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Transition metal dichalcogenides (TMDs) are regarded as promising materials for emerging
applications, including electronic devices, photonic devices, biosensors, and energy storage, etc.
Owing to their novel structures and extraordinary properties, they have provided the researchers
with an excellent platform to explore low-dimensional physics. However, some challenges need
to be resolved before their practical application. The phases and defects in TMDs can significantly
affect their properties. Therefore, understanding the phase transition and defects in TMDs would
be of great importance to advance their further application. This dissertation focuses on the
identification and characterization of a novel phase transition from two dimensional MoTe, phase
to one dimensional MosTes nanowire phase during the vacuum annealing. Furthermore, the
thermal stability of MoTe, is extensively investigated. In particular, the inversion domain
boundaries formed during the vacuum annealing are identified to be a defective interface in MoTex.
The role of Te vacancy to the evolution of inversion domain boundaries is extensively studied.

Also, a possible strategy to improve its thermal stability is demonstrated.
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CHAPTER 1

INTRODUCTION

11 Transition Metal Dichalcogenides: An Overview

Since the discovery of graphene, the research enthusiasm for two-dimensional (2D) materials has
remarkably increased.! Among all 2D materials, transition metal dichalcogenides (TMDs) have
attracted considerable attention due to their unique physical and electrical properties to fulfill the
demands of future applications, such as biosensors, energy storage, nanoelectronics, etc.2® TMDs
are a large family of layered compounds with a formula of MX2 (M = Mo or W; X=S, Se, or Te)
and polymorphs, including the semiconducting hexagonal (2H), the metallic octahedral (1T), and
the semi-metallic distorted octahedral (1T°) phases (Figure 1.1).* In a monolayer TMD, the M-
atom plane is sandwiched between two X-atom planes. The weak interlayer interactions allow the
isolation of a monolayer TMD flake from its bulk crystal using the mechanical exfoliation
method.! A wealth of compositions and structures of TMDs makes them an excellent platform to
explore the new science and applications.?°® Among TMDs, molybdenum ditelluride (2H-MoTe,)
is a semiconducting compound with an indirect bandgap (1.1 eV), whereas a direct bandgap (1.0
eV) is present in the monolayer MoTe.. The high carrier mobility and on/off current ratio of 10°
of MoTe, makes it a promising electronic and photovoltaic candidate.® However, many issues need
to be addressed before the practical application, for example, the synthesis of high quality and
large area flakes, the precise control of flake thickness, the reduction of defects or impurities, the
search for a low contact resistance material, etc.” In addition, MoTe, possesses facile phase
transition behavior due to the small formation energy difference between Mo and Te. Thus, the

thermal stability needs to be investigated prior to its practical application.®



Figure 1.1. Atomic structures of monolayer transition metal dichalcogenides MX>. M stands for
(Mo, W) and X stands for (S, Se, Te). (A) 1H phase, (B) 1T phase, (C) 1T’ phase. Adapted with
permission from ref (4) Copyright (2014) American Association for the Advancement of Science.

A controlled phase transition of TMDs is very critical for the device performances. For
example, the doping via ion implantation, a traditional method to form a low resistance contact for
a field-effect transistor, is no longer practical for the atomically thin 2D materials. However, to
overcome the high Schottky barrier, a new strategy based on phase engineering to form a lateral-
heterojunction in the TMD flake has been extensively explored in the recent years. Figure 1.2
shows some applications that utilize phase engineering in TMDs. For example, Rajesh Kappera et
al. demonstrated that a low contact resistance is observed by fabricating a 2H-1T’ lateral
heterojunction in monolayer MoS, by using the ion intercalation method.® Suyeon Cho et al.
showed that a 2H-MoTe;, to 1T°-MoTe; can be achieved using a high energy laser treatment.® Ying
Wang et al. unveiled the reversible 2H-1T’ phase transition in monolayer MoTe> using the

electrical doping method. ® Feng Zhang et al. demonstrated a vertical MoTez resistive memory that

has high on/off ratio and can realize fast state switching.°



Figure 1.2. Phase Transition Methods for TMDs (A) Intercalation induced 2H-1T’ phase transition
in MoS,. Adapted with permission from ref (8) Copyright (2014) Nature Publishing Group. (B)
Laser treatment induced 2H-1T’ phase transition in MoTe,. Adapted with permission from ref (6)
Copyright (2015) American Association for the Advancement of Science. (C) Electrostatic doping
induced 2H-1T’ phase transition in MoTe>. Adapted with permission from ref (9) Copyright (2017)
American Chemical Society. (D) Electrical-field induced structural transition in MoxW1.xTe>.
Adapted with permission from ref (10) Copyright (2017) Nature Publishing Group.

1.2 Motivation

An accurate material characterization is of great importance to study the mechanism of phase
transition and the defects in 2D materials. To date, Transition Electron Microscopy (TEM) has
been widely used for the study of 2D materials. The ultra-high spatial and energy resolution makes
TEM an ideal tool to explore the structure and the properties of 2D materials. In addition, it is also
exciting to investigate the interaction between the high energy beam and 2D materials. The new

phenomenon observed only in 2D materials will be of great interest to low dimensional physics.*



® 11 Figure 1.3 shows the rapid increase in publications of 2D materials and the TEM related

studies.'? The structure and composition of 2D have been extensively explored at the atomic scale.
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Figure 1.3. The number of publications of 2D materials in recent year. Figure adapted with
permission from ref (12) Copyright (2017) John Wiley and Sons.

However, the information on structure and composition obtained using the conventional
TEM is limited. With the development of the TEM instrument, especially the advance in aberration
correction, and the development of sample holders for in situ TEM using the MEMS-based
techniques, in situ characterization of 2D materials has been performed in recent years? (Figure
1.3). In situ TEM characterization can provide real-time observation showing the interactions

between materials and the applied external fields or environments. A variety of in situ TEM holders



have been developed in order to measure the thermal, electrical, optical, mechanical, liquid/gas
environmental properties. Therefore, the relationship between the structure and property can be
extensively explored. For example, the