [Section 2.9]). 

 

Figure 2.4. (a) Modified Marmousi velocity model and (b) the RTM image. The image is 

obtained using WD-AF imaging condition (with four vector bins for source and receiver 

wavefields), which is the same as that used for Figure 2.6b. In b), the region in the red box 

correponds to the SACIGs in Figure 2.5 and the ADCIGs in Figures 2.10 to 2.12; the region in 

the blue box corresponds to the ADCIGs in Figure 2.13; the region in the green circle includes a 

truncation point where two reflectors intersect. The velocity model in Panel (a) is modified from 

the modified Marmousi model of Versteeg (1994). 
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 To remove these artifacts, we propose a WD-AF (wavefield decomposition plus angle-

filter) imaging condition, which uses the reflection angle   calculated by MPV to design a filter 

 F  ; see Appendix 2B [Section 2.9]. The WD-AF imaging condition can be written as 

            
,

, , ,

1, 1

1 , , ,
i N j M

i j ij s i r j

i j

I dt F u t u t 
 

 

 x x x         (2.9) 

which can be recognized as applying an angle-dependent filter  ,i jF   to the WD imaging 

condition in equation 2.8. 

 Applying the WD-AF imaging condition can suppress the backscattering artifacts in Figure 

2.5b and give clean SACIGs in Figure 2.5c. The SACIGs in Figure 2.5c also give a cleaner 

stacked image (in Figure 2.6b) than that in Figure 2.6a (which is stacked from the SACIGs in 

Figure 2.5b). See Appendix 2C (Section 2.10) for the SACIG using a simple velocity model. 
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Figure 2.5. SACIGs with (b) the WD, and (c) the WD-AF imaging condition, using the 

constrained-propagation-angle axis in the schematic diagram (a). The two arrows in panel (a) 

mark the directions of angle-increase. Although the CIGs at 180° are plotted in panels (b) and (c), 

they can be included in the CIGs at 0°.  Four vector bins are used in the MPV. The asymmetry of 

the angle illumination in panels (b) and (c) is because the dominant reflector dip is to the left in 

this part of the profile (in the red box in Figure 2.4b). 
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Figure 2.6. RTM images with the (a) WD, and the (b) WD-AF imaging condition. 

2.3.2 Calculating ADCIGs from SACIGs 

 In the previous subsection, the MPV concept is used to decompose a source-wavefield 

snapshot into a number of angle bins to separate overlapping wavefields. This allows explicit 

consideration of multipathing in RTM with the WD-AF imaging condition to create SACIGs. It 

remains to convert the SACIGs into ADCIGs, by combining the source propagation vector and 

the reflector normal to calculate the incident/reflection and azimuth angles. The latter involves 

reordering the SACIGs into each decomposed migrated image (a “partitioned” image) 

corresponding to each source direction angle (Figure 2.7). In each partitioned image, at each 

image point, we calculate the reflection angle   and azimuth angle   in the k domain, 
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Here sp  is the source propagation vector converted from the source propagation angles, and k is 

the wavenumber of the reflection image, which defines the polarization direction that is parallel 

to the reflector normal; the   between two vectors is a cross product, and the dot between two 

vectors is a dot product; x̂  and ẑ  are the unit vectors in the positive directions of the x- and z-

axes.  

 As indicated in the “Introduction” section, Vyas et al. (2011) also calculate the reflection 

and azimuth angles in the k domain (similar to equation 2.10); however, there are Fourier 

truncation artifacts when globally spatial FTs (FTs in the global space) are used to transform the 

partitioned images from the x domain to the k domain and transform ADCIGs from the k domain 

back to the x domain, because sorting ADCIGs in the k domain (equation 2.10) has the plane-

wave assumption. In the next two subsections, we discuss these artifacts and compare two 

schemes to remove them. 

2.3.3 Anti-leakage Fourier transform (ALFT) in local windows 

 In the previous subsection, SACIGs are transformed into ADCIGs. The implementation is 

post migration and thus it is independent from the propagation velocity. However, using globally 

spatial FTs for this transformation will produce Fourier truncation artifacts in the ADCIGs. The 

reason is as follows: When the partitioned images are sorted into ADCIGs in the k domain 

(equation 2.10), each angle corresponds to one or more sharp image-truncations; when these 
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image-truncations are transformed back from the k domain to the x domain using inverse 

globally-spatial FTs, each truncation point in the k domain corresponds to a plane-wave 

component in the x domain, so the plane-wave assumption is required; otherwise, there are 

Fourier truncation artifacts.  

 To satisfy this assumption as far as possible, the FTs need to be done in local windows. To 

decrease the computational cost of using local FTs, we use the anti-leakage Fourier transform 

(ALFT); the general ALFT algorithm of Xu et al. (2010) is presented in Appendix 2D (Section 

2.11). This algorithm makes use of the sparse characteristic of the signal obtained using FTs, and 

thus only a small portion of the sampling points (those where the energy is focused) in the k (or 

ω, or ω-k) domain need to be processed. The ALFT algorithm has also been used by Xu et al. 

(2011) and Jin et al. (2014) to calculate ADCIGs by applying LPD to the propagating wavefields. 

 In the general ALFT flow (Appendix 2D [Section 2.11]), because picking the maximum 

amplitude at each iteration increases the computational complexity, we use a different criterion 

to select the effective points, which avoids picking the maximum modulus in each iteration. For 

a local window, the data in the k domain is sparse, which means the energy mainly focuses on a 

limited number of image points. Thus, the RMS (root-mean-square) of the modulus (of the 

complex-valued wavefield amplitude) is close to the background modulus of the window; thus, it 

can be used to separate the effective and non-effective points. If the modulus of a point  I k  is 

above the RMS, this point is an effective point and needs to be transformed back into the x 

domain; otherwise, we ignore this point. Figure 2.8a is a local window in the x domain. 

Transforming Figure 2.8a from x to k by FT gives Figure 2.8c, which is sparse. In Figure 2.8c, 

using the RMS criterion to select 1577 effective points from the total 10201 points gives Figure 



 

27 

2.8d. Transforming Figure 2.8d back to the x domain gives Figure 2.8b, which successfully 

recovers all the salient features of the image in Figure 2.8a. 

 

Figure 2.7. The images at source constrained-propagation-direction angle 100° (see the red line 

in Panel a). Panel (b) uses the correct migration velocity. Panel (c) uses an 8% low migration 

velocity. 

 The flow of using ALFT to convert SACIGs into ADCIGs in local spatial windows is as 

follows: 
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Figure 2.8. Image recovery by using RMS as a criterion. a) is a local window in the x domain. 

By using a forward FT from x to k, a) is transformed into c) in the k domain, which contains 

10201 points. By using RMS as a criterion, 1577 points are selected from c), to give d). By using 

an inverse FT from k to x, d) is transformed into b), which is a recovered image of a).  

 

i. For each source direction angle, extract the corresponding partitioned RTM image from the 

SACIGs. 

ii. For a local grid point x  in the partitioned image, construct a local square (or rectangular) 

window around it.  

iii. Transform the image in this local window from the x domain to the k domain and obtain 

 I k . The boundaries of this window in the x domain need to be tapered (Figure 2.9) 



 

29 

before the forward FT. (Note, this tapering is to avoid the truncation artifacts of the 

forward FT from x to k, and thus does not relax the plane-wave assumption, which is 

required to avoid the truncation artifacts caused by transforming the ADCIGs from k 

back into x by inverse FTs.) 

iv. Calculate the RMS of the moduli of all the  I k  points. 

v. For each  I k  point, if its modulus is less than the RMS, do nothing; otherwise, transform 

 I k  from the k domain back into the x domain (using the inverse spatial FT) and obtain 

 ,i  
k

 at the local point x , 

       , , ,ii I e 
  kx

k
x k                  (2.11) 

where   and   are calculated from the k  by using equation 2.10. Adding  , ,i  
k

x  to 

the angle gathers  , ,i  x ,  

        , , , , , , .i i i        
k

x x x                   (2.12) 

vi. Repeat Steps iv and v until all the  I k  points have been processed.  

vii. Repeat Steps ii to vi until all the x points of the partitioned image have been processed. 

viii. Repeat Steps i to vii until all the partitioned images (each corresponds to a source angle) 

have been processed. 

 Comparisons of ADCIGs obtained using spatially global FTs and spatially local ALFTs are 

shown in Figure 2.10 (using the correct migration velocity) and Figure 2.11 (using an 8% low 
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migration velocity). ADCIGs obtained using the spatially local ALFT have fewer Fourier 

truncation artifacts than those using spatially global FTs (e.g., see the red and blue boxes in 

Figures 2.10a and 2.10b; also see the red boxes in Figures 2.11a and 2.11b). 

 

 

Figure 2.9. Schematic diagram for a local spatial window. The selected (red) point is at the 

center. The size of the window is 41x41 grid points, so (excluding the red point) there are 20 grid 

points in each arrow direction. To avoid the Fourier truncation artifacts of the forward FT from 

the x to k domain, the amplitudes in the shaded region need to be tapered from the inner (box) 

boundaries to the outer (box) boundaries; the width of the tapering region is ten grid points. 
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Figure 2.10. Comparison of ADCIGs by a) spatially global FT, b) spatially local ALFT and c) 

spatially global ATFT, using the correct migration velocity of the modified Marmousi model. 

The spatially local ALFT in panel b) uses a local window with a size of 41x41 grid points (see 

Figure 2.9 for details) in the x domain. The spatially global ATFT in panel c) uses a T-window 

with a radius of ten grid points in the k domain. This example is for the region in the red box of 

Figure 2.4b. The Fourier truncation artifacts in Panel (a) are reduced in Panels (b) and (c); e.g., 

see the red and blue boxes. The ADCIGs in Panel (c) have the least artifacts. 
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Figure 2.11. Comparison of ADCIGs by (a) spatially global FT, (b) spatially local ALFT and (c) 

spatially global ATFT, using an 8% lower migration velocity. The spatially local ALFT in panel 

(b) uses a local window with a size of 41x41 grid points (see Figure 2.9 for details) in the x 

domain. The spatially global ATFT in panel (c) uses a T-window with a radius of ten grid points 

in the k domain. In panel (a), the red box indicates one of several areas with artifacts, which are 

reduced in (b) and (c). The overall image quality is significantly improved by the ATFT (panel 

c). 
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2.3.4 Anti-truncation-artifact Fourier transform (ATFT) in global space 

 In the previous subsection, the Fourier truncation artifacts are reduced by using spatially 

local ALFTs. That method works well because the images are more likely to be primarily planar 

in a local window than in the global space; however, it has two disadvantages: 

1) Calculating ADCIGs in local spatial windows does not relax the plane-wave assumption. 

The images may still have curvatures in the local windows, especially when the migration 

velocity is not correct. For an under- or over-estimated velocity, the resulting image 

contains more curved (defocused) reflection events (Figure 2.7b). So artifacts still remain 

(e.g., the red box in Figure 2.11b). Setting a smaller local window is useful to reduce 

these artifacts, but a local window that is too small will lead to low angle resolution (Jin 

et al., 2014).  

2) The ALFT flow requires a huge number of spatially local FTs. The calculation in each 

local spatial window (Steps ii-vi of the ALFT flow in Section 2.3.3) is only to obtain the 

ADCIG at its center point.  

 Fourier truncation artifacts are produced when transforming the selected single point from 

the k domain back to the x domain (in Step v of the ALFT algorithm in Section 2.3.3). Each 

single point in the k domain corresponds to a single plane wave/image in the x domain; thus, if 

the images are not primarily composed of planar segments in x, sorting this single point into 

ADCIGs (equation 2.11) in the k domain leads to a sharp truncation, and then transforming this 

truncation back to the x domain using inverse FT will produce Fourier truncation artifacts. 

Therefore, to relax the plane-wave assumption, we propose to taper the truncation point in a 
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small window (surrounding this point) in the k domain; this window is defined as a T-window 

and the algorithm is called the anti-truncation-artifact Fourier transform (ATFT). Because of the 

relaxation of the plane-wave assumption, the ATFT can be done in the global space rather than 

in local spatial windows (note, the “global space” here corresponds to the x domain, and the local 

T-window corresponds to the k domain; thus, a spatially global ATFT is done for global space 

and local wavenumbers). Its flow is as follows: 

i'. For each source direction-angle, extract the corresponding partitioned RTM image from the 

SACIGs.  

ii'. Transform this partitioned image from x to k by using forward FTs for the global space and 

obtain   in the k domain. The boundaries of the image in x need to be tapered before the 

forward FT. 

iii'. For each grid point 0k , set a small T-window centered at this point (this window can be 

circular for 2D or spherical for 3D), and taper the amplitudes from the center to the 

boundaries of this window. Sort and sum this T-window into the ADCIGs  , ,I  k  in 

the k domain,  

          , , , , ,I I d f   


  k k k k k       (2.13) 

where   and   are calculated using 0k  at the central point of this T-window for 

equation 2.10.  f k  is a normalized tapering function and satisfies 

       1,d f


 k k         (2.14) 
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to preserve the amplitude (Appendix 2E [Section 2.12]). The   is the T-window, which 

should be small to maintain adequate resolution. A combination of equations 2.13 and 

2.14 gives 

       
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is a tapering function without normalization ( l  denotes the distance between the center 

point 0k  and a tapering point k and r is the radius of the T-window), and  
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iv'. Repeat Steps iii' until all the grid points in the k domain are processed. 

v'. Repeat Step i' to iv' until all the partitioned images (each partitioned image corresponds to a 

source direction-angle) are processed.  

vi'. For each   and  , use spatially global inverse FTs to transform ADCIGs from the k 

domain [defined as  , ,I  k ] back to the x domain [defined as  , ,i  x ]. 

 Note, the amplitude tapering at the boundaries of the global space in Step ii' here 

corresponds to that in Step iii of the ALFT flow in the previous subsection (Figure 2.9). This 

tapering is different from the tapering in the T-windows (Step iii' of ATFT), because the former 
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is done in the x domain to avoid the truncation artifacts of the forward FT from x to k, which is a 

commonsense aspect of performing forward FTs. The tapering of the T-windows is done in the k 

domain to smooth the truncations of k when sorting the partitioned image into ADCIGs, and thus 

to reduce the truncation artifacts caused by transforming the ADCIGs from the k domain back 

into the x domain through the inverse FT. The tapering of the T-windows is the key point of the 

ATFT flow. The unit of the T-window radius r and the distance l can be either the grid point or 

m-1 (which is the unit of the wavenumber). We use the former one in our implementation and the 

latter one for the resolution analysis (Appendix 2F [Section 2.13]); but there is not a conflict 

because the horizontal and vertical grid intervals in our examples are similar (for the Marmousi 

examples) and same (for the simple-model example in Appendix 2C [Section 2.10]). 

 The ATFT relaxes the plane-wave assumption of the FT/ALFT by using the T-window to 

taper the amplitudes in a local window which surrounds the selected single point; thus the ATFT 

can be done in the global space, instead of in local spatial windows. The nature of the ATFT can 

also be regarded as an amplitude tapering in the angle domain (see Appendix 2F [Section 2.13]). 

Using the T-window in the k domain will lower the angle resolution, because the entire T-

window uses the angle obtained from the k at its central point ( 0k ) for the ADCIG sorting 

(equation 2.13). However, the resolution loss can be ignored because the ATFT is done for the 

global space (rather than in local spatial windows), which often gives a very high angle-

resolution for the images at the dominant wavenumbers. Actually, because the angles of 

ADCIGs often need to be equally spaced, interpolation or angle-binning needs to be done when 

sorting the calculated reflection/azimuth angles into ADCIGs, so overly-high angle resolution is 

unnecessary. For example, the difference between an angle of 29.9° and an angle of 30° can be 
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ignored. The choice of the radius of the T-window is qualitative. Our ATFT examples use a 

circular T-window with a radius of ten grid points, which is small compared with the model 

dimension in the k domain (420x210 grid points). Furthermore, the tapering weight of a grid 

point in the T-window decreases with increasing distance from the central point; less weight 

indicates less influence on the resolution. To maintain the resolution while using the T-window, 

using a smaller sampling interval for k during the forward FT (from x to k) may also be useful. 

 In Figures 2.10 and 2.11, the ADCIGs obtained using the spatially global ATFT (Figures 

2.10c and 2.11c) contain the least artifacts. For example, in the red boxes of Figure 2.11 (using 

an 8% low migration velocity), the artifacts in the ADCIGs using the spatially global FT (Figure 

2.11a) are reduced by using the spatially local ALFT (Figure 2.11b), but some still remain; using 

the spatially global ATFT can effectively remove these artifacts and give high quality ADCIGs 

(Figure 2.11c). 

2.4 Examples 

 The entire data flow of combining source-side MPV with ATFT to calculate ADCIGs from 

RTM is presented in Figure 2.12. Several examples have been presented in the ‘Theory” section 

to illustrate each step in the flow (see Appendix 2C [Section 2.13] for an example of an SACIG 

and an ADCIG for a simple layered model). A short discussion of the cost of the data flow is in 

Appendix 2G [Section 2.14]. In this section, we focus on the comparison between ADCIGs 

obtained using different numbers of vector bins in calculating the multidirectional source vectors 

(refer to equations 2.1~2.3). 
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Figure 2.12. The proposed data flow. The dashed red line separates the during-imaging and post-

imaging processes. During the imaging, the receiver-side MPVs are used only in performing the 

WD-AF imaging condition which requires less angle-resolution than calculating 

SACIGs/ADCIGs. 
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 The parameters for the numerical tests (for the Marmousi examples) are: the dominant 

frequency is 20 Hz, the horizontal interval is 12.5 m, the vertical interval is 12.0 m, and the time 

interval is 1 ms. There are 240 sources; the wavefields propagated from each source are recorded 

by 401 receivers with the offset range -2500 ~ 2500 m. Because the angles in ADCIGs need to 

be equally spaced (the interval of angle sampling in all of our examples is 1°), a small Gaussian 

binning of the calculated angles (Tang et al., 2017a) is used, which also increases the stability of 

the ADCIGs. We use finite-differencing (FD) and a perfectly-matched-layer (PML) boundary 

condition of the scalar wave equation for the simulation/reconstruction of wavefields. The FD 

uses 2nd order time derivatives and 10th order space derivatives. Finite differencing is also used 

to calculate the time and space derivatives of the PV.  

 For the ADCIGs in the previous section, four vector bins are used to calculate the 

multidirectional source vectors. Because the velocity structure in the region from 1000 m to 1400 

m (in the red box in Figure 2.4b) is not as complicated as in the central part of the modified 

Marmousi model (e.g., in the blue box in Figure 2.4b), using four vector bins is enough. For the 

WD-AF imaging condition, the number of vector bins of the receiver wavefield is the same as 

that of the source wavefield. Figure 2.13 contains a comparison of the ADCIGs obtained using 

four and twelve vector bins to calculate the multidirectional source vector in this structurally 

simple region; the resulting ADCIGs are similar, which means using four vector bins can 

separate most of wavefield overlaps in this (structurally simple) region. Their differences in the 

green boxes are because of the truncation point in the RTM image, where two reflectors intersect 

(see also the green circle in Figure 2.4b). ADCIGs obtained using twelve vector bins may have a 

few more artifacts than when using four vector bins (e.g., see the red boxes in Figure 2.13a and 
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2.13b), because more vector bins increase the proportion of the total area that is involved in the 

tapering windows (the shaded areas in Figure 2.3), and thus increases the possibility of Fourier 

artifacts. As discussed above, using a tapering window of width 10° in the MPV can significantly 

reduce the amplitudes of the artifacts but cannot totally remove them. The comparison in Figure 

2.13 shows that using four vectors is adequate for the structurally simple region in the red box of 

Figure 2.4b.  

 

 
 

Figure 2.13. Comparison of ADCIGs using a) four and b) twelve source vector bins in a 

relatively simple region (in the red box in Figure 2.4b) of the modified Marmousi model. 
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Figure 2.14. Comparison of ADCIGs using a) four and b) twelve source vector bins in a 

relatively complicated region (in the blue box in Figure 2.4b) of the modified Marmousi model. 

 For the structurally complicated region in the blue box in Figure 2.4b, using four vector 

bins to calculate the multidirectional source vector is not sufficient, because the complicated 

structure increases the possibility of wavefield overlaps. Figure 2.14 shows a comparison 

between ADCIGs using four and twelve vector bins in this complicated region. In Figure 2.14a 

(obtained by using four vector bins), there are many crossing events (e.g., in the two red boxes in 

Figure 2.14a); the quality of the four-vector-bin ADCIGs is not sufficient. When using twelve 

vector bins, these crossing events are focused to flat events in Figure 2.14b (e.g., see the two red 

boxes), because using twelve vector bins provides a more accurate decomposed wavefield than 

using only four.  
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Figure 2.15. The observed data for source 120. (a) is the synthetic observed data. (b) is (a) with 

noise added. Panel (b) is used as the observed data for the RTM/ADCIGs in Figures 2.16 and 

2.17.  

 The final example compares the ADCIGs obtained (a) using both the source- and receiver-

side MPVs (see Appendix 2H [Section 2.15]), and (b) using the source-side MPV and the 

reflector normal. As explained in Section 2.2 “Introduction”, the reason to use the 

multidirectional source vector and reflector normal to calculate ADCIGs, is that the 

reconstructed wavefield from the observed data (defined as the “receiver wavefield”) is not as 

stable as the synthetic source wavefield (in practice, the observed data may contain different 

kinds of noise, seismic diffractions and other interferences). In this numerical example, we add 

noise to the observed data (Figure 2.15) and use it as the input for the two ADCIG-flows. In 

Figure 2.16, the reconstructed receiver-wavefield-snapshot (using the noisy observed data) is less 

stable than the simulated source-wavefield-snapshot (using a synthetic source). The comparison 

of ADCIGs using the two methods is shown in Figure 2.17. The ADCIGs in Figure 2.17c, which 

are calculated from source-side MPVs and reflector normal, has higher quality than the ADCIGs 
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in Figure 2.17b, which are calculated from source- and receiver-side MPVs. An important reason 

is that Figure 2.17c uses the reflector normal of the stacked image, rather than the reconstructed 

receiver-wavefield, to calculate ADCIGs. The stacked image is more stable because the data are 

focused by migration and the signal-to-noise ratio is increased by stacking (especially the 

stacking over multi-sources). 

 
 
 

Figure 2.16. (a) The simulated wavefield-snapshot from a synthetic source. (b) The reconstructed 

wavefield-snapshot from the observed data with noise. The time for both (a) and (b) is 0.5 s. To 

clearly plot the noise, the boundaries of the scale bars do not mark the maximum/minimum 

amplitudes of the snapshots. 
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Figure 2.17. Comparison of ADCIGs using (b) source- and receiver-side MPVs and (c) source-

side MPV and reflector normal, in a region (see the red box) of panel (a) the RTM image. This 

example uses four vector bins for MPV.  
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2.5 Discussion 

 In this chapter, a new anti-truncation-artifact Fourier transform (ATFT) is used to transform 

SACIGs into ADCIGs after migration. Although the numerical examples are in 2D, all the 

formulas of the data flow are in 3D, except equations 2.5 to 2.7 which describe the 

propagation/constrained-propagation-angles in 2D. Thus, the proposed data flow can also be 

applied in 3D, but there is an issue to be noted. In 3D, calculation of azimuth angles needs to use 

the 3D propagation angles (see equations 2.4 and 2.10), rather than constrained-propagation 

angles, to calculate the SACIGs. This is because the range of the azimuth angle   in equation 

2.10 is  0 ,180  . The calculation of the reflection angle   can use constrained-propagation 

angles because its range is  0 ,90   (see Figure 2.1 and equation 2.10). The proposed idea can 

also be extended to elastic media.  

 The SACIG-ADCIG transformation, which uses the normal directions of the reflection 

images, is independent of the propagation velocity. The ATFT algorithm has the potential to 

decrease the Fourier truncation artifacts in the ADCIG-calculation methods based on extended 

imaging conditions (Sava and Fomel, 2003, 2006; Fomel, 2004; Sava and Vlad, 2011); these 

previous algorithms involve a transformation from the local-offset or time-shift CIGs to ADCIGs, 

which are also post-migration and independent of the propagation velocity. The T-window of the 

ATFT can also be used to relax the plane-wave assumption when using the τ-p transform to 

calculate the reflector-normal direction of an image or the polarization direction of a propagating 

wavefield.  
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 As a relation between the reflectivity-to-velocity/impedance inversion, the Zoeppritz 

equations, and full waveform inversion (FWI) is established by Tang and McMechan (2017b), 

the ADCIGs may have wider applications in parameter inversions in the future by being 

incorporated into the FWI scheme.  

2.6 Conclusions 

 A new data flow is proposed to use the source propagation vector and the reflector normal 

to calculate ADCIGs, which separates the calculation of ADCIGs into two steps. During 

migration, an MPV is used to calculate intermediate SACIGs. The MPV can calculate multiple 

directions from overlapping wavefields; tapering the amplitudes (of the wavefield) at the edges 

of angle bins decreases the Fourier truncation artifacts in MPV. To cleanly remove the 

backscattering artifacts in SACIGs, a WD-AF imaging condition is proposed.  

 After migration, the SACIGs are transformed into ADCIGs in the k domain by using the 

reflector normal of the partitioned image of each source direction-angle. To reduce the Fourier 

truncation artifacts in ADCIGs, we compare two algorithms. One uses ALFT in local windows 

because the images are more similar to a plane wave in a local window than in the global space, 

but this method still has the plane-wave assumption in local windows and also requires a large 

number of spatially local FTs. The other method uses a new ATFT, which relaxes the plane-

wave assumption (by using a T-window to taper the truncation point in the k domain) and thus 

can be done in the global space. The ADCIGs obtained by using the ATFT in the global space 

have higher quality than using the ALFT in local spatial windows, and thus the ATFT algorithm 
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is preferred. Numerical tests show that the new data flow (combining multidirectional source 

vector with ATFT) can give high-quality ADCIGs. 
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2.8 Appendix 2A “Amplitude-preserving taper functions between angle bins” 

 Consider an example where we separate the 360  of the “approximate” propagation angles 

into twelve vector bins in 2D; the width of each bin is 30 . A representative bin  30 ,60   has 

two sharp angle truncations at 30  and 60 . To smooth these truncations, there needs to be two 

tapering windows  30 ,30    and  60 ,60   ; these two tapering windows at the 

edges of the angle bin  30 ,60   are also shared by the two adjacent angle bins  0 ,30   and 

 60 ,90  , respectively. Thus, to preserve the amplitude in a shared tapering window  ,     

with a width of 2 , we choose the Raised-cosine filter (e.g., Proakis, 1995) to implement the 

tapering over angles, 
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where iu  and 
iu   are the amplitudes of the two adjacent vector bins in the shared tapering 

window  ,   
; the   between the two scalar values here (and in all subsequent 

occurrences)  is a scalar product. Equation 2A-1 satisfies 

      
1,

,i i i

f f

u u u

  

  

       (2A-2) 

which means the total amplitude is preserved. For example, for the two adjacent vector bins 

 30 ,60   and  60 ,90   which share the tapering window  55 ,65   with a width of 10 , 

equation 2A-1 gives 
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   (2A-3) 

In this example, the first tapering function  f   decreases from 1.0 at 55  to 0.0 at 65  

(Figure 2.18a); the second tapering function  f   decreases from 1.0 at 65  to 0.0 at 

55 (Figure 2.18b). The summation of the two tapering functions at each angle is 1.0 at all   

(Figure 2.18c), so the amplitudes are preserved. 

2.9 Appendix 2B “Angle-filter design for removal of backscattering artifacts” 

 The RTM backscattering artifacts cannot be cleanly removed by using the wave 

decomposition (WD) imaging condition in equation 2.8. In Figure 2.5b, which uses four vector 

bins for the WD imaging condition, there are still artifacts in the vertical direction.  These  
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Figure 2.18. The tapering functions for two adjacent vector bins. a) is for the vector bin 

 30 ,60  ; b) is for the vector bin  60 ,90  . The summation of a) and b) at each angle gives c); 

thus, the wavefield amplitudes in the tapering region  55 ,65   are preserved. 

artifacts correspond to the shared tapering region  90 ,90    at the edges of the angle bins 

(see the shaded region in the vertical direction of Figure 2.4a). Note, the horizontal tapering 

(shaded) region in Figure 2.4a will not have corresponding artifacts, because waves propagating 

in the horizontal direction are hard to observe from the surface. The backscattering artifacts in 
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Figure 2.5b will negatively influence the transformation of SACIGs into ADCIGs, because they 

will be treated as reflections. To remove these artifacts, we define an angle filter, 
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where 1  and 2  are two reflection angles that bound the taper of the reflection-angle    filter. 

The two-selected taper-angles need to be relatively-large reflection-angles to remove the 

backscattering artifacts near 90° while preserving most of the effective image; they are set 

empirically to 60  and 75  in our examples. The reflection angle   in equation 2B-1 is 

calculated from the propagation directions of the source and receiver wavefields, but note, this 

does not conflict with our avoidance of using the low-reliability propagation directions of the 

receiver wavefields to calculate ADCIGs, because the angle resolution required by the filter in 

equation 2B-1 is low; the calculated reflection angle is used only for this angle filter and not to 

output ADCIGs. The comparisons of SACIGs and RTM images using WD and WD-AF imaging 

conditions are shown in Figures 2.5 and 2.6 using a complicated model.   

2.10 Appendix 2C “SACIG and ADCIG for a simple model” 

 This appendix provides an example of an SACIG and an ADCIG using a simple layered 

velocity model with three flat reflectors (Figure 2.19a). The parameters for this numerical test 

are: the source wavelet uses a Ricker wavelet with a dominant frequency of 20 Hz, both the 

horizontal and vertical grid intervals are 10.0 m, and the time interval is 1 ms. There are 200 

sources located from 20 m to 4000 m, which an interval of 20 m. The waves propagated from 
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each source are recorded by 401 receivers on the surface with the offset range -2000 ~ 2000 m; 

40 points are used to taper each of the two boundaries of the observed data. For the angle 

sampling interval, the Gaussian binning, and the numerical method of wavefield simulation and 

reconstruction, please refer to the Marmousi example in the “Examples” section.  

 For simple models containing flat layers, or layers with small dip-angles, two vector bins 

(up and down) are enough to separate the incident and reflected waves. In this case, using the 

WD imaging condition is sufficient because the tapering region for the two vector bins are in 

horizontal directions (refer to Figure 2.4); waves that propagate in the horizontal direction are 

hard to be observed from the surface. Figure 2.19b shows the RTM image obtained using the 

WD imaging condition with two vector bins. Figure 2.20 contains the SACIG and ADCIG at 

horizontal location 2000 m. The proposed method gives high-quality ADCIGs for this simple 

model.  

2.11 Appendix 2D “A general flow of the ALFT” 

 This Appendix contains a general ALFT flow as described by Xu et al. (2010). The 

algorithm below is between the t and ω domains; it can also be applied to the FTs between x and 

k (or t-x and ω-k). 

I. Transform the signal  f t  into the ω domain to obtain  F  .  

II. Calculate the modulus of each  F  . 

III. Pick the  maxF   with the maximum modulus, and convert this point (a single-frequency 

component) back to the t domain,  

         max max .i tf t F e        (2D-1) 
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    Set the  maxF   to be zero.  

IV. Subtract  maxf t  from  f t  at each t , 

           max .f t f t f t        (2D-2) 

V. Repeat Steps III and IV until the residual, e.g.,  

     
2

0

T

f t dt           (2D-3) 

is small enough. 

 

 

Figure 2.19. (a) The velocity model and (b) the stacked RTM image. 
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Figure 2.20. (a) an SACIG and (b) an ADCIG using the simple model in Figure 2.19a. The 

horizontal location for the SACIG and ADCIG is 2000 m. Refer to Figure 2.5a for the axis of 

constrained-propagation-angles used to sort SACIGs in Panel (a). The CIG at 180° can be 

included in the CIG at 0°. 

2.12 Appendix 2E “Analysis of the amplitude in the T-window” 

 Figure 2.21 illustrates two overlapping circular T-windows in the k domain, with a radius of 

two grid increments. Because of equations 2.16 and 2.17, in the red T-window (  ), the 

normalized weight f  at its central point ‘0’ is 
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at Point ‘0’ is contributed by the other T-windows that use the blue points as center points (e.g., 

the blue ‘dashed’ T-window centered at the blue point ‘1’).  

 

Figure 2.21. Schematic diagram for two overlapping T-windows in the k domain. The red T-

window involves the center (red) point ‘0’ and several tapering (blue) points including Point ‘1’, 

which is the center of the blue (dashed) T-window.  

 For example, Point ‘1’ is a tapering point for the red T-window centered at Point ‘0’, with a 

tapering weight of  
0 1f

k
k ; similarly, Point ‘0’ is also a tapering point for the blue ‘dashed’ T-

window centered at Point ‘1’, with a tapering weight of  
1 0f

k
k . Because the distance between 

Points ‘0’ and ‘1’ is the same for both the red and blue T-windows,  

         
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which leads to 

         
0 0 ,

nnf f
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k k                            (2E-4) 

for an arbitrary blue point ‘n’. Thus, the summation of the tapering values at point ‘0’ (in all T-

windows with this point included) is  
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where N is the number of the points in the red T-window (note, ‘n’ starts at ‘0’ and thus ends at 

‘N-1’), which is also the number of all T-windows that include point ‘0’. Because the  
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is the discrete expression of  d f
 k k  in equation 2.14,  
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and thus 

       0 1,fI k                   (2E-7) 

which means the amplitude at Point ‘0’ is preserved. For one point, its amplitude in each T-

window that involves this point is a partition of unity. This relation/conclusion is also applicable 

to all other points of the image in the k domain (excluding the boundary points of the model, 

which can be ignored). Although Figure 2.21 is a 2D schematic diagram, the theory in this 

Appendix also works for 3D.  
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2.13 Appendix 2F “Analysis of the ATFT algorithm” 

 The ATFT algorithm (e.g. equation 2.15) is equivalent to applying an amplitude-taper over 

angles in the k domain, which is used during the approximate WD of the MPV-calculation 

process (see Appendix 2A [Section 2.8]). However, different from the approximate WD, during 

the transformation of SACIGs into ADCIGs, the reflection angle calculated by equation 2.10 is 

used to output ADCIGs in the k domain; thus, it requires high accuracy.  

 Therefore, the ATFT cannot use an angle-tapering range as large as that in the approximate 

WD of MPV (e.g., 10°); a small tapering window (T-window) is used in the k domain to achieve 

a similar goal (of angle-tapering) while preserving high accuracy. Based on equation 2.10, the 

center point 0k  of a circular T-window corresponds to a reflection angle 
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For other points in this T-window, the vector from the center point ( 0k ) to an arbitrary point 

( lk ) is 

      0 ,  ,l r   = k k                  (2F-2) 

where r is the radius of the T-window, with a unit of m-1 (which is the unit of the wavenumber). 

Based on equation 2.10, lk  corresponds to an angle 
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For the sorting into ADCIGs, the entire T-window uses 0  as the reflection angle, so the angle-

error of the T-window is 
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In equation 2F-4, if a tapering point  lk  is near the center point  0k , this point has a small   

which results in a small angle-error magnitude 0l  ; otherwise, this point has a large   

which results in a large 0l  . Based on equation 2.16, the taper points with small   or 

0l   have large tapering weights; otherwise, they have small tapering weights.  

 The amplitude-truncation at 0  is tapered in the angle-range  min max,l l   , where minl   

and maxl   correspond to the minimum and maximum angles in the T-window, respectively. The 

reduction of resolution caused by using the T-window is defined by the tapering function (e.g., 

equation 2.16) and the angle-range  min max,l l   . The  min max,l l    depends on the source 

propagation vector sp , the location of the center point 0k  and the radius of T-window r. Because 

we use a global spatial FT, the wavenumber-sampling is very dense; a small T-window will have 

a limited influence on the accuracy of most 0k . For very low wavenumbers, the T-window will 

have a relatively large influence, but these wavenumbers are not the dominant part of the image. 

2.14 Appendix 2G “Discussion of computational cost of the proposed data flow” 

 The proposed data flow contains two parts. One is calculation of the MPV during the 

imaging; the other one is the transformation of SACIGs into ADCIGs after imaging.  
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 During the imaging, the main increase of the computational cost of the MPV over that of 

the single-direction PV is associated with the calculation of the approximate WD and the 

calculation of the time-shift PVs for each decomposed wavefield. There are two important 

factors that determine the computational complexity and the memory requirement. One is the 

number of vector bins in equation 2.3 (Tang and McMechan, 2016); the other is the width of 

time-shift search window that relates to equation 2.2 (Tang et al., 2017a).  

 For a real-valued wavefield snapshot, the computation-time complexity of the fast Fourier 

transform (FFT) of a complex-valued 3D slice is  log log logx x y y z zO n n n n n n   where nx, ny 

and nz are the numbers of sampling points in x, y and z dimensions, respectively. If the number of 

vector bins is M, the approximate WD in equation 2.2 requires  1M   spatial FTs, including 

one forward FT and M  inverse FTs. 

 If the computation time of the FFT and time-shift PV for a single complex-valued slice are 

FFTT  and TPVT , respectively. The entire computational time of MPV for this single slice is 

       1 ,FFT TPVC M T MT H        (2G-1) 

where H is the time of the other processes including calculating the approximate angles in the k 

domain. Here we assume the forward FFT has the same computational time as the inverse FFT. 

 In the second step (after imaging), the number of angles of SACIGs is an important factor 

in the computation time of the transformation from SACIGs to ADCIGs. The number of angles 

in SACIGs is also the number of the partitioned images. Assuming the computational complexity 

of transforming one partitioned image into ADCIGs is  1ATFTO , the complexity of the entire 
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SACIG-to-ADCIG transformation is   ATFT SACIGO N  where SACIGN  is the number of SACIGs (or 

the number of partitioned images). The computation time of the second step is independent of the 

number of time-steps (in wavefield modelling/reconstruction) and the number of sources. 

2.15 Appendix 2H “Imaging condition for ADCIGs obtained using source- and receiver-

side MPVs” 

 The ADCIGs that are calculated by both source- and receiver-side MPVs, use a WD 

imaging condition (e.g., Tang et al., 2017a) 
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where the reflection angle    and azimuth angle   are obtained from 
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where ,r jp  is the propagation vector of the receiver wavefield (in the forward time direction). 

The sign of ,r jp  in equation 2H-2 is determined by its definition (in the forward or reverse time 

direction).  
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CHAPTER 3 

DYNAMICALLY-CORRECT MULTIDIRECTIONAL POYNTING VECTOR WITH 

APPLICATION IN CALCULATING ADCIGS FROM RTM* 

3.1 Summary 

Among the existing methods to calculate ADCIGs, the Poynting vector (PV), which 

shares the same propagation direction with the slowness vector (SV) in the time-space (t-x) 

domain, is efficient, but it suffers from two main problems. The first problem is that each PV can 

give only a single propagation direction per grid point per time step and thus fails to give 

multiple directions at wavefield overlaps. The SVs in t-x and ω-k can be connected by Fourier 

transforms (FTs); the forward FT from t-x to ω-k decomposes a t-x SV into different vector 

components (ω-k SV), and the inverse FT sums these components into a unique direction (t-x 

PV). Thus, the PV, which can be obtained from the t-x SV, can give only a single direction; 

while the local plane-wave decomposition (LPD), which is based on the ω-k SV, can give 

                                                 

* Tang C. and G. A. McMechan, 2018, The dynamically-correct formula of Poynting vector for acoustic media with 
application in calculating the multidirectional propagation vector to produce angle gathers from reverse time 
migration: Geophysics. (Accepted). Copyrighted by Society of Exploration Geophysicists. Permalink: 
https://doi.org/10.1190/geo2017-0331.1 

  Tang C. and G. A. McMechan, 2018, The dynamically-correct formula of Poynting vector for acoustic media with 
application in calculating the multidirectional propagation vector to produce angle gathers from reverse time 
migration: 88th International Meeting, SEG. (Submitted). 

  Tang C. and G. A. McMechan, 2016, Multidirectional slowness vector for computing angle gathers from reverse 
time migration: Geophysics, 81, no. 2, S11-S24. Copyrighted by Society of Exploration Geophysicists. Permalink: 
https://doi.org/10.1190/geo2015-0134.1 

  Tang C. and G. A. McMechan, 2015, Time-shift multidirection slowness vector for computing angle gathers from 
reverse time migration: Part 1 - Multidirection slowness vector: 85th International Meeting, SEG, 4360-4364. 
Copyrighted by Society of Exploration Geophysicists. Permalink: https://doi.org/10.1190/segam2015-5838306.1 

  Tang C. and G. A. McMechan, 2015, Time-shift multidirection slowness vector for computing angle gathers from 
reverse time migration: Part 2 - Conjugate relation, complex-valued extrapolation, and time shift: 85th 
International Meeting, SEG, 4365-4369. Copyrighted by Society of Exploration Geophysicists. Permalink: 
https://doi.org/10.1190/segam2015-5838618.1 
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multiple directions. Based on this discovery, we separate the calculation of propagation vectors 

into two steps. First, we use the forward FT, k/ω binning, and several inverse FTs to separate the 

wavefields into vector bins with different approximate propagation angle ranges, which contains 

many fewer wavefield overlaps; then, we calculate the PVs for each vector bin. The resulting 

PVs constitute a multidirectional PV (MPV). To complete the flow, we develop an angle-

tapering scheme to remove the Fourier truncation artifacts during the wave decomposition (of 

MPV) while preserving the amplitudes, and use a wavefield decomposition plus angle-filter 

imaging condition to remove the backscattering artifacts in the SACIGs and the RTM image. 

Moreover, the FTs between the t and ω domains require a huge I/O time. These can be avoided 

by extrapolating complex-valued wavefields and using the conjugate relation between the vector 

bins of the positive and negative frequencies, so only the positive frequencies need to be used.  

The second problem is that the current PV formula in acoustic media is only 

kinematically correct; a typical issue is that the PV is zero at the wavefield peaks and thus the 

propagation directions are undetermined there. We derive the dynamically-correct PV formula 

for acoustic media, which is the negative of the product of the reciprocal of the density, the 

pressure field (PF) itself, and a factor that is obtained by applying both a time integration and a 

space derivative to the PF. Combining the dynamically-correct PV with the multidirectional 

scheme produces a dynamically-correct MPV. Because the multidirectional scheme already 

involves Fourier transforms between the time and frequency domains (which facilitates 

implementation of the time integration), its updated version causes only a very minor increase to 

the computational complexity of the original one. 
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3.2 Introduction 

 In Chapter 2, we use time-shift multidirectional PV to calculate propagation angles. The 

work has been published by Tang and McMechan (2015a, 2015b, 2016). The MPV is 

kinematically correct and thus the time-shift is used to increase its stability, which is explained in 

detail by Tang et al. (2017a). In this chapter, we develop a dynamically-correct MPV; the 

process to obtain it also provides a better derivation to the multidirectional theory. Thus, this 

chapter is a combination of our MPV paper (Tang and McMechan, 2016) with the dynamically-

correct MPV. Generally, the dynamically-correct MPV solves a similar or the same problem as 

the time-shift MPV, but it is theoretically cheaper. Because this dynamically-correct theory was 

developed after the paper of Tang and McMechan (2017c), we include it in this chapter, and thus 

do not need to reproduce all the results contained in the second chapter.  

 In isotropic media, the PV has the same direction as the slowness vector (SV) in the time-

space (t-x) domain [in anisotropic media, the PV and SV do not have the same direction and a 

conversion from the group angle to the phase angle is required; refer to McGarry and Qin 

(2013)]; both give only a single propagation vector that is the sum of all the plane-wave 

components, so it is necessary to separate the overlapping wavefields before calculating their 

directions.  

To address this issue, we propose decomposition of a wavefield into several approximate 

direction bins in ω-k (or in t-k by using complex-valued wavefields), and then using the PV to 

recalculate the directions within each bin in t-x; this method is defined as a multidirectional PV. 

Several schemes are proposed to address some practical issues of MPV. First, the approximate 

decomposition in the first step does not have a plane-wave assumption, and thus we develop an 
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amplitude-preserved tapering (APT) scheme in the angle domain to reduce the Fourier truncation 

artifacts. Second, because the APT scheme has shared tapering regions that may involve 

backscattering artifacts, although the wavefield decomposition (WD) imaging condition is used, 

we propose a wavefield decomposition plus angle-filter (WD-AF) imaging condition to produce 

a clear image and ADCIGs. Third, to reduce the cost of the approximate WD, we prove a 

conjugate relationship between the decomposition results of the wavefield with positive and 

negative frequencies, and thus we are able to apply the approximate WD only to the wavefields 

with positive frequencies; to avoid the huge I/O time caused by the Fourier transform between 

the t and ω domains, we can use the complex-valued wavefield extrapolation to produce the 

positive-frequency wavefield, and then the approximate WD can be implemented in the t-k 

domain. The idea is initially proposed by us in 2015 (Tang and McMechan, 2015a, 2015b) and 

later was published as a Geophysics paper (Tang and McMechan, 2016). Richardson and 

Malcolm (2015) also propose to calculate PVs after wavefield decomposition, but they use local 

plane wave decomposition (LPD) to decompose the overlapping wavefields.  

Another problem of the PV is its instability at the magnitude peak of the wavefield. There 

are two forms of acoustic PVs. One is (Yoon et al., 2004), 

,
u u

u
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 
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p

x
         (3.1) 

and the other is (Yoon et al., 2011), 

,
u u

t

 
 
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p

x
         (3.2) 

where p is the PV, u is the pressure field,  , ,x y zx  is the spatial location and t is the time. 

The most widely-used is equation 3.2, which can be considered as kinematically correct.  
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Both equations 3.1 and 3.2 contain an instability problem. For example, the PV in 

equation 3.2 is the negative of the product of time and space derivatives. These two derivatives 

result in a phase shift between the pressure wavefield (PF) and its PV; particularly, for a PF at a 

local magnitude peak, its PV modulus is zero and thus the propagation direction there is 

undefined (e.g., Tang et al. 2013a; Tang et al., 2017a). The PV is originally derived by Poynting 

(1884). As given in many text books (e.g., Böhmer, 2016 [Page 108]), its original physical 

definition is a representation of the directional energy flux density (the rate of energy transfer per 

unit area) of an electromagnetic field. The PV has the same physical meaning for a pressure 

field. Based on this definition, the magnitude of the PV modulus should be consistent with that 

of the pressure field; when the pressure magnitude is large (or small), the PV modulus should 

also be large (or small). Thus, the “zero-modulus” problem of the widely-used PV formula is not 

consistent with the physical law of PV.  

Several methods (Yoon et al., 2011; Tang et al., 2013a; Yan and Ross, 2013; Zhang, 

2014; Tang et al., 2017a) are proposed to address the instability issue. For example, Yoon et al. 

(2011) integrate the PVs over four dominant periods to improve its stability; Yan and Ross 

(2013) use a least-squares solution of an objective function to improve the stability of the 

propagation angles; Zhang (2014) uses an optical-flow algorithm to stabilize the calculation of 

the propagation vectors; Tang et al. (2017a) search for an optimal time-shift to locate the PV 

with maximum magnitude. None of these methods question the widely-used PV formula. 

To solve this “zero-modulus” issue, we derive the dynamically-correct PV formula for 

acoustic media, which is the negative of the product of the reciprocal of the density, the PF itself, 

and a factor that is obtained by applying both a time integration and a space derivative to the PF. 
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We give the dynamically-correct PV formula for acoustic media in two different ways. The first 

derivation relies on the fact that the PV has the same direction as the slowness vector (SV) in 

acoustic media; thus, we can obtain the SV in the time-space (t-x) domain and thereby obtain the 

acoustic PV. The second derivation simplifies the PV formula for elastic media (Červený, 2001; 

Dickens and Winbow, 2011) to obtain the acoustic PV. Because the MPV already involves 

Fourier transforms between the t and ω domains (which facilitates implementation of the time 

integration), its updated version causes only a very minor increase to the computational 

complexity of the original one. 

3.3 Derivation of the multidirectional SV 

 The wave propagation equation in acoustic media can be written as 
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where pv  is the P-wave propagation velocity,   is the density,   is a divergence operator and 

  is a gradient operator  x . For a constant density, equation 3.3 can be simplified to 
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Define the Fourier transforms (FTs) between the t-x and ω-k domains as 
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where ω is the angular frequency and k is the wavenumber. In a local window in which vp is 

assumed to be constant, using the forward FT in equation 3.4 to transform equation 3.3 into the 

ω-k domain gives 
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which is equivalent to 
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where s is the SV and 
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Equation 3.8 has two propagation directions; one is the forward propagation direction 
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and the other is the backward propagation direction, 
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where the sign is determined by the FT definitions in equations 3.5 and 3.6 (Tang and 

McMechan, 2016). Note, in each of equations 3.5 and 3.6, the signs before kx and ωt are 
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different; if they were the same, equation 3.11 would define the forward propagation direction 

and equation 3.10 would define the backward direction. Based on the FT definitions in equations 

3.5 and 3.6, we have 

      ,  ,i i
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where   means an equivalence between the t-x and ω-k domains. Thus, under the first-order 

(high frequency) approximation which has also been used in deriving the Eikonal equation in 

acoustic media, equation 3.10 (the forward propagation direction in the ω-k domain) is 

approximately equivalent to 
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In equation 3.13, the implicit high-frequency assumption comes from using the square of the 

first-order derivative to approximate the second derivative in equation 3.4. Both the time-

integration and space-derivative operators need to be applied to the pressure field u to make 

sense (because an operator needs to be applied to a variable); thus, equation 3.13 needs to be 

implemented as 
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which gives the SV in the t-x domain. Note, the time integration can also be written inside the 

spatial derivative; this can be applied to all the similar equations below. Because the space 

derivative is calculated in a local window, equation 3.14 is consistent with the constant vp  
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Figure 3.1. Relationship between the slowness vector in the t-x domain and the plane-wave 

decomposition in the ω-k domain. 

assumption that leads to equation 3.7.  To make the s a unit vector ŝ , we can simply multiply the 

two sides of equation 3.14 by pv ,  
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 Equations 3.10 and 3.13 suggest the relationship between ω-k and t-x SVs: The forward FT 

in equation 3.5 decomposes the t-x SV into a number of plane-wave components to give the ω-k 

SVs; the inverse FT in equation 3.6 sums the ω-k SVs to give the t-x SV; thus, the ω-k SVs give 

multiple directions and the t-x SV gives only a single direction. This statement is the basis of the 

multidirectional SV (MSV) or MPV of Tang and McMechan (2016); see Figure 3.1. The MSV 

involves two main steps: First, decompose the wavefield into vector bins with different 

approximate propagation angles in the ω-k domain; second, calculate the SV for each of the 

vector bins to construct the MSV. The MSVs can be expressed as 

      1 2 3 1, , , , , ,i n n  s s ,s s s s ,s                (3.16) 
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Here, is  is an SV component of the MSV and i is a reference number for the decomposed 

wavefield and a SV component of the MSV. Note, the Fourier transform in equation 3.18 is for 

global space; thus, the wavefield decomposition uses the approximate propagation directions 

only to separate the wavefield overlaps. The accurate propagation direction is obtained by 

calculating the SV for each of the decomposed wavefields (equation 3.17); because of the global 

spatial FTs, the MSV does not have a plane-wave decomposition. Thus, amplitude-tapering 

needs to be done in the angle domain to avoid the Fourier truncation artifacts, which are 

discussed later in this section.  

3.4 Derivation of the dynamically-correct multidirectional PV 

 Now, we need to obtain the acoustic PV from the t-x SV in equation 3.14. As introduced in 

section 3.2, the physical definition of PV is the directional energy flux density, which is the rate 

of energy transfer per unit area, and thus the unit of it is 2W m , which is equivalent to 

1 2J s m    and 1 1N s m    because W  is equal to 1J s and J  is equal to N m . The PV can be 

obtained from the SV by using 

       21
,C u


p s        (3.19) 

where C is a dimensionless value, the unit of the SV (s) is 1s m  (see equation 3.9), the unit of 

the pressure field (u) is 2N m  which is equivalent to Pa and 1 2kg m s   ,  and the unit of the 

density (ρ) is 3kg m . Equation 3.16 can be verified by comparing the units of the two sides,  
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where operator    denotes obtaining the unit (this notation is used only in equation 3.20; the 

   in other equations is a conventional square bracket). Červený (2001) gives a mathematical 

derivation to a similar form of equation 3.19 (refer to equation 2.4.54 on Page 65 of his book); 

his derivation involves a high-frequency approximation and the p  is an average value p̂  over a 

short time period. Below, we ignore the C in equation 3.19 because it does not contribute to the 

calculation of propagation directions. 

 From equations 3.14 and 3.19, we obtain 

      
1

.u u dt


 
   

 
p

x
        (3.21) 

Thus, the acoustic PV is obtained. For the scalar wave equation 3.4, which does not have the 

density term, equation 3.21 can be simplified to (assuming the density is 1.0 3kg m ; note the 

1   in equation 3.21 will not influence the calculation of the propagation angle) 

      1 3.u u dt kg m 
    

 
p

x
       (3.22) 

If we ignore the unit, equation 3.22 can be simply written as  
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      ,u u dt
 

   
 

p
x

        (3.23) 

which can be used to calculate the propagation direction of the pressure field in acoustic media. 

Equations 3.21 and 3.23 do not have the “zero-modulus” problem which is stated as “the PV 

modulus at the wavefield-magnitude peak is zero”, because the corresponding variations of the 

PV modulus are consistent with the magnitude of the wavefield. Specifically, when the PV 

modulus is zero, the magnitude of the wavefield is also zero, and a correct propagation direction 

is not needed for a zero-magnitude wavefield. Note, the phrase “dynamically-correct” in this 

paper is defined as that the variation of the PV magnitude is consistent with the magnitude of the 

pressure, which is also consistent with the physical definition of the PV. 

 Note, for the widely-used PV in equation 3.2, the unit of u t   is 2 1N m s   , and the unit 

of u x  is 3N m . Their product is certainly not equal to the unit of the PV ( 2W m  or 

1 2J s m    or 1 1N s m   ). This also proves that the widely-used PV in equation 3.2 is not 

dynamically-correct.  

 Based on equations 3.14, 3.16, 3.17, 3.18 and 3.23, we give the MPV formula,  

      1 2 3 1, , , , , ,i n n  p p ,p p p p ,p                (3.24) 

     
1

,i i i

i

u u dt


 
   

 
p

x
                (3.25) 

and 

      
 

 
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Here, ip  is a PV component of the MPV and i is a reference number for the decomposed 

wavefield and a PV component of the MPV. The   and   are approximate azimuth and polar 

angles,  

    

   

   

180
ˆ ˆ ˆ ˆatan 2 , ,            if atan 2 , 0,

180
ˆ ˆ ˆ ˆatan 2 , 360 ,  if atan 2 , 0.

y x y x

y x y x

p p p p

p p p p









 
  


     (3.27) 

where atan2 is the multi-valued inverse tangent function with a range of  ,   and 

      
ˆ

arccos ,
ˆ

zp


 
   

 p
        (3.28) 

where p̂  is the approximate propagation vector 

       ˆ = sgn .p k         (3.29) 

In 2D, there is only a polar angle,  

    

   

   

180
ˆ ˆ ˆ ˆatan 2 , ,            if atan 2 , 0,

180
ˆ ˆ ˆ ˆatan 2 , 360 ,  if atan 2 , 0.

z x z x

z x z x

p p p p

p p p p









 
  


     (3.30) 

Note, equation 3.26 is the same as equation 3.18; we rewrite it here to make the MPV formula 

complete. The dynamically-correct PV has a relationship with the Eikonal equation; see 

Appendix 3A (Section 3.9). It can also be derived by simplifying the elastic PV (Červený, 2001), 

from the elastic medium to the acoustic medium, see Appendix 3B (Section 3.10).  
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3.5 Implementation 

3.5.1 Conjugate relationship and complex-valued wavefield extrapolation for accelerating 

the approximate WD 

 In MPV, most of the computation efforts focus on the approximate WD which requires 

Fourier transforms between the t-x and ω-k domains. For one approximate WD, it requires one 

forward FT from the t-x domain to the ω-k domain and several inverse FTs from the ω-k domain 

to the t-x domain. This can be simplified by separating the wavefields into positive and negative 

frequencies by a 1D FT between the t and ω domains first and then decomposing the wavefield 

in the k domain. Then there are two computational issues. First, the Fourier transforms between 

the time and frequency domains is a great challenge for I/O time (for 3D data). The wavefields 

are simulated in time, so unless we store the wavefields at all the time steps in the memory, we 

need a large I/O time to reorder the wavefields for the Fourier transforms between the time and 

frequency domains. Second, after separating the wavefields into the two complex-valued parts 

with either positive or negative frequencies, we need to do the wave decomposition in the 

wavenumber domain for both of the two parts. 

 The first problem is easy to solve by using a complex-valued extrapolator (Zhang et al., 

2007). Because the wavefield extrapolator is linear, we can use Fourier transforms between the t 

and ω domains to separate both the source wavelet and recorded data into two complex-valued 

parts with either positive or negative frequency and extrapolate the complex-valued source 

wavelet and recorded data. When the sign of the frequency is known, the wavefield 

decomposition can be done in t-k. However, this solution produces another issue. The complex-
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valued extrapolation has twice the computational complexity as the real-valued extrapolation; 

thus, if we use it to obtain both the positive- and negative-frequency wavefields, we need four 

times the computational time as the real-valued extrapolation.  

 This issue and the previously-mentioned second issue can be regarded as a single issue 

(referred to as the PN issue below), because both are caused by the fact that the decomposition 

needs to be done to both the positive- and negative-frequency wavefields. Below, we prove that 

the decomposition results of the wavefields with either positive or negative frequency are 

actually conjugate. Because we need only the real part of the decomposition result, we only need 

to obtain either the positive-frequency wavefield or the negative-frequency wavefield, and so the 

PN issue is solved.  

 Based on the definition in equations 3.5 and 3.6, the FT of a real function  u t, x  has 

          ,U U   , k ,k       (3.31) 

where superscript * means “conjugate”. The inverse FT (equation 3.6) can be separated into two 

parts, 

            0

0
.

i t i t
u t d d U e d d U e

 
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  
    

kx+ kx+
, x k  ,k k  ,k          (3.32) 

Using equation 3.29, we can obtain 

            0ˆ ˆ

0
ˆ ˆ ˆ ˆ .
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  
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      

px+ px+
, x p  ,p p  , p    (3.33) 

For  ,0   , by using      where  0,   , we obtain 
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Because of equation 3.31, equation 3.34 can be written as 
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    (3.35) 

where   denotes taking the real part. The process from equation 3.32 to 3.35 states that, for 

each small p̂  bin with a width of ˆdp , we have (ignoring 0  ) 

     
   

   
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

  

x p x p

x p x p
       (3.36) 

Equation 3.36 says that we need only the positive-frequency complex-valued wavefields, which 

can be obtained by extrapolation of the complex-valued source wavelet and recorded data, both 

of which are analytic (with only positive frequencies). The analytic wavefield can also be 

constructed by using Hilbert transforms (Zhang et al., 2007). 

 The complex-valued extrapolation helps reduce the I/O time; the conjugate relation 

between the decomposition results using either the positive- or negative-frequency wavefields 

allows the complex-valued extrapolation and decomposition to be done only for the positive-

frequency wavefield. Using both, the wave decomposition can be done in t-k instead of ω-k. It is 

also useful for local plane-wave decomposition for computing angle gathers (Xu et al., 2011); 

although they use only the wavenumber to calculate the reflection and azimuth angles, the 

computation needs to be done in ω-k. If using the complex-valued extrapolation and the 
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conjugate relation, the angle computation can be done in t-k instead of ω-k. The method can also 

be combined with source or receiver wavefield reconstruction (Dussaud et al., 2008; Tang and 

Wang, 2012b; Tang et al., 2013a) to further use computation time to reduce I/O time. 

3.5.2 Decreasing the cost of the dynamically-correct MPV 

 Above, we give the dynamically-correct MPV (equations 3.22~3.24) for acoustic media. 

Equation 3.23 involves time integration. Below, we give a simplified implementation.   

 The dynamically-correct PV equation 3.23 (which is the original form of equation 3.25 in 

the dynamically-correct MPV) can be reformed as 

     
   1 1

,
udt udt

t t

 

 

  
   

   

 
p

x x
     (3.37) 

where   is the time integration of the pressure field u and thus 

      .
d

u
dt


         (3.38) 

Ignoring the 1  , equation 3.37 has the same form as the widely-used PV formula (equation 3.2) 

which is the negative of the product of the time and space derivatives. The difference is that 

equation 3.37 uses a time integration of the pressure field to replace the pressure field in equation 

3.2. This also provides a physical explanation for the experience and opinion of Yoon et al. 

(2011) and Yan and Ross (2013) that summing the widely-used PVs in equation 3.2 over a local 

time or space window can improve the stability of the propagation angles. Although integrating 

the widely-used PVs over time (or space) is mathematically different from integrating the 
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pressure field over time, before calculating the PVs (equation 3.37), physically both of them lead 

to a phase modification of the widely-used PVs in equation 3.2. 

 Implementing the time integration in equation 3.37 becomes simpler in MPV because the 

multidirectional scheme already involves FTs between the t-x and ω-k domains for the 

approximate wavefield decomposition. Then equations 3.25 and 3.26 become 

     
1

,i i
i

t

 


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p

x
                  (3.39) 

and 
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where the  
1

i


is equivalent to the time integration in the t domain. In equations 3.39 and 3.40, 

the increase in computational complexity caused by incorporating the dynamically-correct PV 

formula into the MPV in acoustic media is very small. The decomposed P-wave can be 

reconstructed by using 

       .i
i

d
u

dt


        (3.41) 

By incorporating the updated MPV with the flows of our previous publications (Tang and 

McMechan, 2016; 2017b), we have three updated data flows to calculate ADCIGs from acoustic 

RTM; see Appendix 3C (Section 3.11). Because this chapter focuses on the comparison between 

the original and the dynamically-correct MPVs, we use only the SR-flow in Appendix 3C to 

produce ADCIGs in the “Examples” section below.  
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3.6 Examples 

 This section provides several 2D numerical examples to support the proposed scheme. 

Because here the PV is used to calculate the propagation vector of a pressure field u, the 1   in 

the dynamically-correct PV and MPV formulas can be ignored. Then we can use the scalar 

equation 3.4 for acoustic wave propagation. First, we provide some comparisons between the 

widely-used PV (equation 3.2) and the dynamically-correct PV (equation 3.21) in a constant 

velocity model (the vp is 2400 m/s). Equation 3.21 is implemented by using its equivalent form in 

equation 37 with the 1   ignored. Note, equation 3.21 with the 1   ignored is equation 3.23.  

 Figure 3.2 contains snapshots of a pressure field (panel a), the PVs calculated by the 

original equation 3.3 (panels b and c), and the PVs calculated by the dynamically-correct 

equation 3.23 (panels d and e) at the time 420 ms. The phase difference between the widely-used 

and dynamically-correct PVs is clearly observed. Figure 3.3 compares the modulus of the 

widely-used and dynamically-correct PVs. The modulus variation of the dynamically-correct PV 

is very similar to 2u , which is consistent with the conclusion in equation 3.23. Thus, when u
 
is 

large (which means 2u  is also large), the dynamically-correct p
 
is also large and thus the ‘zero-

modulus’ issue does not occur for the dynamically-correct PV. By comparing Figures 3.3b and 

3.3c, the phase shift between the 2u  and the widely-used p  is clearly seen, which results the 

‘zero-modulus’ problem.  

 Then, we use the widely-used and the dynamically-correct PVs in Figures 3.2 and 3.3 to 

calculate the propagation angles for the pressure field at 420 ms. These propagation angles are 

used to output two angle-limited snapshots between propagation angles 30° and 60°. In Figure 3. 
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4b, there are many unstable points and the two truncations at 30°and 60° are not sharp. These 

indicate the propagation angles calculated by the widely-used PV are neither accurate nor stable. 

In Figure 3.4c, there are not apparent unstable points and the two truncations are also sharp, 

which indicate that the propagation angles calculated by the dynamically-correct PV are accurate. 

    (a) 

     
 
(b)             (c) 

      
 
(d)             (e) 

      
 
       x-component     z-component 

 

Figure 3.2. Comparison of the widely-used and dynamically-correct PVs. Panel (a) is a snapshot 

of the pressure field. Panels (b) and (c) are the x- and z-components of the widely-used PV, 

respectively. Panels (d) and (e) are the x- and z-components of the dynamically-correct PV, 

respectively. The time is 420 ms.  
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(a)             (b) 

      
 
 
(c)             (d) 

      
 

Figure 3.3. Comparison of the modulus of the widely-used and dynamically-correct PVs. Panel 

(a) is u . Panel (b) is 2u . Panel (c) is the widely-used p . Panel (d) is the dynamically-correct 

p . The time is 420 ms.  

 The second example provides comparisons between the ADCIGS obtained using the 

original MPV and the updated MPV. The original MPV uses 

      ,i i
i

u u

t

 
 

 
p

x
                (3.42) 

to calculate the propagation direction of each decomposed wavefield in equation 3.26. So it 

consists of equations 3.24, 3.42 and 3.26. The updated MPV consists of equations 3.24, 3.39, 

3.40; the 1   in equation 3.25 is ignored and the decomposed wavefield iu  is obtained from i  

through equation 3.40.  
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(a) 

    
 

(b)         (c) 

       
 

Figure 3.4. Comparison of using the widely-used and dynamically-correct PVs to calculate 

propagation angles. Panel (a) is a snapshot of the pressure field. Now we use the widely-used and 

dynamically-correct PVs to calculate the propagation directions of the pressure field in panel (a). 

Then we only show the pressure field within propagation angle aperture 30°~60° (the 0° is the 

horizontal right; the angle increases in the clockwise direction). Using the widely-used and 

dynamically-correct PVs to calculate propagation angles gives the angle-limited snapshots in 

panels (b) and (c), respectively.   

 The P-velocity model uses a portion of Marmousi2 model (Martin et al., 2006); see Figure 

3.5. There are 200 sources from 20 m to 4000 m along the surface, with an interval of 20 m. The 

pressure field from each source is observed by 401 receivers on the surface; the range of offsets 
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is from -2000 m to 2000 m relative to the location of each source. The source uses a Ricker 

wavelet with a dominant frequency of 25 Hz. Because the velocity above 500 m is constant, the 

target image zone is below 500 m; the RTM image is in Figure 3.6. 

 
  

Figure 3.5. The P-velocity of a portion of Marmousi2 model. 

 

                                  
 

Figure 3.6. The RTM image using the synthetic data obtained from the velocity model in Figure 

3.5. The migration uses the true velocity. 

 

 In Figure 3.7, the ADCIGs produced by original MPV have unreasonably high-amplitude 

images at the very large angles, particularly in the deep region (e.g., see the red box); this is not 

correct because of the limited migration aperture. These unreasonable images in Figure 3.7a are 

caused by the unreliable propagation angles calculated by the original MPV. The ADCIGs (in 

Figure 3.7b) produced by the updated MPV do not have these unreasonable images (e.g., see in 

the red box), and thus have higher reliability and sharp truncations in the angle domain. 
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(a) 

 

(b) 

 

Figure 3.7. Comparison of ADCIGs obtained using the (a) original and (b) dynamically-correct 

MPVs. The synthetic data is obtained from the velocity model in Figure 3.5. The migration uses 

the true velocity. 
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(a) 

 

(b) 

 

Figure 3.8. Comparison of ADCIGs obtained using the original and dynamically-correct MPVs. 

Panel (a) is obtained from the original MPV. Panel (b) is obtained from the dynamically-correct 

MPV. The synthetic data is obtained from the velocity model in Figure 3.5. The migration uses 

an 8% low velocity model. 

 Figure 3.8 provides a comparison between ADCIGs produced by the original MPV (Panel 

a) and the updated MPV (Panel b) when the migration velocity is incorrect (8% low). In Figure 

3.8a, the ADCIGs calculated by the original MPV are noisy and unstable, particularly at large 

angles (e.g., see in the blue dashed ovals). This phenomenon is caused by the inaccurate and 

unstable propagation angles calculated by the original MPV which negatively influence the 

calculation of the curvature for migration velocity analysis (e.g., Biondi and Symes, 2004; Zhang 

et al. 2012). In Figure 3.8b, the ADCIGs calculated by updated MPV have less noise and are 

more focused and continuous than those in Figure 3.8a. 
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3.7 Conclusions 

 We address the two problems of PVs by deriving the dynamically-correct MPV. We 

separate the wavefield into approximate propagation angle ranges and then use the dynamically-

correct PV to calculate accurate propagation directions for each of the decomposed wavefields. 

The dynamically-correct PV formula for acoustic media is a product of the reciprocal of the 

density, the pressure itself and a factor that is obtained by applying a time integration plus a 

space derivative to this pressure. To decrease the implementation cost, we prove a conjugate 

relationship between the decomposition result of the wavefields with either the positive or 

negative frequencies. Because we need only the real part, we are able to apply the approximate 

WD only to the wavefields with positive frequencies. We also give a practical scheme to 

implement the dynamically-correct MPV, which applies a time integration to the wavefields 

during the decomposition and use an equivalent form of the dynamically-correct PV to calculate 

the propagation directions.  
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3.9 Appendix 3A “Difference between the original and dynamically-correct PVs and the 

relationship between the dynamically-correct PV and the Eikonal equation” 

 Equation 3.21 is the dynamically-correct PV formula in acoustic media. Compared with 

equation 3.2, there are two differences if the 1   in equation 3.21 is ignored (which gives 

equation 3.23). One is that the time derivative in equation 3.2 becomes a time integration in 

equation 3.21. The other is that, in equation 3.2, both the time and space derivatives are applied 

to the pressure field u independently; while in equation 3.21, a serial combination of the time-

integration and space-derivative operations is applied to u. The space derivative (or time 

integration) leads to a phase modification and then the time integration (or space derivative) 

compensates for it. Thus, from a physical perspective, the u dt
 

 
 

 x
 should be approximately 

proportional to u . 

 Equation 3.15 can be written as 

      ˆ ,pu v u dt
 

   
 

s
x

              (3A-1) 

the modulus of which is 

      ˆ .pu v u dt
 

  
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s
x

                (3A-2) 

Because ŝ  is a unit vector,  

      ˆ ˆ .u u u s s                  (3A-3) 
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Thus,  

      .pu v u dt
 

  
 

 x
                 (3A-4) 

Equation 3A-4 involves the first-order (high-frequency) approximation (see equation 3.13 which 

is a precursor to equation 3.15). From equations 3.15 and 3.21, we obtain 
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which can also be written as 
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.
p

u

v
p        (3A-6) 

Equation 3A-6 means that when the magnitude of the pressure field is large, the modulus of the 

PV is also large; when the magnitude of the pressure field is small, the modulus of the PV is also 

small. Thus, the dynamically-correct PV formula in equation 3.21 does not suffer from the “zero-

modulus” problem of the widely-used PV formula in equation 3.2. This is consistent with the 

physical definition of the PV which is the “directional energy flux density” of a pressure field. 

 The derivations of both the SV equation 3.14 and the PV equation 3.21 require equation 

3.13, which can be reformed as 

      .
t

 


s
x

                  (3A-7) 

Equation 3A-7 is the well-known Eikonal equation (or the Travel-time equation) that is widely 

used in ray theory. This is consistent with the fact that solving the Eikonal equation can give the 
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propagation angles, which is the basis of using ray-based migrations (e.g., Kirchhoff or 

Gaussian-beam migration) to calculate ADCIGs. Now we see that the PV and the ray-based 

methods actually do the same thing: the latter calculates the propagation angle from a smooth 

migration velocity by solving the Eikonal equation and the former calculates the propagation 

angle from the pressure field that is obtained from the full wave equation. Calculating ADCIGs 

from ray-based migration is cheaper; however, the ray-based migrations involve several 

assumptions and approximations which are not discussed in detail here as they are beyond the 

scope of this chapter. 

3.10 Appendix 3B “From elastic PV to acoustic PV” 

 In the previous two subsections, we derive the dynamically-correct PV formula (equation 

3.21) for acoustic media and discuss its difference from the widely-used PV equation 3.2. In this 

subsection, we obtain the same PV formula through another approach, which is reducing the PV 

formula for elastic media to that for acoustic media. Wave extrapolation in an elastic medium 

can be approximated using the first-order hyperbolic system of elastodynamic equations 

(Virieux, 1986), 
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where v is the particle velocity,   is the stress tensor,   is the first Lamé parameter and   is the 

shear modulus. Also,   
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where sv  is the S wave propagation velocity. The propagation direction of an elastic wave can be 

calculated by (Červený, 2001; Dickens and Winbow, 2011) as 
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In an acoustic medium, the shear modulus   is zero and the S velocity sv  is also zero. So 

equation 3B-2 becomes 
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which gives 

     
,

0.

xx yy zz p

xy yx xz zx yz zy

u   

     

    


     

     (3B-7) 

In equation 3B-7, the p  is a normal stress which is equivalent to u . Using equations 3B-6 and 

3B-7, equation 3B-1 can be simplified to 
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and equation 3B-5 can be simplified to 
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where the unit of u is 2N m  and the unit of v is 1m s ; thus, their product is 

1 1 1 2 2N s m J s m W m            which is the unit of p. From equation 3B-8, we can obtain  
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Inserting equation 3B-10 into 3B-9 gives 
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which is exactly same as equation 3.21 (the dynamically-correct PV formula in acoustic media) 

and gives the propagation direction for both the pressure field u and the particle velocity v in 

acoustic media. Combining equations 3B-6 and 3B-8 also gives 
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which is an equivalent form of the acoustic equation 3.3. If the density is ignored, equation 3B-

12 becomes 
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which is an equivalent form of the scalar equation 3.4. Corresponding to the transition from 

equation 3B-12 to 3B-13, the PV equation 3B-11 also becomes equation 3.23 in which the 

density is gone.  

 Equation 3B-9 can also be used to calculate the PV of the separated normal stress and the P 

particle velocity in elastic media when Xiao and Leaney’s (2010) approach is used to implement 

the P/S wave mode separation (Wang and McMechan 2015). This is because the P-wave 

decoupled equation of Xiao and Leaney (2010), which is based on Helmholtz theorem in elastic 

isotropic media, has the same form as equation 30 that is obtained by setting the shear modulus 

or S-velocity to be zero to simplify the elastic equations into the acoustic equation. 

3.11 Appendix 3C “Data flows to calculate ADCIGs from RTM in acoustic media” 

 Now we combine the dynamically-correct MPV with our previous publications (Tang and 

McMechan, 2016, 2017c) to produce two standard flows to calculate ADCIGs from acoustic 

RTM. One uses the multidirectional propagation vectors of both source and receiver wavefields 

(Tang and McMechan, 2016, 2017c) to calculate the open angle for ADCIGs (for the PP 

reflection in acoustic media, half the open angle is equivalent to the reflection angle). The other 

flow combines the multidirectional source vector with the anti-truncation-artifact FT (ATFT) to 

calculate the incident angle for ADCIGs (for the PP reflection in acoustic media, the incident 

angle is equal to the reflection angle). To differentiate the ADCIGs obtained from the two flows, 

we define the ADCIGs calculated by the first flow as SR-ADCIGs (‘S’ denotes using the source 

propagation vector and ‘R’ denotes using the receiver propagation vector), and the ADCIGs 

calculated by the second flow as SI-ADCIGs. (‘S’ denotes using the source propagation vector 
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and ‘I’ means using the reflector-image normal). Correspondingly, the first flow is defined as the 

SR-flow and the second flow is defined as the SI-flow. The SR-flow is 

a) Calculate the source and receiver wavefields using the full wave equation.  

b) Use the dynamically-correct MPV in equations 3.24, 3.39, and 3.40 to calculate the 

multidirectional propagation vector. The decomposed pressure field can be recovered by 

equation 3.41. 

c) Calculate the RTM image (using the WD-AF imaging condition) and the SR-ADCIGs.  

Table 3.1. A table of the SR-flow, the SI-flow and the SRSI flow. 

NAMES SR-FLOW SI-FLOW SRSI-FLOW 

STEPS (a), (b), (c) (a), (b), (c'), (d) (a), (b), (c'') , (d) 

KEY POINTS Using the source and 

receiver propagation 

vectors to calculate 

ADCIGs 

Using the source 

propagation (or 

polarization) vector 

and the reflector-

image normal to 

calculate ADCIGs 

A combination of the 

SR-flow and the SI-

flow. 

PRODUCTS SR-ADCIGs SI-ADCIGs SR-ADCIGs and 

SI-ADCIGs 



 

94 

 The SI-flow also uses the steps (a) and (b) in the SR-flow. Because it uses the source 

propagation/polarization-angle CIGs (SACIGs) and then transforms them into ADCIGs through 

ATFT (Tang and McMechan, 2017c), it starts to differ from the SR-flow at the third step;  

c') Calculate the RTM image (using the WD-AF imaging condition) and SACIGs. 

d) After migration, use the ATFT to transform SACIGs into SI-ADCIGs.  

 The SR- and SI-flows can be simply combined into a single SRSI-flow by combining (c) 

and (c'), which gives, 

c'') Calculate the RTM image (using the WD-AF imaging condition), SR-ADCIGs and 

SACIGs. 

 A combination of steps (a), (b), (c'') and (d) is defined as the SRSI-flow, which can produce 

both SR-ADCIGs and SI-ADCIGs. See Table 3.1 for the steps included in each of the SR-, SI- 

and SRSI-flows. 
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CHAPTER 4 

MULTIDIRECTIONAL-VECTOR-BASED ELASTIC REVERSE TIME MIGRATION 

AND ANGLE-DOMAIN COMMON-IMAGE GATHERS WITH APPROXIMATE 

WAVEFIELD DECOMPOSITION OF P AND S WAVES* 

4.1 Summary 

 Elastic reverse time migration (E-RTM) has limitations when the migration velocities 

contain strong contrasts. First, the traditional scheme of P/S wave mode separation is based on 

Helmholtz's theorem; it contains an implicit assumption of constant shear modulus and thus 

requires smoothing the heterogeneous model to approximately satisfy a locally constant 

condition. Second, the vector-based imaging condition needs to use the reflection-image normal, 

and also cannot give the correct polarity of the PP image in all possible conditions. Third, the 

angle-domain common-image gathers (ADCIGs) calculated using Poynting vectors do not 

consider the wave interferences that happen at each reflector. We propose an improved data flow 

that involves three new contributions. The first contribution is an improved system of P/S wave 

mode separation that considers the converted wave generated at the current time, and thus does 

                                                 

* Tang C. and G. A. McMechan, 2018, Multidirectional-vector-based elastic reverse time migration and angle-
domain common-image gathers with approximate wavefield decomposition of P and S waves: Geophysics, 83, no. 
1, S57-S79. Copyrighted by Society of Exploration Geophysicists. Permalink: https://doi.org/10.1190/geo2017-
0119.1 

  Tang C. and G. A. McMechan, 2017, Elastic reverse time migration with an improved system of P/S wave mode 
separation in nonsmooth models: 87th International Meeting, SEG, Houston, 4696-4700. Copyrighted by Society 
of Exploration Geophysicists. Permalink: https://doi.org/10.1190/segam2017-17789761.1 

  Tang C. and G. A. McMechan, 2017, Multidirectional-vector-based elastic reverse time migration and angle-
domain common-image gathers with approximate wavefield decomposition of p and s waves: 87th International 
Meeting, SEG, Houston, 4488-4493. Copyrighted by Society of Exploration Geophysicists. Permalink: 
https://doi.org/10.1190/segam2017-17790704.1 
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not require the constant-shear-modulus assumption. The second contribution is the new elastic 

imaging conditions based on multidirectional vectors; they can give the correct image polarity in 

all possible conditions without a priori knowledge of the reflector-image normal. The third 

contribution is two methods to calculate multidirectional propagation vectors for RTM images 

and ADCIGs: One is the elastic multidirectional Poynting vector and the other uses the sign of 

the wavenumber-over-frequency (k/ω) ratio obtained from an amplitude-preserved approximate-

propagation-angle-based wavefield decomposition to convert the particle velocities into 

multidirectional propagation vectors. The robustness of the improved data flow is shown by 

several 2D numerical examples. Extension of the schemes into 3D and amplitude-preserved 

imaging conditions are also possible. 

4.2 Introduction 

 Reverse time migration (RTM), which the full wave equation for extrapolation (Baysal et 

al., 1983, McMechan, 1983, and Whitmore, 1983, for the initial idea of RTM for poststack data), 

has demonstrated its accuracy and robustness in imaging structurally complex regions. In the 

past decade, progress in prestack RTM is dramatic; several major issues such as the 

backscattering artifacts (e.g., Zhang and Sun, 2009; Liu et al., 2011; Tang and Wang, 2012a; 

Tang and McMechan, 2017c) and source-wavefield storage (e.g., Symes, 2007; Dussaud et al., 

2008; Clapp, 2009; Tang and Wang, 2012b), have been addressed. These advances in the 

fundamental theory of the RTM complement the development in the computational capacity and 

the acquisition technology, to make the elastic RTM (E-RTM) increasingly feasible. In this 

chapter, we propose an improved data flow that addresses three important aspects of the E-RTM: 
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The P/S wave mode separation, the imaging conditions, and the angle-domain common image 

gathers (ADCIGs).  

4.2.1 Separation of an elastic wave into P and S modes 

 To properly image the elastic properties of subsurface targets, separation of an elastic wave 

into P and S modes is required, which can be done based on the Helmholtz's theorem (e.g., Aki 

and Richards, 1980; Dellinger and Etgen, 1990; Ma and Zhu, 2003; Zhu, 2017). Methods of P/S 

wave mode separation can be generally divided into two types. The first applies divergence and 

curl operations to an elastic wave, to obtain pure P and S waves (e.g., Sun and Wang, 1999; Sun 

and McMechan, 2001). This directly uses the physical property of the P and S waves and is 

computationally efficient. However, the divergence and curl operations change the amplitude 

and phase which have been addressed in several publications (e.g., Sun and Chen, 2001; Sun et 

al., 2011). To correct both the phase and the amplitude in a single flow, Duan and Sava (2015) 

apply a time integration (or the equivalent operator in the frequency [ω] domain) to the source 

wavelet and to the observed data before extrapolation, followed by using the corresponding 

propagation velocity term to compensate the amplitude loss of the separated P or S wave after 

extrapolation. The divergence and curl operations can also be performed in the (local) 

wavenumber (k) domain (Dellinger and Etgen, 1990; Zhang and McMechan, 2010), but this is 

very expensive and also involves the assumption of the constant elastic model in the local 

window.  

 The second type of P-S separation uses a system of decoupled equations. The current 

schemes for isotropic elastic media (Ma and Zhu, 2003; Zhang et al., 2007; Xiao and Leaney, 
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2010) are based on the corresponding Helmholtz's equations; their differences occur in the 

propagation equations (stress-based or elastodynamic equations) and in the numerical scheme 

(e.g., pseudo-spectral or staggered grid). Zhu (2017) separates the P and S modes by solving the 

Helmholtz equations, which has similarity to the scheme of Ma and Zhu (2003) but uses a fast 

Poisson solver.  

 However, the decoupling system based on Helmholtz's equations ignores the conversion 

between P and S waves at the current time, which will be discussed below. Thus, it has an 

implicit assumption that the shear modulus is constant, and thus requires a smooth shear modulus 

to approximately satisfy a locally constant condition.  

4.2.2 Imaging conditions of the elastic RTM 

 The image calculated using unseparated source and receiver displacement vectors often 

contains cross-talk artifacts; these artifacts complicate the subsequent interpretation. Thus, the 

P/S wave mode separation is often implemented before imaging. Different combinations of the 

source P, source S, receiver P and receiver S waves give four types of reflection images: PP, PS, 

SP and SS. 

 There are two difficulties for the imaging condition. The first one is that the PS image 

changes polarity at normal incidence in isotropic media.  A direct solution is to correct the 

polarity change based on rotation angles (Yan and Sava, 2008; Du and Zhu, 2012; Yan and Xie, 

2012), which results in a close relationship between the elastic imaging conditions and ADCIGs. 

Because calculation of ADCIGs is often expensive, Duan and Sava (2015) propose scalar 

imaging conditions for PS and SP images, which need the normal to the reflection image. 
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However, calculation of the normal requires a priori information of the reflector locations and 

orientations. So it is still challenging to apply this method to imaging of the complex structure.  

 The second difficulty for the imaging condition relates to using the vector-based P/S wave 

mode separation (e.g., Ma and Zhu, 2003). The resulting P and S waves are vectors, but the 

images are required to be scalar; the modulus of the vector particle-velocity wavefield is the 

magnitude of the corresponding scalar wavefield, so the image-magnitude is easy to obtain (e.g., 

Wang and McMechan, 2015). Thus, the key issue is the polarity of the image at each grid point. 

Wang and McMechan (2015) use the polarization directions and the reflection-image normal to 

define the polarity of the PP and PS images; their method fails for the PP images with open 

angles larger than 90°. A similar approach is to use the dot product of the source and receiver 

vector wavefields to produce scalar images (Wang et al., 2016a; Zhu, 2017; Du et al., 2017), but 

this scheme does not preserve the amplitudes of the cross-correlated image. Du et al. (2017) also 

give a discussion about the polarity change of the PP image at open angle 90° because the dot 

product involves a scale factor that is the cosine value of the open angle of the PP reflection. The 

dot product has also been used by Shabelansky et al. (2017) in calculating the converted images. 

Gong et al. (2016) convert the vector waves into scalar values before applying the imaging 

condition. 

4.2.3 Calculation of ADCIGs from E-RTM 

 In the previous subsection, the PP and PS imaging conditions are closely related to the 

calculation of ADCIGs in elastic media. Most of the methods to calculate ADCIGs in elastic 

media are extensions of those in acoustic media. The ADCIGs can be calculated from extended 
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images (Yan and Sava, 2008), by the energy flow direction (Dickens and Winbow, 2011; Gong 

et al., 2016; Yan and Dickens, 2016), or by local plane-wave decomposition (LPD) (Xie et al., 

2002; Xu et al., 2011). 

 Using the Poynting vector (PV) (e.g., Yoon et al., 2011; Dickens and Winbow, 2011) to 

calculate propagation angles is efficient, but gives only a single direction per grid point per time 

step. Thus, the migration velocity model often needs to be smoothed to avoid wavefield 

interferences. To address this problem, a multidirectional PV (MPV) (Tang and McMechan, 

2016) is proposed for acoustic media, which decomposes the wavefield into different 

approximate directions in the ω-k domain and then calculates the PVs for each decomposed 

wavefield in the t-x domain. Tang and McMechan (2017a) further supplement the MPV with an 

amplitude-preserving scheme to remove the Fourier truncation artifacts in the k domain during 

the approximate-propagation-angle-based wave decomposition (approximate WD). These ideas 

can be expanded for elastic media by using an amplitude-preserving approximate WD to 

decompose P and S waves (both the stress tensor and the particle velocity) into different vector 

bins, and then calculating the PVs for each bin. A special case of the approximate WD is using 

two vector bins (up- and down-separation), which is applied by Suh and Cai (2009) to acoustic 

waves to remove the backscattering artifacts in RTM images (by cross-correlating the up/down-

going source wavefield with down/up-going receiver wavefield), and by Wang et al. (2016b) to 

only the P and S particle velocities to (e.g.) improve the accuracy of PVs (by calculating them 

after the up/down separation) in constant/smooth velocity models. 
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4.2.4 The improvements in this chapter 

 The previous three subsections describe three important aspects of E-RTM; the P/S wave 

mode separation, imaging conditions, and calculation of ADCIGs. This chapter gives an 

improved data flow for E-RTM; this flow can work for non-smooth elastic models. First, we 

propose an improved system of P and S decoupled equations, which does not have the 

assumption of a constant shear modulus. This is involved in the P/S Wave Mode Separation 

section. Second, multidirectional-vector-based imaging conditions are proposed, which can give 

the correct polarity for all the possible conditions of PP, PS, SP and SS images without a priori 

knowledge of the reflection-image normal. Third, multidirectional propagation vectors, which 

can give multiple directions at wavefield overlaps, are calculated to give RTM images and 

ADCIGs. The second and third aspects are presented in the Multidirectional-vector-based 

Imaging Condition section. 

4.3 Improved system of P/S wave mode separation 

 This section contains three subsections. The first subsection introduces the first-order 

hyperbolic system of elastodynamic equations, which is used to generate the elastic stress tensors 

and particle velocities. The second subsection introduces the current solutions of the P/S wave 

mode separation and the corresponding limitations. The third subsection addresses the limitation 

by proposing an improved system of the P/S wave mode separation with a consideration of the 

conversion between P and S waves at the current separation time. 
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4.3.1 The first-order hyperbolic system of elastodynamic equations 

 We use the first-order hyperbolic system of the elastodynamic equations in 2D elastic 

media (Virieux, 1986), 

      
1

,x xx zxv

t x z

 



   
  

   
        (4.1) 

      
1

,xzz zzv

t x z

 



  
  

   
        (4.2) 

       2 ,xx x z
v v

t x z


  

  
  

  
        (4.3) 

       2 ,xzz z
vv

t z x


  

 
  

  
         (4.4) 

and 
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           (4.5) 

where  ,x zv v  is the particle velocity vector, 
xx xz

zx zz

 

 

 
 
 

 is the stress tensor,   is the first Lamé 

parameter,   is the shear modulus,   is the density,  ,x z  is the location in space, and t is the 

time.  

 Inserting equations 4.3~4.5 into equations 4.1~4.2 gives,  
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which can be rewritten as (see Appendix 4A [Section 4.9]) 
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     (4.7) 

4.3.2 Implicit assumption in the traditional system of P and S decoupled equations 

 The elastic wave simulated by equations 4.1~4.5 includes both P and S waves. Based on 

Helmholtz's theorem (e.g., Aki and Richards, 1980; Dellinger and Etgen, 1990; Ma and Zhu, 

2003), the displacement vectors of P and S waves can be obtained by (Xiao and Leaney, 2010), 
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and 
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
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u          (4.9) 

An equivalent implementation of equations 4.8 and 4.9 is to obtain the P stress tensor p  and the 

S stress tensor s  first and then use them to obtain the P displacement vector pu  and the S 

displacement vector su . The p  contains only a normal stress,  
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and the s  contains only shear stresses, 
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To relate equations 4.10 and 4.11 with the first-order hyperbolic system (equations 4.1~4.5), we 

use the particle velocity vector  ,x zv v  to replace the displacement vector  ,x zu u , 
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and, 
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Note, the  ,x zv v  are the first-time derivatives (FTDs) of  ,x zu u . The P and S particle velocities 

 ,p p

x zv v  and  ,s s

x zv v  can be obtained by inserting equations 4.12 and 4.13 into equations 4.1 and 

4.2,  
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This scheme has similarity to that of Ma and Zhu (2003) but they use more simplified equations. 

Theoretically, if the decoupling system (equations 4.12~4.15) based on Helmholtz's theorem is 

correct, the summation of the P and S particle velocities should be equal to the total particle 

velocity; 
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However, if we subtract equations 4.14 and 4.15 from equation 4.7, we obtain 
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To satisfy the conservation principle in equation 4.16, we need 
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Because we cannot assume the vector-particle components to be constant, we need  

          0, 0,
x z

  
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 
        (4.19) 

to satisfy equation 4.18 and further satisfy the conservation principle in equation 4.16. Equation 

4.19 means that the shear modulus should be constant. Therefore, the decoupling system based 

on Helmholtz's theorem requires a constant or smooth (approximately locally constant) shear-

modulus model. Corresponding to equation 4.17, we can also obtain 
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     (4.20) 

so the residual of the FTD of the stress tensor is also not zero. If we insert the residual in 

equation 4.20 into equation 4.1 and 4.2, we can obtain the residual in equation 4.17, because the 

residual in equation 4.17 is caused by inserting the pure P and S stress tensors in equations 4.12 

and 4.13 into equations 4.1 and 4.2. 

 Thus, we have shown mathematically that the decoupling scheme based on Helmholtz's 

theorem assumes a constant shear-modulus. This decoupling system (equations 4.12~4.15) 

represents the extrapolation of pure P and S waves: the variation of the P particle velocity is 

generated by a pure P stress tensor (equations 4.12 and 4.14); the variation of the S particle 
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velocity is generated by a pure S stress tensor (equations 4.13 and 4.15). This scheme does not 

consider the conversion between P and S waves at the current separation time.  

 Figure 4.1 demonstrates the P and S waves obtained using the decoupling scheme based on 

Helmholtz's theorem in a velocity model with a sharp reflection boundary. There are two 

phenomena;  

1. In the residual plots, there are apparent amplitude residuals at the reflector depths. The 

residual means that the summation of the P and S particle velocities is not equivalent to 

the total elastic particle velocity at these points (see the cyan arrows in Figure 4.1). This 

phenomenon is consistent with equation 4.17. (Note, in equations 4.14 and 4.15, the wave 

propagation is simulated by the elastic equations 4.1~4.5 and the Helmholtz theorem is 

used only to separate the elastic wave into P and S modes; thus, the error at the reflection 

point should not spread out to other locations as the wave propagates.) 

2. The elastic waves propagate in oblique directions at the reflection points; so physically, 

the influence of the converted wave at the reflection points should be observed in both x- 

and z-components. In the z-component of the P wave and the x-component of the S wave, 

the converted waves that are generated at the current separation time are visible (see the 

blue arrows in Figure 4.1). However, in the x-component of the P wave and the z-

component of the S wave, they are not visible (see the red arrows in Figure 4.1). This is 

inconsistent with the physical insight. 

 Xiao and Leaney (2010) use only the P stress tensor (equation 4.12) and obtain the S 

particle velocity by subtracting the P particle velocity from the total particle velocity. This 
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ensures that the summation of the P and S particle velocities is equal to total particle velocity, but 

it is equivalent to adding the residuals in equation 4.17 to the S wave. Thus, it is also inaccurate, 

because the contrast of the shear modulus also influences the P wave.  

 In summary, the traditional decoupling scheme based on Helmholtz's theorem (e.g., Ma and 

Zhu [2003] and Xiao and Leaney [2010]) has an implicit assumption of a constant shear modulus 

and does not consider the conversion between the P and S waves at the current separation time. 

 

Figure 4.1. Snapshots of P and S particle velocities obtained using the traditional decoupling 

scheme in a heterogeneous medium with a single, flat reflector. The ‘E wave’ denotes the elastic 

wave. The residual is obtained by subtracting both the P and S particle velocities from the elastic 

particle velocity. The colored arrows point to the reflector depth. All the panels are plotted with 

the same amplitude scale.  
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Figure 4.2. Snapshots of P and S particle velocities obtained using the new decoupling scheme in 

a homogeneous medium. The ‘E wave’ denotes the elastic wave. All the panels are plotted with 

the same amplitude scale. 
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Figure 4.3. Snapshots of P and S particle velocities obtained using the new decoupling scheme in 

a heterogeneous and smooth medium. The ‘E wave’ denotes the elastic wave. All the panels are 

plotted with the same amplitude scale. 
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Figure 4.4. Snapshots of P and S particle velocities obtained using the new decoupling scheme in 

a heterogeneous medium with a single, flat reflector. The ‘E wave’ denotes the elastic wave. The 

residual is obtained by subtracting the P and S particle velocities from the elastic particle 

velocity. The colored arrows point to the reflector depth. All the panels are plotted with the same 

amplitude scale.  

4.3.3 Improved decoupling system with a consideration of the conversion between P and 

S waves at the current separation time 

 An improvement can be applied to the traditional decoupling system (equations 4.14 and 

4.15) to relax the assumption of constant shear-modulus. Because the shear-modulus contrast has 

an influence on both the P and S waves, we can split the residual in equation 4.17 into the 

decoupled equations 4.14 and 4.15, which gives 
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        (4.21) 

for the P wave and 
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      (4.22) 

for the S wave. Superscript “tm” is used to distinguish the P and S variables of the improved 

scheme from those of the traditional scheme. Equations 4.21 and 4.22 correspond to splitting 

equation 4.20 into equations 4.12 and 4.13, which gives 
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               (4.23) 

for the P wave and 
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for the S wave. Inserting equations 4.23 and 4.24 into equations 4.1 and 4.2 will give equations 

4.21 and 4.22.  
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 In the new system, the stress tensors and particle velocities of the P and S waves can be 

obtained by subtracting each other from the corresponding variable of the full elastic wave. 

Because the S stress tensor (equation 4.24) has a simpler expression than the P stress tensor 

(equation 4.23), we use equation 4.24 to implement P/S wave mode separation. The 

corresponding flow is 

a) Calculate the S stress tensor ,s tm  using 
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      (4.25) 

b) If ,p tm  is required, use  

    , , ,p tm s tm           (4.26) 

to calculate it; otherwise, ignore this step.  

c) Insert ,s tm  into the following equations (refer to equations 4.1 and 4.2) 
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to calculate the S particle velocity ,s tm
v .  

d) Calculate P particle velocity ,p tm
v   using 

    , , .p tm s tmv v v        (4.28) 
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In this data flow, P and S particle velocities are successfully decoupled. An alternative way to 

achieve this decomposition algorithm is described in Appendix 4B (Section 4.10), which 

corresponds to the divergence and curl operation.  

 Comparing the proposed flow with that of Ma and Zhu (2003), we can conclude: 

1. When the shear modulus is constant, equations 4.21 and 4.22 of the improved system are 

equivalent to equations 4.14 and 4.15 of the traditional system. Figures 4.2 and 4.3 show 

that the new scheme works well for constant and smooth (approximately locally constant) 

models. 

2. When the shear modulus has a strong contrast, the new decoupling scheme considers the 

conversion between the P and S waves at the current separation time. Figure 4.4 shows the 

decoupled result using the new scheme. Comparing with Figure 4.1, first, the residual 

obtained by subtracting the P and S particle velocities from the full elastic particle velocity 

is zero. Second, in both the x- and z-components of the P and S particle velocities, we can 

observe the converted waves that are generated at the reflection depths at the current 

separation time (compare the reflection points marked by red arrows in Figures 4.1 and 4.4). 

This fits with the physical insight; the wave propagates obliquely at these reflection points, 

and so the converted waves are generated in both x- and z-components at the reflection 

points (see red and blue arrows in Figure 4.4). 

4.4 Multidirectional-vector-based imaging condition 

 This section involves three subsections. The first subsection defines improved elastic 

imaging conditions for PP, PS, SP and SS images. The PP and SS imaging conditions require the 
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sign of the open angle between the incident and reflected waves, which relates the elastic 

imaging conditions to the ADCIGs. Thus, the second subsection then uses the approximate WD 

to convert the particle velocities into multidirectional propagation vectors, because the difference 

between the particle velocity (the polarization vector) and the propagation vector is only the sign 

of k . Finally, the third subsection gives the corresponding elastic imaging conditions based 

on multidirectional polarization and propagation vectors.  

4.4.1 Improved vector-based imaging conditions 

 In the “Introduction” section, we emphasize that the imaging conditions are very important 

for E-RTM. There are two issues of the imaging conditions here (take PP and PS images for 

example): 

i). Physically, both the PP and PS images need to be scalar, but the P and S particle velocities 

are vectors. 

ii). The PS image has a polarity change at normal incidence.  

 For problem (i), the magnitudes of the PP and PS images ( ppI  and psI ) are easy to obtain, 

e.g., for a cross-correlation imaging condition (e.g., Kaelin and Guitton, 2006) 

      , , ,pp p tm p tm

s rI  v v        (4.29) 

and 

      , , ,ps p tm s tm

s rI  v v        (4.30) 
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where the subscripts s and r denote source and receiver, respectively. Thus, the key issue here is 

how to decide the polarity of ppI  and psI .  

 Physically, if both the source and receiver polarization vectors either share the same 

directions as, or have the opposite directions to, their propagation vectors, the polarity of ppI  is 

positive; otherwise (e.g., the source polarization vector shares the same direction as its 

propagation vector and the receiver polarization vector has the opposite direction to its 

propagation vector), the polarity of ppI  is negative. The polarity of ppI  is decided by the source 

P polarization vector ,p tm

sv , the receiver P polarization vector ,s tm

rv , and the open angle pp  

between incident and reflected waves:  

        , ,sgn sgn sgn cos cos sgn cospp pp pp pp p tm p tm pp

s rI       v v ，=    (4.31) 

where pp  is defined in equation 4C-1.  Appendix 4C (Section 4.11) shows that equation 4.31 

satisfies all the eight possible conditions of ppI .  

 The psI  has reversed polarities across normal incidence. To address this issue, the polarity 

of psI  can be defined as follows: For an incident P wave with a polarization vector that shares 

the same direction as the propagation vector, if the polarization vector of the reflected vector S 

wave points to the reflection-image normal, the polarity of psI  is positive; otherwise, it is 

negative. For an incident P wave with a polarization vector that has the opposite direction to the 

propagation vector, if the polarization vector of the reflected vector S wave points in the 

direction away from the reflection-image normal, the polarity of psI  is positive; otherwise, it is 

negative. 
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 The polarity of psI  is decided by the source P polarization vector ,p tm

sv  and the receiver S 

polarization vector ,s tm

rv :  

         , ,sgn sgn sgn cos sgn ,ps ps ps p tm s tm

s rI      v v      (4.32) 

where ps  is defined in equation 4D-1. Appendix 4D (Section 4.12) shows that equation 4.32 

satisfies all the sixteen possible situations of the PS image.  

 A combination of equations 4.29 and 4.31 gives 

     , , , ,sgn sgn cos ,pp pp pp p tm p tm pp p tm p tm

s r s rI I    v v v v     (4.33) 

and a combination of equations 4.30 and 4.32 gives 

     , , , ,sgn sgn .ps ps ps p tm s tm p tm s tm

s r s rI I   v v v v       (4.34) 

The equations for SP and SS images are in Appendix 4E (Section 4.13).  

 Compared with the imaging conditions of Wang and McMechan (2015), equations 4.33 and 

4.34 have two improvements.  

i'. Equation 4.33 can give the correct polarity of ppI  with open angles above 90° by adding 

the cos pp  into sgn pp .  

ii'. Equations 4.33 and 4.34 do not require calculation of the reflection-image normal.  

 Equations 4.33 and 4.34 address problems (i) and (ii) by separating the calculation of 

polarity and amplitude of an image. However, the ppI  in equation 4.33 requires calculation of 

propagation angles, which relates the vector-based imaging conditions to the calculation of 
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ADCIGs. Moreover, wavefield overlaps may influence the calculation of both the propagation 

and polarization (particle-velocity vector) directions, as addressed in the two subsections below. 

4.4.2 Two methods to calculate the multidirectional propagation vectors 

 To calculate the P and S propagation vectors  , ,,p tm p tm

x zp p  and  , ,,s tm s tm

x zp p , an efficient 

way is using the PVs (Červený, 2001; Dickens and Winbow, 2011),  

     
 

 

, , , , ,

, , , , ,

,

,

p tm p tm p tm p tm p tm

x xx x xz z

p tm p tm p tm p tm p tm

z zx x zz z

p v v

p v v

 

 

  

  
        (4.35) 

for P waves and 

     
 

 

, , , , ,

, , , , ,

,

,

s tm s tm s tm s tm s tm

x xx x xz z

s tm s tm s tm s tm s tm

z zx x zz z

p v v

p v v

 

 

  

  
        (4.36) 

for S waves. Equations 4.35 and 4.36 give only a single direction and thus they do not work for 

wavefield overlaps that often occur in non-smooth migration models. To address this, we can 

extend the multidirectional scheme of Tang and McMechan (2016, 2017a) from an acoustic 

medium to an elastic medium, which gives 

     
 

 

, , , , ,

, , , , ,

, , , , ,

, , , , ,

,

,

p tm p tm p tm p tm p tm

x i xx i x i xz i z i

p tm p tm p tm p tm p tm

z i zx i x i zz i z i

p v v

p v v

 

 

  

  
        (4.37) 

and 

     
 

 

, , , , ,

, , , , ,

, , , , ,

, , , , ,

,

,

s tm s tm s tm s tm s tm

x i xx i x i xz i z i

s tm s tm s tm s tm s tm

z i zx i x i zz i z i

p v v

p v v

 

 

  

  
        (4.38) 
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where e.g., ,

,

p tm

x iv  is obtained by decomposing ,p tm

xv  into several vector bins by using partial 

inverse Fourier transforms (FTs),   

        
,

,

,
, 1

, ,

,

1
, ,

2

p tm
x i

p tm
x i

p tm p tm i i t

x i xv t V e d e d





 

 






  
     

 
kx

x ,k k    (4.39) 

Where   means taking only the real part, i is the reference number of the vector bin, and ,p tm

xV  

is the particle velocity in the ω-k domain and can be obtained using a forward FT 

          , , .
i tp tm p tm

x xV dt d v t e



  

 
  

kx
,k x , x       (4.40) 

In equation 4.39, ,p tm

x  is an “approximate” polar angle and can be calculated by 

     
,

,

,
.arctan

p tm
p tm z

x p tm

x

k

k


 
 
 

                    (4.41) 

The FTs in equations 4.39 and 4.40 are over the global space. Equations 4.39~4.41 decompose 

,p tm

xv  into several approximate directions, which can also be applied to other variables in 

equations 4.37 and 4.38; then we can use the PV formulas (equations 4.37 and 4.38) to calculate 

the propagation directions for each decomposed wavefield. This two-step process is the basic 

structure of the MPV. Equation 4.39 is equivalent to (Tang and McMechan, 2016)  

        
,

,

,
, 1

, ,

,
0

1
,  ,

p tm
x i

p tm
x i

p tm p tm i t i

x i xv t V e d e d





 

 


  

   
kx

x ,k k      (4.42) 

which means, the approximate WD in the k domain only needs to be applied to the wavefields 

with positive frequencies. We use equation 4.42 in the implementation because it reduces the 

cost. Interested readers can also refer to Tang and McMechan (2016) for using complex-valued 
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extrapolation of the source wavelet and of the observed data using only the positive frequencies 

to save the I/O of the approximate WD, but this is not used in the implementation of this chapter. 

 Equations 4.40~4.42 describe an approximate WD for ,

,

p tm

x iv . To obtain an MPV for the P 

and S waves in elastic media, the approximate WD is required to be applied to each component 

of the stress tensor and the particle velocity (see equations 4.37 and 4.38), which is 

computationally expensive. A practical alternative is to decompose the P and S particle velocities 

,p tm
v and ,s tm

v  into ,p tm

iv and ,s tm

iv , and then insert ,p tm

iv and ,s tm

iv into equations 4.23 and 4.24 to 

approximate the ,p tm

i and ,s tm

i , respectively. Take the S stress tensor for example, 

     

, ,

, ,

,

s tm s tm

i z i z

s tm

i

s tm s tm

i x i x

v v

z x

t v v

z x



 



 

  
 

   
   

 
  


       (4.43) 

where the “~” over s tm

i

  means “approximate”. Thus, we only need to apply the approximate 

WD to ,p tm

iv and ,s tm

iv . This approach also works in 3D. 

 Another way is to use the approximate WD to convert the decomposed particle velocities 

,p tm

iv  and ,s tm

iv  into the propagation vectors ,p tm

ip  and ,s tm

ip . The particle velocities are also 

polarization vectors. When the approximate WD is applied to the particle velocities, it gives the 

sign of  k , which can be used to convert the polarization vector (POV) into the propagation 

vector (PRV). In 2D, the propagation vector of a decomposed P particle velocity can be obtained 

using 
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  
   

  

x x

x x

      (4.44) 

and the propagation vector of a decomposed S particle velocity can be obtained using 
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      (4.45) 

because the propagation direction of an S wave is perpendicular to its particle velocity direction. 

Equations 4.44 and 4.45 contain the k  in the t-x domain; this involves the process from 

equations 4.40 to 4.42, which transforms the wavefield into the ω-k domain (equation 4.40), 

performs the approximate WD and then transforms each decomposed wavefield back into the t-x 

domain (equations 4.41 and 4.42). As indicated by equations 4.44 and 4.45, to convert the 

particle velocity into the propagation vector, the approximate WD needs at least four vector bins 

for a 2D case and eight vector bins for a 3D case (the extension of this method into 3D is 

discussed in Section 4.6). If we prefer to use only two vector bins (up and down) in 2D and two 

or four vectors in 3D, we can choose the first suggested approach which applies the approximate 

WDs to the P and S particle velocities and then inserts the decomposed P and S particle 

velocities into the corresponding decoupled equations (e.g., equations 4.23 and 4.24 for 2D) to 

obtain the decomposed P and S stress tensors (e.g., equation 4.43 for the S stress tensor in 2D).  

 The conversion in equations 4.44 and 4.45 has a flaw. To remove the Fourier truncation 

artifacts caused by angle truncation of the approximate WD in the k domain (e.g., equation 4.42), 
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amplitude tapering needs to be done in the angle domain; to preserve the total amplitude, each 

pair of adjacent vector bins has a small shared amplitude-tapering window (Tang and 

McMechan, 2017c). The sign of k may not be correct for the part of the wavefields in the 

small shared windows that involve the quadrant boundaries, but the influence is very limited. 

4.4.3 Multidirectional-vector-based imaging conditions for E-RTM and ADCIGs 

 To be consistent with the multidirectional propagation vector in the previous subsection, we 

use multidirectional-vector-based imaging conditions; thus, the PP imaging condition in equation 

4.33 becomes 

         , , , ,

, , , ,1 sgn cos ,pp pp p tm p tm p tm p tm

k i s i r j k s i r jI F i j        v v v v     (4.46) 

where i, j and k are reference numbers for the decomposed source wavefield, the decomposed 

receiver wavefield and the partial RTM images, respectively. Equation 4.46 uses a WD plus 

angle-filter (WD-AF) imaging condition (Tang and McMechan, 2017c) to remove the 

backscattering artifact. The  1 i j   means not cross-correlating the source and receiver 

wavefields in the same vector bins (  denotes a delta function). The angle filter is 

     

1

2
1 2

2 1

2

1,                                   < ,

1
1 cos ,   < ,

2

 0,                                   ,

pp

k

pp
pp ppk

k k

pp

k

F

 

 
    

 

 




    
      

   
 

       (4.47) 



 

123 

where pp

k  is the open angle of pp

kI , and 1  and 2 are the threshold angles; we choose 1 120    

and 2 150    in our examples. Both the delta function and the angle filter are for removing the 

backscattering artifacts. 

 Similarly, the PS imaging condition in equation 4.34 becomes 

      , , , ,

, , , ,sgn .ps p tm s tm p tm s tm

k s i r j s i r jI   v v v v         (4.48) 

Equations 4.46 and 4.48 work for wavefield overlaps because both the polarization and 

propagation vectors are multidirectional. For the corresponding SP and SS imaging conditions, 

see Appendix 4E (Section 4.13).  

 The entire PP and PS images are given by a summation of the corresponding partial images,  
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         (4.49) 

where the K is the total number of partial images, which is  2M M  for the PP image and 2M  

for the PS image. Here M is the number of vector bins for the approximate WD. Stacking ppI  

and psI  at all time steps of all the sources will produce the final PP and PS images.  

 Accordingly, the angle-domain imaging condition for PP ADCIGs is 

         , , , ,

, , , ,1 sgn cos ,pp pp pp pp p tm p tm pp p tm p tm

k k k k s i r j k s i r jI i j             v v v v    (4.50) 

and the angle-domain imaging condition for PS ADCIGs is  
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        , , , ,

, , , ,sgn .ps ps ps ps p tm s tm p tm s tm

k k k k s i r j s i r jI       v v v v       (4.51) 

where pp

k  and ps

k  are the open angles for sorting PP and PS ADCIGs, and pp

k  and ps

k  are the 

open angles calculated by  
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      (4.52) 

Equations 4.50 and 4.51 are theoretical expressions. In implementation, because pp

k  and ps

k  

often need to be equally-spaced, a Gaussian-weighting function can be used to replace the delta 

function to binning the calculated pp

k  and ps

k  into several pp

k  and ps

k  within a small window 

(Tang and McMechan, 2017a). For the corresponding SP and SS imaging conditions, see 

Appendix 4E (Section 4.13).  

 The approximate WD is not cheap, but the method is proposed for elastic imaging with 

non-smooth, structurally complicated migration models. For smooth models with relatively 

simple structure, because most source wavefields are down-going and most of the receiver 

wavefields are up-going, application of the proposed method may not be necessary. However, 

even for smooth migration models with relatively simple structures, backscattering artifacts may 

appear in the shallow part of the migration image because of the tomographic waves near the 

surface; thus, applying an up-down separation before imaging may still improve the image 

especially in the near-surface region (e.g., Wang et al., 2016b). 
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 For models with a varied complication of the structures (e.g., in the horizontal direction for 

recording the data on the surface), due to the limited illumination of each source, some sources 

give high-amplitude images for simple structures and some give the high-amplitude images for 

complicated structures. If there is a pre-knowledge, it is also possible to apply different numbers 

of vector bins to the image corresponding to different sources. 

4.5 Examples 

 This section uses both simple and complicated models to illustrate the proposed methods. 

The entire data flow is presented in Figure 4.5. Because the P/S wave mode separation has been 

illustrated in the “Theory” section (Figures 4.1 to 4.4), we start with illustrating the 

multidirectional polarization/propagation vectors for overlapping wavefields, then use two 

simple models to compare the elastic imaging conditions, and finally apply the data flow to a 

complicated portion of the Marmousi2 model (Martin et al., 2006). All the multidirectional-

vector examples use four vector bins for the approximate WD. For the multidirectional-vector-

based RTM examples, both the source and receiver wavefields use four vector bins and thus 

there are twelve partial images (refer to equations, 4.46, 4.48, 4.50 and 4.51).  
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Figure 4.5. The proposed data flow. 

4.5.1 Calculating the polarization and propagation vectors for wavefield overlaps 

 Figures 4.6~4.8 illustrate the effectiveness of the proposed method for calculating 

multidirectional propagation vectors when wavefields overlap. Figure 4.6 shows a snapshot with 

PS, PP and SS wavefield overlaps. Here, the PS overlap denotes that a P wave overlaps with an S 

wave, the PP overlap denotes that a P wave overlaps with a P wave, and the SS overlap denotes 

that an S wave overlaps with an S wave. Because the polarization and propagation vectors of 
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both the x- and z-component of the particle velocities are same, we plot only the x-component of 

particle velocities in Figures 4.6~4.8.  

 In Figure 4.6, the polarization vectors (see the red arrows) are chaotic and cannot give the 

correct directions at the wavefield overlaps. A comparison of the full elastic, the P, and the S 

waves shows that using P/S wave mode separation improves the result by separating the PS 

wavefield overlaps, which is a commonsense aspect (e.g., used by Wang and McMechan 

[2015]); however, in the P and S wave snapshots, the PP and SS wavefield overlaps still remain.  

 In Figure 4.7, using the approximate WD can separate these wavefield overlaps; thus, the 

polarization directions of both the P and S particle velocities are correct. However, these 

polarization directions are not the propagation directions. By using equations 4.44 and 4.45 to 

convert the polarization directions to propagation directions, we obtain Figure 4.8, which gives 

the correct propagation directions.  

4.5.2 PP and PS images for two simple models with a flat reflector interface 

 Two simple elastic models with a flat reflecting interface between two layers (Figure 4.9) 

are used to illustrate the proposed procedure. Figure 4.9a contains positive PP and PS reflectivity. 

Figures 4.10 and 4.11 show the PP and PS images obtained using four imaging conditions. There 

is a single source that locates at the midpoint of the surface; the synthetic data is observed by the 

500 receivers at the surface, the range of which is from 0 to 5000 m.  
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Figure 4.6. Wavefield snapshots of the x-component of an elastic (E) particle velocities and the 

separated P and S particle velocities. The arrows denote the polarization directions defined by 

the particle velocties.  
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Figure 4.7. Wavefield snapshots of the x-component of the decomposed P and S particle 

velocities. The arrows denote the polarization directions defined by the particle velocties. 
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Figure 4.8. Snapshots of the x-component of decomposed P and S particle velocities. The arrows 

denote the polarization directions defined by the particle velocties. 
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Figure 4.9. Schematic diagram of two simple elastic models. 

 In Figure 4.10a, using scalar wavefields obtained using a divergence operator can give the 

correct polarity of the PP image, but the divergence operator does not preserve the amplitude of 

the wavefields. In Figure 4.10b, the image produced by cross-correlating x-component of ,p tm

sv  

and ,p tm

rv  has invisible amplitude at small reflection angles. In Figure 4.10c, cross-correlating z-

component of ,p tm

sv  and ,p tm

rv   gives a reverse polarity of the PP reflectivity. Both the images in 

Figure 4.10b and 4.10c have weaker amplitude than that in Figure 4.10d, because 4.10b and 

4.10c cross-correlate uses only x- or z-component of ,p tm

sv  and ,p tm

rv . In Figure 4.10d, using the 

multidirectional-vector-based imaging condition (equation 4.46) gives the correct PP polarity 

and also removes the backscattering artifacts in Figure 4.10a.  

 For the PS images in Figure 4.11a, using the scalar wavefields obtained using divergence 

and pseudo-curl operators generates an image with a polarity reversal at the normal incidence. 
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Note, here we directly use x z
v v

z x

  
 

  
 as a pseudo-curl operator to directly generate a scalar S 

wave for the comparison. In Figures 4.11b and 4.11c, Cross-correlating x- or z-component of the 

vector particle velocities cannot give the correct polarity of the PS reflectivity. The 

multidirectional-vector-based imaging condition in equation 4.48 provides the correct PS image 

in Figure 4.11d.  

 Figures 4.12 and 4.13 provide the PP and PS images that use the velocity model in Figure 

4.9b which contains a negative PP/PS reflectivity. The same conclusions can be obtained here. 

The red lines in Figures 4.10d and 4.12d mark the image points at open angle of 90°, where the 

phase of the PP images is continuous. Figures 4.10~4.13 verify that the multidirectional-vector-

based imaging conditions in equations 4.46 and 4.48 are correct. In Figures 4.10~4.13, the PS 

image has much larger illumination aperture than the PP image, because the PS reflection angle 

is smaller than the PP reflection angle at each image point.  

4.5.3 Applying the proposed flow to a complicated portion of the Marmousi2 model 

 We apply the proposed flow (Figure 4.5) to synthetic data obtained from the elastic model 

in Figure 4.14. The target region for imaging and calculating ADCIGs starts at 500 m depth, 

which is a complicated portion of the Marmousi2 model.  
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Figure 4.10. PP images using the elastic model in Figure 4.9a which contains a positive 

reflectivity. (a) Using P particle velocities decomposed by divergence operator. (b) Cross-

correlating the x-component of the ,p tm

sv  with the x-component of ,p tm

rv . (c) Cross-correlating the 

z-component of the ,p tm

sv  with the z-component of ,p tm

rv . (d) Using the multidirectional-vector-

based imaging condition for the PP image. The two red lines mark the open angle of 90°. Panels 

(b) ~ (d) are plotted with the same amplitude scale. Panel (a) is plotted with a different scale 

because the divergence operator changes the amplitudes of the wavefields. The low-wavenumber 

noise above the reflector in Panel (a) is the backscattering artifacts.  
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Figure 4.11. PS images using the elastic model in Figure 4.9a which contains a positive 

reflectivity. (a) Using P and S particle velocities decomposed by divergence and pseudo-curl 

operators. (b) Cross-correlating the x-component of the ,p tm

sv  with the x-component of ,s tm

rv . (c) 

Cross-correlating the z-component of the ,p tm

sv  with the z-component of ,s tm

rv . (d) Using the 

multidirectional-vector-based imaging condition for PS image. Panels (b) ~ (d) are plotted with 

the same amplitude scale. Panel (a) is plotted with a different scale because the divergence and 

pseudo-curl operators change the amplitudes of the wavefields. The minor phase-shift in the red 

oval in panel (d) is caused by the minor phase-shift at the top of z-component of the S-wave at 

normal incidence.  
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Figure 4.12. PP images using the elastic model in Figure 4.9b which contains a negative 

reflectivity. Refer to the caption of Figure 4.10 for other discussion of the four panels.  

 In this numerical example, both the horizontal and vertical grid intervals are 10 m. Each 

model of Figure 4.14 contains 401x201 grids. There are 200 shots located from 20 m to 4000 m 

along the surface. For each shot, 401 receivers record the data along the surface. The offset range 

is from -2000 m to 2000 m. The source wavelet is a Ricker wavelet with a dominant frequency 

of 25 Hz. The time interval is 1 ms; 3200 time steps are recorded at each receiver. 

 The simulation of the elastodynamic equations uses a staggered grid (Virieux, 1984; 

Nguyen and McMechan, 2015), which can effectively improve the accuracy of first time and 

space derivatives. The finite differencing (FD) uses 8th-order for the spatial derivative and 2nd-



 

136 

order for the time derivative. To reduce the strong reflection at the four grid edges of the 2D 

model, the convolutional perfect matched layer (C-PML) absorbing boundary (Komatitsch and 

Martin, 2007) is used.  

 

Figure 4.13. PS images using the elastic model in Figure 4.9b which contains a negative 

reflectivity. Refer to the caption of Figure 4.11 for other discussion of the four panels. 
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Figure 4.14. A complicated portion of Marmousi2 model with a constant elastic layer added at 

the top. (a) The P velocity. (b) The S velocity. (c) The density.  
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Figure 4.15. (a) PP image and (b) PS image obtained by using the proposed flow with the true 

migration velocity in Figure 4.14. The region between the two red lines define the location of the 

PP and PS ADCIGs in Figures 4.16 and 4.17. 

 Figures 4.15 and 4.16 show the PP and PS images and representative ADCIGs obtained 

using the proposed data flow with the true P and S migration velocity. These images and 

ADCIGs have high quality. The PS image and ADCIGs have higher resolution than the PP 

image and ADCIGs, because the S-velocity is lower than the P-velocity, which means the 

dominant wavenumber of the S wave is larger than that of the P wave. In Figure 4.16, the PP 

ADCIGs have much larger magnitudes than the PS ADCIGs near normal incidence, because the 

reflection energy of the converted S wave is weak at normal incidence. The phenomena shown in 
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the PP and PS images and the ADCIGs in Figures 4.15 and 4.16 are consistent with the physical 

truth.  

 The PP and PS ADCIGs using an 8% low velocity are shown in Figure 4.17. The ADCIGs 

are sensitive to the incorrect velocity; most of the gathers curve upward. The phases of both the 

PP and PS ADCIGs are continuous, which facilitates the calculation of curvatures for subsequent 

migration velocity analysis. 

 

Figure 4.16. (a) PP ADCIGs and (b) PS ADCIGs obtained by using the proposed method with 

the true migration velocity (see Figure 4.14 for the elastic model and Figure 4.15 for the 

corresponding stacked images). The range of open angles is from 0° to 100°. 
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4.6 Discussion and future developments 

 In this section, we discuss the extension of our schemes into 3D, the amplitude-preserved 

imaging conditions, and the combination of the multidirectional source vector and reflection-

image normal to calculate elastic ADCIGs. The implementations of these applications are left for 

potential future developments. 

 

Figure 4.17. (a) PP ADCIGs and (b) PS ADCIGs obtained by using the proposed method with an 

8% low migration velocity of the elastic model in Figure 4.14. The range of open angles is from 

0° to 100°. 
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4.6.1 Extension of the P/S wave mode separation into 3D 

 Derivation of the decoupling system of P and S waves in 3D can be performed with the 

following steps.  

(I). Obtain the p t   and s t   from the Helmholtz's equation in 3D, which corresponds to 

equations 4.12 and 4.13 in 2D. 

(II). Calculate the residual 

   ,
p s

resit t t t

     
    

      

   
        (4.53) 

 which corresponds to equation 4.20 in 2D.  

(III). Calculate ,p tm  and ,s tm  in 3D, 

   

,

,

1
,

2

1
,

2

p tm p

resi

s tm s

resi

t t t

t t t

   
   

   

   
   

   

  

  
       (4.54) 

 which corresponds to equations 4.23 and 4.24 in 2D.  

(IV). Substitute equation 4.54 into the 3D elastodynamic equations to obtain the equations for 

calculating ,p tm
v  and ,s tm

v , which corresponds to inserting equations 4.23 and 4.24 into 

equations 4.1 and 4.2 to obtain equations 4.21 and 4.22 in 2D.  

Following this derivation, we obtain  
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   (4.55) 

in 3D. Then the flow of P/S wave mode separation in 3D can be easily obtained by using 

equations 4.55 to replace equation 4.25 and using 
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     (4.56) 

to replace equation 4.27 in the data flow (a)~(d) for 2D. The method in Appendix 4B (Section 

4.10) (using 21  ) can also be applied to P/S wave mode separation of elastic particle 

velocities in 3D. Note, the S-wave in 3D may include both the SV and SH waves and separating 

them may require extra information; e.g., the normal to the reflector plane in the reflection 

image. This normal may need to be calculated in the k domain because of complications of the 

reflection image (e.g., intersections), especially for 3D real data. Some scatters may also 

complicate the calculation of the normal to the reflector plane because the scattered waves do not 

satisfy Snell’s law. 
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4.6.2 Extension of the multidirectional propagation vector into 3D 

 The multidirectional-vector-based imaging conditions (equations 4.46, 4.48 and 4E-3 and 

4E-4) can be directly applied to 3D. Note, in physics, the PS and SP images in 3D are P-SV and 

SV-P images. This is because, (i) the S wave converted from a P wave should be an SV wave, (ii) 

the S wave that generates the converted P wave should also be an SV wave, and (iii) an SH wave 

generates only the SH wave. Thus, the imaging conditions for PS and SP images (equation 4.48 

and 4E-1) still work in 3D.  

 The extension of calculating multidirectional propagation vector in 3D is discussed in this 

subsection. For the conversion from POV to PRV (equations 4.44 and 4.45), the extension of (P 

wave) equation 4.44 from 2D into 3D is 
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The extension of equation 4.45 from 2D into 3D is 
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where ,s tm

i  is a vector that is parallel to the propagation direction and satisfies 

      , , 0.s tm s tm

i i v           (4.59) 

In 3D, deciding ,s tm

i  from ,s tm

iv  requires extra information, such as the normal to the reflector. 

Thus, we propose a three-step process to decide ,s tm

i . Take a PS image as an example: 

A). Use the PS imaging condition (equation 4.48) to obtain the 3D PS image. Calculate the 

normal to the local reflector-image plane.  

B). Use the ,s tm

iv  and the normal to the PS reflection-image plane to decide the normal of the 

PS reflection plane (the local plane that contains the incident P and the reflected S 

waves).  

C). Use the normal to the reflection plane to convert ,s tm

iv  to ,s tm

i . 

Then we can use equation 4.58 to convert ,s tm

i  into ,s tm

ip .  

 As an alternative, the multidirectional propagation vector of a P or S wave in 3D can also 

be obtained using the 3D MPV equations (corresponding to equations 4.37 and 4.38 in 2D): 

      , , , , , , ,

, , , , , , , ,p tm p tm p tm p tm p tm p tm p tm

i x i x i y i y i z i z ip v v v                (4.60) 

and 

      , , , , , , ,

, , , , , , , ,s tm s tm s tm s tm s tm s tm s tm

i x i x i y i y i z i z ip v v v                (4.61) 
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where , ,x y z   to obtain the x-, y- and z- components of the MPV; ,p tm

i and ,s tm

i  can be 

approximated by inserting ,p tm

iv and ,s tm

iv  into the 3D decoupled equations (e.g., equation 4.55 

for obtaining ,s tm

i ), which corresponds to equation 4.43 in 2D, and so the approximate WD 

needs to be applied only to ,p tm
v and ,s tm

v . After obtaining the propagation vectors of the source 

and receiver wavefields, equation 4.52 can be directly used to calculate the open angle in 3D; for 

calculation of the azimuth angle in 3D, refer to Tang and McMechan (2017a). 

4.6.3 Discussion on the amplitude-preserved imaging conditions 

 In this chapter, we use the cross-correlation imaging condition as an example to illustrate 

the multidirectional-vector-based imaging condition. This imaging condition does not produce 

amplitudes that are consistent with amplitude-versus-angle (AVA) theory. Here, we also provide 

multidirectional-vector-based deconvolution imaging conditions (in the ω domain) which can 

improve the amplitude balance because the deconvolution imaging condition (e.g., Zhang et al. 

2005) is consistent with the physical concept of the reflectivity, 
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The corresponding angle-domain imaging condition is  
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For both equations 4.61 and 4.62, the image at each spatial location is a summation of all the 

partial images at each k of each ω of each source; all the vectors are in the ω domain. Note the 

amplitude-preserving imaging condition has a single-arrival assumption (or requires the number 

of arrivals at all the grid points to be the same, which requires applying the deconvolution 

imaging condition to each arrival then calculating the average value at each grid point) and also 

requires a good migration velocity model. To improve the stability of equations 4.61 and 4.62, 

we approximate them as 
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and 
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               (4.64) 

respectively, where the source P/S wavefields in the denominators are not approximate-angle-

decomposed wavefields.  

 Because of the assumption mentioned in last paragraph, we suggest applying these 

deconvolution imaging conditions in a short optimal time window including only a single arrival 

at each grid point. The central point of this window can be at the excitation time. We suggest that 

each grid point of each source should have only one excitation time which can be calculated by 

picking the maximum amplitude over all the decomposed source P/S wavefields of all the time 

steps at this grid point. Note in the non-smooth migration model, magnitude picking should be 

done after applying the approximate WD to the source wavefield because the picking cannot be 

accurate at wavefield overlaps. For a smooth migration model, the excitation time can be 

calculated through either the ray tracing (e.g., Chang and McMechan, 1986) or picking the 

maximum amplitude of all the decomposed source wavefields of all the time steps at each grid 

point.  
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 The optimal time window is variable at each grid point. The wavefields in these windows 

can be saved through three steps: First, calculate the excitation time for each grid point and 

output an excitation-time table (e.g., by picking the time step with the maximum magnitude 

during the source wavefield propagation); second, use this excitation-time table to decide the 

starting and ending time steps of the optimal time window for each grid point; third, perform 

source-wavefield simulation and receiver-wavefield reconstruction, during which the source and 

receiver wavefields are saved in the short optimal window for each grid point. This approach 

also works for acoustic media which often uses stress tensors to calculate the PP reflection 

image. Because the deconvolution imaging condition is consistent with the physical concept of 

the reflectivity, it has more advantages in viscoacoustic or viscoelastic RTMs and full waveform 

inversions (FWIs) (refer to Tang and McMechan [2017d] for the application of deconvolution 

imaging condition in the FWI) in attenuated media than the cross-correlation imaging condition 

which is the product of the source and receiver wavefields. This is because the amplitudes of the 

source wavefields progressively decrease with an increased length of the wave path in visco 

media, which often leads to weak amplitudes in the deep region of the reflection image obtained 

from the cross-correlation imaging condition. 

 Because the elastic AVA has a high requirement of the amplitude accuracy (which is easy 

to be influenced by the migration velocity, noise, attenuation, multi-pathing, wavefield overlaps, 

anisotropy and so on), it is difficult to be implemented in practice. Therefore, the deconvolution 

imaging condition can be used to improve the amplitude balance of the reflection image which is 

obtained from the cross-correlation imaging condition but is often difficult to give accurate 
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reflection-image amplitudes in a medium with complicated geological structures, especially for 

3D real data.  

 If we want to apply the deconvolution imaging condition to the wavefields at all the time 

steps rather than in the optimal time window, to improve the stability of the deconvolution 

imaging condition in practice where the migration velocity is often not incorrect, equations 4.63 

and 4.64 can be approximated (refer to the work of Tang and McMechan [2017d]) by 
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and  
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respectively, where the  ̂  denotes deconvolving the wavefield with the source wavelet.  

 If the wavelet deconvolution is ignored, the deconvolution imaging condition is 

approximately equivalent to the reflection-over-incidence (ROI) imaging condition in the t 

domain (e.g., Kaelin and Guitton, 2006), which is also difficult to stabilize in practice. To 

improve the stability, Nguyen and McMechan (2015) pick the maximum magnitude from the 

reconstructed source wavefield over all the time steps at each grid point, and then apply the ROI 

imaging condition only to the time step with the maximum amplitude, which is also included in 

the vector-based imaging condition of Wang and McMechan (2015); but picking of the 

maximum amplitude involves an assumption of no wavefield overlaps at each time step, and thus 

requires a smooth model to work. Our improved vector-based imaging condition (refer to 

equations 4.33, 4.34, 4E-1 and 4E-2) can also be combined with the scheme of Nguyen and 

McMechan (2015) in a smooth elastic model.  
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4.6.4 Combining multidirectional source vector with the reflection-image normal to 

calculate RTM ADCIGs 

 In practice, because the simulated source wavefield is more stable than the reconstructed 

receiver wavefield, Tang and McMechan (2017a) propose an improved flow to use the 

multidirectional source vector and the reflection-image normal to calculate ADCIGs. This idea 

can also be easily extended to elastic data by using the proposed method to calculate the source-

angle-domain CIGs (SACIGs) and then to use the anti-truncation-artifact FT (ATFT) to convert 

the SACIGs into the incident-angle-domain CIGs (refer to Tang and McMechan [2017a]). 

4.7 Conclusions 

 We propose an improved data flow for the E-RTM and ADCIGs in non-smooth elastic 

models; this flow contains three main aspects. First, the original Helmholtz-theorem-based 

system of P and S decoupled equations does not consider the wave mode conversion at the 

current separation time and thus requires a constant or smooth (approximately locally constant) 

shear-modulus model; the proposed improved decoupling system relaxes this assumption. 

Second, the proposed multidirectional-vector-based elastic imaging conditions can give the 

correct polarities of the E-RTM images in non-smooth models, including the PP and SS images 

with open angles above 90°; the imaging conditions do not need calculation of the reflection-

image normal. Third, we propose two schemes to calculate the multidirectional propagation 

vectors in nonsmooth elastic models: one is the elastic MPV and the other converts the particle 

velocities into multidirectional propagation vectors by using the sign of  k  in the 

approximate WD. Numerical 2D examples show that the proposed flow can produce high-quality 
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E-RTM images and ADCIGs. Extension of these methods into 3D and amplitude-preserved 

imaging conditions are also possible. 
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4.9 Appendix 4A “The transformation of equation 4.6 to equation 4.7” 

 Equation 4.6 is equivalent to 
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equation 4A-1 is equivalent to 
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which is equation 4.7. 

4.10 Appendix 4B “An alternative approach to achieve equations 4.21 and 4.22” 

 Equations 4.21 and 4.22 are equivalent to 
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for the P wave and 
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for the S wave in the ω domain. Here the V  denotes the particle velocity in the ω domain.  

 Equations 4B-1 and 4B-2 provide an alternative way of obtaining equations 4.21 and 4.22 

from equations 4.25~4.28 as follows: 

a'). Apply a 
2

1


  operator to the source wavelet (or to the observed data for wavefield 

reconstruction).  
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b'). Using the modified source wavelet from (a’) to calculate the full elastic particle velocity in 

the time domain. 

c'). Apply the operation in the brace of equations 4B-1 and 4B-2 to the full elastic particle 

velocity. This step has some similarities to divergence and curl operations. 

The 21   can also be applied to the elastic particle velocity rather than to the source wavelet 

(especially when the wavefields are extrapolated in the ω domain), but it is more expensive if the 

wavefields are extrapolated in the time domain. 

4.11 Appendix 4C “The polarity of the PP image” 

 This Appendix verifies that equation 4.31 can give a correct polarity for the PP images in 

all the eight possible conditions, which are shown in Figures 4.18 and 4.19.  In these two figures, 

the label S isthe propagation from the source to the reflection point; the label R is the 

propagation from the reflection point to the receiver. The pp  in equation 4.31 is the angle 

between the source-P and receiver-P polarization vectors, 
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so 

         , ,sgn cos sgn .pp p tm p tm

s r  v v                (4C-2) 

 Figure 4.18 shows four possible polarization situations when the PP reflectivity is positive. 

In Figures 4.18a and 4.18c  
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      cos 0, cos 0,pp pp                    (4C-3) 

so equation 4.31 becomes 

         , ,sgn sgn cos 1,pp p tm p tm

s rI    v v     (4C-4) 

which satisfies the physical truth that the PP reflectivity is positive.  

 In Figure 4.18b and 4.18d,  

      cos 0, cos 0,pp pp                    (4C-5) 

so equation 4.31 becomes 

         , ,sgn sgn cos 1,pp p tm p tm pp

s rI    v v     (4C-6) 

which satisfies the physical truth that the PP reflectivity is positive. 
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Figure 4.18. Schematic diagram of four representative situations of PP images when the PP 

reflectivity is positive. The ‘-’ and ‘+’ denote lower and higher P impedances, respectively. The 

cyan arrows denote the propagation directions and the red arrows denote the polarization 

directions. pp  is the open angle between source and receiver propagation vectors (see equation 

4.52). pp  is the angle between source P and receiver P polarization vectors (see equation 4C-1). 

Panels (a) and (c) show two possible polarization situations with the open angle pp  below 90°; 

Panels (b) and (d) show two possible polarization situations with the open angle pp  above 90°.  
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Figure 4.19. Schematic diagram of four representative situations of PP images when the PP 

reflectivity is negative. Panels (a) and (c) show two possible polarization situations with the open 

angle pp  below 90°; Panels (b) and (d) show two possible polarization situations with the open 

angle pp  above 90°. pp  is the angle between two P polarization vectors (see equation 4C-1).  

  Figure 4.19 shows four possible polarization situations when the PP reflectivity is 

negative. In Figures 4.19a and 4.19c,  

      cos 0, cos 0,pp pp                    (4C-7) 

so equation 4.31 becomes 

         , ,sgn sgn cos 1,pp p tm p tm pp

s rI     v v     (4C-8) 
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which satisfies the physical truth that the PP reflectivity is negative.  

 In Figure 4.19b and 4.19d,  

      cos 0, cos 0,pp pp                    (4C-9) 

so equation 4.31 becomes 

         , ,sgn sgn cos 1,pp p tm p tm pp

s rI     v v              (4C-10) 

which satisfies the physical truth that the PP reflectivity is negative. 

4.12 Appendix 4D “The polarity of the PS image” 

 This Appendix verifies that equation 4.32 can give a correct polarity of the PS image in all 

the possible situations. In Figures 4.20~4.22, the label S is the propagation from the source to the 

reflection point; the label R is the propagation from the reflection point to the receiver. 

 The ps  in equation 4.32 is the angle between the source-P and receiver-S polarization 

vectors, 
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and so 
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Figure 4.20. Schematic diagram of two representative situations of PS images when the PS 

reflectivity is positive. The ‘-’ and ‘+’ denote lower and higher (P and S) impedances, 

respectively. Panel (a) shows a possible polarization situation with the open angle ps  below 

90°; Panel (b) shows a possible polarization situation with the open angle ps  above 90°. In both 

the two panels, the source P wave is on the left side and the receiver S wave is on the right side. 

The blue arrows denote the propagation directions and the red arrows denote the polarization 

directions. 

 The polarity of the PS image is independent of the open angle ps  of the source and 

receiver propagation vectors. For example, in Figure 4.20, panels (a) and (b) present two possible 

situations of the open angles (below or above 90°).  For both situations, cos 0ps  , so 

          , ,sgn sgn cos sgn 1,ps ps p tm s tm

s rI      v v     (4D-3) 

which satisfy the physical truth that the PS reflectivity is possible. Thus, the polarity of the PS 

image in Figure 4.20 is independent of the open angle ps ; this rule also exists for other 

situations. Therefore, regardless of ps , the PS images have eight possible polarization 

conditions that are shown in Figures 4.21 and 4.22. 
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 In Figure 4.21, the PS reflectivity is positive. There are four possible polarization 

conditions. For equation 4.32, all of these conditions give a unified result,  

          , ,sgn sgn cos sgn 1,ps ps p tm s tm

s rI      v v               (4D-4) 

which satisfy the physical truth that the PS reflectivity is possible.  

 In Figure 4.22, the PS reflectivity is negative. There are four possible polarization 

conditions. For equation 4.32, all of these conditions give a unified result, 

          , ,sgn sgn cos sgn 1,ps ps p tm s tm

s rI       v v     (4D-5) 

which satisfy the physical truth that the PS reflectivity is negative. 

4.13 Appendix 4E “The imaging conditions for the SP and SS images” 

 Corresponding to equations 4.31 and 4.32, the imaging conditions are  

     , , , ,sgn ,sp s tm p tm s tm p tm

s r s rI   v v v v                           (4E-1) 

for the SP image and 

     , , , ,sgn cos ,ss s tm s tm s tm s tm

s r s rI   v v v v                           (4E-2) 

for the SS image.  
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Figure 4.21.Schematic diagram of four representative polarization situations of PS images when 

the PS reflectivity is positive. In panel (a), the polarization direction of the source P wave is the 

same as its propagation direction. In panel (b), the polarization direction of the source P wave is 

opposite to its propagation direction. 
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Figure 4.22. Schematic diagram of four representative polarization situations of PS images when 

the PS reflectivity is negative. In panel (a), the polarization direction of the source P wave is the 

same as its propagation direction. In panel (b), the polarization direction of the source P wave is 

opposite to its propagation direction.  

 Corresponding to equations 4.46 and 4.48, the multidirectional-vector-based imaging 

conditions are 

     , , , ,

, , , ,sgnsp s tm p tm s tm p tm

k s i r j s i r jI   v v v v ，                        (4E-3) 

for the SP image and 
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         , , , ,

, , , ,1 sgn cos ,ss ss s tm s tm s tm s tm

k i s i r j k s i r jI F i j         v v v v           (4E-4) 

for the SS image, where the ss

i  is defined below. The entire SP and SS images are given by a 

summation of the corresponding partial images (refer to equation 4.49).  

 Corresponding to equations 4.50 and 4.51, the multidirectional-vector-based imaging 

conditions in the angle domain are  

         , , , ,

, , , ,sgn ,sp sp sp sp s tm p tm s tm p tm

k k k k s i r j s i r jI       v v v v                (4E-5) 

for the SP ADCIGs and   

         , , , ,

, , , ,1 sgn cos ,ss ss ss ss s tm s tm ss s tm s tm

k k k k s i r j k s i r jI i j             v v v v                 (4E-6) 

for the SS ADCIGs, where sp

k  and ss

k  are the open angles for sorting SP and SS ADCIGs, and 

sp

k  and ss

k  are the open angles calculated by 
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CHAPTER 5  

FROM CLASSICAL REFLECTIVITY-TO-VELOCITY INVERSION TO FULL 

WAVEFORM INVERSION USING PHASE-MODIFIED AND  

DECONVOLVED REVERSE-TIME-MIGRATION IMAGES* 

5.1 Summary 

To obtain a physical understanding of gradient-based descent methods in full waveform 

inversion (FWI), we find a connection between the FWI gradient and the image provided by 

reverse time migration (RTM): The gradient uses the residual data as a virtual source, and RTM 

uses the observed data directly as the boundary condition, so the FWI gradient is similar to a 

time integration of the RTM image using the residual data, which physically converts the phase 

of the reflectivity to the phase of the velocity. Therefore, the gradient-based FWI can be 

connected to the classical reflectivity-to-velocity/impedance inversion (RVI). We propose a new 

FWI scheme that provides a self-contained and physically-intuitive derivation which naturally 

establishes a connection between the amplitude-preserved RTM, the Zoeppritz equations (AVA 

inversion) and RVI, and combines them into a single framework to produce a preconditioned 

inversion formula. In this scheme, the relative velocity update is a phase-modified and 

deconvolved RTM image obtained with the residual data. Consistent with the deconvolution, the 

                                                 

* Tang C. and G. A. McMechan, 2017, From classical reflectivity-to-velocity inversion to full-waveform inversion 
using phase-modified and deconvolved reverse time migration images: Geophysics, 82, no. 1, S31-S49. 
Copyrighted by Society of Exploration Geophysicists. Permalink: https://doi.org/10.1190/geo2016-0033.1 

  Tang C. and G. A. McMechan, 2016, From classical reflectivity-to-velocity inversion to full-waveform inversion 
using phase-modified and deconvolved reverse-time-migration images: 86th International Meeting, SEG, Dallas, 
1141-1145. Copyrighted by Society of Exploration Geophysicists. Permalink: https://doi.org/10.1190/segam2016-
13879375.1 
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multi-scale approach applies a gradually-widening low-pass frequency filter to the deconvolved 

wavelet at early iterations, and then uses the unfiltered deconvolved wavelet for the final 

iterations. Numerical tests show that the new method makes a significant improvement to the 

quality of the inversion result. 

5.2 Introduction 

 Full waveform inversion (FWI) has emerged as a viable technology for depth model 

building and has started to be applied in production. The initial idea of FWI is proposed by 

proposed by Lailly (1983) and Tarantola (1984); the goal is to find the optimal parameter 

updates to minimize the difference between the predicted and observed data. The update in each 

iteration of FWI is the negative product of an inverse Hessian matrix and a gradient of the 

objective function. Because the Hessian matrix is both complicated and large, it is difficult to 

invert, so gradient-based descent methods are widely used. Based on a derivation using the 

adjoint-state method (Tarantola, 1984; Plessix, 2006), the gradient is a cross-correlation of the 

second time derivative of a forward-time extrapolated wavefield from the source, and a reverse-

time extrapolated residual wavefield from the receivers; the latter uses the difference between the 

predicted data and the observed data as a virtual source. Because the 2t   is equivalent to a 

2  in the frequency domain, the FWI gradient is kinematically similar to a reverse-time-

migration (RTM) image using the cross-correlation imaging condition (e.g., Chattopadhyay and 

McMechan, 2008) with the residual data as the boundary condition to reconstruct the receiver 

wavefield. This leads to the classical statement that “reverse time migration is the first iteration 

of full waveform inversion” (Mora, 1989). 
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 Compared to traditional tomographic methods, FWI provides higher resolution and 

accuracy, but unfortunately, also incurs increased uncertainty and instability. Cycle-skipping 

dictates that FWI can succeed only when the phase difference between the predicted and 

observed data is within a half wavelength (Mora, 1989). Thus, low-frequency data are required 

when the initial velocity model does not fit the real data within half a wavelength, and inversion 

needs to proceed continuously from low to high frequency (Bunks et al., 1995), to satisfy the half 

wavelength condition progressively at each scale. Multi-scale FWI is easier and more natural 

when wavefield extrapolation is in the frequency domain (Pratt et al., 1998) or the Laplace-

domain (Shin and Cha, 2008). For FWI using extrapolation in the time (t) domain (time-domain 

FWI), a low-pass or band-pass frequency filter is required. In practice, high-quality low-

frequency data are very difficult to obtain. Therefore, tomographic and large-reflection-angle 

images are separated or enhanced to update the background velocity in early iterations (Tang et 

al., 2013c; Díaz and Sava, 2013; Alkhalifah, 2015); adaptive FWI approaches have also been 

developed (Warner and Guasch, 2014; Jiao et al., 2015), which try to match the predicted and 

observed data before back-propagating the residual between them.  

 The objective functions of all the FWI methods discussed above are implemented by 

minimization of the difference between the predicted data and the observed data; thus, they are 

often defined as data-domain FWI. These methods have high accuracy but require low-frequency 

data or a good initial velocity model. To overcome these problems and to balance the accuracy 

and stability, image-domain inversion algorithms are developed, which can be generally divided 

into two types. The first uses extended images (Symes and Carazzone, 1991; Sava and Biondi, 

2004; Shen and Symes, 2008, Yang and Sava, 2011) to establish new objective functions. These 
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methods can make use of the kinematic information and thus can deal with less accurate initial 

models than when using the dynamic characteristics (the phase and amplitude). Therefore, they 

are expected to be more stable in establishing the background model but may be less accurate 

than data-domain FWI. The second type of image-domain FWI uses demigration to calculate the 

predicted data and uses only the reflection signal to update velocities (Xu et al., 2012). These 

methods make use of the fact that the locations, of the reflectors in the reflection images obtained 

from RTM, are more accurate than those in the initial velocity model. However, if the reflection 

image does not have (relatively) true amplitudes and correct phases, it may have a negative 

influence on the predicted data calculated by demigration. 

 Similar to parameter inversions, there are also algorithms to invert reflection images. Their 

objective functions are similar to FWI, but use the reflection image as the inversion target. 

Generally, there are two categories: least-squares (LS) migration and amplitude-preserved (AP) 

migration. The LS migration (Nemeth et al., 1999; Zhang et al., 2015) uses demigration to 

calculate the predicted data, and thus suffers from problems similar to those of the second type of 

image-domain inversions. It is usually used to calculate the amplitude-preserved image, 

especially when illumination compensation and multiples are considered. The LS migration can 

be combined with FWI to obtain a more accurate update (Yao et al., 2014). Unlike the LS 

migration, the angle-domain amplitude-preserved RTM (AP-RTM) (e.g., Xu et al., 2011) does 

not need iterations. The main difference between the AP-RTM and FWI, is that the predicted 

data has a linear relation with the reflectivity (in AP-RTM) but a nonlinear relation with the 

velocity (in FWI). So, the inverse Hessian for the AP-RTM can be explicitly calculated while 

that for FWI cannot. Zhang et al. (2014) extend the AP-RTM into impedance inversion. Innanen 



 

168 

(2014) uses the amplitude-variation-with-offset (AVO) relation to approximate the inverse 

Hessian for pre-critical reflection FWI. Qin et al. (2015) also derive a preconditioned FWI 

formula using the AP-RTM.  

 Gradient-based FWI does not use the inverse Hessian but is widely used because of its 

efficiency. Conjugate gradients, such as PR (Polak and Ribière, 1969), are usually used to 

increase the convergence rate of steepest-descent methods (Virieux and Operto, 2009). A 

spectral-shaping filter has also been developed to improve the convergence (Lazaratos et al., 

2011; Plessix and Li, 2013). To obtain a more accurate solution of FWI, approximations of the 

Hessian matrix have also been developed, such as the Limited-memory Broyden–Fletcher–

Goldfarb–Shanno (L-BFGS) method (e.g., Nocedal, 1980), the truncated-Newton method 

(Métivier et al., 2012) and the Gauss-Newton method (Pratt et al., 1998); inversion formulas 

using the preconditioned Hessian have also been proposed (Lee et al., 2010; Qin et al., 2015; 

Tang and Lee, 2015). Beside the problem of calculating the inverse Hessian matrix, the linear 

Born assumption in FWI also may not give a good approximation of multiple scattering and thus 

direct nonlinear inversion methods are being developed (Wu et al., 2014; Wu et al., 2015). 

Solving these problems (e.g., the inverse Hessian) is very expensive; their solutions also involve 

other assumptions. Therefore, gradient-based descent FWI is still the most common approach 

and connecting this approach with a clear physical meaning is important. 

 In this chapter, to obtain a physical understanding of the steepest-descent FWI, we 

establish a relation between the FWI gradient and the RTM image and show that there is a phase-

transformation operator in the FWI gradient, which converts the phase of an RTM reflection 

image (obtained with the residual data) to the phase of the velocity update. Based on this, we 



 

169 

connect the FWI with the classical reflectivity-to-velocity/impedance inversion (Peterson et al., 

1955; Oldenburg et al., 1983) and propose a new scheme. It provides a self-contained and 

physically-intuitive derivation that naturally relates several previously published schemes 

(Innanen, 2014; Zhang et al., 2014; Qin et al. 2015) and combines them into a single framework. 

5.3 Theory 

 This section is divided into three subsections. The first subsection introduces the relation 

between the FWI gradient and the RTM image, and proves that the nature of steepest-descent 

FWI is a reflectivity-to-velocity inversion (RVI). Based on this relationship, in the second 

subsection, we use the RVI to derive a new inversion formula, which uses a phase-modified and 

deconvolved RTM image (obtained by using the residual data). The third subsection contains a 

discussion of the wavelet deconvolution.  

5.3.1 The relation between the FWI gradient and the RTM image 

 In this subsection, we prove a relation between reverse time migration (RTM) and the 

gradient of full waveform inversion (FWI), and point out the difference between the boundary 

conditions of the propagation equations to obtain them.  

 Consider an acoustic isotropic example. When the receivers are on the surface, the wave-

propagation equations and boundary conditions of RTM in acoustic media are 
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for the source wavefield and  
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                               (5.2) 

for the receiver wavefield. In equations 5.1 and 5.2, su and ru  are the source and receiver 

wavefields, respectively. x  and sx  are the locations of an image point and of the source, 

respectively. 2  is a Laplacian operator.  F t  is the source, which is a time integration of the 

injection pressure:  
0

t

f t dt   (where f  is the injection pressure).    is a delta function. cald  

and obsd  are the predicted and observed data at the receivers, respectively; they can also be 

written as cald  and obsd  to represent the data matrices. v  is the propagation velocity of the 

pressure wave and t  is the time.  

 The objective function of the conventional FWI is an L2 norm: 

       
1

,
2

TC  m d d                                (5.3) 

where m  is the model parameter, T is the transposition operator, and d  is the residual between 

the calculated and the observed data, 

       .cal obs d = d d          (5.4) 

The relation between the model update m  and  C m  can be obtained by expanding  C m  

into a Taylor series of the background model 0m . Based on Virieux and Operto’s (2009) 

derivation, 
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The Hessian matrix H  is difficult to invert, so the most common implementation uses only the 

gradient J , and searches for a step length k  to define the model update: 
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where k  is the iteration number. Considering only the velocity, for a single source at sx  and a 

single receiver at rx , the gradient at location x in equation 5.6 can be expressed in convolutional 

form as (see Appendix 5A [Section 5.7]): 
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x x d      (5.7) 

where 0v  is the background velocity, and  , ;rG tx x  is the Green’s function from the image 

point x  to the receiver rx , through time t . Based on the reciprocity theorem,  

         , ; , ; ,r rG t G t x x x x           (5.8) 

where  , ;rG tx x  is the Green’s function from rx  to x , through time t . The convolution 

 , ;rG t x x d  is an adjoint-state source using the residual data, the wavefield from which 

propagates in the reverse-time direction from the maximum recording time T to zero. Because of 

equation 5.8, if the sx  and rx  are omitted for simplification (in our implementation, the gradient 

is stacked over multiple sources and receivers), equation 5.7 can be written as 
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where rg  is obtained from 
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     (5.10) 

In practice, a surface-energy-compensation term 
cos r

rv


 should be included in the boundary 

condition (Zhang et al., 2014); here r  is the propagation angle and rv  is the propagation 

velocity at the surface receiver location. The time-integration in equation 5.10 is equivalent to 

multiplying by 
1

i
 in the ω domain (here ω is the angular frequency and i  is 1  ), so 

equations 5.9 and 5.10 are equivalent to (see Appendix 5B [Section 5.8]) 
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and 
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      (5.12) 

where rH  means the complex-conjugate of rH  and   means taking the real part; sU  and rH  

are the Fourier transforms (FTs) of su  and rh , respectively. Equation 5.12 is very similar to 



 

173 

equation 5.2 (the propagation equation for the receiver side in RTM); both of them are in the 

reverse-time direction, and the only difference is that equation 5.2 uses the observed data as the 

boundary condition, while equation 5.12 uses the residual data as the boundary condition. 

 By comparing equations 5.2 and 5.10, we conclude that the differences of the boundary 

conditions between RTM and the FWI gradient are: RTM uses the observed data directly for the 

boundary condition (equation 5.2), while the FWI gradient uses the time integration of the 

residual data (an adjoint-state source) as the boundary condition (equation 5.10). The time 

integration works as a phase transformation operator 
1

i
, which transforms the phase of the 

reflectivity into that of the velocity.  

 Based on equations 5.9 and 5.10, equation 5.6 becomes 
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Here, the 
2

2t





 (or 2 ) does not change the main polarity of the wavelet-phase but performs as 

a high-pass frequency filter (Figure 5.1). Therefore, the core of steepest-descent FWI is a phase 

transformation from the reflectivity to the velocity. 
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Figure 5.1. Ricker wavelet (Panel a) and the negative of its second time derivative (Panel b) have 

similar phases, but a) has longer wavelength than b), which means the dominant frequency of a) 

is lower than that of b). 

5.3.2 FWI based on reflectivity-to-velocity inversion 

 In the previous subsection, we conclude that the FWI gradient is similar to the classical 

reflectivity-to-velocity inversion (RVI) (Peterson et al., 1955). In this subsection, we derive a 

new FWI formula based on RVI.  

 There is a relation between the reflectivity and the impedance, 

       2 1 2 2 1 1

2 1 2 2 1 1

,
I I v v
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I I v v

 

 

 
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       (5.14) 

where R  is the reflectivity of the model, 1I  is the impedance of upper layer, 2I  is the impedance 

of lower layer, and   is the density. Note, the R  in equation 5.14 is a property of the model and 



 

175 

is independent of the reflection angle. Assuming constant density (as we are considering only 

velocity inversion in this chapter), equation 5.14 becomes 
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 which can also be written as 
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where av  is the average velocity of the two layers, and v  is the difference between the 

velocities of the two layers. Equation 5.16 can be further changed to 
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where ix  is a small unit interval in the reflector normal direction, and we define a scale factor 

A  to replace 
2

ix
. 

 Now, define the forward and inverse FTs between the t-x and ω-k domains as 
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     (5.18) 

where k is the wavenumber; the  
1

2


 is ignored here because it can be included in the scale 

factor (or step length), which can be obtained by a steepest-descent search in inversion (e.g., Pica 

et al, 1990). So, we have  
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x

      (5.19) 

where   means an equivalence between time (or space) and frequency (or wavenumber) 

domains; the opposite signs of ω and k are because of the definitions of the FTs in equation 5.18. 

Because of equation 5.19, equation 5.17 becomes  

      ,i

a

A
R ik v

v
           (5.20) 

where ik  is the wavenumber from a 1D FT along the reflector normal direction, and (see 

Appendix 5C [Section 5.9] for the relation between 
ik  and refk ) 

                       .i refk  k k         (5.21) 

where refk  and k are the wavenumbers of the reflection image and of the propagating wavefield, 

respectively. Here   is a global scale factor. In equation 5.21, we assume a deconvolved source 

(or a deconvolution imaging condition) is used. For the cross-correlation imaging condition 

using the source wavelet, the relation between refk  and k  includes a cos  (where   is the 

reflection angle) (Zhang and Sun, 2009; Alkhalifah, 2015). For equation 5.20, if we use the 

reflectivity to calculate the velocity, we obtain 

1
.

a i

v R

v A ik
          (5.22) 
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The amplitude-preserved reflection image, which is consistent with the amplitude variation with 

(reflection) angle (AVA) theory, can be obtained (approximately) by using a deconvolution 

imaging condition (Zhang et al, 2005; Zhang and Sun, 2009) 

      
 
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r

s
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R , d d
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x
x

x
      (5.23) 

where R  is an angle-dependent reflection coefficient at reflection angle  . The reflectivity R  in 

equation 5.22 is theoretically equivalent to the reflection coefficient R  at normal incidence.    

is the reflection angle calculated from the propagation vectors of the source and receiver 

wavefields (e.g., see equation 5.8 of Tang and McMechan, 2016); the propagation vector can be 

calculated by the local plane-wave decomposition (Xu et al. 2011) in the ω-k domain or by the 

multidirectional slowness vector (Tang and McMechan, 2016) in the t-x domain (including 

approximate wave decomposition in ω-k). A wavelet deconvolution is automatically involved in 

equation 5.23. There are two points that need to be noted: 

1. To obtain the reflectivity R  from the angle-dependent reflection coefficients R , for each 

image point, a least-squares estimate of R  is calculated to fit the AVA  curve of R . 

2. Equation 5.23 assumes the ideal condition of a primary reflection from one source. 

However, because of the limited illumination of a single source, the images are usually 

stacked over many source gathers and involve multiple arrivals. Therefore, the so-called 

“true-amplitude” RTM image assumes a balanced illumination and contains the “relative” 

reflection coefficients, which require a scale factor   to become the “true” reflection 

coefficients. Using the cross-correlation imaging condition (e.g., Chattopadhyay and 



 

178 

McMechan, 2008) is more stable than equation 5.23 in implementation and will be 

discussed later in this subsection.  

 The derivation below is to obtain a new inversion formula; the inversion is an iterative 

process, and a scale factor is adjusted in a steepest-descent search at each iteration. To obtain an 

approximate true reflectivity, we can use the approach proposed by Aki and Richards (1980) to 

linearize the angle-dependent reflection-coefficient equation (Appendix 5D [Section 5.10]), 

         21
, cos ,R R d

N
   x x         (5.24) 

where N is explained in Appendix 5D [Section 5.10]. The Aki-Richards equation is also used by 

Innanen (2014) to approximate the inverse Hessian in reflection FWI. Substituting equation 5.23 

into 5.24 gives (refer to Point II above for the generation of μ) 
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where 1N   is included in the scale factor  , which is added because the RTM image is often 

stacked over common-source gathers (refer to Point II above). For simplification, we do not add 

an integration over sources in equation 5.25. Substituting equation 5.25 into 5.22 gives  
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               (5.26) 

at location x, where F is a local spatial FT from the x domain to the k domain, and 1F   is the 

corresponding inverse FT. In equation 5.26, the ik  from equation 5.22 is inside the integration, 

because this integration is obtained from a least-squares estimation of the true reflectivity R to fit 
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a set of angle-dependent reflection coefficients R  (See Appendix 5D [Section 5.10]), each of 

which corresponds to a solution of R. 

 Because of equation 5.1, we have 

           
22 2

0 ,v  k        (5.27) 

where 0v  is the background velocity. Based on the definition of the FTs (equation 5.18), we 

obtain the relation between   and the wavenumber wk  along the wavefront (propagation) 

direction (Tang and McMechan, 2016), 

             0.wk v           (5.28) 

Because of equation 5.21, and also because wk  and ik  should have the same sign,  

             1

0.ik v          (5.29) 

Although equation 5.28 requires a constant 0v , wk  is only used to connect ik  and , both of 

which are independent of 0v , and thus there is not a constant-velocity assumption for equation 

5.29. Substituting equation 5.29 into 5.26 gives (including 1   in  ) 
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 In the process from equation 5A-6 to 5A-7 (see Appendix 5A [Section 5.7]), a velocity 

perturbation will lead to a perturbation of the predicted data and also the generation of a residual, 

and there is a condition that the velocity perturbation is small enough that the subsequent data 

residual is within a half period. Similarly, if the velocity perturbation is small enough that the 
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subsequent change in the reflector location is within a half wavelength (which corresponds to the 

half period condition in the derivation of the FWI gradient), the influence of the velocity 

perturbation on the deconvolution in equation 5.30 can be ignored in the derivation because the 

subsequent phase difference between the two reflectivity images (obtained by using predicted 

and observed data) can be gradually decreased by iterations. Thus, from equation 5.30, we obtain 
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where v   is the velocity perturbation and 0av  is the av  for the background velocity. The rH  is 

the FT of rh  which is calculated by using the residual data as the boundary condition for reverse-

time extrapolation (equation 5.12). The sign of the velocity update v  should be opposite to that 

of the velocity perturbation v  , and this corresponds to the update direction being opposite to 

the gradient (equation 5.6) in steepest-descent FWI, so  

    
 

 

2

0

0 0

cos
.

r

a

s

H ,v v
v d d

v v i U ,

  
  

 

 
    

 
 

x

x
      (5.32) 

If we use the time integration (the adjoint-state source) to replace the 
1

i
, equation 5.32 becomes 

(refer to equations 5.9-5.12) 
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where rG  (corresponding to rg  in the t domain) is calculated by equation 5.10, which uses the 

residual data as an adjoint-state source. In summary, the “half wavelength” conditions in the FWI 

gradient (equation 5.9) and in the RVI-based FWI (equation 5.33) are 

1. The derivation of the FWI gradient (equation 5.9) requires the phase difference between 

predicted and observed data to be within half a wavelength (refer to equations 5A-6 and 

5A-7 in Appendix 5A [Section 5.7]).  

2. The RVI-based FWI (equation 5.33) requires the phase difference between the 

reflectivity images obtained from the predicted and observed data should be within half a 

wavelength (refer to equations 5.30 and 5.31).  

 Mathematically, the RVI-based FWI is equivalent to using the L2-norm of the difference 

between the reflectivity images obtained from predicted and observed data as the objective 

function and using the physical insight of RVI to give a preconditioned gradient (See Appendix 

5E [Section 5.11]). 

 In equations 5.32 and 5.33, the 2cos   enhances the reflection signal. To avoid calculating 

ADCIGs, we ignore this term, which increases the weight of the long-wavelength tomographic 

signal (Tang et al., 2013c), which will be discussed below. The 0av  is the average velocity of the 

two layers that constitute the reflector, so it does not influence the local phase of the velocity 

update v  around that reflector, which determines the update direction of the inversion. If we 

use the average velocity for the whole (target) model to approximate 0av , priority is given to the 

update of the low velocities, and equation 5.33 becomes 
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where oav  is included in the scale factor  . Equation 5.34 is similar to the inversion formula of 

Qin et al. (2015) (See Appendix 5F [Section 5.12]), and can also be rewritten as, 
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where  ,sG x x  is the Green’s function from the source sx  to an image point x, and  S   is the 

zero-phase source wavelet in the ω domain. FWI is an iterative process which is strongly related 

to the local phase of the RTM image;    
1

, ,s sG G


  x x x x  is a spreading-energy term and has 

little influence on the local phase, so equation 5.35 becomes  
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which is approximately equivalent to 

        
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ˆ ˆ ,p s r

v
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v
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in the t domain. A comparison between the results using equations 5.34 and 5.37 is shown in 

Appendix 5F [Section 5.12]. The wavefields ˆ
su  and ˆ

rg  (where ‘∧’ means ‘deconvolved’) can be 

obtained by using the deconvolved source wavelet for modelling and the deconvolved residual 

data for wavefield reconstruction, respectively. The pI  is a phase-modified and deconvolved 

(residual) RTM image. When the term involving the reflection angle is ignored, Equation 5.36 or 
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5.37 is equivalent to using the cross-correlation imaging condition (e.g., Chattopadhyay and 

McMechan, 2008) of the source and residual wavefields that are both deconvolved to replace 

equation 5.23, and also has similarities with Zhang et al.’s (2014) equation for inverting only the 

velocity. Equations 5.34 (which is similar to equation 5F-1 in Appendix 5F [Section 5.12]) and 

5.36 also indicate that the essential difference between the inversion formulas of Qin et al. 

(2015) and Zhang et al. (2014) relates to the different imaging conditions used to obtain the 

amplitude-preserved RTM image; the former corresponds to the deconvolution imaging 

condition and the latter corresponds to the cross-correlation imaging condition. 

 We will discuss the influence of the deconvolution operator in equation 5.37 in the next 

subsection, so now we write it as  

         
0

,s r

v
u ,t g ,t dt

v


  x x       (5.38) 

and compare it with equation 5.13. Equation 5.38 uses the full waveform for inversion and thus 

can also be regarded as an FWI formula. There are two differences between equations 5.13 and 

5.38. First, the 2  or 
2

2t





 in equation 5.13 is removed in equation 5.38; second, the velocity 

term 
3

0

1

v
 in the right side of equation 5.13 is modified to 0v  in equation 5.38 (moving 0v  from 

the left to the right side of equation 5.38). 

 The derivation of equation 5.38 is directly from the reflection-coefficient equation 5.15 and 

has a clear physical meaning, which can be interpreted into the following physical process. First, 

subtract the reflectivity image obtained by using predicted data from that obtained by using the 
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observed data, to produce a residual image; then apply a reflectivity-to-velocity inversion to this 

residual image to obtain an update; and finally search for a scale factor to add this update to the 

background velocity. Note, this description is only for physical interpretation; in implementation, 

we do not need to calculate two RTM images for subtraction. Instead, the subtraction of 

reflectivity images in the first step and the phase transformation  
1

i


 in the second step, can be 

achieved in a single step, using a time integration of the residual data as a boundary condition of 

the reverse-time extrapolation from the receivers (equation 5.10).  

 Refracted and turning waves are usually removed in RTM imaging, because the source and 

receiver wavefields cross-correlate along these wave paths (when the migration velocity is 

correct) and thus create artifact-images (Liu et al., 2011). However, we need to use these waves 

in equation 5.38 (the FWI formula). This is because the initial velocity in FWI is incorrect, and 

so the source and residual wavefields of the refracted and turning waves will not propagate on 

the same path; thus, they will have large opening angles, and are similar to a large-reflection-

angle image. These images have long wavelengths that are useful to establish the background 

velocity in the shallow part of the model because the error of the reflector locations in these 

long-wavelength images are more likely to satisfy the half-wavelength condition. Note that, 

when the velocities along a wave path of refracted or turning waves become correct, the residual 

data for this wave path will be zero, and thus a cross-correlation of the source and the residual 

wavefields along this wave path in FWI will not generate artifacts as in RTM.  

 In the early iterations, because the refracted and turning waves have high amplitudes in the 

residual data, they have higher weight in the inversion and contribute more to the update of the 
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background velocity. As the inversion proceeds, these waves become better fitted (between the 

predicted and observed data) and thus their residuals become smaller, so the reflection signals 

then have higher weight in the inversion and produce more accurate velocities. Moreover, as 

discussed in the previous subsection, the core of the traditional steepest-descent FWI formula 

(equation 5.13) also involves a transformation from the phase of the reflectivity to the phase of 

velocity, which is similar to the reflectivity-to-velocity inversion; a common-sense aspect of 

steepest-descent FWI is that the refracted and turning waves are useful and give long-wavelength 

updates (Sirgue, 2006; Tang et al., 2013c). Therefore, we include the refracted and turning waves 

in the velocity update. 

 Equation 5.38 means that “a relative velocity perturbation 
0

v

v


 is equal to a phase-modified 

RTM image obtained with the residual data”, and the scale factor (the step length) of this image 

is adjusted by a steepest-descent search. The difference between using a first time derivative 

(equation 5.13) and a time integration (in equation 5.38, the time integration is included in rg ) is 

clearly seen in Figures 5.2 and 5.3. In Figure 5.2a, the reflectivity (at 0.1 s) is caused by a 

velocity change at 0.1s. Because the reflectivity is positive, the velocity before 0.1 s should be 

lower than that after 0.1 s. However, Figure 5.2b (taking a first time derivative of Figure 5.2a) 

does not fit well with this physical phenomenon, because it changes sign three times (implying 

three reflectors), while Figure 5.2c (taking a time integration) fits well with this phenomenon and 

has only one reflector at 0.1 s. A related comparison is shown in Figure 5.3; compared to the first 

time derivative in Figure 5.3d, the update given by time integration in Figure 5.3e fits better with 

the ideal update in Figure 5.3c. The difference between Figure 5.3c and Figure 5.3e is because of 
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the limited frequency bandwidth and side-lobes (in the amplitude spectrum) of the wavelet in 

Figure 3e; therefore, wavelet deconvolution (see equations 5.36 and 5.37) needs to be done to the 

wavelets of the reflection image (to obtain Figure 5.3f), which is introduced in the next 

subsection. 

5.3.3 Using deconvolved source and residual data for inversion 

 In the previous subsection, the relative velocity update is obtained by applying a 

reflectivity-to-velocity inversion to the residual image. In equation 5.38, the seismic wavelet 

always has a limited frequency bandwidth and side-lobes in the amplitude spectrum, which leads 

to a wavelet-like velocity update (Figure 5.3e). This causes artificial velocity layers and 

complicates local minima. To be consistent with the physical truth of the true reflectivity, the 

wavelets used in the inversion need to be deconvolved (equation 5.37 and Figure 5.3f).  

 Figure 5.4 demonstrates the result of applying deconvolution to a Ricker wavelet. Strictly 

speaking, the deconvolution with the zero-phase source wavelet (see equation 5.37) does not 

enlarge the frequency band, but it can enlarge the “effective” frequency bandwidth by balancing 

(flattening) the spectral amplitude over the existing frequency band (compare Figures 5.4c and 

5.4d).  
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Figure 5.2. Ricker wavelet a), its first time derivative b), and its time integration c). In b), the 

polarity of the wavelet changes three times, which correspond to three reflectors; while in (c), the 

polarity of the wavelet changes only at 0.1 s, which corresponds to a positive reflectivity at 0.1 s 

and thus is consistent with a). 
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Figure 5.3. Schematic diagram for comparison of different phases in FWI. For a true model in a) 

and an initial model in b), the ideal velocity update is in c). Using the first time derivative of the 

residual image gives an update in d), using the time integration gives an update in e), and using a 

deconvolution and a time integration gives an update in f). 

 For better interpretation, we combine the comparisons in Figures 5.3 and 5.4. The 

difference between applying a phase-transformation operator  
1

i


 to the original wavelet 

(Figure 5.4a) and to the deconvolved wavelet (Figure 5.4b) is shown in Figures 5.3e and 5.3f, 

respectively. Figure 5.3f is more similar to the ideal update (Figure 5.3c) than Figure 5.3e, 

because Figure 5.4b is more similar to a spike than Figure 5.4a, and it has a better magnitude 

balance in the spectrum (compare Figure 5.4c and 5.4d). The deconvolution operator in 
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equations 5.36 and 5.37 is also part of the spectral-shaping of Plessix and Li (2013), but their 

formula gives only a partial compensation (see Appendix 5G [Section 5.13]). 

 

Figure 5.4. For a Ricker wavelet in a), deconvolving it with a zero-phase Ricker wavelet with the 

same dominant frequency will give a wavelet in b). The spectrum of a) is in c); the spectrum of 

b) is in d). The phase comparison between time integration of a) and b) is seen in Figures 5.3e 

and 5.3f. 

5.4 Examples 

 To be consistent with the deconvolution of the source wavelet and the residual data (in 

Section 5.3), the multi-scale approach is divided into two parts. First, we apply a low-pass 

frequency filter to the source wavelet and the residual data that are both deconvolved, and use 

the filtered data to update the background velocity. As the inversion proceeds, we increase the 

cut-off frequency of the low-pass frequency filter to gradually increase the frequency bandwidth 
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and thus improve the resolution of the image result while avoiding cycle-skipping. Finally, we 

use the source wavelet and residual data that are both deconvolved to invert for the details of the 

velocity model. During this two-part process, the width of the “effective” frequency bandwidth 

of the deconvolved wavelet is progressively increased to the maximum. To improve the 

convergence, we combine Hestenes-Stiefel with Dai–Yuan algorithms (Hager and Zhang, 2006; 

Yang et al., 2015) to give a non-linear conjugate update ic , 
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where  means an inner product. So, equation 5.37 becomes 

       
0

,i

v
c

v


        (5.42) 

In the following two subsections, we compare the inversion results obtained from the conjugate-

gradient-based FWI using a steepest-descent to search for the step length (S-FWI) (equation 5.13 
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plus HS-DY), the FWI using phase-modified RTM images (P-FWI) (equation 5.38 plus HS-DY), 

and the FWI using phase-modified and deconvolved RTM images (PD-FWI) (equation 5.37 plus 

HS-DY). The HS-DY algorithm is defined in equations 5.39-5.42 (by using equation 5.37 as an 

example). The step length   can be obtained by applying a linear steepest-descent search 

algorithm developed by Pica et al. (1990). In PD-FWI, The step-length search can be applied to 

the predicted and observed data that are both deconvolved (and filtered in the first-part of the 

multi-scale approach). During the inversions, we do not set any predetermined nonzero bounds 

of the inverted velocity within the target inversion area. 

5.4.1 Examples based on the SEG overthrust model 

 We now use 2D examples to illustrate the performance of the proposed FWI. The first 

example uses a complicated part of the SEG overthrust model. The grid intervals in both 

horizontal and vertical directions are 25 m. The source uses a seismic wavelet obtained by 

stacking Ricker wavelets from 12 Hz to 25 Hz (Figure 5.5); the resulting dominant frequency is 

about 16.7 Hz. The true velocity model is in Figure 5.6a; to remove the influence of the direct 

wave in the residual, we put a sediment layer at the top, the velocity of which is constant at 2500 

m/s and is assumed to be known. The target area starts at 500 m depth.  The initial model (Figure 

5.6b) has only a 1D velocity variation in depth. This initial model is made in two steps: First, we 

smooth the true model by 20 iterations using the average velocity within a 21x21 (grid points) 

window as the velocity at the center point of that window; then, we use the average velocity in 

the horizontal direction as the velocity for each depth.  
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Figure 5.5. The source wavelet a) and its spectrum b) used for the SEG overthrust model. 

 There are 60 sources at horizontal locations from -1400 to 4500 m. The receivers are to the 

right of each source, and the offset range (the locations of receivers relative to that of the 

corresponding source) is from 100 to 3000 m. The cut-off frequencies (COFs) for the low-pass 

frequency filter are 4, 6, 8, 12, and 16 Hz, and the spectral amplitudes are tapered over a width of 

4 Hz around these COFs. For example, for a COF at 4 Hz, the taper starts at 2 Hz ends at 6 Hz. 

We perform 20 iterations for each scale, and then do another 80 iterations using the unfiltered 

data. So the total number is 180.  

 We compare the inversion results obtained by using S-FWI, P-FWI and PD-FWI in Figure 

5.6. The P-FWI solution (Figure 5.6d) gives a more accurate velocity than S-FWI (Figure 5.6c), 

but some parts of the velocity are still underestimated; the velocity from PD-FWI (Figure 5.6e) is 

even more accurate and gives a result that is very similar to the true model (Figure 5.6a). The 

different accuracy of velocities also leads to different accuracy of the locations of reflector 

boundaries, especially in the deep part of the model (see the arrows in Figure 5.6). In addition, 

artificial layers are seen in Figure 5.6d; for example, there are underestimated velocity layers 

(artificial layers) within the high-velocity layer indicated by the red and blue arrows, which are 
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caused by the limited frequency bandwidth and the side-lobes of the spectrum of the seismic 

wavelet (refer to Figures 5.3c, 5.3e and 5.3f). These artificial layers become less apparent in 

Figure 5.6e, which uses a source wavelet and residual data that are both deconvolved.  

 Figure 5.7 shows more detailed velocity profiles at horizontal locations 1000, 2000, 3000 

and 4000 m. The P-FWI (Figure 5.7b) gives a more accurate velocity than the S-FWI (Figure 

5.7a); PD-FWI (Figure 5.7c) works even better and gives a nearly perfect inversion result. The 

differences between the three methods are most significant in the velocity profiles at 1000 m, 

because the structure is relatively complicated there (see Figure 5.6a). In the PD-FWI result 

(Figure 5.7c), there are still some small velocity fluctuations because the frequency bandwidth is 

still limited, but the magnitudes of these fluctuations are very small. The bottom of the model is 

well inverted by using PD-FWI (Figure 5.7c), although no reflection comes from below. This is 

because, in equation 5.15, if the velocity of the upper layer and the reflectivity of the reflector are 

known, the velocity below the reflector can be calculated; although the derivation from equation 

5.15 to 5.37 (or 5.42) has several assumptions, the inversion result at the bottom of the model 

can be gradually improved by iterations.  

 Figure 5.8 shows the results of S-FWI, P-FWI and PD-FWI at different iterations and 

provides more comparison details; the multi-scale method updates the velocity gradually, from 

large scale (the background) to small scale (the details). Comparison of the results at the same 

iteration number (e.g., iteration 60) also show that P-FWI (Figure 5.8b) works better than S-FWI 

(Figure 5.8a), and PD-FWI (Figure 5.8c) works even better.  
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Figure 5.6. Comparison of inversion results obtained by using three methods on a complicated 

portion of the SEG overthrust model. a) The true model. b) The initial model. c) the S-FWI 

result. d) the P-FWI result. e) the PD-FWI result. The red, black and blue arrows point to three 

reflector boundaries, respectively. The four black lines in a) denote the locations for the velocity 

profiles in Figure 5.7, which show more details for comparison. 
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Figure 5.7. Comparison of velocity profiles obtained with S-FWI (Panel a), P-FWI (Panel b), and 

PD-FWI (Panel c), for the SEG overthrust model. The blue line is the true velocity, the green line 

is the initial velocity, and the red line is the inverted velocity. 
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Figure 5.8. Velocity profiles at different iterations of S-FWI (Panel a), P-FWI (Panel b), and PD-

FWI (Panel c), for the SEG overthrust model. The horizontal location of these velocity profiles is 

1000 m (see Figure 5.6a). The blue line is the true velocity, the green line is the initial velocity, 

and the red line is the inverted velocity.  

 Figure 5.9 shows the average velocity residuals (the errors between the true and inverted 

velocities) of S-FWI, P-FWI and PD-FWI as a function of iteration number. The velocity 

residual decreases from S-FWI, to P-FWI, to PD-FWI. Comparison of (relative) total data 

residuals of the three methods is shown in Figure 5.10, in which PD-FWI has the smallest value. 
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Figure 5.9. Comparison of average velocity residual between the true and inverted velocities 

obtained with S-FWI, P-FWI, and PD-FWI, for the SEG overthrust model.  

5.4.2 Examples based on the Marmousi model 

 The second example uses a complicated part of the Marmousi model as the target area for 

inversion. The grid intervals are 25 m x 25 m. The source is a Ricker wavelet with a dominant 

frequency of 12 Hz (Figure 5.11). The true velocity model is in Figure 5.12a. The velocity of the 

water layer is 1500 m/s, and the target area for inversion starts at 500 m depth. The initial model 

(Figure 5.12b) is obtained by smoothing the true model by 20 iterations using the average 

velocity within a 21x11 (grid points) window as the velocity at the center point of that window. 

There are 90 sources at horizontal locations from -2900 to 6000 m. The receivers are to the right 

side of each source, and the offset range is from 100 to 3000 m. For the low-pass frequency filter, 

the selected COFs and taper window are the same as in the SEG overthrust model example in the 
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previous subsection. For each scale, twenty iterations are performed, followed by another 40 

iterations using the unfiltered data, so the total number of iterations is 140. 

 

 

Figure 5.10. Comparison of (relative) total data residuals between predicted and observed data 

obtained with S-FWI (Panels a and b), P-FWI (Panels c and d), and PD-FWI (Panels e and f), for 

the SEG overthrust model. The total data residual is a summation of the square of the residual 

over every time, of every receiver, of every shot. 



 

199 

 

Figure 5.11. The source wavelet a) and its spectrum b) used for the Marmousi model. 

 The true model (Figure 5.12a) includes three layers (in red) with very high velocity contrast 

to the adjacent layers, which is the main challenge for this inversion. S-FWI (Figure 5.12c) fails 

to give an accurate inversion result including the three high-velocity layers; P-FWI (Figure 5.12d) 

performs better and partially recovers the high-velocity structures; PD-FWI (Figure 5.12e) gives 

the best result, and successfully inverts the three high-velocity layers.  

 The velocity profiles in Figure 5.13 provide more details for comparison. We choose the 

three horizontal locations 1000, 2500, and 4000 m; each of these passes through one of the three 

high-velocity layers (see the vertical black lines in Figure 5.12a). Figure 5.14 shows the average 

velocity residual for the S-FWI, P-FWI, and PD-FWI results as a function of iteration number. 

The comparisons in Figures 5.13 and 5.14 further quantitatively support the conclusions obtained 

from Figure 5.12. 

5.5 Conclusions 

 This chapter illustrates the relation between RTM and FWI by noting that the core of 

gradient-based FWI is a phase transformation from the reflectivity to the velocity, and provides 

an improved iterative inversion algorithm based on the physical insight of the reflectivity-to-
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velocity inversion. Compared with the steepest-descent FWI, the new algorithm removes the 

high-pass frequency filter 2  and compensates the velocity term. Moreover, we use a source 

wavelet and residual data that are both deconvolved to obtain the reflectivity-image residual. By 

using the deconvolution, the amplitudes within the frequency band of the spectrum are well 

balanced, and thus the “effective” frequency bandwidth of the wavelet is enlarged. 

 

 
 

Figure 5.12. Comparison of inversion results obtained by using three methods on a complicated 

portion of the Marmousi model. a) The true model, b) The initial model, c) the S-FWI result, d) 

the P-FWI result, e) the PD-FWI result. The three black lines in a) denote the locations for the 

velocity profiles in Figure 5.13, which show more details for comparison.  
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Figure 5.13. Comparison of velocity profiles obtained with S-FWI (Panel a), P-FWI (Panel b), 

and PD-FWI (Panel c), for the Marmousi model. The blue line is the true velocity, the green line 

is the initial velocity, and the red line is the inverted velocity.  

 In summary, the new scheme is that, the relative velocity update is a phase-modified and 

deconvolved RTM image obtained with the residual data, and the scale factor of this image is 

adjusted by a steepest-descent search. Numerical examples show this scheme can give a 
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significant improvement to the inverted velocity, compared with the traditional conjugate-

gradient-based descent FWI.  

 

Figure 5.14. Comparison of average velocity residuals between the true and inverted velocities 

obtained with S-FWI, P-FWI, and PD-FWI, for the Marmousi model.  
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5.7 Appendix 5A “Half wavelength” condition in deriving the FWI gradient” 

 If there is a velocity perturbation v , from equation 5.1, we obtain 

    
 

   
   

2 2

s2 2 2

1
,

s s s su u u u
F t

tv v


     
  

  
x x

x
                  (5A-1) 

where su  is the resulting wavefield perturbation. If the velocity perturbation is small enough,  

     
 

 2 2 3

1 1 2
,

v
o v

v vv v


   

 
                (5A-2) 

where high-order terms  o v  can be ignored. Subtracting equation 5.1 from 5A-1 gives 

     
2 2 2

2 2 2 2 3

1 2
.s s su u u v

v t t v

     
 

  x
                (5A-3) 

For a primary reflection, equation 5.1 can be replaced by  

                 
0

, , ; , ; , ; ,
t

s s r s s ru t dt F G t R G t t   x x x x x x x x x                      (5A-4) 

where  , , ;s s ru tx x x  is the pressure field at location rx  and time t in the wave path from sx  to 

x  and then to rx (through time t); this equation also involves the cases of primary refraction and 

direct waves by setting   1.0R x . Equation 5A-4 is equivalent to a convolution form, 

         , , ; , ; , ; ,s s r s s ru t F t G t x x x x x x x                 (5A-5) 

where sF  is the source on the exploding-reflector; 

           , ; ; , ; .s s s sF t F t G t Rx x x x x x                 (5A-6) 
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 In the first-order Born approximation, we assume that the background model is correct and 

the wavefield perturbation produced by a velocity perturbation is not influenced by other 

velocity perturbations. Thus, the perturbation of su  (defined as su ) has a linear relationship 

with the perturbation of sF (defined as sF ) in equation 5A-5, which means we assume the 

velocity perturbation does not influence the convolution and the Green’s function G in equation 

5A-5. This linear assumption can be relaxed to a “half wavelength” condition for inversion of a 

single parameter (the velocity in the present context), because, as the inversion proceeds, the 

phase of su  will gradually move closer to that of su , by updating the velocity. Thus, from 

equation 5A-5, 

         , , ; , ; , ; .s s r s s ru t F t G t   x x x x x x x                           (5A-7) 

Substituting 5A-3 into 5A-7 gives 

      
 

 
2

3 2

, ;2
, , ; , , ; = , ; ,

s s

cal s r s s r r

u tv
d t u t G t

v t



  



x x
x x x x x x x x             (5A-8) 

which can be rewritten as 

    
   

 
2

3 2
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cal s r s s

r

d t u t
G t
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x x x x x
x x                        (5A-9) 

Because the observed data are independent of the estimated velocity model, the gradient of the 

objective function (equation 5.3) with respect to velocity is  
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              (5A-10) 

By using the relation,  

                ,dt f t g t h t dtf t g t h t                        (5A-11) 

equation 5A-10 becomes 
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which is equation 5.7 if we use the matrix expression d .  

5.8 Appendix 5B “Derivation from equations 5.9 and 5.10 to 5.11 and 5.12” 

 Equations 5.9 and 5.10 in the t domain correspond to 
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and  
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in the ω domain, respectively. Here rG  is the FT of rg  (from the t domain to the ω domain). 

Defining 
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         , , ,r rH i G  x x                 (5B-3) 

and substituting it into equations 5B-1 and 5B-2 gives 
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and 
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Equations 5B-4 and 5B-5 can be simplified to 
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Equation 5B-6 is equation 5.11, and equation 5B-7 (in the ω domain) is equivalent to equation 

5.12 (in the t domain).  
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5.9 Appendix 5C “Relation between 
ik  and refk ” 

 In equation 5.17, the ix  is defined as a small unit interval in the reflector normal 

direction, and thus 

.i x y zx x x x                       (5C-1) 

Because  

       
22 2 2

,i x y zv v v v                      (5C-2) 

we obtain 
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x x x x

        
                  

              (5C-3) 

which can be approximated by 

2
2 2 2 2 ,i ref x ref y ref z refk k k k      k                (5C-4) 

in the k domain. Equation 5C-4 gives 

,i refk  k                  (5C-5) 

which is the first part of equation 5.21.  
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5.10 Appendix 5D “The relationship between the true reflectivity and the angle-

dependent reflectivities” 

 The relation between the true reflectivty R  and the angle-dependent reflectivty  R   is 

defined by the Zoeppritz equations; an important linear approximation of the Zoeppritz equations 

in elastic media is the Aki-Richards equations (Aki and Richards, 1980). In acoustic media, 

considering only the PP image and ignoring the terms involving S-velocity, the Aki-Richards 

equations are simplified to a single equation 

       2

1 1
,

2cos 2

v
R

v




 

 
                  (5D-1) 

where v  and   are differences of the velocity and density between the two adjacent layers 

that constitute the reflector. Because only velocity inversion is considered in this chapter, 

equation 5D-1 is simplified to 

        2cos .
2

v
R R

v
 


                  (5D-2) 

In equation 5D-2, for each reflection angle  , there is a reflection coefficient  R   and thus 

there is a solution for R . We approximate R  by using a least-squares estimation from the 

overdetermined system (equation 5D-2), which is 

        21
cos ,R R d

N
                    (5D-3) 

where N is the number of equations in the system (5D-2). The 1N   can be included in a scale 

factor  . Although the Aki-Richards approximation has limitations as it requires small velocity 
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contrasts and small reflection angles (say, up to 35° or so), the FWI is an iterative process and 

the velocity is inverted gradually as iterations proceed, and thus we can use this approximation in 

the derivation.  

5.11 Appendix 5E “Using the reflectivity-image residual as the objective function” 

 The objective function using the reflectivity-image residual resR  is 

         ,
TT

res res cal obs cal obsR R R R R R   l      (5E-1) 

where calR  and obsR  are the reflectivity images obtained by using predicted and observed data to 

calculate the rU  in equation 5.23, respectively. The velocity update is 
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where H is the Hessian and J is the Jacobian derivative. Because obsR  is independent of the 

migration velocity, we obtain 
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Because of equations 5.20 and 5.29, if we use the “half-wavelength condition” from equation 

5.30 to 5.31, we obtain 
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and thus 
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Substituting equation 5E-5 into 5E-2 gives 
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where   is the step length (the A in equation 5E-5 is included in  ). The RVI-based FWI 

(equation 5.33) can be explained as using geophysical insight to give a preconditioned gradient 

(involving an approximation and simplification of 1H  ) for inversion.  

5.12 Appendix 5F “A transformation of Qin et al.’s (2015) formula” 

 Considering only the real-valued velocity in acoustic media, the inversion formula given by 

Qin et al. (2015) is 
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which can be reformulated as  
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in the k domain. Here sk  and rk  are the (local) wavenumbers of the source and residual 

wavefields, respectively; the meanings of F  and 1F   are defined in equation 5.26. When the 

source wavelet is well estimated,  
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       ,s rk k = k      (5F-3) 

and thus equation 5F-2 can be written as 
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where   is the open angle between sk  and rk . If we ignore the 2cos   and include the ‘2’ in the 

step length  ; equation 5F-4 can be written as 
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Because of equation 5.27, equation 5F-5 becomes 
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Because 
1

i
 can be replaced by using a time integration of the residual data (equation 5.10), 

equation 5F-6 becomes 
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which is equation 5.34. 

 A comparison of the results using equations 5.34 and 5.37 is shown in Figure 5.15. In 

Section 5.4 “Examples”, the PD-FWI corresponds to equation 5.37.  In Figure 5.15, because both 

the two FWI algorithms use phase-modified and deconvolved RTM images, we define the one 
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that uses the deconvolution imaging condition (equation 5.34) as PD-FWI-DIC and define the 

one that uses the cross-correlation imaging condition (equation 5.37) as PD-FWI-CIC. Both of 

them use the HS-DY algorithm defined by equations 5.39-5.42 (which use equation 5.37 as an 

example for the definition). The PD-FWI-CIC here is the PD-FWI in Section 5.4 “Examples”, 

and Figure 5.15b is Figure 5.7c.  

 Figure 5.15b is slightly better than Figure 5.15a because equation 5.37 is more stable than 

equation 5.34 in implementation. Equation 5.34 requires a damping threshold value as the 

iteration proceeds, because of the instability of the denominator (note, the implementation of 

equation 5.34 uses its equivalent form in the first part of equation 5.35); equation 5.37 has a 

fixed threshold value in the wavelet deconvolution because the zero-phase source wavelet is 

stable. 

5.13 Appendix 5G “A comparison with the spectral shaping method” 

 The spectral shaping method is proposed by Lazaratos et al. (2011) and Plessix and Li 

(2013). Plessix and Li (2013) apply a spectral filter 

       
 

2

,df
S







                  (5G-1) 

to the observed data, where   is a coefficient and  S   is defined in equation 5.35. Equation 

5G-1 includes a deconvolution operator  1S   and a spectral shaping operator 2   to 

compensate for the propagation effect. The goal of this method is to make the spectrum of the 

gradient more similar to that of a desired update. Substituting equation 5G-1 into the FWI 

gradient (equation 5.13 in the   domain) gives  
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Figure 5.15.  Inverted velocity profiles obtained by using a) PD-FWI-DIC and b) PD-FWI-CIC 

on a complicated portion of the SEG overthrust model (Figure 5.6a). The blue line is the true 

velocity, the green line is the initial velocity, and the red line is the inverted velocity. 

Compared to our inversion formula (equation 5.37),  

1. Equation 5G-2 includes only one deconvolution term for the residual data; while equation 

5.37 requires deconvolutions for both the source wavelet and residual data, to obtain a 

deconvolved residual image. 
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2. Equation 5G-2 does not compensate the velocity term 3

0v  in the FWI gradient; while 

equation 5.37 compensates it by 4

0v , which gives a velocity term 0v .  

3. In equation 5G-2, the   can be either adaptive or fixed during the inversion; Plessix and Li 

(2013) suggest using 2   for 2D acquisition. 

 The spectral shaping method is not a preconditioned inverse Hessian; it still requires 

solving the inverse Hessian matrix to compensate the velocity and frequency terms (Plessix and 

Li, 2013). If the inverse Hessian can be well estimated, we may not need a spectral shaping. 
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CHAPTER 6 

FROM CLASSICAL REFLECTIVITY-TO-IMPEDANCE INVERSION TO FULL 

WAVEFORM IMPEDANCE INVERSION USING PHASE-MODIFIED, 

DECONVOLVED REVERSET-TIME-MIGRATION IMAGES  

AND ROCK-PHYSICS INFORMATION* 

6.1 Summary 

Full waveform inversion (FWI) is based on a strongly approximate solution of a 

mathematical problem. To connect it with physical concepts, previously we used the classical 

reflectivity-to-velocity inversion to derive an FWI formula, which suggests that the relative 

velocity update is a phase-modified and deconvolved reverse-time-migration (RTM) image using 

the residual data. In this chapter, we extend this method from P-velocity inversion into P-

impedance inversion. During the extension, a difficult point is that the P-impedance is a product 

of P-velocity and density; updates of the two parameters have a trade-off during the inversion 

process. In our system, solving this trade-off is similar to an amplitude-versus-angle (AVA) 

inversion. However, the accurate AVA information is hard to obtain in practice; the AVA 

inversion also requires the angle-domain common-image gathers (ADCIGs) to be (nearly) flat, 

which poses a much stricter constraint on the accuracy of the background P-velocity than the 

half-wavelength condition for single-parameter (P-velocity) FWI. To proceed, we combine our 

formula with rock physics constraints by which the relation between the P-velocity and density 

                                                 

* Tang C. and G. A. McMechan, 2017, From classical reflectivity-to-impedance inversion to full waveform 
impedance inversion using phase-modified, deconvolved reverse-time-migration image and rock-physics 
information: 87th International Meeting, SEG, Houston, 1578-1582. Copyrighted by Society of Exploration 
Geophysicists. Permalink: https://doi.org/10.1190/segam2017-17791370.1 
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can be approximated. Thus, we can invert only the P-impedance and use it to estimate the P-

velocity and density in each iteration. So, we convert the multi-parameter inversion (P-velocity 

and density) into single-parameter inversion (P-impedance). Extension of this method into elastic 

media is also given. In the real world, the rock-physics relationship is complicated, probabilistic 

and condition-dependent; we suggest addressing this via Machine Learning, by building and 

progressively modifying a database of statistical multi-parameter (P and S velocities, density, 

attenuation, etc.) relations that can be navigated with a search engine (e.g., like Google) to 

dynamically determine (e.g., non-linear interpolation) the solution with the highest probability 

and its nonuniqueness. This implies a major, multi-year effort. A stable amplitude-preserved 

RTM formula is also given as an approximation to the deconvolution imaging condition. 

6.2 Introduction 

Classical full waveform inversion (FWI) (e.g., Tarantola, 1984) defines a mathematical 

problem to minimize an L2 norm of the residual data. The mathematical complexity of the 

problem forces ignorance of several terms during the derivation. To relate the FWI process with 

physical concepts, Tang and McMechan (2017b) [see Chapter 5] use a classical reflectivity-to-

velocity inversion to derive an improved FWI formula. In this Chapter, we extend this method 

into P-impedance inversion in acoustic media. Most of the references have been given in Chapter 

5. We will mention some references (e.g., Zhang et al., 2014; Qin and Lambaré, 2016; Duan and 

Sava, 2016) as we explain the theory.  

During the extension, the inversion involves two parameters (P-velocity and density); 

separation of the trade-off between them requires high-accuracy amplitude versus (reflection) 
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angle (AVA) information and flat angle-domain common-image gathers (ADCIGs) with 

consistent wavenumber along the angle axis. Both of them are hard to obtain for a practical FWI; 

particularly the latter requirement means the half-wavelength condition of single-parameter FWI 

does not work for multi-parameter inversion. To proceed, we propose to use rock physics 

information to obtain the density from the P-velocity. Then the multi-parameter inversion is 

converted into a single-parameter inversion. We also give the extension of this method to elastic 

media. 

6.3 Full waveform impedance inversion 

In acoustic media, the relation between the true reflectivity (that is independent of the 

reflection angle) and the impedance is defined as below (used by, e.g., Peterson et al. [1955]), 

2 1 2 2 1 1

1 2 1 1 2 2

,
2 a

I I v vI
R

I I I v v

 

 

 
  

 
        (6.1) 

where R is the PP reflectivity (at normal incidence); 1I  and 2I  are P-impedances of the upper and 

lower layers; I is the impedance contrast and aI  is the average impedance; v is the P-velocity 

and  is the density. Using the same definition of Fourier transforms (FTs) as Tang and 

McMechan (2017a) (Chapter 5), equation 6.1 can be reformed approximately as 

1 1 1
,

2

i
i

a i a i a

x I dI
R A A ik I

I x I dx I

 
   


       (6.2) 

where the ix  and ik  are a small unit interval and the wavenumber in the reflector-normal 

direction, respectively; A is a scale value. We can rewrite equation 6.2 as 
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1
,

a i

I R

I A ik
            (6.3) 

where R can be approximately obtained from the amplitude-preserved (AP) reverse time 

migration (RTM) (Tang and McMechan, 2017b) 
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where   is a scale factor,   means taking the real part,   is the reflection angle, R  is the 

angle-dependent reflectivity, and sU and rU  are the FTs of source wavefield su  and receiver 

wavefield ru which are obtained by using the observed data directly as the boundary condition, 

   

   

2

2

2

s

, ,1
0,

, , , 0 , , , ,

r r

r obs

u t u t
v

t

u t x y z d t x y




  
   

    


 

x x

x x

x

       (6.5) 

where obsd  is the observed data, sx  is the source location, and t is the time. Inserting equation 6.4 

into equation 6.3 gives 
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where F is a forward FT from the x to the k domain; 1A  is included in  . Based on a half-

wavelength assumption (Tang and McMechan, 2017b), we can obtain 
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where I  is the impedance update and rH  is an FT of rh that is obtained by using the residual 

data (calculated data minus observed data) directly as the boundary condition of equation 6.5. 

Equation 6.7 can be written as 
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where rG  is the FT of rg  that is obtained using 
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6.4 From impedance to velocity and density 

 Equation 6.8 is a full waveform impedance inversion, but equation 6.9 requires P-velocity 

and density for wavefield extrapolation. Based on the Aki and Richards (1980) equation, we can 

separate the P-impedance update in equation 6.8 into 
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which has similarity with the formulas of Zhang et al. (2014) and Qin and Lambaré (2016). 

Solving av v and a   requires a least-squares solution to satisfy the AVA. However, 

implementation of equation 6.10 is very difficult at the current stage, because 

(I). Equation 6.10 requires high accuracy of the AVA information. However, the deconvolution 

imaging condition is often not stable in practice; this imaging condition assumes a single 
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reflection at each grid point for one sources, but the image in practice contains multipaths 

and is also often stacked over several sources. In a complicated structure, each image 

point often does not have a balanced illumination at each angle.  

(II). Stable least-squares estimation from equation 6.10 requires the ADCIGs to be flat. This 

means we may need the velocity above the reflection image to be correct, which results in 

a correct image location. Thus, the half-wavelength condition does not work for the 

multi-parameter inversion in equation 6.10, because, if the ADCIGs are not flat, the least-

squares estimation is difficult to be stable.  

(III). The Aki-Richards equation is a linear approximation of Zoeppritz equations and works only 

for small angles (say, up to 35°). 

So it is difficult to implement equation 6.10 at the current stage, but the real world does involve 

more parameters than Vp. To proceed, we propose to use rock physics information to convert the 

P-impedance (in equation 6.8) into P-velocity and density. For example, Gardner et al. (1974) 

propose that the P-velocity and density have the following relation, 

      0.25310 ,pV          (6.11) 

where the unit of Vp is m/s and the unit of ρ is kg/m3. The Vp here is the v in equations 6.1~6.10. 

Based on equation 6.11, we have 

       
0.8

310 .p pV I        (6.12) 

In the real world, the relation between Vp and ρ is certainly much more complicated than 

Gardner’s relation. The rock-physics relationship between Vp and ρ is strongly non-linear and 
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probabilistic. It also depends on different geological conditions such as lithology, pressure, 

porosity, and so on. With the development of the computer science, one way to address this is via 

Machine learning, by building and progressively modifying a large database of statistical multi-

parameter (Vp, Vs, ρ, attenuation, etc.) relations that can be navigated with a fast search engine 

(e.g., like Google) to dynamically determine (e.g., non-linear interpolation) the solution with the 

highest probability and its nonuniqueness, which also has the potential for defining uncertainty 

(or risk) in using the FWI result for subsequent interpretation. The significance of this approach 

is using rock-physics relationships to reduce the multi parameters (e.g., Vp, Vs, ρ) to a single one 

(e.g. Ip) for inversion, in which the half-wavelength criterion can be applied. Establishing this 

database and search engine is beyond the scope of the present study, as it implies a major, multi-

year effort. In the example section below, we assume that the constraint defined by equation 6.11 

is accurate, and show the results of combining this with an approximate implementation of 

equation 6.8. A different approach of using a physical constraint is to include it in the objective 

function of P- and S-velocity tomography, as shown by Duan and Sava (2016). 

6.5 A practical implementation for AP-RTM 

 The FWI implementation in equation 6.8 requires a deconvolution imaging condition and 

calculation of reflection angles. As explained in section 6.4, the angle-dependent deconvolution 

imaging condition involves several assumptions which are hard to satisfy in FWI. To simplify 

the implementation, we ignore the angle dependence and involve the 2cos   in the global scale 

 , and thus equation 6.4 is simplified to 
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The sU  or 2

sU in the denominator still cause an instability, especially when the velocity is 

incorrect, an image point with a large rU  may not have a large sU  and then the instability 

occurs. To stabilize it, we propose a practical scheme below. The first step is to rewrite equation 

6.13 as (Tang and McMechan, 2017b) 
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where the S is the source wavelet and  , ,sG x x  is the Green’s function from sx  to x. Equation 

6.14 involves two parts; one is the convolution imaging condition with source wavelet 

deconvolution and the other is the spreading loss compensation (Tang and McMechan, 2017b). 

Assuming the source wavelet is known, the instability issue focuses mainly on the second part 

(the spreading loss compensation). To stabilize equation 6.14, we use an approximate formula, 
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where the denominator is an approximation of the spreading loss  
2

, ,sG   x x . Equation 6.15 

is equivalent to 
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which is similar to the source-normalized cross-correlation imaging condition (e.g., Kaelin and 

Guitton, 2006) but it uses the deconvolved source and receiver wavefields ( ˆ
su and ˆ

ru ; the  ̂  

means ‘deconvolved’). In complicated media, it is possible that an image point is not illuminated 

by a particular source. Therefore, to increase the stability of equation 6.16, we use 
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for each source, which 2  is a small positive value and A can be, e.g., an average or a maximum 

value of  
2

ˆ ,su t dt x  in the global space. The cross-correlation in the numerator involves 

backscattering artifacts, which can be removed by using a wave decomposition plus angle-filter 

imaging condition (Tang and McMechan, 2017c),   
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where i and j are the reference numbers of the decomposed source and receiver wavefields, 

respectively;  F   is an (reflection or open) angle filter. 

 However, in FWI, removing the backscattering and tomographic signal may not be 

necessary; see the discussion of Section 5.3.2. Thus, based on the process from equation 6.4 to 

equation 6.17, equation 6.8 becomes 
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The aI  is difficult to obtain; it can be approximated by using 0I  or the global average of the 0I . 

The latter is used in our implementation, in which aI  can be included in the scale factor  . If we 

ignore the spreading loss compensation, equation 6.19 becomes 

        0
ˆ ˆ, , ,s r
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I
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  x x                   (6.20) 

which enhances the magnitude for short wave paths from the source. This generally gives 

priority to the shallow parts and the near-offset data. The proposed scheme can also be combined 

with some algorithms, such as adaptive matching (e.g., Zhu and Fomel, 2016) and/or layer 

stripping (e.g., Masoni et al. 2016), to relax the half-wavelength condition. The layer stripping 

can be applied to either the residual data (in time) or the image (in depth), which often requires a 

tapering function at cut-off boundaries to avoid artifacts. 

6.6 Examples 

 Here we provide a 2D example using a complicated portion of the SEG overthrust model. 

The true pI  model is obtained using the density in equation 6.11; see Figure 6.1a. To remove the 

effect of the direct wave, we add a constant layer (2500 m/s) at the top and so the target region is 

below 500 m depth. The initial Ip model is in Figure 6.1b. There are 200 sources from 40 to 4000 

m; each source corresponds to 401 receivers with a migration aperture from -2000 to 2000 m. 

Some algorithms (nonlinear conjugate, step-length searching and multi-scale scheme) are applied 

to improve equations 6.19 and 6.20; refer to the paper of Tang and McMechan (2017a) for 

details. Thus, when we mention using equation 6.19 or 6.20 below (including the figure 

captions), we actually mean using the corresponding equation as the core of the FWI 
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implementation. We use 20 iterations for each of five tapering windows with central frequencies 

(4, 6, 8, 12 and 16 Hz) with a width of 4Hz, and finally run another 80 iterations using the 

unfiltered data. So, the total iteration number is 180.  To maintain stability of the finite-

difference extrapolation, we set a maximum value for the Ip, which corresponds to the P-velocity 

at 7000 m/s. Moreover, the pI  must be positive. Figures 6.1c and 6.1d contains the results using 

equations 6.19 and 6.20; both have good quality and they are very similar. Actually Figure 6.1c 

is slightly better than Figure 6.1d, because Figure 6.2 shows that Figure 6.1c has a slightly lower 

average relative pI  residual than Figure 6.1d. Figure 6.3 shows an pI  profile in Figure 6.1c, 

where the inverted pI  almost overlaps with the true pI . In summary, Figures 6.1~6.3 show that 

the proposed FWI flow inverts an accurate pI  model. 

6.7 Extension of the proposed flow into elastic media 

 The proposed flow can be extended into elastic media. As there are both P- and S-

impedances, equation 6.8 becomes 

    

 

 

 

 

, 2

,0

, ,

, 2

,0

, ,

cos ,

cos ,

p r P

P p PP PP

p a s P

r Ss
S s SS SS

s a s S

I G ,
v d d

I U ,

G ,I
v d d

I U ,

 
   




   



  
   

   


 
  

  

 

 

x

x

x

x

     (6.21) 

 



 

226 

(a)        (b) 

   

(c)        (d) 

   

Figure 6.1. (a) and (b) are the true and initial P-impedance models. (c) and (d) are inverted 

results using equations 6.19 and 6.20, respectively. The unit of P-impedance used in Figures 6.1 

and 6.3 is 2 1kg cm s   . 

which use PP and SS images. Here the upper-case ‘P’ and ‘S’ in the subscripts denote P and S 

waves, respectively. Obtaining Vp, Vs and ρ from Ip and Is requires rock-physics knowledge. In 

practice, because the P-wave signal is often more reliable than the S-wave signal, a choice is 

inverting only the P-impedance and using the rock-physics information to obtain Vp, Vs and ρ for 

the elastic wave extrapolation, from which we can obtain the decomposed P wave for the phase-

modified and deconvolved PP image (using residual data). It is easy to use the P stress tensors to 

obtain the PP image. If the vector P and S particle-velocities are used, please refer to Tang and 

McMechan (2018) for obtaining the scalar PP and SS images. Using the rock-physics 
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relationship to reduce the number of parameters in inversion can also be used in classical FWI 

frame for inverting the velocity. 

6.8 Conclusion 

 We derive a new formula for full waveform impedance inversion based on the classical 

reflectivity-to-impedance inversion, which suggests that the impedance update is a phase-

modified and deconvolved RTM image obtained using the residual data which is then multiplied 

by the background velocity and the aI . To obtain the P-velocity and density for wave 

extrapolation, we propose to use the rock-physics relationship to obtain them from P-impedance. 

Because of the complexity of this relationship in practice, we suggest using Machine Learning 

by establishing a large database and using a fast, dynamic search engine, to support this scheme, 

in which the number of parameters that needs to be inverted is decreased. Furthermore, we 

suggest a scheme to stabilize the implementation of the deconvolution imaging condition. The 

numerical example shows that our method works well for the P-impedance inversion in acoustic 

media. Extension of the method into elastic media is also given. 
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Figure 6.2. Average P-impedance relative residual (shown in percentage) versus iteration 

number. This relative residual is obtained by averaging , , ,p result p true p trueI I I  in the global space. 

The red and blue lines corresponding to Figure 6.1c (using equation 6.19) and Figure 6.1d (using 

equation 6.20), respectively.  

 

Figure 6.3. P-impedance profile at horizontal locations 2000 m. The blue, green and red lines 

denote the true, initial and inverted P-impedance (Figure 6.1c).  
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CHAPTER 7 

CONCLUDING REMARKS 

7.1 Conclusions 

 We give three main contributions to the calculation of angle-domain common-image 

gathers (ADCIGs) from reverse time migration (RTM) in acoustic media. First, we discover a 

relationship between the slowness vectors in the t-x domain and the ω-k domain, which can be 

connected by the Fourier transform. This discovery explains why the PV in the t-x domain can 

give only a single direction per grid point per time step and why the SV in the ω-k domain can 

provide multiple directions. Based on this, we propose the multidirectional Poynting vector, 

which consists of two steps. First, we decompose the wavefield into several vector bins in the ω-

k domain. This spatial FT is for the full space; it cannot give the accurate local propagation 

directions in a heterogeneous model. Thus, in the second step, we use the PV to calculate the 

propagation directions of each decomposed wavefield in the t-x domain. We also prove that the 

decomposition results of the positive- and negative-frequency wavefields are conjugated. 

Because we need only the real part of the decomposition result, we only need to apply the 

approximate WD to the analytic (positive-frequency) wavefield. When the memory is not 

enough to save the full wavefields in the t-x domain, we can also use the complex-valued 

extrapolation of the analytic source wavelet and analytic recorded data to obtain the analytic 

source and receiver wavefields. An amplitude-preserved tapering scheme in the angle domain 

has also been given to reduce the Fourier truncation artifacts. A wavefield decomposition plus 

angle-filter imaging condition is proposed to reduce the backscattering artifacts.  
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 The second contribution of calculating ADCIGs from acoustic RTM is to give a 

dynamically-correct MPV. The dynamically-correct PV is a product of the reciprocal of the 

density, the pressure field (PF), and a factor that is obtained by applying both a time integration 

and a space derivative to the PF. We then combine the dynamically-correct PV with the 

multidirectional scheme to give a dynamically-correct MPV. A scheme to improve the efficiency 

of this dynamically-correct MPV is also given; compared to the kinematically-correct MPV, this 

scheme improves the result without introducing much more computational complexity.  

 The third contribution is to develop an improved data flow, which separates the calculation 

of ADCIGs into two parts: one is during the migration and the other one is after the migration. 

During the migration, we use the time-shift MPV (or the dynamically-correct MPV) to calculate 

the source-propagation-angle-domain CIGs (SACIGs). After migration, we suggest using an 

anti-truncation-artifacts Fourier transform to transform SACIGs into ADCIGs in the k domain. 

During this process, the normal of each partial reflector image from SACIGs is used.  

 We also propose an improved data flow to address the three issues of RTM: the P/S wave 

mode separation, the imaging conditions, and the calculation of ADCIGs. First, we give an 

improved decoupling system of the P/S wave mode separation, which considers the energy 

conversion at the reflectors and thus relaxes the assumption of a (locally) constant shear modulus. 

Second, we propose improved imaging conditions based on multidirectional vectors. These 

imaging conditions can give the correct polarity for the PP and SS images with open angles 

beyond 90° and can also correct the polarity change at normal incidence of the PS and SP images 

without knowledge of the reflector normal. In numerical tests, we use this flow to produce PP 
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and PS images, and they have high quality. For the ADCIG calculation, we propose two schemes 

to calculate the multidirectional propagation vectors. The first one is based on a natural extension 

of the MPV from acoustic media to elastic media. To decrease the cost, we suggest decomposing 

only the P/S particle velocities and then inserting the decomposed P/S particle velocities into the 

decoupling system to obtain the corresponding decomposed P/S stress tensor. The second 

scheme directly uses the approximate WD to transform the particle velocities into 

multidirectional propagation vectors.  

 We also make progress in full waveform inversion (FWI). We propose a new FWI scheme 

that provides a self-contained and physically-intuitive derivation which establishes a natural 

connection between the amplitude-preserved RTM, the Zoeppritz equations (the AVA inversion) 

and the reflectivity-to-impedance inversion, and combines them into a single framework to 

produce a preconditioned inversion formula. This derivation suggests that the relative impedance 

update is a phase-modified and deconvolved RTM image using the residual data. To obtain the 

P-velocity and density for wave extrapolation, we propose to use the rock-physics relationship to 

separate the P-impedance into them. We also suggest using machine learning to address the 

complexity of this relationship in the real world. When we consider the velocity only, the 

impedance inversion formula becomes the velocity inversion formula, which provides high-

quality inversion results in the examples. The impedance inversion method also has the potential 

to be extended into elastic media.  
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7.2 Future work 

 The future work may involve (but is not limited to) improving the current algorithms in this 

dissertation (including extending them for use with more complicated media), developing new 

algorithms for the RTM and FWI in the anisotropic and viscous media, using machine learning 

to improve the seismic imaging and inversion, and developing algorithms to calculate the true-

amplitude, or relative-amplitude-preserved, reflectivity image. 
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