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Renewable energy forecasts can help reduce the amount of operating reserves needed for the sys-

tem, reducing costs of balancing the system, and improving the reliability of the system. Con-

ventional deterministic forecasts might not be sufficient to characterize the inherent uncertainty

of renewable energy. Probabilistic forecasts that provide quantitative uncertainty information as-

sociated with renewable energy are therefore expected to better assist power system operations.

Meanwhile, studies have shown that the integration of geographically dispersed and correlated

wind/solar farms could reduce extreme power output, which is referred to as smoothing effect.

In addition, power produced from one wind/solar farm at different times is typically temporally

correlated. The impacts of spatial-temporal correlation between wind/solar farms on renewable

energy forecasting are not well studied in the literature.

This dissertation aims at mitigating power system uncertainty by improving probabilistic renew-

able energy forecasting accuracy utilizing spatial-temporal correlation modeling. In this disserta-

tion, a variety of methods, such as predictive distribution optimization, ensemble learning, deep

learning, and scenario generation-based methods, are developed to assist spatial-temporal correla-

tion modeling, and improve probabilistic forecasting accuracy. Computational experiments indi-

cate that the presented study can provide scholars and engineers with critical insights to the usage
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of spatial-temporal modeling in probabilistic renewable energy forecasting and anomaly detection,

and also serve as a valuable reference for practical industry forecasting systems.
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CHAPTER 1

INTRODUCTION

The penetration of renewable energy, especially wind and solar energy, has been rising dramatically

over the past years. With 60 GW annual installations and 591 GW total installations worldwide,

wind power contributed nearly a half of renewable power capacity (not including hydro power) by

2018. Figure 1.1 shows the wind power installation capacity around the world. Several countries,

such as China and the US, set ambitious policy targets for the wind power development. The global

weighted average cost of electricity falls to 0.049 USD/kWh for onshore wind, which makes it a

competitive energy source in the electricity markets (IRENA, 2019a). According to REN21, at

least 12 countries in the world met at least 10% of their annual electricity consumption with wind

energy in 2018 (IRENA, 2019b). For solar energy, at the end of 2018, the total installed capacity

of solar power in the US amounts to 32,239 MW (including both solar PV and solar thermal) and it

supplies over 2% of total electricity consumption in the US. In addition, U.S. EIA (2018) estimates

that there is 19,547 MW of small scale solar PV installed. As the two fastest growing renewable

energy sources, the increasing penetration of wind and solar power has profound impact on the

grid reliability and security.

The uncertain and variable nature of renewable energy makes it challenging to be integrated

into power systems, particularly at ever-increasing level of renewable energy penetration. Variabil-

ity in generation sources can require additional actions to balance the system. Greater flexibility

in the system will be needed to accommodate supply-side variability and the relationship between

generation levels and loads. To balance the electricity supply and demand, accurate renewable en-

ergy forecasting has been studied in unit commitment and economic dispatch decision-making to

provide dynamic operating reserves, which could provide benefits to system operators and electric-

ity traders. For example, most of the independent system operators (ISO) in the U.S. have adopted

wind and solar power forecasting to assist their system operations (Cibulka et al., 2012). ISO New

England utilizes day-ahead forecasts for the dispatch scheduling of generating capacity, reliability

1
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Figure 1.1: Wind power installation capacity by country (by 2018).

analysis, and maintenance planning for the generators (Henderson et al., 2011). A number of fore-

casting projects have been or is being conducted to promote renewable energy forecasting, such

as wind forecast improvement project (WFIP) (Wilczak et al., 2015), WindView (Gamble et al.,

2018), Watt-Sun (Hamann, 2017), and SUMMER-GO (Jascourt et al., 2019).

Renewable energy forecasts can help reduce the amount of operating reserves needed for the

system, reducing costs of balancing the system. However, conventional deterministic forecasts

might not be sufficient to characterize the inherent uncertainty of renewable energy. Probabilistic

forecasts that provide quantitative uncertainty information associated with renewable energy are

therefore expected to better assist power system operations. Studies have shown that the geograph-

ically dispersed renewable energy farms are spatially correlated, and the integration of geograph-

ically dispersed renewable energy farms could reduce extreme power output, which is referred to

as smoothing effect (Tastu et al., 2011). In addition, power produced from one renewable energy

farm at different times is typically temporally correlated (Malvaldi et al., 2017). It would be in-

2



teresting to explore the impacts of spatial-temporal correlation on the performance of renewable

energy forecasting.

Forecasting target variables in renewable energy systems include wind speed, wind genera-

tion, solar generation, geothermal heat generation, and tide generation. In this study, we focus on

improving probabilistic wind and solar forecasting, by exploring the spatial-temporal correlation

modeling among renewable energy plants, and utilizing probabilistic forecasting for anomaly de-

tection in renewable energy farms. The hypothesis is that the spatial-temporal modeling among

renewable energy farms could improve probabilistic renewable energy forecasting accuracy, and

also help detect anomaly events in renewable forecasts

The goal of this research is to mitigate power system uncertainty by improving probabilistic

renewable energy forecasting accuracy utilizing spatial-temporal correlation modeling, and to re-

duce potential malicious cyber attacks in power system through probabilistic anomaly detection.

This dissertation is composed of three major research thrusts:

1. Thrust I: Improving probabilistic renewable energy forecasting via predictive distribution

optimization and ensemble learning

(a) Chapter 3: Improving probabilistic forecasting via predictive distribution optimization

(b) Chapter 4: Improving probabilistic forecasting via ensemble learning

2. Thrust II: Improving probabilistic renewable energy forecasting via spatial-temporal corre-

lation and scenario generation;

(a) Chapter 5: Improving probabilistic renewable energy forecasting via spatial-temporal

correlation modeling

(b) Chapter 6: Improving probabilistic forecasting via scenario generation

3. Thrust III: Utilizing probabilistic forecasting for anomaly detection in renewable energy

systems (Chapter 7)

3



There are a variety of ways to categorize probabilistic renewable energy forecasting. For exam-

ple, based on forecasting time horizon, probabilistic renewable energy forecasting can be grouped

into very short-term, short-term, mid-term, and long-term forecasting. Based on the algorithm prin-

ciples, probabilistic forecasting techniques can be divided into parametric methods, non-parametric

methods, and hybrid methods. For all the different categories mentioned above, spatial-temporal

modeling could be integrated to improve the probabilistic forecasting accuracy. In addition, spatial-

temporal analysis and probabilistic forecasting methods could be used for anomaly detection in

renewable energy forecasting.

4



CHAPTER 2

LITERATURE REVIEW

Different from deterministic forecasting, probabilistic wind forecasting could quantitatively de-

scribe the uncertainty information lies within the renewable energy, which helps reliable and eco-

nomic power system operations and planning. The probabilistic renewable energy forecasts are

only used in a primitive way in most systems, and there is not a systematic way to integrate them

into system operation and scheduling routines. Methods of probabilistic forecasting could be di-

vided to different categories in terms of forecasting horizon or mathematical methodology. Based

on forecasting horizon, probabilistic wind forecasting can be classified to very short-term, short-

term, medium-term, and long-term forecasting. Based on mathematical methodology, probabilis-

tic wind forecasting can be classified to parametric methods and non-parametric methods. In this

chapter, we first give a comprehensive review on the state-of-the-art probabilistic renewable energy

forecasting methods in the literature. To further analyze the probabilistic renewable energy fore-

casting techniques, state-of-the-art spatial-temporal modeling approaches in renewable energy are

reviewed. Finally, we give a comprehensive review on the application of probabilistic renewable

energy forecasting on cyberattacks and anomaly detection.

2.1 Probabilistic Renewable Energy Forecasting

2.1.1 Review of Probabilistic Renewable Energy Forecasting Approaches

Probabilistic renewable energy forecasts usually take the form of probability distributions asso-

ciated with point forecasts, namely, the expectation. Existing methods of constructing predictive

distributions can be mainly classified into parametric and non-parametric approaches in terms of

distribution shape assumptions (Lefèvre et al., 2014). A prior assumption of the predictive distri-

bution shape is made in parametric methods, and unknown distribution parameters are estimated

based on historical data. Parametric approaches generally require low computational cost. There

5



are limited number of papers on probabilistic renewable energy forecasting based on parametric

method in the past 5 years, and most of them adopt mixture distributions (i.e., GMM, GGMM, and

bi-variate distribution) due to their capability of modeling irregular residuals. However mixture

distributions are always constrained by the unity integration of each member model and the sum-

mation of weight must strictly equal unity. These constrains may limit the robustness of mixture

distributions in practical use. The heyday of parametric methods for probabilistic renewable en-

ergy forecasting is around early 2010s when the probabilistic forecasting methods start attracting

more researchers’ attention. In the early stage, Gaussian (Lange, 2005) and beta (Bludszuweit

et al., 2008) distributions are two commonly used predictive distributions in probabilistic renew-

able energy forecasting. However, Gaussian and beta distributions could not capture the fat tails

and double bounded properties of wind power distribution. To better account for the nonlinear and

double-bounded properties of renewable energy generation in short-term probabilistic forecasting,

Pinson et al. (Pinson, 2012) proposed a generalized logit-normal (GL-normal) distribution, which

could be used for minutes- to days- ahead probabilistic forecasting. However, the characteristics

of the GL-normal distribution ignores the stochastic process. Furthermore, when estimating the

GL-normal distribution parameters, noise will be unavoidably introduced to both the deterministic

forecasts and the predictor. Some other earlier parametric distributions for probabilistic renew-

able energy forecasting are the combined Beta distribution and Dirac delta function (Tewari et al.,

2011), Levy-stable distribution (Bruninx and Delarue, 2014), versatile distribution with adjustable

parameters (Zhang et al., 2013), and time-varying Gamma-like distribution (Menemenlis et al.,

2012), etc.

Once an analytical form of the predictive distribution is defined, distribution parameters can

be estimated by using different methods. Generally, a predictive distribution could be character-

ized by location parameter and scale parameter, namely mean µ and standard deviation σ (Sun

et al., 2018). The deterministic renewable energy forecasts are usually treated as the estimation

of location parameters (Sun et al., 2019). For estimators of location parameters, non-linear time
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series is one of the most popular categories of methods. For example, Pinson et al. (Pinson,

2012) developed a conditional parametric auto-regression model to estimate the parameters of a

GL-normal distribution, which is a discrete-continuous mixture of the GL-normal distribution and

two probability masses. For estimators of scale parameter, autoregression-generalized autoregres-

sive with conditional heteroscedasticity models are one of the most popular used methods (Meitz

and Saikkonen, 2011). Other methods to estimate distribution parameters in probabilistic renew-

able energy forecasts include maximum likelihood (Delignette-Muller et al., 2015), least squares

(Kantar, 2015), method of moments (Hall, 2005), and the fast Bayesian approach (Jin, 2008).

Overall, none of the distribution parameter estimation methods mentioned above aim at optimiz-

ing the probabilistic forecasting metrics (e.g., pinball loss). In summary, parametric method is

more competitive for very short-term renewable energy forecasting. Moreover, it has low compu-

tational costs and requires less samples. However, finding a suitable predictive distribution shape

for probabilistic renewable energy forecasting is still an open topic.

In addition to parametric approache, non-parametric approach is another way to provide prob-

abilistic renewable energy forecasts. Instead of assuming a predictive distribution, the quantiles

are estimated through a finite number of observations. In the past five years, there are more than

hundred probabilistic wind forecasting papers based on non-parametric methods, which domi-

nates the probabilistic wind forecasting literature. From the statistic summary of GEFCOM2014,

the methods used by the top five teams in the probabilistic wind forecasting track are all non-

parametric methods (Hong and Fan, 2016), which show the effectiveness of non-parametric meth-

ods. Three representative categories of non-parametric method: kernel density estimation (KDE)-

based method, quantile regression (QR)-based method, and artificial intelligence (AI)-based en-

semble method are further reviewed.

KDE is one of the most popular used methods in probabilistic renewable energy forecasting

since it can provide the full probability density function of different shapes. Based on finite number

of samples from an unknown density function f , the univariate KDE is given by (Sheather and
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Jones, 1991):

f̂ (x) =
1

N ·h

N

∑
i=1

K(
x−Xi

h
) (2.1)

where h is the bandwidth, K(·) is kernel function, Xi is the sample point, and N is the sample size.

Some of the KDE-based methods are focused on tuning and optimizing the parameters of KDE.

It is worthwhile to mention that the renewable energy distribution is heavily skewed and heavily

tailed due to the nonlinear conversion. Therefore, due to it non-Gaussian property, when modeling

renewable energy distributions, KDE with a small bandwidth may under estimate the tail while

the KDE with a larger bandwidth may over estimate the mode (Zhang et al., 2015). To overcome

this difficulty, a bandwidth selection process could be adopted to adaptivley select the optimal

bandwidth (El-Dakkak et al., 2019).

In addition to bandwidth, another important parameter in KDE is kernel. Based on the shape

of random variable, a suitable kernel could be chosen. For wind speed and wind power, Gamma

kernel and Beta kernel are two most popular used kernels in the literature, respectively (Bessa

et al., 2012). In summary, KDE-based non-parametric method is competitive for wind forecasting

at different horizons due to its simplicity. Moreover, KDE could be used together with multiple

advanced deterministic wind forecasting methods to generate probabilistic forecasts, which further

improve the forecast accuracy. However, finding optimal bandwidth and kernels is still a hot topic.

QR is one of the traditional non-parametric probabilistic forecasting methods (Zhang et al.,

2014). Instead of estimating models for conditional mean functions like traditional linear regres-

sion methods through minimizing the sums of squared residuals, QR estimates models for both

the conditional median function and the full range of other conditional quantile functions. In the

literature, QR has been integrated with different machine learning and deep learning models to

provide accurate probabilistic forecasts (Wang et al., 2019). For example, quantile regression neu-

ral network (QRNN) combines a nonlinear relation between input and output data and the pinball

loss function to obtain the conditional quantiles through NN in order to incorporate nonlineari-

ties. QR could be integrated with decision tree-based models as well. For example, random forest
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(RF) builds several trees and combines their output by averaging each tree leaf in the forest, which

helps to improve the generalization ability of the model. In quantile regression forests (QRF), all

outcomes are stored, thus the quantiles from each tree leaf can be be calculated to form probabilis-

tic forecasts. In addition to decision trees, QR could be integrated with gradient boosting model

(Wang et al., 2018), kernel functions (Takeuchi et al., 2009), and deep learning models. However,

the widely used QR is a direct function of the point forecast and predictors, and it can only provide

the range of the given percentage (Lee and Baldick, 2016). Haben et al. (Haben and Giasemidis,

2016) developed a non-parametric hybrid method that combines KDE and QR to generate proba-

bilistic forecasts. Ordiano et al. (Ordiano et al., 2017) conducted probabilistic forecasting using a

nearest-neighbor-based non-parametric method. Another non-parametric probabilistic wind fore-

casting method is non-parametric Dirichlet process mixture model (DPMM). DPMM has no prior

knowledge on the distribution, and researches found that it can generate more suitable residual dis-

tribution than the classical Gaussian distribution (Wang et al., 2017). Most existing non-parametric

probabilistic wind forecasting approaches focus on statistical methods. In addition to traditional

statistical approaches, the performance of probabilistic wind forecasting can be further improved

by machine learning techniques. For example, Wan et al. (Wan et al., 2014) used an extreme

learning machine to predict the optimal prediction interval without using statistical inferences and

distribution assumptions. In the Global Energy Forecasting Competition 2014 (GEFCom2014),

Landry et al. (Landry et al., 2016) used gradient-boosted machines (GBM) for multiple quantile

regression to fit each quantile and zone independently and generate probabilistic forecasts. Zhang

et al. (Zhang and Wang, 2015) developed a probabilistic forecasting method based on k-nearest

neighbor point forecasts through KDE. Wang et al. (Wang et al., 2017) used deep convolutional

neural network and wavelet transform to quantify the renewable energy uncertainties with respect

to model misspecification and data noise.

Ensemble methods have shown to be able to improve the performance of probabilistic renew-

able energy forecasting. Methods of constructing ensemble forecasts can be mainly classified into
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two groups: competitive ensemble methods and cooperative ensemble methods (Opitz and Maclin,

1999). Competitive ensemble methods use induction algorithms with different parameters or ini-

tial conditions to build individual forecasting models. The final refined ensemble prediction is

obtained from pruning and aggregating individual forecasts. Competitive ensemble methods gen-

erally require a large diversity of data and parameters to obtain different forecasts from individual

predictors (Ren et al., 2015). Therefore, competitive ensemble methods usually require expensive

computation cost, and they are usually used in medium-term and long-term forecasting. Bagging

(Breiman, 1996) and boosting (Schapire, 1990) are two commonly used competitive ensemble

methods. To better account for the performance of weak models, ensemble forecasting approaches

based on adaptive boosting (i.e., assign large weights to the models with larger errors) are used

in (Shrestha and Solomatine, 2006; Ren et al., 2014; Wu et al., 2012). For cooperative ensem-

ble methods, the dataset is divided into several sub-datasets and each sub-dataset is forecasted

separately, and the final forecasts are obtained by aggregating all the sub-forecasts. Cooperative

ensemble methods usually have lower computation burden due to less parameter tuning work,

which are normally used in very short-term or short-term forecasting (Ren et al., 2015). Artificial

neural networks based autoregressive integrated moving average (Liu et al., 2012) and generalized

autoregressive conditional heteroskedasticity based autoregressive integrated moving average (Lo-

jowska et al., 2010) are two commonly used cooperative ensemble methods that combine suitable

models for linear and non-linear time series.

A few recent studies have been done in the literature on ensemble probabilistic renewable en-

ergy forecasting. In (Zhang et al., 2014), Zhang et al. proposed an ensemble probabilistic wind

power forecasting approach based on empirical mode decomposition, sample entropy techniques

and extreme learning machine. Lin et al. (Lin et al., 2018) combined multiple probabilistic fore-

casting models based on sparse Bayesian learning, kernel density estimation, and beta distribution

estimation. The weight parameters of the multi-model ensemble are solved by an expectation

maximizing algorithm and continuous ranked probability score optimization. Kim et al. (Kim

10



and Hur, 2018) developed an enhanced ensemble method for probabilistic wind power forecast-

ing. The wind speed spatial ensemble was built by using correlation based weight and kriging

models, and the temporal ensemble was built through an average ensemble of three models (i.e.,

an exogenous variable model, a polynomial regression model, and an analog ensemble model).

Wang et al. (Wang et al., 2017) used wavelet transform to distinguish the non-linear series, and

an ensemble technique was used to cancel out the diverse errors of point forecasts. Then, the

probabilistic forecasts were generated by using a convolutional neural network. Overall, AI-based

ensemble methods have shown to be able to improve the performance of probabilistic renewable

energy forecasting.

In summary, non-parametric method is distribution free, and it is more competitive for short-

and medium- term wind forecasting. However, it requires high computational costs due to the

complicated estimation and larger sample size. non-parametric forecasts, particularly AI-based

ensemble methods, dominate the studies of probabilistic renewable energy forecasting. Therefore,

there is a clear gap between parametric methods and AI-based ensemble methods. Particularly,

future studies should bridge the gap by placing more emphasis on the combined use of parametric

and non-parametric probabilistic renewable energy forecasting.

2.1.2 Evaluation Metrics

Evaluation of forecasting performance is of great importance for model development and quality

control. It is possible your forecasts perform well with the measurement from one evaluation met-

ric, but may perform poorly with the measurement from other evaluation metrics. Unfortunately,

there is no universal forecast evaluation metrics ensuring a global optimal for both the preference

of end users and other objectives. Therefore, it is of great importance to use varied evaluation met-

rics to evaluate your model to achieve particular challenges. Different from deterministic forecasts,

probabilistic forecasts usually take the form of prediction intervals or scenarios. To some extent,
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the evaluation of probabilistic forecasts will be more challenging than that of deterministic fore-

casts since you are evaluating some specific or all the quantiles. Generally, probabilistic forecasts

can be evaluated from three single aspects: reliability, sharpness, and resolution (Pinson et al.,

2007). However, in probabilistic wind forecasting, the dependencies of wind power on explana-

tory variables are captured through two or more aspects together (e.g., sharpness and resolution).

To this end, in addition to the aforementioned three single probabilistic forecasting evaluation as-

pects, a comprehensive evaluation index, skill score is proposed. In this section, we list a number

of popular used probabilistic forecasting evaluation metrics.

Reliability

Reliability (RE) stands for the correctness of a probabilistic forecast that matches the observation

frequencies (Juban et al., 2007):

RE =

[
ξ (1−α)

N
− (1−α)

]
×100% (2.2)

where N is the number of test samples, and ξ (1−α) is the number of times that the actual test

samples lie within the αth prediction interval. The reliability of probabilistic forecasts could be

measured by the reliability diagram, verification rank histogram, probability integral transform

(PIT) histogram, and quantile-quantile (Q-Q) diagram. Since reliability of probabilistic forecast

is an agreement between forecast probability and mean observed frequency, reliability is the most

important property of probabilistic forecast, which should be checked first. Unreliable probabilistic

forecasts could lead to erroneous power system operation, which may cause power system collapse

and black out.

Reliability diagram

With measured empirical coverages, a reliability diagram can be plotted to describe the quantile

forecast series with different nominal proportions. A reliability diagram shows whether a given
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method tends to systematically underestimate or overestimate the uncertainty. The nominal cov-

erage rate ranges from 10% to 90% with a 10% increment. Fig. 2.1 shows an example reliability

diagram of probabilistic wind power forecast. In this example, the reliability diagram is close to

the diagonal. Generally, a forecast presents better reliability when the reliability curve is closer

to the diagonal. To be more specific, if the curve lies below the diagonal, the probabilities are

overestimated. Similarly, if the curve lies above the diagonal, the probabilities are underestimated.
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Figure 2.1: An example reliability diagram of probabilistic wind power forecasts

Verification rank histogram and probability integral transform (PIT) histogram

The verification rank histogram is used to examine the frequencies the observations falls within

different prediction intervals constructed by the empirical quantiles of probabilistic forecasts. Dif-

ferent from verification rank histogram, PIT histograms are continuous form of verification his-

togram, which measure the observations over the value of the predictive CDF. Fig. 2.2 shows an

example PIT histogram of probabilistic wind power forecast. In this example, the red dash line

indicates the ideal reliability. Overall, the PIT histogram is close to the red dash line, and nearly
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uniform distributed. Generally, a forecast presents better reliability when the verification rank

histogram or PIT histogram is more flat or uniform distributed.
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Figure 2.2: Example PIT histogram of probabilistic wind power forecasts

Quantile-quantile (Q-Q) plot

In statistics, Q–Q plot is a probability plot, which compares two probability distributions by plot-

ting their quantiles against each other. A forecast is considered reliable if it is statistically consis-

tent with the observed uncertainty. The x-axis and y-axis of Q-Q plot are predictive quantiles and

emperical quantiles, respectively. In general, probabilistic forecast presents better reliability when

the Q-Q plot is closer to diagonal.

Sharpness

Sharpness indicates the capacity of a forecasting system to forecast wind power with extreme

probability (Gallego-Castillo et al., 2016). To be more specific, it measures the dispersion of the

14



predictive distributions, and this criterion evaluates the predictions independently of the observa-

tions, which gives an indication of the level of usefulness of the predictions. For example, a system

that provides only uniformly distributed predictions is less useful for decision-making under un-

certainty. Predictions with perfect sharpness are discrete predictions with a probability of one (i.e.,

deterministic predictions). The sharpness of probabilistic forecasts could be measured by the box

plot of the quantiles of the prediction interval width distribution (Shin et al., 2020) and δ diagram.

Box plot of prediction interval

If probabilistic wind power forecasting possesses high sharpness, quantiles of the prediction inter-

val width distribution should be as concentrated as possible. A box plot of the prediction intervals

could be adopted to illustrate the sharpness. Fig. 2.3 shows an example box plot of the quantiles

of the wind power prediction interval. From the figure, the wind power predictive distributions of

each hour are characterized by the 5, 25, 50, 75 and 95 quantiles (from bottom to top).
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Figure 2.3: An example boxplot of probabilistic wind power prediction interval
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δ diagram

In addition to the box plot, the sharpness could be measured through the average size of the pre-

dictive intervals through δ diagram as well. An example of the δ diagram is shown in Fig. 2.4.

Generally, the expected interval size increases with increasing nominal coverage rate, and the lower

value indicates better sharpness.
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Figure 2.4: An example δ diagram of probabilistic wind power forecasts

Resolution

Resolution measures how well the probabilistic forecasts distinguish situations with different fre-

quencies of occurrence. A probabilistic forecast with good resolution should have the ability to

resolve the set of sample events into subsets with characteristically different outcomes, i.e., a larger

resolution.
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Skill scores

It is possible some aspects of probabilistic forecasts are contradictory to each other. For example, a

forecast with very large prediction intervals may have a bad sharpness and good reliability. More-

over, in decision makings, different quantiles may be evaluated together or separately, i.e., evaluate

the sharpness and resolution together. Therefore, a comprehensive skill score is needed based on

different scoring rules. Brier score (BS), continuous ranked probability score (CRPS), pinball loss,

ignorance score, and Winkler score are popular used skill scores in the literature.

Brier score

Proposed by Glenn W. Brier, Brier score measures the mean squared difference between the pre-

dicted probability and the actual outcome for binary or categorical events (Brier, 1950), and could

be expressed as:

BS =
1
N

N

∑
t=1

( ft−ot)
2 (2.3)

where ft denotes the forecast probability at time t, ot denotes the actual outcome at time t, and N is

the sample size. Generally, BS takes values between 0 and 1. A smaller BS indicates better prob-

abilistic forecasts. BS could also be decomposed into three components that represent important

properties of probabilistic forecasts (Murphy, 1973):

BS = RE−RES+UNC (2.4)

where RE, RES, and UNC denote reliability, resolution, and uncertainty, respectively.

Continuous ranked probability score

Based on different needs in power system, probabilistic wind power forecasts may be required in

discrete form (e.g., quantiles) or continuous form (e.g., probability distribution). For the measure-

ment of continuous variables, CRPS is one of the most popular used comprehensive evaluation
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score, which evaluates the quality of predictive CDF and expressed as:

CRPS =
1
N

N

∑
t=1

∫ +∞

−∞

(Ft(x)−1(yt ≤ x)2dx (2.5)

where Ft is the CDF of the predictive distribution at t, yt denotes observation, 1 is Heaviside

function, and N is sample size. CRPS is a generalized case of mean absolute error (MAE) in the

probabilistic fashion. Therefore, a lower CRPS indicates better probabilistic forecasts.

Pinball loss

Pinball loss is a widely used metrics to evaluate probabilistic forecasts, which is defined by

Li,t(qi,t ,xt) =


(1− i

100
)× (qi,t− xt), xi < qi,t

i
100
× (xt−qi,t), xt ≥ qi,t

(2.6)

where xt represents the observation at time t. For a given i percentage, the quantile qi,t represents

the value of a random variable whose CDF is i percentage at time t. Different from CRPS which

focus on the evaluation of predictive distribution as a whole, pinball loss focuses on the quan-

tiles of the predictive distribution. It measures the difference between quantiles and observation.

Therefore, a lower pinball loss score indicates better probabilistic forecasts.

Winkler score

Winkler score is another comprehensive evaluation metric for probabilistic forecasts, it allows

a joint measurement of the unconditional coverage and interval width (Liu et al., 2015). The

averaged prediction interval (PI) size δ β at nominal coverage rate (1-β ) can be expresses as:

δ
β =

1
T

T

∑
t=1

(qαU
t −qαL

t )×100% (2.7)

The Winkler score W β (xt) is defined to reward narrow PIs and penalize the targets which are out

of PIs range. For the β th prediction interval, the Winkler score is expressed as:
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W β (xt) =


δ β , qαL

t < xt < qαU
t

δ β +2(qαL
t − xt), xt < qαL

t

δ β +2(xt−qαU
t ), xt > qαU

t

(2.8)

where qαL
t and qαU

t are the lower and upper bound of the β th PI, xt is the observation at t. Note

that the penalize coefficient could be modified based on the interest of end-users for different

forecasting scenarios. Overall, a lower Winkler score indicates a better prediction interval.

In Research Thrust I, we seek to (i) improve short-term wind forecasting accuracy by predictive

distribution optimization, and (ii) adaptively ensemble multiple possible predictive distributions

through competitive and cooperative ensemble strategies.

2.2 Spatial-Temporal Modeling in Renewable Energy

Methods of spatial-temporal correlation based renewable energy forecasting proposed in the recent

literature can be generally classified into three groups: (1) Physical models, which are usually

developed based on sophisticated meteorological information. For example, Pelikan et al. (Pelikan

et al., 2010) developed a robust wind power forecasting model based on a combination of sigmoidal

power functions with wind speed forecasts obtained from a mesoscale spatial-temporal refined

numerical weather prediction (NWP) model. Physical models usually require high computation

cost, and have better performance than purely statistical time series approaches in longer prediction

time horizon (e.g., day-ahead and week-ahead) (Feng et al., 2017). (2) Statistical models, which

quantify the relationship between geographically dispersed time series wind power. For example,

Xie et al. (Xie et al., 2014) developed a short-term wind power forecasting model by leveraging

the spatial-temporal correlation in wind speed and direction among different wind farms in west

Texas. Statistical models are cost-saving since they do not require any data beyond historical

wind power generation. However, the accuracy of statistical models drops with the increment

of prediction time horizon. (3) Hybrid models, which combine the advantages of physical and
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statistical approaches to obtain globally optimal forecasts. For example, Qin et al. (Qin et al.,

2019) proposed a hybrid wind power forecasting model based on long short-term memory network

and deep learning neural network. Convolutional network and long short-term memory are used to

exploit the spatial-temporal properties of wind farms. More research about spatial-temporal model

based wind power forecasting has been studied in (Zhao et al., 2018; Baxevani and Lenzi, 2018;

Fang et al., 2018).

In contrast to traditional probabilistic renewable energy forecasting models, probabilistic re-

newable energy forecasting technologies based on spatial-temporal effects have also been devel-

oped in the literature (Zhang et al., 2013). For example, Zhang et al. (Zhang and Wang, 2018) used

off-site information of geographically dispersed wind farms to capture spatial-temporal correlation

and generated quantile forecasts. Then an Alternating Direction Method of Multipliers (ADMM)-

based method was used to generate distributed probabilistic forecasts. Dowell et al. (Dowell and

Pinson, 2016) proposed a probabilistic wind power forecasting method and the spatial-temporal

correlation was captured through Sparse Vector Autoregression. A study conducted by Tang et al.

(Tang et al., 2018) focused on multiple plants’ probabilistic power forecasting, and a simple aggre-

gation strategy was used. The marginal distribution of wind power in (Tang et al., 2018) is modeled

by Gaussian distribution. Another study conducted by Li et al. (Li et al., 2015) modeled the wind

power uncertainties by using a particle filter algorithm. The aggregated wind power predictive

distribution is obtained by mesoscale numerical weather prediction model and particle filter. Both

(Tang et al., 2018) and (Li et al., 2015) have aggregated all the wind farms in one step without clus-

tering the farms. However, it is important to note that both (Tang et al., 2018) and (Li et al., 2015)

have found that considering spatial-temporal correlation among wind farms could improve the per-

formance of probabilistic forecasts. Nevertheless, several challenges present in existing methods:

(i) high dimensional matrices are involved in the spatial-temporal modeling, which adds additional

computational burden; (ii) communication channels are needed for information transmission in

(Zhang and Wang, 2018), which might not be widely applicable at various spatial and temporal
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scales; (iii) the single logit-normal and Gaussian distribution in (Dowell and Pinson, 2016) and

(Tang et al., 2018) may not be reliable for wind farm data with varying characteristics.

One of the most intuitive ways of modeling spatial-temporal correlation is to use a multivariate

joint distribution. For example, Pinson et al. (Pinson et al., 2009) has used a multivariate Gaus-

sian distribution to describe the spatial-temporal relationship between forecasts of different wind

farms. To address the challenge of modeling high dimensional multivariate non-Gaussian distri-

butions, the Copula theory can be used. Based on the Sklar’s theorem, the joint distribution can

be modeled through univariate marginal-distribution functions and a Copula (Rüschendorf, 2009).

Copula theory has been widely used to characterize the dependence between different variables.

For example, Tang et al. (Tang et al., 2018) used Copula to model correlation between wind farms

and solar farms. Cui et al. (Cui et al., 2018) utilized high-dimensional Copula to couple the wind

power ramp features among wind farms.

In the literature, the marginal distribution of wind power is commonly modeled by unimodal

distributions such as Beta and Gamma (Louie, 2010) or non-parametric distributions such as KDE

(Wang et al., 2018). However, the unimodal distributions may not accurately quantify the variabil-

ity of wind power and the non-parametric distributions are challenging to be solved analytically

(Cui et al., 2018).

To bridge these gaps, in Research Thrust II, we develop a short-term aggregated probabilistic

wind power forecasting methodologies that (i) take spatial-temporal correlation into considera-

tion, (ii) are aware of different correlated weather scenarios, and (iii) provide cost-efficient and

widely applicable solutions to distributed energy systems.

2.3 Cyberattacks and Anomaly Detection Approaches in Renewable Energy Forecasting

Accurate renewable energy forecasting plays an important role in power system planning and re-

newable energy integration. However, with the rapid development of information and commu-

nication technologies in smart grid, utility-scale renewable energy plants are exposed to a larger
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cyber attack surface, which may compromise the power devices, leading to local outages, equip-

ment damages, and grid instabilities. For example, the black out at the Ukrainian electricity grid in

December 2015 caused by malicious cyberattacks has led to severe economic losses (Liang et al.,

2016).

The accuracy of renewable energy forecasting largely depends on the quality of dataset. In-

correct readings or abnormal values may directly lead to defective training models or forecasting

results. In recent years, renewable energy forecasting under data integrity attacks has attracted

great concerns for power system operators and renewable energy farm owners. Though data qual-

ity control has been performed by many renewable energy farm operators, the cyberattacks could

be designed sophisticatedly enough to bypass the bad data detection algorithms (Liu et al., 2011).

One of the most cited cyber attacks in the literature is the false data injection attack (FDIA). FDIA

can be applied to various data interfaces of the renewable energy farm, such as field sensors, data

servers in control centers, or remote communication channels. The FDIA requires two assump-

tions: (1) the attacker has knowledge of the target renewable energy farm, and (2) the attacker can

compromise a large number of measurements (Wolf and Serpanos, 2020). For FDIA on renewable

energy forecasting, it could be applied to renewable energy measurement itself or measured mete-

orological data that serves as explanatory variables (Sobhani et al., 2020). The meteorologic data

of most renewable energy farms are obtained from external services, which is more vulnerable to

malicious cyberattacks (Wang and Govindarasu, 2019). Based on the prospective of the attackers’

capability, FDIA could be classified into four types, i.e., scaling attack (Cui et al., 2019), correlated

attack (Lore et al., 2018), replay/swap attack, and random attack (Yue, 2017).

Most of the current methods to detect cyberattacks on energy forecasting (e.g., renewable en-

ergy, load, and electricity price) are focused on data quality control (Sobhani et al., 2020). Gen-

erally, anomaly detection methods in energy forecasting can be classified into three categories:

statistical-based methods, clustering-based methods, and classification-based methods (Zheng et al.,

2019). For statistical-based methods, statistical inferences are conducted based on fitted error dis-

tributions or statistical models to determine if a data point is abnormal or not. A statistical-based
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method is straight forward and unsupervised, which can be trained without a full knowledge about

the data. However it requires relatively larger samples for distribution estimation and invariably

involves high dimensional computation. For example, a descriptive analytics-based anomaly de-

tection method was proposed by Meng et al. (Yue et al., 2019) for load forecasting, which focused

on the characteristics of data. For clustering-based methods, we assume the normal data are belong

to one group while the anomalies don’t belong to any group. Clustering-based methods are unsu-

pervised and all the data are unlabelled. However, clustering-based methods only work when the

anomalies don’t form groups themselves (Chandola et al., 2009). Zheng et al. (Zheng et al., 2018)

used a clustering technique by fast search and find of density peaks (CFSFDP) for power consump-

tion anomaly detection. Different from clustering-based methods, classification-based methods are

supervised, and a set of labelled data is used to train the classification model, which is then adopted

for anomaly detection. However, the labelled historical scenarios are not always available in real

cases, and the length of historical scenarios with attacks are limited as well. Cui et al. (Cui et al.,

2019) used a naive Bayes classification method for anomaly detection in load forecasting based on

the cumulative distribution function and statistical features of the scaling load data. In additional

to the aforementioned three types of methods, some researchers seek to combine different types

of anomaly detection methods together to get a better detection outcome. For example, Krishna et

al. (Krishna et al., 2015) adopted Principal Component Analysis (PCA) and density-based spatial

clustering on noise pattern to detect the anomalies which are deviations from the normal electricity

consumption behavior.

Machine learning and deep learning based deterministic forecasting models have been widely

adopted in the literature to assist the aforementioned three types of anomaly detection methods

due to their strong abilities of modeling the non-linearity within data (Xin et al., 2018). Trained

forecasting models are tested on input data and to compare the predicted values with the measure-

ments. A model trained through health data will be able to predict the expected behavior based on

history observations. However, there will be a mismatched behavior between the prediction and
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observation if the data is under cyberattacks. For example, Wang et al. (Wang et al., 2019) pre-

sented a power consumption anomaly detection method based on long short-term memory (LSTM)

point forecasts and error patterns. In (Wang and Ahn, 2020), a real-time anomaly detection method

was proposed for electric load based on an integration of support vector machine (SVM), k-nearest

neighbors (KNN), and a cross-entropy loss function.

Probabilistic renewable energy forecasting is getting more popular in recent years due to its

ability to quantitatively characterize the uncertainty in renewable energy generation. However,

most of the existing anomaly detection methods mentioned above are deterministic and thus in-

sufficient to characterize the uncertainties in cyberattacks. Probabilistic approaches that provide

quantitative uncertainty information associated with cyberattacks are therefore expected to better

assist power system operations and renewable energy integration. Probabilistic forecasting usually

takes the form of prediction intervals (PIs) or scenarios (Sun et al., 2020a). The PIs of different

confidence levels are generally used to assist decision making, which could naturally be used as

thresholds to label anomaly events. If a prediction falls outside a desired PI, such prediction may

be labeled as anomaly. Probabilistic forecasting methods can be classified into parametric methods

and non-parametric methods (Sun et al., 2020b). However, none of these two types of probabilistic

forecasting methods has been applied to data integrity anomaly detection in solar power forecast-

ing.

Overall, several challenges present in existing methods for anomaly detection in renewable

energy forecasting: (i) most of the existing anomaly detection methods focus on load forecasting

and electricity price forecasting, and little work has been done on solar power forecasting and

wind power forecasting; (ii) most of the anomaly detection models are deterministic, which could

not well describe the uncertainties in solar power; (iii) the spatial-temporal correlation between

different targets (e.g., solar farms, wind farms, or load centers) is not considered, which may

not be reliable towards sophisticated designed cyberattacks; (iv) most anomaly detection methods

could not detect multiple solar farms simultaneously.
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To address the aforementioned limitations, in Research Thrust III, a deep learning-based prob-

abilistic anomaly detection methodology is developed to provide reliable defense strategies against

various FDIA scenarios in solar power forecasting.
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CHAPTER 3

IMPROVING PROBABILISTIC FORECASTING VIA PREDICTIVE

DISTRIBUTION OPTIMIZATION

Probabilistic wind forecasting usually takes the form of predictive distributions, where the distri-

bution parameters are normally estimated through finite number of observations. As mentioned

in Chapter 2.1, the parametric methods in probabilistic renewable energy forecasting is not well

studied in the recent literature. Therefore, in this chapter, we present a two-step probabilistic wind

speed forecasting methods based on predictive distribution optimization. First, a multi-model ma-

chine learning-based ensemble deterministic forecasting framework is adopted to generate deter-

ministic forecasts. The deterministic forecast is assumed to be the mean value of the predictive

distribution at each forecasting time stamp. Then, the optimal unknown parameter (i.e., standard

deviation) of the predictive distribution is estimated by a support vector regression surrogate model

based on the deterministic forecasting value. Finally, probabilistic forecasts are generated from the

predictive distribution. Numerical results of case studies at eight locations show that the developed

two-step probabilistic forecasting methodology has improved the pinball loss metric score by up

to 35% compared to a baseline quantile regression forecasting model.

3.1 Motivation and Objective

Wind energy is a sustainable alternative to the conventional energy in relieving global warming

and fuel energy shortage. Notable progress has been made in increasing the wind energy capacity.

However, the uncertain and variable characteristics of the wind resource present challenges to wind

integration especially at large penetrations. Accurately forecasting of the wind power generation

and the extreme wind power changes would greatly help power systems make better operation

schedules, thereby improving the system economic and reliability performance. The one advan-

tage of a deterministic forecast is its simplicity. However, point forecast usually has only a small
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chance of being correct. Probabilistic forecasts that provide quantitative uncertainty information

associated with desired forecasts become extremely important for reliable and economic power

system operations and planning with an ever-increasing renewable energy penetration.

Probabilistic wind forecasts usually take the form of probability distributions associated with

point forecasts, namely, the expectation. Parametric method is one of the most common used ways

to construct predictive distributions (Lefèvre et al., 2014). A prior assumption of the predictive

distribution shape is made in parametric methods, and unknown distribution parameters are esti-

mated based on historical data. Parametric approaches generally require low computational cost.

Gaussian (Lange, 2005) and beta (Bludszuweit et al., 2008) distributions are two commonly used

predictive distributions in probabilistic wind forecasting. However, Gaussian and beta distribu-

tions could not capture the fat tails and double bounded properties of wind energy perfectly. To

adaptively optimize the predictive distribution shape and combine the advantages of statistical and

machine learning approaches, in this chapter, a two-step probabilistic forecasting method based on

pinball loss optimization is developed.

3.2 Methodology

The overall framework of the developed methodology is illustrated in Fig. 3.1. This is a two-step

probabilistic forecasting method, consisting of deterministic forecast generation and predictive dis-

tribution (type and parameters) determination. In the first step, the machine learning-based multi-

model (M3) forecasting framework is adopted to generate short-term deterministic wind forecasts

(i.e., 1-hour-ahead), which are considered as a means of predictive distributions. In the second

step, a set of optimal standard deviation values are determined through pinball loss optimization

at the training stage. The relationship between the deterministic forecasts and the corresponding

optimal standard deviations is quantified through a SVR surrogate model. At the forecasting stage,

we generate deterministic forecasts first. Then, we feed the deterministic forecasts to the surrogate

model built at the training stage to estimate a new set of standard deviation values (pseudo-optimal
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standard deviation). Finally, these estimated pseudo-optimal standard deviation values and the

deterministic forecasts are used together to generate probabilistic forecasts.
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Figure 3.1: Overall framework of the pinball loss optimization-based probabilistic wind forecast-
ing methodology

3.2.1 Machine Learning-Based Multimodel (M3) Deterministic Forecasting

M3, a two-layer, short-term forecasting method, is adopted to generate deterministic forecasts.

Multiple sets of deterministic forecasts are generated by using different machine learning algo-

rithms with different kernels in the first layer. Then, the forecasts are blended by another machine

learning algorithm in the second layer to generate the final forecasts. Machine learning algorithms

used in the M3 method include artificial neural networks (ANNs), support vector regression (SVR),

GBMs, and random forests. Details about the M3 method can be found in (Feng et al., 2017).
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3.2.2 Multi-Distribution Database

A multi-distribution database is formulated to model the possible shapes of the predictive distribu-

tion. Four widely used predictive distribution types are considered: Gaussian, Gamma, Laplace,

and noncentral t distributions. Probability density functions (PDFs) of the four distribution types

are summarized in (Forbes et al., 2011). PDFs of the four distributions can be represented by

the mean µ and standard deviation σ as f (x|µ,σ), and the corresponding cumulative distribution

functions (CDFs) can be deduced and denoted as F(x|µ,σ).

3.2.3 Pinball Loss-Based Optimization

Pinball loss is one of the most popular metrics for evaluating probabilistic forecasts (Steinwart

et al., 2011); it is a function of observations and quantiles of a forecast distribution. A smaller

pinball loss value indicates better probabilistic forecasting. The pinball loss value of a certain

quantile Lm is expressed as:

Lm(qm,xi) =


(1− m

100
)× (qm− xi), xi < qm

m
100
× (xi−qm), xi ≥ qm

(3.1)

where xi represents the ith observation, m represents a quantile percentage from 1 to 99, and qm

represents the predicted quantile. For a given m percentage, the quantile qm represents the value

of a random variable whose CDF is m percentage. The quantiles of different distributions types

are represented by a standard deviation σ , denoted as qm(σ). At the offline training stage where

x’s are available, the optimal standard deviation σ is determined by minimizing the pinball loss

summation of the 1st to 99th quantiles at each point, which is formulated as follows:

min
σ

99

∑
m=1

L(qm(σ),xi)

sub ject to (3.2)

σl ≤ σ ≤ σu

29



where σl and σu represent the lower and upper bounds of the unknown standard deviation, which

are selected based on the forecasting target (Hansen et al., 2017). The genetic algorithm (Scrucca

et al., 2013) is adopted in this study to solve this optimization problem. In this study, the maximum

number of iterations is set to be 100, and the iteration stops if the improvement is less than 0.001.

The distribution with the minimum pinball loss is selected as the predictive distribution shape. The

optimal standard deviation’s estimated using the training data are used to construct a surrogate

model to be used at the forecasting stage.

3.2.4 Surrogate Model

To generate probabilistic forecasts, a pseudo-optimal standard deviation value is needed at every

forecasting time point, which is estimated by a surrogate model. Several possible surrogate model

types can be used, such as SVR, radial basis function, kriging, and ANN. SVR is adopted in this

study because it is more accurate than other surrogate models in the case studies. The surrogate

model is constructed by fitting the optimal standard deviation as a function of the deterministic

forecasting value, which is expressed by:

σ̂ = f (xp) (3.3)

where xp is a point forecast, and f (·) is the SVR surrogate model of the optimal standard deviation

of the predictive distribution. This surrogate model is used to estimate the standard deviation of

the predictive distribution at the online forecasting stage.

3.3 Case Studies and Results

The proposed pinball loss optimization-based probabilistic forecasting approach is applied to eight

locations to generate wind speed forecasts. The wind speed data were collected near hub height

with 1-hour resolution (Zhang et al., 2015). The duration and measurement height of the collected

data at all locations are summarized in Table 3.1. For all locations, the first 2/3 of data are used
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as training data, in which the first 11/12 is used to train M3 and the remaining 1/12 of the training

data is used to build the SVR surrogate model of the optimal standard deviation. The accuracy of

the forecasts is evaluated by the remaining 1/3 of data. Although the proposed method is capable

of generating forecasts at multiple forecasting horizons, only 1-hour-ahead forecasts are explored

in this study.

Table 3.1: Data duration at selected sites

Case No. Site Data duration Height (m)
C1 Boulder NWTC 2009-01-02 to 2012-12-31 80

C2 Megler 2010-11-03 to 2012-11-01 53.3

C3 CedarCreek H06 2009-01-02 to 2012-12-31 69

C4 Goodnoe Hills 2007-01-01 to 2009-12-31 59.4

C5 Bovina50 2010-10-10 to 2012-10-08 50

C6 Bovina100 2010-03-03 to 2012-03-01 100

C7 CapeMay 2007-09-26 to 2009-09-24 100

C8 Cochran 2008-06-30 to 2011-06-29 70

Since the proposed method is a two-step method, it is important to evaluated the accuracy at

both steps. In order to evaluate the deterministic forecasting accuracy of the developed framework,

four error criteria are utilized: mean absolute error (MAE), root mean square error (RMSE), and

their corresponding normalized indices, i.e., the normalized mean absolute error (NMAE) and the

normalized root mean square error (NRMSE). For these metrics, a smaller value indicates better

performance. Deterministic forecasting errors using M3 at the selected locations are summarized

in Table 3.2. The persistence (PS) method is used as a baseline, and the forecasting errors are also

summarized in Table 3.2.

Overall, the accuracies of the M3 deterministic forecasts are better than those of persistence

forecasts, except C3. The smallest NMAE, NRMSE, and MAPE at C3 are produced by the model

using the persistence method. This is mainly because C3 has less wind speed variance.
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Table 3.2: Deterministic forecasting results using M3 and PS

Method Metric Site

C1 C2 C3 C4 C5 C6 C7 C8

M3

MAE(m/s) 1.32 0.69 1.26 0.99 1.03 1.10 0.94 0.78
NMAE(%) 4.77 2.89 3.86 3.72 4.89 4.47 3.45 3.98
RMSE(m/s) 1.93 0.96 1.78 1.35 1.37 1.53 1.31 1.06
NRMSE(%) 6.95 3.99 5.48 5.10 6.54 6.22 4.81 5.41
MAPE 0.40 0.21 0.18 0.19 0.24 0.18 0.27 0.19

PS

MAE(m/s) 1.38 0.84 1.20 1.02 1.10 1.15 0.98 0.85
NMAE(%) 4.97 3.51 3.69 3.85 5.27 4.69 3.59 4.37
RMSE(m/s) 2.00 1.17 1.65 1.40 1.48 1.59 1.36 1.16
NRMSE(%) 7.23 4.87 5.08 5.27 7.04 6.46 4.98 5.92
MAPE 0.41 0.24 0.17 0.20 0.25 0.20 0.29 0.23

SVR is adopted in this study to build the surrogate model of the optimal predictive distribution

parameter (i.e., standard deviation). The metrics of NMAE and NRMSE of surrogate modeling

are summarized in Table 3.3. A smaller NMAE/NRMSE value indicates better performance. It

is observed that the NMAE and NRMSE are in the range of 5%–9% and 8%–14%, respectively.

Overall, the accuracy of the SVR surrogate model is reasonable.

Table 3.3: NMAE and NRMSE of the SVR surrogate model

Metrics Site

C1 C2 C3 C4 C5 C6 C7 C8

NMAE(%) 8.57 5.26 8.64 7.82 6.89 7.50 6.87 7.84
NRMSE(%) 13.48 8.16 13.27 11.51 10.13 11.15 10.64 11.96

Pinball loss values with different predictive distributions are summarized in Table 3.4. The

sum of pinball loss is averaged over all quantiles from 1% to 99% and normalized by the maxi-

mum wind speed at each site. A lower loss score indicates a better probabilistic forecast. Table 3.4

shows that the M3-Laplace with pinball loss optimization (M3-Laplace) has the smallest pinball

loss value at all locations except C3. The smallest pinball loss at C3 is produced by the model using

Laplace distribution with the persistence method (PS-Laplace). This is mainly because the persis-
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tence deterministic forecasts perform better than the M3 forecasts at this location. The models of

quantile regression, PS-Laplace with pinball loss optimization, and M3-Laplace without pinball

loss optimization (M3-Laplace-w) are used as benchmark models in case studies. The reasons

for choosing these three baselines are: (i) quantile regression is a widely used method in proba-

bilistic forecasts; (ii) the PS-Laplace method allows us to explore the impacts of point forecasts

on this two-step probabilistic forecasting framework; (iii) the M3-Laplace-w method allows us to

explore the effectiveness of pinball loss optimization. Results show that the M3-Laplace model

has improved the pinball loss by up to 35% compared to the three benchmark models and M3

forecasts with other predictive distributions (i.e., M3-Gaussian, M3-Gamma, and M3-Noncentral

T (M3-ncT)). Therefore, the Laplace distribution is finally chosen to generate probabilistic wind

speed forecasts. Note also that the models of M3-Gaussian, M3-Gamma, and M3-Laplace perform

similarly, which indicates that the optimization can help achieve better accuracies with different

predictive distribution types. For the baseline model of M3-Laplace-w, a random standard devia-

tion value is selected within the range between the minimum and maximum values of the optimal

σ . We repeat this process 30 times to obtain an average sum of pinball loss without optimization.

Table 3.4: Normalized optimal averaged sum of pinball loss

Model Site

C1 C2 C3 C4 C5 C6 C7 C8
QR 2.22 1.76 2.03 1.96 2.56 2.44 1.95 1.68
M3-Gaussian 1.74 1.26 1.44 1.36 1.86 1.69 1.27 1.59
M3-Gamma 1.74 1.26 1.43 1.36 1.87 1.69 1.27 1.58
M3-Laplace 1.72 1.25 1.43 1.35 1.85 1.63 1.26 1.57
M3-ncT 1.74 1.81 2.20 2.21 2.68 3.41 2.56 2.86
M3-Laplace-w 2.94 2.93 2.40 2.39 3.53 3.08 2.46 2.72
PS-Laplace 1.81 1.29 1.34 1.38 1.92 1.70 1.32 1.64

Note: The smallest normalized optimal sum of pinball loss at each location is in
boldface.

With estimated scale parameters through pinball loss minimization and surrogate modeling,

predictive wind speed distributions are determined and the quantiles q1, q2, ..., q99 can be calcu-
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(a) M3-Laplace with pinball loss optimization
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(b) Quantile regression

Figure 3.2: M3-Laplace and quantile regression forecasts at the C2 site

lated. To better visualize probabilistic forecasts, the 99 quantiles are converted into nine predictive

intervals Iβ (β=10, ..., 90) in a 10% increment. Fig. 3.2(a) and Fig. 3.2(b) show two examples

of probabilistic wind speed forecasts at the C2 site from 2012-02-01 to 2012-02-04. The width

of the prediction interval varies with the wind speed variability. When the wind speed fluctuates

frequently, the predictive interval tends to be wider, and thereby the uncertainty in wind speed

forecasts is relatively higher. Fig. 3.2(b) shows probabilistic forecasts generated from the baseline

quantile regression method. The predictive intervals of the proposed M3-Laplace method in Fig.

3.2(a) are narrower than those of the quantile regression method. Thus, there is less uncertainty

in the M3-Laplace probabilistic wind forecasts.

In addition to pinball loss, two more standard metrics, i.e., reliability and sharpness, are also

calculated to assess the performance of the proposed method.

Reliability (RE) stands for the correctness of a probabilistic forecast that matches the obser-

vation frequencies (Juban et al., 2007). A reliability plot shows whether a given method tends

to systematically underestimate or overestimate the uncertainty. In this study, the nominal cov-

erage rate ranges from 10% to 90% with a 10% increment. Fig. 3.3 shows the reliability plots

of the probabilistic forecasts at the eight test sites. A forecast presents better reliability when the

curve is closer to the diagonal. Fig. 3.3 shows that overall quantile regression has better relia-
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bility performance, because the confidence band of QR is much wider than that of the proposed

M3-Laplace method. A wider confidence band indicates that the result takes more errors into con-

sideration; however, note that the reliability over the 90th confidence interval is similar between

M3-Laplace and the quantile regression, which is generally more important in probabilistic fore-

casting applications in power system operations. Also, the M3-Laplace has much better reliability

than M3-Laplace-w at all selected locations, which indicates the effectiveness of the pinball loss

optimization.

Sharpness indicates the capacity of a forecasting system to forecast wind power with extreme

probability (Gallego-Castillo et al., 2016). The sharpness is measured by the average size of the

predictive intervals. The sharpness of the proposed M3-Laplace model, quantile regression, M3

with other distribution types, and M3-Laplace-w at the eight sites are compared in Fig. 3.4. The

sharpness of the pinball loss-based forecasts is better than that of the baseline quantile regression

model. Also, the expected interval size increases with increasing nominal coverage rate, and the

M3-Laplace has much better sharpness than that of the M3-Laplace-w. The interval size of the

M3-Laplace forecasts ranges from 2% to 18%, which indicates low sharpness.

Because the proposed method is a two-step probabilistic forecasting approach, it is interesting

to explore the inherent relationship between the first deterministic forecasting step and the second

probabilistic forecasting step. To this end, the relationship between a deterministic forecasting

metric and a probabilistic forecasting metric is quantified.

NMAE is used to represent the deterministic forecasting accuracy, and normalized pinball loss

(NPL) is used to represent the performance of probabilistic forecasts. To generate different NMAE

and NPL scenarios, four single machine learning algorithms —i.e., ANN, SVR, GBM, and RF

with different kernels are used to produce 14 deterministic forecasts, including:

• Three SVR models with linear (SVR l), polynomial (SVR p), and radial base (SVR r) ker-

nels;
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Figure 3.3: Reliability of probabilistic forecasts at selected sites
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Figure 3.3: (continued) Reliability of probabilistic forecasts at selected sites

• Five ANN models with different numbers of hidden layers (nl), neurons in each layer (no),

and weight decay parameter (nd) values. Our selected models employ the feed-forward back

propagation learning function and sigmoid activation function;

• Four GBM models based on different loss functions (Gaussian and Laplacian) and param-

eters, i.e, number of trees, learning rate (λ ), maximum depth of variable interactions, and

minimum number of observations in the terminal nodes;

• Two random forest models with different numbers of variables that are randomly sampled as

candidates at each split.

The proposed pinball loss optimization method with Laplace distribution is used to generate

probabilistic forecasts. The NMAE values of the 14 deterministic forecasts and their correspond-

ing NPL of probabilistic forecasts are summarized in Table 3.5. A linear regression method (Mar-

quardt, 1963) is used to fit the relationship between NMAE and NPL. Fig. 3.5 shows the relation-

ship between NMAE and NPL at the eight sites. A linear relationship is observed between NMAE

and NPL at all test locations, which indicates that a better deterministic forecast model will very

likely result in a more accurate probabilistic model with the proposed two-step method. The R2

values of the eight locations of the linear least squares fit are listed in Table 3.6. The R2 values are
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Figure 3.4: Sharpness of probabilistic forecasts at selected sites
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Figure 3.4: (continued) Sharpness of probabilistic forecasts at selected sites

close to 1, which also indicates the strong correlation between the deterministic and probabilistic

forecasting steps.
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Figure 3.5: The relationship between NMAE and NPL
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Table 3.5: One-hour-ahead forecasting NMAE and NPL of single-algorithm models with different
kernels

Method Metrics Site

C1 C2 C3 C4 C5 C6 C7 C8

SVR r
NMAE(%) 5.101 3.114 6.229 3.799 5.145 4.554 3.662 4.014
NPL 1.845 1.381 2.606 1.372 1.974 1.655 1.360 1.974

SVR l
NMAE(%) 4.765 2.886 3.927 3.718 4.891 4.466 3.449 3.984
NPL 1.723 1.253 1.468 1.350 1.853 1.627 1.261 1.853

SVR p
NMAE(%) 4.772 2.919 4.267 3.734 4.913 4.572 3.553 4.009
NPL 1.727 1.270 1.592 1.352 1.859 1.662 1.296 1.859

ANN1
NMAE(%) 4.793 2.921 4.155 3.738 4.936 4.671 3.717 4.007
NPL 1.721 1.267 1.580 1.353 1.874 1.690 1.356 1.874

ANN2
NMAE(%) 4.789 2.938 4.042 3.735 4.939 4.536 3.560 4.012
NPL 1.722 1.275 1.524 1.352 1.874 1.650 1.293 1.873

ANN3
NMAE(%) 4.817 2.927 4.096 3.738 4.932 4.494 3.502 4.017
NPL 1.729 1.270 1.549 1.354 1.875 1.636 1.281 1.875

ANN4
NMAE(%) 4.792 2.906 4.022 3.735 4.924 4.481 3.500 4.005
NPL 1.722 1.264 1.504 1.351 1.873 1.629 1.281 1.873

ANN5
NMAE(%) 4.793 2.902 3.859 3.727 4.899 4.487 3.480 4.006
NPL 1.719 1.260 1.431 1.349 1.861 1.628 1.274 1.861

GBM1
NMAE(%) 4.822 2.945 4.468 3.739 4.961 4.479 3.562 4.022
NPL 1.733 1.284 1.731 1.351 1.872 1.629 1.300 1.873

GBM2
NMAE(%) 4.808 2.941 4.474 3.736 4.963 4.478 3.550 4.020
NPL 1.735 1.283 1.732 1.350 1.872 1.631 1.295 1.872

GBM3
NMAE(%) 4.806 2.936 4.730 3.768 4.969 4.491 3.504 4.002
NPL 1.743 1.285 1.860 1.360 1.882 1.628 1.291 1.882

GBM4
NMAE(%) 4.845 2.946 4.348 3.754 4.974 4.544 3.554 4.023
NPL 1.742 1.282 1.671 1.357 1.878 1.650 1.302 1.878

RF1
NMAE(%) 4.965 3.060 4.207 3.883 5.115 4.703 3.715 4.159
NPL 1.796 1.338 1.577 1.407 1.941 1.701 1.357 1.941

RF2
NMAE(%) 4.920 3.012 4.221 3.852 5.057 4.637 3.659 4.110
NPL 1.777 1.312 1.596 1.393 1.913 1.681 1.336 1.913

Note: The smallest NMAE (%) at each location is in boldface. The smallest NPL at each location is in
red italic.

Table 3.6: R-square of the least square fit

Site C1 C2 C3 C4 C5 C6 C7 C8

R2 0.97 0.98 0.99 0.98 0.95 0.99 0.95 0.99
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3.4 Conclusion

This chapter developed a two-step probabilistic wind forecasting method based on pinball loss op-

timization, in conjunction with a multi-model deterministic forecasting framework. Different types

of predictive distributions were compared, and the Laplace distribution was found to be the most

suitable predictive distribution type. The optimal shape parameter of the predictive distribution

was determined by minimizing the sum of pinball loss in the training stage. A surrogate model

of the optimal shape parameter was used to to estimate a pseudo-optimal shape parameter in the

forecasting stage. Results showed that the M3-Laplace model could reduce the pinball loss score

metric by up to 35% compared to benchmark models. Also, M3-Laplace showed better reliability

than that of the M3-Laplace-w, which indicates the effectiveness of the pinball loss optimization.

The sharpness intervals size of the M3-Laplace forecasts ranges from 2% to 18%, which indicates

low sharpness.

Results also showed a linear relationship between the deterministic forecasting metric (i.e.,

NMAE) and the probabilistic forecasting metric (i.e., NPL). This indicates that a better deter-

ministic model will very likely result in a more accurate probabilistic model with the developed

framework.
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CHAPTER 4

IMPROVING PROBABILISTIC FORECASTING VIA ENSEMBLE LEARNING

Ensemble methods have been used in the literature to better assist probabilistic wind power fore-

casting due to its high accuracy. This chapter is an extension of Chapter 3, and we seek to im-

prove the probabilistic renewable energy forecasting accuracy through multi-distribution ensemble

learning. In this chapter, we present a probabilistic wind power forecasting methods based on

multi-distribution ensemble learning. Two ensemble strategies, i.e., competitive ensemble and

cooperative ensemble are explored. Non-negative weight parameters are assigned to individual

probabilistic forecast at each hour. Then, these weight parameters are estimated through mini-

mizing the pinball loss and assigned to next hour using persistence method. The effectiveness of

the proposed algorithm is validated using the Wind Integration National Dataset (WIND) Toolkit.

Numerical results of case studies at four locations show that the developed ensemble probabilistic

forecasting methodology has improved the pinball loss metric score by up to 20% compared to

the best individual model. The proposed method also outperforms over other baseline ensemble

models.

4.1 Motivation and Objective

Wind power is considered to be one of the most promising renewable energy source in modern

power systems due to the great economic, technological, and environmental incentives they in-

volve (Bracale and De Falco, 2015). Accurate wind forecasts benefit power system stakeholders

from different perspectives. For example, the wind power producers are subjected to discounted

price or even penalty for the underestimated or overestimated wind power during the market bid.

From system operator’s viewpoint, accurate wind forecasting helps reduce the amount of operating

reserves that are needed to balance generation and load (Botterud et al., 2011).

The forecasting models have gone through extensive improvement and expansion in recent

years. Based on the adopted approaches, the classification of forecasting models is summarized in
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Fig. 4.1 . They are preliminarily divided into deterministic forecasting and uncertainty analysis.

The former can obtain accurate forecasting results after a specific time horizon, while the latter can

provide probabilistic and confidence levels for the uncertainty of desired forecasts.

Forecasting Model

Deterministic 

Forecasting Model

Probabilistic 

Forecasting Model

Single Model Ensemble Model Ensemble Model Single Model

Statistical 

Model

Intelligent 

Model

Competitive 

Model

Cooperative 

Model

Figure 4.1: Wind forecasting methods categorization

Among the above methods, the most common practice in dealing with uncertainties in wind

forecasting are ensemble methods. Ensemble methods have shown to be able to improve the per-

formance of both deterministic and probabilistic wind forecasting (Sun et al., 2020a). However,

most of the probabilistic forecasting methods are developed based on a single model, especially

for parametric approaches which require a distribution assumption. It is challenging to accurately

characterize the associated uncertainty by using a single distribution type, due to the daily and

seasonal variability in wind power. A number of wind power forecasting projects including prob-

abilistic forecasts have been conducted in recent year, such as wind forecast improvement project

(WFIP) (Freedman et al., 2014), Alberta Electric System Operator (AESO) wind power forecast-

ing pilot project (Jørgensen and Möhrlen, 2008), and ANEMOS project(Giebel et al., 2011). How-

ever, the performance of applying ensemble methods to predictive distribution optimization-based

probabilistic wind forecasting is still not well studied. In this chapter, we seek to integrate the
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advantages of different types of predictive distributions, and develops an ensemble probabilistic

wind power forecasting framework that combines multiple predictive distribution types.

4.2 Methodology

The overall framework of the proposed ensemble probabilistic forecasting method, named Multi-

Distribution Ensemble (MDE), is a two-step forecasting method, which consists of deterministic

forecasts generation and ensemble probabilistic forecasts generation. The proposed MDE frame-

work is able to integrate with both competitive and cooperative ensemble strategies. The main

differences between competitive and cooperative ensemble models are listed as follows.

1. The competitive ensemble method combines different individual predictive distribution mod-

els together to an ensemble distribution model first. Then, probabilistic forecasts are ob-

tained from the ensemble distribution model.

2. The cooperative ensemble method generates different individual probabilistic forecasts first

based on each predictive distribution type. Then, ensemble probabilistic forecasts are gen-

erated through combining individual probabilistic forecasts to ensemble probabilistic fore-

casts.

The overall framework of the developed competitive MDE method is illustrated in Fig. 4.2.

In the first step, a Q-learning-based forecasting framework is adopted to generate short-term de-

terministic wind forecasts (i.e., 1-6 hour-ahead (HA)), and a numerical weather prediction (NWP)

model is used to generate day-ahead deterministic forecasts. The generated deterministic forecasts

are considered as mean values of predictive distributions. In the second step, a set of unknown pa-

rameters (i.e., weight parameters and standard deviations) of the ensemble model are determined

by minimizing the pinball loss based on training data. Then a surrogate model is constructed to

represent each optimal parameter as a function of the deterministic forecast. During online fore-

casting, a set of pseudo-optimal parameters of the ensemble model are estimated by the surrogate

44



model and deterministic forecasts. Finally, probabilistic forecasts are generated with the distribu-

tion means (i.e., deterministic forecasts) and pseudo-optimal parameters.
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Figure 4.2: Overall framework of the MDE competitive probabilistic wind power forecasting
method

The overall framework of the cooperative MDE method is illustrated in Fig. 4.3. The major

differences between the cooperative MDE and competitive MDE methods are highlighted in the

blue dashed square. For the cooperative MDE method, the first step is also to generate determin-

istic forecasts. In the second step, individual probabilistic forecasts are generated by using each

single predictive distribution based on the training dataset (Sun et al., 2019). The unknown param-

eters (i.e., standard deviations) of each predictive distribution are optimized. A weight parameter

is assigned to quantile forecasts from each individual model, and these weight parameters are op-

timized again by minimizing the pinball loss. Then a surrogate model is developed to represent
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each optimal weight as a function of the deterministic forecast. Similar to the competitive MDE

method, during the online forecasting, pseudo-optimal weights are estimated and used to generate

ensemble probabilistic forecasts. Finally, the method with the minimum pinball loss is chosen

to produce the final ensemble probabilistic forecasts. Overall, the competitive MDE method op-

timizes the unknown weight parameters and standard deviations simultaneously; the cooperative

MDE method optimizes the standard deviations when generating the individual model forecasts,

and optimize the weight parameters at the ensemble stage.
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Figure 4.3: Overall framework of the MDE cooperative probabilistic wind power forecasting
method

4.2.1 Q-learning enhanced deterministic forecasting

A large number of models have been developed in the literature for deterministic wind forecasting.

Most of existing deterministic forecasting methods are either selected based on the overall perfor-
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mance or ensembled by multiple models. Ensembling multiple deterministic models enhances the

robustness of the forecasting by reducing the risk of unsatisfactory models, but does not guarantee

the best accuracy (Feng and Zhang, 2018). Selecting a model based on the overall forecasting

performance, generally neglects the local performance of the selected model.

In this study, a Q-learning enhanced deterministic forecasting method is adopted for short-

term forecasting (1HA to 6HA), which seeks to choose the best forecasting model from a pool of

state-of-the-art machine learning based forecasting models at each forecasting time step (Feng and

Zhang, 2019). The developed method trains Q-learning agents based on the rewards of transferring

from the current model to the next model. The Q-learning agents converge to the optimal dynamic

model selection policy, which will be applied to select the best model for forecasting in the next

step based on the current model. The dynamic model selection process is expressed as:

S = {s}= {s1,s2, ...,sI} (4.1)

A = {a}= {a1,a2, ...,aI} (4.2)

Rt(si,a j) = ranking(Mi)− ranking(M j) (4.3)

where S, A, and R are state space, action space, and reward function in the dynamic model selection

Markov Decision Process, respectively. The parameters s and a are possible state and action,

respectively. I is the number of models (M) in the model pool. The reward function is defined

as the model performance improvement, which ensures the effective and efficient convergence of

Q-learning. More details about the Q-learning enhanced deterministic forecasting can be found in

Ref. (Feng and Zhang, 2019).

4.2.2 Probabilistic wind power forecasting model

In this section, multiple predictive distribution types are used to generate different individual proba-

bilistic wind power forecasting models. Probabilistic forecasts usually take the form of probability
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density functions (PDFs) or quantiles. Parametric approaches have been widely used in the liter-

ature to estimate the density or distribution (Fatemi et al., 2018). For a certain form of predictive

distribution, the PDF can generally be characterized by a mean value µ and a standard deviation

value σ as f (x|µ,σ), and the corresponding cumulative distribution function (CDF) can be de-

duced and denoted as F(x|µ,σ). The quantile function is one way of prescribing a probability

distribution, which is the inverse function of its corresponding CDF. Therefore, the quantile func-

tion of a certain predictive distribution can be denoted as qi = F−1( i
100), where i stands for the

ith quantile. The quantile functions qi,t(.) are distinct for different predictive distributions, such as

Gaussian, gamma, and laplace. Gaussian distribution is one of the most commonly used predictive

distributions in parametric approaches (Lange, 2005). The PDF of Gaussian distribution f (x|µ,σ)

is expressed as

f (x|µ,σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.4)

where µ and σ are the mean and standard deviation, respectively. The laplace distribution has also

been applied to describe wind power generation (Sun et al., 2018). The PDF of laplace distribution

f (x|µ,b) is formulated as

f (x|µ,b) = 1
2b

e−
|x−µ|

b (4.5)

where µ and b are the location and scale parameters, respectively. The relationship between the

standard deviation σ and the shape parameter of laplace distribution can be expressed as

b =
σ√

2
(4.6)

Similarly, for gamma distribution, the PDF is expressed as

f (x|k,θ) = xk−1e−
x
θ

θ kΓ (k)
(4.7)
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where k and θ are the shape parameter and scale parameter, respectively. The relationship between

the mean value µ , standard deviation σ , k, and θ can be expressed as

µ = kθ (4.8)

σ =
√

kθ (4.9)

The location parameter and shape parameter from all of the above distributions can be represented

by the mean and standard deviation. Therefore, the PDF can be obtained by estimating the mean

and standard deviation in the training or forecasting stages. The pseudocode of generating the

MDE forecasting member models is illustrated in Algorithm 1.

Algorithm 1: Generate quantile forecasts through each single distribution
Data: Deterministic wind power forecasts

Result: Quantile forecasts

1 Initialization: Obtain PDF of a single model and represent it in the form of mean µ and

standard deviation σ as f (x|µ,σ);

2 Calculate CDF F(x|µ,σ) of the predictive distribution;

3 if CDF is invertible then

4 Calculate quantile function through qi(F−1(x|µ,σ , i
100))

5 else

6 Use Newton-Raphson method to calculate quantile qi

7 end

8 Calculate optimal σ ’s through pinball loss optimization;

9 Build a surrogate model between deterministic forecasts and optimal σs;

10 Estimate pseudo-optimal σ based on deterministic forecasts;

11 Generate quantile forecasts;
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4.2.3 Competitive MDE method

For the competitive MDE method, to combine the advantages of different predictive distributions,

a general combined quantile function with N member models is formulated as follows:

qp
i,t(µt ,ω

p
t ,σt) =

N

∑
n=1

ω
p
t,nqi,t,n(µt ,σt,n) (4.10)

where qp
i,t is the combined ith quantile at the tth forecasting step, qi,t,n(µt ,σt,n) is the ith member

quantile at the tth forecasting step, and ω
p
t,n is the weight of the nth model at time t satisfying that

0≤ ω
p
t,n ≤ 1 (4.11)

N

∑
n=1

ω
p
t,n = 1 (4.12)

The unknown parameters in the ensemble quantile function can be solved by minimizing the pin-

ball loss at each time step. Pinball loss is a widely used metric to evaluate probabilistic forecasts,

which is defined by

Li,t(qi,t ,xt) =


(1− i

100
)× (qi,t− xt), xi < qi,t

i
100
× (xt−qi,t), xt ≥ qi,t

(4.13)

where xt represents the observation at time t. For a given i percentage, the quantile qi,t represents

the value of a random variable whose CDF is i percentage at time t. The pinball loss optimization

problem for the competitive MDE model can be formulated as:

min
ω

p
t ,σt

99

∑
i=1

Li,t(
N

∑
n=1

ω
p
t,nqi,t,n(µt ,σt,n),xt)

s.t.
N

∑
n=1

ω
p
t,n = 1

0≤ ω
p
t,n ≤ 1, ∀n ∈ N

σl ≤ σ ≤ σµ .

(4.14)

where σl and σu represent the lower and upper bounds of the unknown standard deviation, respec-

tively, which are selected based on the forecasting target (Hansen et al., 2017).
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4.2.4 Cooperative MDE method

For the cooperative MDE method, with the calculated ith quantile of the nth model, a general

combined quantile with N individual models is formulated as:

qo
i,t(µt ,ω

o
t ) =

N

∑
n=1

ω
o
t,nqi,t,n(µt) (4.15)

0≤ ω
o
t,n ≤ 1 (4.16)

N

∑
n=1

ω
o
t,n = 1 (4.17)

where qo
i,t is the combined ith quantile forecasts at the tth forecasting step, qi,t,n(µt) is the ith

member quantile forecasts at the tth forecasting step from model n, and ωo
t,n is the weight of the

quantile forecasts from the nth model. Different from the competitive MDE method, the unknown

parameters in the cooperative MDE method only include weight parameters.

It is seen from Eqs. 4.10 and 4.15 that the weights of individual models at each time step are

different, and the location and shape parameters at each time step are also varying. Therefore, we

need to adaptively estimate the unknown parameters at each time step. By contrast, for the cooper-

ative MDE method, the weight parameters can be estimated by solving the following optimization

problem:

min
ωo

t

99

∑
i=1

Li,t(
N

∑
n=1

ω
o
t,nqi,t,n(µt),xt)

s.t.
N

∑
n=1

ω
o
t,n = 1

0≤ ω
o
t,n ≤ 1, ∀n ∈ N.

(4.18)

The optimization problems in Eqs. 4.14 and 4.18 are strictly constrained by three constraints:

(i) all the weights of ensemble member models or member quantile forecasts must be nonnegative;

(ii) the sum of all weights equals one; and (iii) the standard deviation of each component model

must be in the variable range of the corresponding distribution. In this study, the genetic algorithm

(GA) (Scrucca et al., 2013) is adopted to solve the two optimization problems. In this study, the
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population size is set to be 50, the mutation percentage is 0.1, the crossover percentage is 0.8, and

the maximum number of iterations is 200. The optimization stops when the improvement is less

than 0.01%.

4.2.5 Surrogate Model

The optimization models in Eqs. 4.14 and 4.18 calculate the optimal parameters of predictive

distributions with observations. However, when we generate probabilistic forecasts, we do not

know the observations and can only assume the deterministic forecasts as mean values of the

predictive distribution. The optimal standard deviations and optimal weights at each forecasting

time step are needed to generate probabilistic forecasts. To this end, a surrogate model is built to

represent the optimal parameters as functions of the deterministic forecasts in the training stage,

which can be expressed as:

σ̂t,n = f (x̂t) (4.19)

ω̂t,n = g(x̂t) (4.20)

where x̂t is the deterministic forecast at time t, f (σ̂) and g(ω̂) are the surrogate models of the

optimal standard deviation and weight parameter of the predictive distribution, respectively. The

surrogate models are used to estimate the pseudo-optimal standard deviation and pseudo-optimal

weight parameters at the online forecasting stage.

Several possible surrogate model types can be used, such as support vector regression (SVR),

radial basis function (RBF), and persistence model (PS). In this study, a surrogate model selection

framework is developed to choose the most suitable surrogate model for estimating weights and

standard deviations of each ensemble member models. Figure 4.4 shows the procedure of selecting

the optimal surrogate model. At the forecasting training stage, a small portion (i.e., 8% of the

training data in this study) of the training data is used to build a surrogate model. The optimal

training parameters are fed into a surrogate model pool (that consist of SVR, RBF, and PS) to find
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Figure 4.4: Surrogate model selection

the best fitted surrogate model between the point forecast value and each optimal parameters. The

model with the minimum mean absolute error (MAE) is selected as the surrogate model for that

parameter to be used at the online forecasting stage. In the forecasting stage, the optimal unknown

parameters of the predictive distribution are estimated through the surrogate, and thus the estimated

parameters are referred to as pseudo-optimal parameters.

4.3 Case Studies and Results

The developed MDE probabilistic forecasting framework was evaluated at 7 locations selected

from the Wind Integration National Dataset (WIND) Toolkit (Draxl et al., 2015). The WIND
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Toolkit includes meteorological information (e.g., wind direction, wind speed, air temperature,

surface air pressure, density at hub height), synthetic actual wind power, and wind power forecasts

generated by the Weather Research and Forecasting (WRF) model. It covers over 126,000 locations

in the United States. In addition to the day-ahead forecasting, very-short-term forecasts (i.e., 1HA

to 6HA) are generated by using the Q-learning enhanced deterministic forecasting method. In this

study, the duration of the collected data at the selected 7 locations spans two years from January 1st

2011 to December 31st 2012. The data information at the selected 7 locations is briefly summarized

in Table 4.1. For all the locations, the first 3/4 of the data is used as training data, in which the first

11/12 is used to train the deterministic forecast models and the remaining 1/12 of the training data

is used to build the surrogate models of the optimal standard deviations and weight parameters. The

effectiveness of the forecasts is validated by the remaining 1/4 of the data. The developed MDE

method is able to generate probabilistic forecasts at multiple forecasting horizons, and 1HA-6HA

and day-ahead wind power forecasts are explored in this study.

Table 4.1: Data summary of the selected 7 WIND Toolkit sites

Case No. Site ID Lat. Long. Capacity (MW) State
C1 4816 29.38 -100.37 16 TX

C2 8979 31.53 -95.62 16 TX

C3 10069 32.31 -98.26 16 TX

C4 10526 32.44 -100.55 16 TX

C5 1342 27.12 -97.86 16 TX

C6 2061 27.95 -97.40 14 TX

C7 9572 31.99 -100.118 16 TX

In the study, two different weight averaging methods for model ensemble and three single

predictive distribution models are used as baselines in the case studies. The two benchmark weight

averaging based ensemble methods are Arithmetic Averaging (AA) and Weighted Averaging (WA).
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1. AA: The arithmetic weights apply equally to different models:

ω
AA
t,n =

1
N
. (4.21)

Then, the combined quantile of AA can be calculated through:

qAA
i,t (µt ,ω

AA
t ) =

N

∑
n=1

ω
AA
t,n qi,t,n(µt) (4.22)

2. WA: Each quantity to be averaged is assigned a weight that represents the relative importance

of that quantity. The model with a higher accuracy is assigned a larger weight:

ω
WA
t,n =

1/
99
∑

i=1
Li,t,n(qi,t,n(µt),xt)

N
∑

n=1
1/

99
∑

i=1
Li,t,n(qi,t,n(µt),xt)

(4.23)

Similarly, the combined quantile of WA can be calculated through:

qWA
i,t (µt ,ω

WA
t ) =

N

∑
n=1

ω
WA
t,n qi,t,n(µt) (4.24)

The three single predictive distribution based optimization models are Q-learning with Gaus-

sian distribution (Q-Gaussian), Q-learning with Gamma distribution (Q-Gamma), and Q-learning

with Laplace distribution (Q-Laplace). The details of the pinball loss optimization based model

can be found in (Sun et al., 2018).

Normalized indices of standard metrics root mean squared error and mean absolute error, i.e.,

NMAE and NRMSE, are adopted to evaluate the performance of deterministic forecasts. The

forecasting errors by using the Q-learning based deterministic model at the selected locations are

summarized in Table 4.2. It is shown that the 1HA NMAE and NRMSE are in the ranges of

5%-8% and 8%-12%, respectively. The numerical weather prediction (NWP) method is used to

produce day-ahead deterministic forecasts. It is shown that the day-ahead NMAE and NRMSE are

in the range of 11%-14% and 15%-19%, respectively. Overall, the accuracies of the Q-learning
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Table 4.2: Deterministic forecasting results by using Q-learning and NWP

Model LAT Metric
Site

C1 C2 C3 C4 C5 C6 C7

Q-learning

1HA
NMAE(%) 6.63 6.85 6.70 6.74 6.67 5.38 7.76
NRMSE(%) 10.55 10.93 11.04 10.66 9.93 8.37 11.93

2HA
NMAE(%) 10.72 11.08 11.20 11.28 10.36 8.34 10.90
NRMSE(%) 15.86 16.33 16.93 16.64 14.60 12.31 17.14

3HA
NMAE(%) 13.95 14.22 14.65 14.88 12.44 10.49 14.56
NRMSE(%) 19.43 19.86 20.92 20.71 16.94 14.93 20.12

4HA
NMAE(%) 16.43 16.76 17.69 18.00 13.84 12.17 16.28
NRMSE(%) 21.98 22.22 23.92 23.83 18.56 16.85 21.79

5HA
NMAE(%) 18.19 18.37 20.36 20.38 15.35 13.53 17.87
NRMSE(%) 23.65 23.71 26.51 26.01 20.19 18.40 23.15

6HA
NMAE(%) 19.85 19.60 21.94 22.63 16.51 14.70 18.41
NRMSE(%) 25.09 24.85 27.82 27.82 21.31 19.47 23.55

NWP DA
NMAE(%) 12.70 12.59 13.21 13.97 13.97 11.63 13.37
NRMSE(%) 16.85 17.44 18.07 18.70 18.43 15.41 18.17

Note: LAT is the abbreviation for look-ahead time. DA: day-ahead

based 1HA to 6HA deterministic forecasts and the NWP-based day-ahead deterministic forecasts

are reasonable.

To show the robustness of the developed MDE probabilistic forecasting framework, the nor-

malized pinball loss values at different look-ahead time of the 7 wind farms are illustrated in Fig.

4.5. Figure 4.6 shows how the normalized pinball loss varies with the look-ahead time at the C7

site. The sum of pinball loss is averaged over all quantiles from 1% to 99% and normalized by the

wind farm capacity at each site. A lower pinball loss score indicates a better probabilistic forecast.

Results show that the MDE-competitive model has improved the pinball loss by up to 20.5%, and

the MDE-cooperative model has improved the pinball loss by up to 8.5% compared to the three

individual member models (i.e., Q-Gaussian, Q-Gamma, and Q-Laplace) and two baseline weight

averaging ensemble models (i.e., AA and WA). It is seen from Fig. 4.6 that the MDE-competitive

model has the smallest pinball loss value at all locations for different look-ahead times except for

1HA forecasts. For 1HA forecasts, the MDE-cooperative method has the smallest pinball loss

value at all locations. Note that for all the look-ahead hours, the MDE-cooperative model has
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also shown a better accuracy than individual member models, which validates the effectiveness of

the MDE ensemble framework. The MDE-competitive model has shown a better accuracy than

individual member models for 2HA-6HA and day-ahead forecasts.

The reason why the MDE-competitive method has a worse accuracy than the MDE-cooperative

model and some single-distribution methods in 1HA forecasts is that, the accuracy of 1HA deter-

ministic forecasts is significantly better than that of other look-ahead times. Thus there is less

improvement space for the ensemble model to further improve the performance by optimizing the

standard deviation and weight parameters simultaneously. Instead, the cooperative model that re-

fines the 1HA forecasts from different single models performs better. By contrast, the competitive

method performs better when the deterministic forecasting accuracy is relatively worse. The ac-

curacy of deterministic forecasts is a major factor that affects the performance (i.e., pinball loss)

of the final probabilistic forecasts. In addition, the one-step optimization in MDE-competitive and

two-step optimization in MDE-cooperative also affects the probabilistic forecasting performance.

The MDE-competitive method first ensembles the distribution members together, and then uses

this combined distribution model to generate probabilistic forecasts, which optimizes the stan-

dard deviations and weight parameters simultaneously. The MDE-cooperative method first gener-

ates different single quantile forecasts, and then ensembles the single quantile forecasts to refined

quantile forecasts. This two-step optimization (i.e., determine standard deviations first and then

weights) may introduce more uncertainty compared to the one-step optimization. Similarly, the

surrogate model accuracy and look-ahead forecasting times may also affect the final probabilistic

forecasting results.

Figures 4.7(a) and 4.7(b) show the MDE-competitive and MDE-cooperative based day-ahead

probabilistic wind power forecasts at the C3 site from 2012-08-09 to 2012-08-19. It is seen from

Fig. 4.7 that the PIs of the MDE-competitive method cover the actual and forecasted wind power

better than the MDE-cooperative method. For the MDE-cooperative method, even it has nar-

rower PIs, some part of the PIs could not cover the observations. Therefore, the MDE-competitive
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Figure 4.5: Normalized pinball loss of different ensemble methods and single methods

method is more reliable than the MDE-cooperative method in day-ahead forecasts. The width of

the predictive interval varies with the wind power variability. When the wind power fluctuates

more frequently, the predictive interval tends to be wider, and thereby the uncertainty in wind

power forecasts is relatively higher.

In addition to pinball loss, two more standard metrics, i.e., reliability and sharpness, are also

calculated to assess the probabilistic forecasting accuracy. Fig. 4.8 show the 1- to 6-HA and 24-HA

reliability plots of the probabilistic forecasts at the selected C7 site with different forecasting mod-
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Figure 4.6: Normalized pinball loss of different models with different look-ahead hours at the C7
site

els. A forecast presents better reliability when the curve is closer to the diagonal. Overall it is seen

from Fig. 4.8 that the proposed MDE ensemble framework (both competitive and cooperative) has

better reliability performance than the baseline methods. Note that for 1-HA forecasts, the MDE-

cooperative method has the best reliability performance and the MDE-competitive method has the

best reliability performance for 2HA-6HA and 24HA forecasts. It is also seen that the two base-

line ensemble methods (AA and MA) have better performance than the single-distribution models.

Overall the results show the effectiveness of ensemble modeling for enhancing probabilistic fore-

casts. The reliability plots of all the case study sites are provided in Fig. 4.9-4.15.

The sharpness plots of the proposed ensemble system (i.e., MDE-competitive method and

MDE-cooperative method); and baseline models (Q-Laplace, Q-Gaussian, Q-Gaussian, AA, and

WA ensemble methods) at the C7 site are compared in Fig. 4.8. The expected interval score

decreases with increasing nominal coverage rate, and the sharpness of the MDE-competitive and

MDE-cooperative models are slightly worse than some of the baseline models (e.g., Q-laplace and

Q-gamma). It is mainly because the reliability and sharpness are two complementary metrics, and

the improvement of reliability will sacrifice the sharpness to some extent. Overall, the interval
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Figure 4.7: Day-ahead MDE-competitive and MDE-cooperative forecasts at the C3 site

size of the MDE forecasts ranges from 10% to 120%, which indicates reasonable sharpness. The

sharpness plots of all the case study sites are provided in Fig. 4.9-4.15 .

4.4 Conclusion

In this chapter, a multi-distribution ensemble (MDE) probabilistic wind forecasting framework

was developed, with both competitive and cooperative ensemble strategies. Three types of predic-

tive distributions (i.e., Gaussian, Gama, and Laplace) were adopted as ensemble members. The

optimal ensemble weight parameters and standard deviations of different predictive distributions
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Figure 4.8: Reliability and sharpness comparison of different models at the C7 site with different
look-ahead times (blue lines: reliability; orange lines: sharpness)
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Figure 4.8: (continued) Reliability and sharpness comparison of different models at the C7 site
with different look-ahead times (blue lines: reliability; orange lines: sharpness)

were determined by minimizing the sum of pinball loss in the training stage. A set of surrogate

models of the optimal parameters were constructed to estimate the pseudo-optimal parameters in

the forecasting stage. Case studies at 7 selected sites show that:

1. The developed MDE probabilistic forecasting framework could reduce the pinball loss score

by up to 20.5% compared to benchmark models.

2. The MDE framework is robust under different forecasting time horizons at different loca-

tions.

3. The MDE-competitive method performs better in 2HA-6HA and 24HA forecasts and the

MDE-cooperative method performs better in 1HA forecasts.

4. Both competitive and cooperative MDE methods have shown better reliability than single-

distribution models and benchmark ensemble models. The sharpness intervals size of MDE

forecasts ranges from 10% to 120%, which indicates reasonable sharpness.
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Figure 4.9: 1HA reliability and sharpness comparison of different models at the 7 sites

63



0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

5

10

15

20

25

30

35

40

45

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

MA

Ideal

(g) C7

Figure 4.9: (continued) 1HA reliability and sharpness comparison of different models at the 7 sites
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Figure 4.10: 2HA reliability and sharpness comparison of different models at the 7 sites
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(f) C6
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Figure 4.10: (continued) 2HA reliability and sharpness comparison of different models at the 7
sites
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Figure 4.11: 3HA reliability and sharpness comparison of different models at the 7 sites
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Figure 4.11: (continued) 3HA reliability and sharpness comparison of different models at the 7
sites
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Figure 4.12: 4HA reliability and sharpness comparison of different models at the 7 sites
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Figure 4.12: (continued) 4HA reliability and sharpness comparison of different models at the 7
sites

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(a) C1

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

90

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(b) C2

0 20 40 60 80 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

90

100

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(c) C3

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

90

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(d) C4

Figure 4.13: 5HA reliability and sharpness comparison of different models at the 7 sites
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Figure 4.13: (continued) 5HA reliability and sharpness comparison of different models at the 7
sites
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Figure 4.14: 6HA reliability and sharpness comparison of different models at the 7 sites

69



0 20 40 60 80 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

20

40

60

80

100

120

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(c) C3

0 20 40 60 80 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

90

100

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(d) C4

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

90

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(e) C5

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(f) C6

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(g) C7

Figure 4.14: (continued) 6HA reliability and sharpness comparison of different models at the 7
sites

70



0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(a) C1

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(b) C2

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(c) C3

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(d) C4

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

80

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(e) C5

0 10 20 30 40 50 60 70 80 90 100

Nonminal Proportion [%]

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 R

a
te

 [
%

]

0

10

20

30

40

50

60

70

In
te

rv
a

l 
S

c
o

re
 [

%
]

MDE-competitive

MDE-cooperative

Q-Gaussian

Q-Gamma

Q-Laplace

AA

WA

Ideal

(f) C6

Figure 4.15: 24HA reliability and sharpness comparison of different models at the 7 sites
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(g) C7

Figure 4.15: (continued) 24HA reliability and sharpness comparison of different models at the 7
sites
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CHAPTER 5

IMPROVING PROBABILISTIC RENEWABLE FORECASTING VIA

SPATIAL-TEMPORAL CORRELATION MODELING

Leveraging both temporal and spatial correlations to predict wind power remains one of the most

challenging and less studied areas of deterministic wind power prediction. Instead of determin-

istic wind power forecasting, probabilistic forecasting models have been adopted in the literature

to generate wind power forecast scenarios and provide insights on the uncertainty of forecasts.

Moreover, for large-scale wind farms, modeling aggregated wind power takes the advantage of

fast computation and simplified implementation compared to detailed modelling of single wind

farm.

In this chapter, the problem of aggregated probabilistic wind power forecasting of multiple

sites is investigated by considering the spatial-temporal correlation. A Q-learning enhanced de-

terministic wind power forecasting method is used to generate deterministic wind power forecasts

for individual wind farms. The spatial-temporal correlation between the member wind farms and

the aggregated wind power is modeled by using a joint distribution model based on the copula

theory. The marginal distributions of actual aggregated wind power and forecasted power of mem-

ber wind farms are built from Gaussian mixture models. Then, a conditional distribution of the

aggregated wind power is deduced through the Bayesian theory, which is used for aggregated

probabilistic forecasts. The effectiveness of the proposed aggregated probabilistic wind power

forecasting framework is validated by using the Wind Integration National Dataset Toolkit. Nu-

merical results of case studies at nine locations show that the developed aggregated probabilistic

forecasting methodology has improved the pinball loss metric score by up to 54% compared to

three benchmark models.

73



5.1 Motivation and Objective

Studies have shown that the integration of geographically dispersed wind farms could reduce ex-

treme power output, which is referred to as smoothing effect (Tastu et al., 2011). In addition,

power produced from one wind farm at different times is typically temporally correlated (Malvaldi

et al., 2017). It would be interesting to explore the impacts of spatial-temporal correlation on the

performance of aggregated wind power forecasting. The benefits of spatial-temporal modeling for

wind power forecasting at aggregated levels have been briefly discussed in (Lenzi et al., 2018).

In addition to wind power, spatial-temporal correlation modeling has also been applied to wind

speed forecasting (Khodayar and Wang, 2018), load forecasting (Zhao et al., 2018; Mohan et al.,

2018), and solar power forecasting (Agoua et al., 2018). Therefore, in this study, we seek to de-

velop an aggregated probabilistic wind power forecasting method by considering spatial-temporal

correlation among wind farms with improved marginal distribution modeling of wind power and

clustering. Specifically, a Copula model is adopted to build a spatial-temporal correlated joint

model between the aggregated wind power and forecasted wind power of each wind farm, and

the conditional distribution of aggregated wind power is used to generate aggregated probabilistic

wind power forecasts.

5.2 Methodology

The overall framework of the developed conditional probabilistic aggregated wind power forecast-

ing (cp-AWPF) framework is illustrated in Fig. 5.1. The five major steps are briefly described as

follows:

1. Step 1: A Q-learning based ensemble deterministic forecasting method is adopted to select

the best forecasting model from a pool of state-of-the-art machine learning based forecasting

models at each time step, thus generating deterministic wind power forecasts for individual

wind farms.
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2. Step 2: GMM is used to fit the probability density functions (PDFs) of the historical aggre-

gated actual wind power and the wind power forecasts at each wind farm.

3. Step 3: A prototype-based k-means clustering method is used to cluster wind farms into

multiple non-overlapping clusters based on their spatial similarity.

4. Step 4: For each cluster, the joint distribution of historical aggregated actual wind power and

wind power forecasts at each member wind farm is constructed based on the Copula theory.

5. Step 5: Aggregated probabilistic wind power forecasts are generated through the conditional

distribution.
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Figure 5.1: Overall framework of the conditional probabilistic aggregated wind power forecasting
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5.2.1 Q-learning Enhanced Deterministic Forecasting

The developed spatial-temporal correlation based cp-AWPF framework is constructed based on

deterministic forecasts. A large collection of methods have been developed in the literature to ef-

fectively generate deterministic wind forecasts. However, most of existing deterministic methods

are either selected based on the overall forecasting performance or ensembled by multiple mod-

els. Selecting a model based on the overall forecasting performance generally neglects the local

performance of the selected model.

In this study, a Q-learning enhanced deterministic forecasting method, developed in our previ-

ous work (Feng and Zhang, 2019), is adopted. This method can choose the best forecasting model

from a pool of state-of-the-art machine learning based forecasting models (i.e., artificial neural net-

work, support vector machine, gradient boosting machine, and random forest) at each time step.

To be more specific, the developed method trains Q-learning agents based on the rewards of trans-

ferring from the current model to the next model. For example, a Q-learning agent will receive

a reward by transferring from the current forecasting model Mi to the next forecasting model M j

in each training step, from which the Q-learning agent will learn the optimal policy of the model

selection. Then, this optimal policy will be applied to select the best model for forecasting in the

next step based on the current model in the forecasting stage. The dynamic model selection process

is expressed as (Feng and Zhang, 2019):

S = {s}= {s1,s2, ...,sI} (5.1)

A = {a}= {a1,a2, ...,aI} (5.2)

Rt(si,a j) = ranking(Mi)− ranking(M j) (5.3)

Q(e+1)(se,ae) = (1−α)Qe(se,ae)+α[Re(se,ae)+ γ max
a∈A

Qe(s(e+1),a)] (5.4)

where S, A, R, and Q are state space, action space, reward function, and Q-table in the dynamic

model selection Markov Decision Process, respectively. s and a are possible state and action,
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respectively. I is the number of models (M) in the model pool. e is the episode index with the

maximum of 100. α = 0.1 is the learning rate that controls the aggressiveness of learning. γ = 0.8

is a discount factor that weights the future reward. The reward function is defined as the model

performance improvement, which ensures the effective and efficient convergence of Q-learning.

More details about the Q-learning enhanced deterministic forecasting can be found in Ref. (Feng

and Zhang, 2019).

5.2.2 Wind Power Distribution Modeling

The large variability in wind power imposes challenges to accurately model the wind power

through a unimodal distribution. Mixture distributions have been widely utilized in statistics to

approximate multi-modal distributions. To accurately characterize the variability of wind power,

GMM is adopted in this study to model the aggregated actual wind power and forecasted wind

power. The probabilistic density function (PDF) of GMM is formulated as follows:

fG(x|NG,ωi,µi,σi) =
NG

∑
i=1

ωigi(x|µi,σi) (5.5)

where NG is the number of mixture components, U(µi ∈U) is the expected value vector, Σ(σi ∈

Σ) is the standard deviation vector, and the Ω(ωi ∈ Ω) is the weight vector. Each component

g(x; µi,σi) follows a normal distribution, which can be expressed as:

g(x|µ,σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (5.6)

The GMM distribution has two constraints: (1) the integral of Eq. 5.5 equals unity, and (2) the

summation of weight parameters equals unity as well, which are expressed as follows:

∫ +∞

−∞

fG(x|NG,ωi,µi,σi)dx =
∫ +∞

−∞

NG

∑
i=1

ωigi(x|µi,σi)dx = 1 (5.7)
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NG

∑
i=1

ωi = 1 (5.8)

The parameters of GMM are estimated through the expectation maximization (EM) algorithm. The

goal of EM is to maximize the likelihood function with respect to the parameters. More details

about EM can be found in (Hartley, 1958). The CDF (F̂) corresponding to the estimated PDF is

expressed as:

FG(x|NG,ωi,µi,σi) =
NG

∑
i=1

[

√
π

2
ωiσier f (

µi− x
σi

)]+C (5.9)

where C is an integral constant, and er f (·) is the Gaussian error function which is expressed as:

er f (x) =
2√
π

∫ x

0
e−t2

dt (5.10)

5.2.3 Clustering Analysis

Clustering unlabelled wind farms is an unsupervised problem, which distinguishes and labels the

type of training data based on the characteristics of the data itself. In this study, we aim to reduce

the dimensionality due to the large number of wind farms by dividing wind farms into multiple

clusters, thereby reducing the computational cost. In addition, wind farm clustering could also

strengthen the intra-cluster correlation, i.e., wind farms in the same cluster are more strongly cor-

related, which could potentially increase the accuracy of the aggregated wind power forecasting

for each cluster and thus the overall forecasting accuracy.

5.2.4 Unsupervised Clustering based on Spatial Correlation

In this study, K-means is adopted to divide the member wind farms into multiple non-overlapping

clusters based on wind farm characteristics. K-means is a widely used unsupervised clustering
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algorithm. Given a dataset ψ = x1,x2...,xn with n instances, the K-means algorithm divides the

dataset into K disjoint clusters as ψ =C1,C2, ...,Ck. The objective function of K-means is:

min
K

∑
k=1

∑
xk

d(x,mk) (5.11)

where mk is the centroid of cluster Ck, d(·) measures the distance between x and the centroid

of cluster Ck. In this study, the Pearson’s correlation coefficient is used as a distance metric to

characterize the spatial-temporal correlation of wind farms.

Clustering Assessment Metric

It is challenging to validate unsupervised clustering results since the objects are unlabeled. Un-

supervised clustering can be measured quantitatively based on cohesion and separation (Arbelaitz

et al., 2013). Cohesion measures how closely related the objects are in a cluster, while Separation

measures how distinct or well-separated a cluster (or centroid) is from other clusters. In this study,

the Silhouette width (SW) is used to evaluate the clustering performance, which quantifies both

cohesion and separation. It can be expressed as:

SW =
1
N

N

∑
i=1

ηb(i)−ηa(i)
max(ηb(i)−ηa(i))

(5.12)

where ηa(i) is the average distance between object i and all other data in the same cluster, and

ηb(i) is the smallest average distance between object i to other objects in the neighbour cluster.

The SW value ranges from -1 to +1, where SW =+1 indicates desired clustering, while SW =−1

indicates undesired clustering.

5.2.5 Wind Farms spatial-temporal Correlation Modeling

Once the marginal wind power distribution of a single wind farm is defined, the spatial-temporal

correlation among wind farms in each cluster can be modeled by Copula. Copula is one of the

79



most widely used methods for modeling the dependency among random variables. Given a cluster,

the aggregated actual wind power pΣ is expressed as

pΣ =
N

∑
i=1

pi (5.13)

where pi is the actual wind power of the ith wind farm, and N is the total number of wind farms to

be aggregated in the cluster.

Suppose p̂t
i is the t-hour-ahead (tHA) forecasted wind power at the ith wind farm, f (p̂t

i)

and F(p̂t
i) denote the corresponding marginal PDF and marginal cumulative distribution function

(CDF), respectively. The spatial correlation ΘS among the N wind farms is modeled as:

F(P̂t) =C(F(p̂t
1), ...,F(p̂t

N)) (5.14)

where P̂t = {p̂t
1, p̂t

1, ..., p̂t
N} is a N-dimension vector denoting the tHA wind power forecasts of the

N wind farms, and C(·) is the Copula function.

In addition to the spatial correlation among wind farms, the forecasted wind power with dif-

ferent look ahead times are typically temporally correlated (Wang et al., 2018). Such temporal

correlation ΘT is modeled as:

F(P̂t , P̂t+1) =C(F(p̂t
1), ...,F(p̂t

N),F(p̂t+1
1 ), ...,F(p̂t+1

N )) (5.15)

where, P̂t+1 = {p̂t+1
1 , p̂t+1

1 , ..., p̂t+1
N } is a N-dimension vector denoting the (t +1)HA wind power

forecasts of the N wind farms.

Based on Eqs. 5.13–5.15, the joint CDF of the forecasted wind power at individual wind farms

and the aggregated actual wind power (of all farms), F(pΣ , P̂t , P̂t+1) can be modeled through their

marginal CDFs and the Copula function with a spatial-temporal joint structure ΘS−T , which is

expressed as:

F(pΣ , P̂t , P̂t+1) =C(pΣ ,F(p̂t
1), ...,F(p̂t

N),F(p̂t+1
1 ), ...,F(p̂t+1

N ))

=C(pΣ ,J,K)

(5.16)
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where,

J = F(p̂t
1), ...,F(p̂t

N) (5.17)

K = F(p̂t+1
1 ), ...,F(p̂t+1

N ) (5.18)

Similarly, the joint PDF of the forecasted wind power at individual member farms and the aggre-

gated actual wind power (of all farms) is expressed as:

f (pΣ , P̂t , P̂t+1) = c(F(pΣ ),J,K) · f (pΣ ) ·
N

∏
i=1

f (p̂t
i) (5.19)

where the marginal PDF is modeled by using the aforementioned GMM distribution based on

historical actual and forecasting data. Then, the conditional joint PDF of the aggregated wind

power given the power forecasts of all the member farms is deduced from the Bayesian formula,

given by:

f (pΣ |P̂t , P̂t+1) =
c(F(pΣ ),J,K)

c(J,K)
· f (pΣ ) (5.20)

The conditional distribution of the aggregated wind power given all the member farms fore-

casts can be trained by using historical actual and forecasting data. With any given deterministic

forecasts of individual wind farms, we can use the copula model and the trained conditional PDF

in Eq. 5.20 to calculate the conditional CDF. Then a large number of scenarios of the aggregated

wind power of each cluster can be generated by sampling from the conditional CDF. The PDF of

the aggregated wind power in each cluster can be deduced based on the scenarios. The final PDF

of all aggregated wind farms is calculated through convolution. One prerequisite of convolution is

that the variables being convoluted should be independent. If the clusters are cross-correlated with

each other, a copula based dependent convolution (such as the one proposed by Zhang et al. (Zhang

et al., 2016)) could be used to characterize the cross-correlation among clusters. The probabilistic

forecasts could also be represented in the form of quantiles and confidence intervals based on the
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PDF. The pseudocode of quantile forecasts based on inverse transform is illustrated in Algorithm

2.
Algorithm 2: Generate quantile forecasts based on inverse transform

Data: Deterministic wind power forecasts

Result: Quantile forecasts

1 Initialization: Obtain PDF of each single wind farm and aggregated wind power through

GMM;

2 Model spatial-temporal correlation among wind farms through a joint distribution by

Copula;

3 Calculate conditional PDF and CDF of the aggregated wind power;

4 Sample from conditional CDF through inverse transform to generate a large number of

aggregated wind power scenarios;

5 Generate quantile forecasts based on the distribution of generated scenarios;

5.3 Case Studies and Results

The developed cp-AWPF framework was evaluated at 9 wind farms in Texas that were selected

from the Wind Integration National Dataset (WIND) Toolkit (Draxl et al., 2015). The WIND

Toolkit includes meteorological information (e.g., wind direction, wind speed, air temperature,

surface air pressure, density at hub height), synthetic actual wind power, and wind power forecasts

generated by the Weather Research and Forecasting (WRF) model. It covers over 126,000 locations

in the United States. In addition to day-ahead (DA) forecasts from WIND Toolkit, very-short-

term forecasts (i.e., 1HA to 6HA) are generated by using the Q-learning enhanced deterministic

forecasting method. In this study, the duration of the collected data at the selected 9 wind farms

spans two years from January 1st 2011 to December 31st 2012. The data information at the selected

9 wind farms is briefly summarized in Table 5.1. For all the 9 locations, the first 3/4 of the data is

used as training data. The number of scenarios generated from the conditional distribution is set

as Ns=5,000. The accuracy of the forecasts is evaluated by the remaining 1/4 of data. Though the
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developed cp-AWPF method is capable of generating forecasts at multiple forecasting horizons,

only 1HA-6HA and day-ahead wind power forecasts are generated in this study.

Table 5.1: Data summary of the selected 9 WIND Toolkit sites

Site Name Site ID Lat. Long. Capacity (MW) State
S1 4816 29.38 -100.37 16 TX
S2 8979 31.53 -95.62 16 TX
S3 10069 32.31 -98.26 16 TX
S4 10526 32.44 -100.55 16 TX
S5 1342 27.12 -97.86 16 TX
S6 2061 27.95 -97.40 14 TX
S7 9572 31.99 -100.118 16 TX
S8 10527 32.45 -100.41 2 TX
S9 11038 32.72 -100.92 6 TX

Normalized indices of standard metrics like root mean squared error and mean absolute error,

i.e., NRMSE and NMAE, are adopted to evaluate the performance of Q-learning enhanced deter-

ministic forecasts. The forecasting errors by using the Q-learning based deterministic forecasting

model at the selected locations are summarized in Table 5.2. It is shown that the 1HA NMAE and

NRMSE are in the ranges of 5%-8% and 8%-12%, respectively. Day-ahead deterministic forecasts

are provided in the WIND Toolkit dataset, which are generated from numerical weather predic-

tion (NWP) models (Zhang et al., 2015). It is shown that the day-ahead NMAE and NRMSE are

in the range of 11%-14% and 15%-19%, respectively. Overall, the accuracies of the Q-learning

based 1HA to 6HA deterministic forecasts and the NWP-based day-ahead deterministic forecasts

are reasonable.

Fig. 5.2(a) shows the marginal probability distributions of wind power forecasts from six

distribution types at the S4 site (i.e., Gaussian, Gamma, Logistic, Rayleigh, KDE, and GMM

distributions). For the Gaussian, Gamma, Logistic, and Rayleigh distributions, the parameters

are estimated through the maximum likelihood (ML) method. The parameters of the KDE and

GMM distributions are estimated by using the expectation maximization (EM) algorithm. Fig.

5.2(b) illustrates the mixture components of the GMM distribution at the S4 site. The Akaike
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Table 5.2: Deterministic forecasting results by using Q-learning and NWP

Model LAT Metric
Site

S1 S2 S3 S4 S5 S6 S7 S8 S9

QL

1HA
NMAE(%) 6.63 6.85 6.70 6.74 6.67 5.38 7.76 6.85 7.40
NRMSE(%) 10.55 10.93 11.04 10.66 9.93 8.37 11.93 10.72 11.51

2HA
NMAE(%) 10.72 11.08 11.20 11.28 10.36 8.34 10.90 11.15 11.92
NRMSE(%) 15.86 16.33 16.93 16.64 14.60 12.31 17.14 16.31 17.32

3HA
NMAE(%) 13.95 14.22 14.65 14.88 12.44 10.49 14.56 14.27 14.82
NRMSE(%) 19.43 19.86 20.92 20.71 16.94 14.93 20.12 19.75 20.50

4HA
NMAE(%) 16.43 16.76 17.69 18.00 13.84 12.17 16.28 17.16 16.87
NRMSE(%) 21.98 22.22 23.92 23.83 18.56 16.85 21.79 22.68 22.41

5HA
NMAE(%) 18.19 18.37 20.36 20.38 15.35 13.53 17.87 19.33 18.43
NRMSE(%) 23.65 23.71 26.51 26.01 20.19 18.40 23.15 24.66 24.03

6HA
NMAE(%) 19.85 19.60 21.94 22.63 16.51 14.70 18.41 20.93 19.60
NRMSE(%) 25.09 24.85 27.82 27.82 21.31 19.47 23.55 26.03 24.78

NWP DA
NMAE(%) 12.70 12.59 13.21 13.97 13.97 11.63 13.37 13.44 13.45
NRMSE(%) 16.85 17.44 18.07 18.70 18.43 15.41 18.17 18.43 18.21

Note: QL is the abbreviation for Q-learning. LAT is the abbreviation for look-ahead time. DA: day-
ahead

information criterion (AIC) and the Bayesian information criterion (BIC) are used to evaluate the

estimated wind power distribution accuracy. For a given model with parameters θ , the AIC and

BIC are defined as:

AIC =−2L(θ̂ |x)+2k (5.21)

BIC =−2L(θ̂ |x)+ klogn (5.22)

where θ̂ is the maximum likelihood estimation of the distribution parameter, L(θ̂ |x) is the log-

likehood function of θ̂ , k is the number of parameters, and n is the length of observed data. The

preferred model is the one with the lowest AIC and BIC (Burnham and Anderson, 2003). The

AIC and BIC values of the nine wind farms with different distribution types are summarized in

Table 5.3. Results show that the GMM distribution outperforms other single distributions and

KDE for modeling wind power forecasts. Therefore, GMM is adopted to fit the marginal wind

power distribution within the Copula model.
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Figure 5.2: Distributions of wind power forecasts at the S4 site

Table 5.3: Information criteria of the estimated distribution

Site Metric
Distribution type

Gaussian Gamma Logistic Rayleigh KDE GMM

S1
AIC 23760 23910 24070 23810 21367 18512
BIC 23768 23918 24078 23818 21374 18548

S2
AIC 23840 22980 24080 24210 20081 16802
BIC 23848 22988 24088 24218 20105 16846

S3
AIC 27450 26010 27960 29910 21900 17664
BIC 27458 26018 27968 29918 21908 17708

S4
AIC 27140 25940 27620 29130 22180 17026
BIC 27148 25948 27628 29138 22196 17074

S5
AIC 23870 23776 24160 23871 20124 18442
BIC 23878 23784 24168 23819 20136 18498

S6
AIC 22360 21090 21610 22000 18900 16430
BIC 22368 21098 21618 22008 18928 16496

S7
AIC 23610 23540 23920 24200 21103 18900
BIC 23618 23548 23928 24208 21119 18948

S8
AIC 7338 6987 7699 7307 6692 5483
BIC 7346 6995 7677 7315 6708 5514

S9
AIC 15660 15280 15970 15660 13214 12090
BIC 15668 15288 15978 15668 13228 12136

Note: The best information criterion at each location is in boldface.
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The correlation among the selected 9 wind farms are visualized in Fig. 5.4(a). It is seen that

the selected wind farms are strongly correlated. Fig. 5.4(b) shows the SW among all the wind

farms in year 2011 and year 2012. It is seen that K = 2 always results in the highest SW, which

indicates desired clustering. To better visualize the two clusters, the wind farms are plotted on

a Texas map according to their geographical dispersion in Fig. 5.3. The two wind farm clusters

are differentiated by red and blue colors. The red cluster is mainly located in north Texas and the

blue cluster is located in south Texas. The mean correlation coefficient in the red cluster and the

blue cluster are 0.65 and 0.58, respectively. In addition, the mean correlation coefficient without

clustering is 0.54, which is lower than both of the intra-cluster correlation, further showing the

effectiveness of clustering.

Within each cluster, a joint distribution of the aggregated wind power and the forecasted power

of member wind farms is determined. Then the conditional distribution of the aggregated wind

power can be calculated, which is used to generate aggregated wind power forecasting scenarios

(e.g., 5,000). The quantiles of the aggregated wind power are calculated based on the empirical

distribution of the generated scenarios. To evaluate the performance of cp-AWPF, three baseline

models are selected for comparison, which are: quantile regression (QR), cp-AWPF without clus-

tering (cp-AWPF-W/), and a data-driven two-step aggregated probabilistic wind power forecasting

method with clustering (dd-AWPF). The reasons for choosing these baseline models are: (i) QR

is a widely used method in probabilistic forecasting, which allows us to explore the forecasting

enhancement by considering spatial-temporal correlation; (ii) since a clustering model is included

in cp-AWPF, it is important to compare the accuracy of the proposed cp-AWPF method with the

method without clustering; (iii) for the baseline model of dd-AWPF, the forecasting error dis-

tribution could be fitted through GMM based on historical deterministic aggregated wind power

forecasts. Then, Monte Carlo sampling is used to generate a large number of forecasting error

scenarios. These aggregated error scenarios could be used together with deterministic aggregated

wind power forecasts to generate probabilistic aggregated wind power forecasts. Details of the

GMM fitting and scenario generation for dd-AWPF could be found in (Cui et al., 2017).
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Figure 5.3: Locations of clustered wind farms

Fig. 5.5(a) shows the day-ahead aggregated probabilistic wind power forecasts of all the 9

wind farms from 2012-07-05 to 2012-07-08, which are generated from the proposed cp-AWPF

model. It is observed that at the entire representative period, the aggregated wind power reasonably

lies within the PIs. Fig. 5.6(b), Fig. 5.6(c), and Fig. 5.6(d) show the aggregated probabilistic

forecasts generated from the baseline cp-AWPF-W/, dd-AWPF, and QR methods, respectively. It

is seen that the PIs of the probabilistic forecasting with clustering in Fig. 5.5(a) is narrower than

the PIs without clustering in Fig. 5.6(b). This is due to that clustering has enhanced the intra-

cluster correlation among wind farms. In addition, the PIs of both cp-AWPF and cp-AWPF-W/ are

significantly narrower than those of QR in Fig. 5.6(d), which is due to the consideration of spatial-
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Figure 5.4: Clustering analysis

temporal correlation. The dd-AWPF has a similar width of PIs as cp-AWPF-W/. Nevertheless, the

PIs of cp-AWPF-W/ are smoother than those of dd-AWPF, which indicates a stable and reliable

probabilistic forecast. It is also observed that the width of the PIs varies with the variability of

the aggregated wind power. For example, when the wind power fluctuates more frequently, the PI

tends to be wider, and thereby the uncertainty in wind power forecasts is relatively higher.
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Figure 5.5: Day-ahead aggregated probabilistic wind power forecasts

88



0 20 40 60 80

Time (h)

0

20

40

60

80

100

120

A
g
g
re

g
a
te

d
 W

in
d
 P

o
w

e
r 

(M
W

)

90% interval

80% interval

70% interval

60% interval

50% interval

40% interval

30% interval

20% interval

10% interval

Prediction

Actual

(b) cp-AWPF-W/

0 20 40 60 80

Time (h)

0

20

40

60

80

100

120

A
g
g
re

g
a
te

d
 W

in
d
 P

o
w

e
r 

(M
W

)

90% interval

80% interval

70% interval

60% interval

50% interval

40% interval

30% interval

20% interval

10% interval

Prediction

Actual

(c) dd-AWPF

0 20 40 60 80

Time (h)

0

20

40

60

80

100

120

A
g

g
re

g
a

te
d

 W
in

d
 P

o
w

e
r 

(M
W

)

90% interval

80% interval

70% interval

60% interval

50% interval

40% interval

30% interval

20% interval

10% interval

Prediction

Actual

(d) QR

Figure 5.5: (continued) Day-ahead aggregated probabilistic wind power forecasts
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To show the effectiveness of the developed spatial-temporal based probabilistic forecasting

framework, the normalized pinball loss values of different models with different look-ahead time

are compared in Table 5.4. The sum of pinball loss is averaged over all quantiles from 1% to 99%

and normalized by the aggregated wind farm capacity. A lower pinball loss score indicates a better

probabilistic forecast. Results show that the proposed cp-AWPF has improved the pinball loss by

up to 54% compared to the three benchmark models, which validates the effectiveness of spatial-

temporal correlation and clustering. Note that the cp-AWPF method has shown a better accuracy

than baseline models for both 1HA-6HA and day-ahead forecasts, which validates the robustness

of the methodology. Furthermore, cp-AWPF without clustering also has better pinball loss than

QR, which shows the improvement from spatial-temporal correlation modeling. The dd-AWPF

model outperforms both QR and cp-AWPF-W/, which indicates the enhancement resulted from

clustering. In addition to pinball loss, two more standard metrics, i.e., reliability and sharpness,

are also calculated to assess the performance of aggregated probabilistic forecasting.

Table 5.4: Normalized pinball loss of different models with different look-ahead hours

Model
Look-ahead Times

1HA 2HA 3HA 4HA 5HA 6HA DA
cp-AWPF 1.91 2.03 2.31 2.81 3.46 4.10 3.28
cp-AWPF-W/ 2.92 2.93 3.06 3.40 3.94 4.63 4.26
dd-AWPF 2.20 2.38 2.71 3.19 3.83 4.55 3.47
QR 2.98 3.34 4.76 5.80 6.53 7.02 7.27

Note: The smallest normalized pinball loss value is in boldface.

Fig. 5.6 shows the 1HA to 6HA and DA reliability plots of the aggregated probabilistic fore-

casts with different forecasting models. A forecast presents better reliability when the curve is

closer to the diagonal. It is seen from Fig. 5.6 that overall QR has better reliability perfor-

mance. It is mainly because the PIs of QR are much wider than those of the proposed cp-AWPF

method. A wider PI indicates that the result takes more errors into consideration; however, note

that the reliability over the 90th confidence interval is similar between cp-AWPF and QR, which
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Figure 5.6: Reliability comparison of different models with different look-ahead times

is generally more important in probabilistic forecasting applications. In addition, the proposed

cp-AWPF model has shown better reliability than dd-AWPF, indicating the enhancement resulted

from spatial-temporal correlation modeling.
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Figure 5.6: (continued) Reliability comparison of different models with different look-ahead times

The sharpness plots of cp-AWPF and baseline models (i.e., cp-AWPF-W/, dd-AWPF, and QR)

with different look-ahead hours are compared in Fig. 5.7. The expected interval size increases

with increasing the nominal coverage rate, and the sharpness of the proposed cp-AWPF model is

significantly better than that of the baseline models (i.e., cp-AWPF-W/ and QR) except at the 1HA

horizon. It is mainly because the reliability and sharpness are two complementary metrics, and

the better reliability of cp-AWPF at 1HA sacrifices the sharpness to some extent. Note that the cp-

AWPF model has shown better sharpness than dd-AWPF, indicating the enhancement resulted from

spatial-temporal correlation modeling. Overall, the interval size of the proposed cp-AWPF model

ranges from 2% to 45%, which indicates low sharpness. In addition, cp-AWPF has significantly

better sharpness than cp-AWPF-W/ at all look-ahead times, which validates the effectiveness of

clustering.

5.4 Conclusion

In this chapter, an aggregated conditional probabilistic wind power forecasting (cp-AWPF) frame-

work was developed by considering spatial-temporal correlation and wind farm clustering. The

K-means clustering approach was applied to cluster 9 wind farms into two clusters. For each

cluster, GMM was adopted to accurately model the marginal wind power distribution. Then, the
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Figure 5.7: Sharpness comparison of different models with different look-ahead times
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Figure 5.7: (continued) Sharpness comparison of different models with different look-ahead times

spatial-temporal correlation between the member wind farms and the aggregated wind power was

modeled through a high-dimensional joint distribution based on Copula theory. Inverse sampling

was applied on the conditional CDF of the joint distribution to generate aggregated probabilistic

forecasts. Results at 9 selected wind farms showed that:

1. cp-AWPF could reduce the pinball loss score by up to 54% compared to three benchmark

models.

2. The GMM model has shown better goodness-of-fit to wind power distribution than single-

distribution models and KDE.

3. Clustering could enhance intra-cluster correlation among member wind farms, thus provid-

ing better probabilistic forecasting accuracy.

4. The developed cp-AWPF framework is robust at different forecasting time horizons and

locations.

5. cp-AWPF has shown better sharpness than models without considering spatial-temporal cor-

relation and clustering. The reliability of cp-AWPF is close to the ideal diagonal, which

indicates reasonable reliability.
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CHAPTER 6

IMPROVING PROBABILISTIC RENEWABLE FORECASTING

VIA SCENARIO GENERATION

Probabilistic solar power forecasting plays an important role in solar power grid integration and

power system operations. One of the most popular probabilistic solar forecasting methods is to

feed simulated explanatory weather scenarios into a deterministic forecasting model. However,

the correlation among different explanatory weather variables are seldom considered during the

scenario generation process.

In previous chapter, the spatial-temporal correlation modeling is used to improve aggregated

probabilistic forecasting. However, the correlation between different weather explanatory variables

is not quantified, which may affect spatial-temporal modeling. This chapter presents an improved

probabilistic solar power forecasting framework based on correlated weather scenario generation.

Copula is used to model a multivariate joint distribution between predicted weather variables and

observed weather variables. Massive weather scenarios are obtained by deriving a conditional

probability density function given a current weather prediction by using the Bayesian theory. The

generated weather scenarios are used as input variables to a machine learning-based multi-model

solar power forecasting model, where probabilistic solar power forecasts are obtained. The ef-

fectiveness of the proposed probabilistic solar power forecasting framework is validated by using

seven solar farms from the 2000-bus synthetic grid system in Texas. Numerical results of case stud-

ies at the seven sites show that the developed probabilistic solar power forecasting methodology

has improved the pinball loss metric score by up to 140% compared to benchmark models.

6.1 Motivation and Objective

PV power output is highly dependent on external weather conditions such as solar radiation and

temperature (Mandal et al., 2012). Therefore, it is challenging to get accurate forecasts under
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different weather conditions. To better account for the solar power uncertainty and variability,

probabilistic solar power forecasts are needed. Quantile regression-based methods and simulating

predictors with massive input scenarios, are the most popular used non-parametric methods for

probabilistic forecasting (Sun et al., 2020b). For methods with simulating predictors, massive sce-

narios are generated as inputs of regression models. Weather scenario generation has been widely

used in the literature for probabilistic forecasts due to its simplicity and accessibility. Weather sce-

nario generation methods can be generally classified into three categories (Xie and Hong, 2016):

(i) fixed-date method, (ii) shifted-date method, and (iii) bootstrap method. The fixed-date method

assigns the weather profile of historical years to the current year. The number of scenarios equals to

the number of years the weather profile is available. Liu et al. (Liu et al., 2015) used six years his-

torical weather data as input scenarios to a quantile regression averaging model. The shifted-date

method generally shifts the historical weather profile with a number of days. Then these shifted

weather profiles are treated as weather scenarios of the current year. Bootstrap is a method of

computational inference based on resampling a dataset. Breinl et al. (Breinl et al., 2015) adopted

a block bootstrap method to generate precipitation and temperatures scenarios. The three weather

scenario generation methods mentioned above were compared in (Xie and Hong, 2016) through

quantile score, complexity, and number of scenarios based on the GEFCom2014 dataset. Results

showed that among the bootstrap, fixed-date, and shifted-data methods, no single method outper-

forms others in all aspects. Nevertheless, several challenges present in existing methods of weather

scenario generation: (i) the number of scenarios generated by the fixed-date and shifted-date meth-

ods is limited by the length of the weather profile; (ii) scenarios from bootstrap are heavily relied on

the data itself, where bootstrap tends to undervalue extreme weather observations; (iii) the correla-

tion between different weather variables is not considered, which may not be reliable for scenario

generation; (iv) high dimensional matrices are involved in traditional weather scenario generation

methods, which adds additional computational burden.
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In this study, we seek to develop a probabilistic solar power forecasting method based on

weather scenario generation, where the correlation among different weather variables are consid-

ered.

6.2 Methodology

The overall framework of the developed weather scenario generation-based probabilistic solar

power forecasting (wsp-SPF) method is illustrated in Fig. 6.1. The two major steps are weather

scenario generation and probabilistic solar power forecasting. In each major step, there are several

sub-steps which are briefly described as follows:
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Figure 6.1: Overall framework of weather scenario generation-based probabilistic solar power
forecasting
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1. Step 1.1: A Machine Learning-based Multi-Model (M3) forecasting framework is adopted

to generate short-term deterministic weather forecasts (blue box) (i.e., 1-h-ahead (1HA)),

and train deterministic solar power forecasting model (blue box).

2. Step 1.2: Gaussian mixture model (GMM) is used to fit the PDFs of historical actual weather

and historical forecasted weather.

3. Step 1.3: The conditional joint distribution of historical actual weather given historical

weather forecasts is constructed based on the Copula theory.

4. Step 1.4: A large number of weather scenarios are generated through the conditional distri-

bution via Gibbs sampling.

5. Step 2: The simulated weather predictors are fed into the M3 deterministic solar power

forecasting model to generate probabilistic solar power forecasts.

6.2.1 Machine Learning-based Multi-Model (M3) Deterministic Forecasting

In this study, the M3 model developed in our previous work (Feng et al., 2017) is adopted to train

deterministic forecasting models (i.e., deterministic weather forecasting model and deterministic

solar power forecasting model). M3 is ensembled by multiple models from a pool of state-of-the-

art machine learning-based forecasting models. To be more specific, multiple sets of deterministic

forecasts are generated by using different machine learning algorithms with different kernels in the

first layer. Then, the forecasts are blended by another machine learning algorithm in the second

layer to generate final forecasts. Machine learning algorithms used in the M3 method include

artificial neural networks (ANNs), support vector regression (SVR), gradient boosting machines

(GBMs), and random forests.
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6.2.2 Weather Distribution Modeling

In the literature, marginal distributions of weather variables are commonly modeled by unimodal

distributions such as Beta and Gamma (Louie, 2010) or non-parametric distributions such as kernel

density estimation (KDE) (Wang et al., 2018). However, unimodal distributions may not accurately

quantify the variability of weather variables and non-parametric distributions are challenging to be

solved analytically (Cui et al., 2018). Mixture distributions have been widely utilized in statistics

to approximate multi-modal distributions. To accurately characterize the variability of weather

variables, GMM is adopted in this study to model the weather variables. Three weather variables

are considered in this study, which are global horizontal irradiance (GHI), wind speed (WS), and

temperature (TEMP). The PDF of GMM is formulated as follows:

fG(x|NG,ωi,µi,σi) =
NG

∑
i=1

ωigi(x|µi,σi) (6.1)

where NG is the number of mixture components, U(µi ∈U) is an expected value vector, Σ(σi ∈ Σ)

is a standard deviation vector, and Ω(ωi ∈ Ω) is a weight vector. Each component g(x; µi,σi)

follows a normal distribution, which is expressed as:

gi(x|µi,σi) =
1√

2πσ2
i

e
− (x−µi)

2

2σ2
i (6.2)

The GMM distribution has two constraints: (1) the integral of Eq. 6.1 equals unity, and (2) the

summation of weight parameters equals unity as well, which are expressed as follows:

∫ +∞

−∞

fG(x|NG,ωi,µi,σi)dx =
∫ +∞

−∞

NG

∑
i=1

ωigi(x|µi,σi)dx = 1 (6.3)

NG

∑
i=1

ωi = 1 (6.4)

The parameters of GMM are estimated by the expectation maximization (EM) algorithm. The goal

of EM is to maximize the likelihood function with respect to parameters. More details about EM
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can be found in (Hartley, 1958). The cumulative density function (CDF) (FG) corresponding to the

estimated PDF is expressed as:

FG(x|NG,ωi,µi,σi) =
NG

∑
i=1

[

√
π

2
ωiσier f (

µi− x
σi

)]+C (6.5)

where C is an integral constant, and er f (·) is a Gaussian error function.

6.2.3 Weather Scenario Generation

Once marginal distributions of historical actual and predicted weather variables are defined, the

correlation among weather variables can be modeled through a multivariate joint distribution. The

parameter x f , j denotes the forecast value of the jth weather variable, and xa, j denotes the actual

value of the jth weather variable. We assume there are J weather variables. The parameter
−→
f

denotes the J-dimension vector of weather forecasts, i.e., (x f ,1, ...,x f ,J);−→a denotes the J-dimension

vector of actual weather, i.e., (xa,1, ...,xa,J). The CDF and PDF are expressed as:

F(a, f ) = P(Xa,1 ≤ xa,1, ...,Xa,J ≤ xa,J,X f ,1 ≤ x f ,1, ...,X f ,J ≤ x f ,J) (6.6)

f (a, f ) =
∂ 2JF(a, f )

∂Xa,1...∂Xa,J∂X f ,1...∂X f ,J
(6.7)

Therefore, the weather scenario generation given predicted weather becomes sampling a mul-

tivariate distribution of the actual weather a, i.e., (xa,1, ...,xa,J), conditioning on the predicted

weather f , i.e., (x f ,1, ...,x f ,J).

F(a| f ) = P(Xa,1 ≤ xa,1, ...,Xa,J ≤ xa,J|X f ,1 = x f ,1, ...,X f ,J = x f ,J) (6.8)

f (a| f ) = ∂ JF(a| f )
∂Xa,1...∂Xa,J

(6.9)

In this study, Copula is used to model the inherent correlation among weather variables, and

the conditional multivariate distribution is modeled based on the aforementioned weather marginal

distributions. Given a multivariate joint distribution, it is challenging to directly generate samples
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due to the high dimensionality of conditioning variables. In this study, Gibbs sampling is applied

to sample the multidimensional random variables by sequentially sampling each component.

Gibbs sampling seeks to iteratively sample only one variable or a block of variables at a time

from its distribution conditioned on the remaining variables (Tang et al., 2018). Therefore, Gibbs

sampling converts sampling a multivariate distribution into sampling a set of conditional univariate

distributions. The pseudocode of Gibbs sampling is illustrated in Algorithm 3. Note in this study,

we use the forecasted weather as the initial input.
Algorithm 3: Gibbs sampling

Result: Weather scenarios

1 initialization: x0
a, j← x f ,1,∀ j = 1, ...,J;

2 for scenario η = 1, ..., do

3 Xa,1|x
(η−1)
a,2 , ...,x(η−1)

a,J ;

4 Xa,2|x
(η)
a,1 ,x

(η−1)
a,3 , ...,x(η−1)

a,J ,x f ,1, ...,x f ,J;

5 ...

6 Xa,J|x(η)
a,1 , ...,x

(η)
a,J−1,x f ,1, ...,x f ,J

7 end

Copula is one of the most widely used methods for modeling the dependency among random

variables. Based on Sklar’s theory (Rüschendorf, 2009), any multivariate joint distribution can

be written in terms of univariate marginal distribution functions and a copula that describes the

dependence structure between the variables. Therefore, the joint CDF in Eq. 6.6 can be written as:

F(a, f ) =C(F(xa,1), ...,F(xa,J),F(x f ,1), ...,F(x f ,J)) =C(S,T ) (6.10)

where,

S = F(xa,1), ...,F(xa,J) (6.11)

T = F(x f ,1), ...,F(x f ,J) (6.12)
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F(xa, j) and F(x f , j) denote the marginal CDFs of actual weather and marginal CDF of predicted

weather, respectively. C(·) is the Copula function.

Similarly, the joint PDF of actual weather and predicted weather can be expressed as:

f (a, f ) = c(S,T ) ·
J

∏
j=1

( f (xa, j f (x f , j)) (6.13)

where, f (xa, j) and f (x f , j) are marginal PDFs of Xa, j and X f , j, respectively, modeled by using the

aforementioned GMM distribution based on historical actual and forecasting weather. c(·) is the

density of Copula. Then, the conditional univariate distribution of weather variable Xa, j can be

deduced from the Bayesian formula, given by:

F(xa, j|xa,1, ...,xa, j−1,xa, j+1, ...,xa,J, f )

=
P(Xa, j ≤ xa, j,Xa,p = xa,p,X f ,q = x f ,q)

P(Xa,p = xa,p,X f ,q = x f ,q)

p = 1, ..., j−1, j+1, ...,J, q = 1, ...,J

(6.14)

where the numerator can be written as:

P(Xa, j ≤ xa, j,Xa,p = xa,p,X f ,q = x f ,q) =
∫ xa, j

0
f (a, f )dXa, j

=
∫ xa, j

0
c(·)

J

∏
p=1

f (xa,p) f (x f ,p)dXa, j

(6.15)

and based on Eq. 6.13, the denominator can be written as:

P(Xa,p = xa,p,X f ,q = x f ,q) = c
′
(·)

J
∏

p=1
( f (xa,p) f (x f ,p))

f (xa, j)
(6.16)

Note that in Eq. 6.16, we use c
′
(·) instead of c(·) since the dimension of Copula density here is

2J−1 instead of 2J. Overall, based on Eq. 6.15 and Eq. 6.16, the conditional univariate CDF can

be expressed as:

F(xa, j|xa,1, ...,xa, j−1,xa, j+1, ...,xa,J, f )

=
∂ 2J−1C(·)

∂Xa,1...∂Xa, j−1∂Xa, j+1...∂Xa,J∂X f ,1...∂X f ,J
· 1

c′(·)
(6.17)
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The conditional distribution of the actual weather variable given weather forecasts can be

trained by using historical actual and forecasting weather data. With any given deterministic

weather forecasts, the Gibbs sampling model and the trained conditional CDF in Eq. 6.17 are

used together to generate a large number of weather scenarios. In this study, the Copula is selected

through the “xvCopula” function from the Copula package (Yan et al., 2007) in R based on k-fold

cross-validation.

6.2.4 Probabilistic Solar Power Forecasting

Once weather scenarios are given, a large number of solar power scenarios can be generated

through a deterministic forecasting model. Assuming that we generate N weather scenarios for

each hour, then we will have N deterministic solar power forecast values for each hour. There-

fore, based on the empirical distribution function, the 1st to 99th percentiles of solar power can

be calculated for each hour, thus generating probabilistic solar power forecasts. Though any de-

terministic forecasting model is capable of generating solar power forecasts, we adopted the M3

model mentioned in Section 6.2.1.

6.3 Case Studies and Results

The developed wsp-SPF framework is evaluated at 7 solar farms in Texas that are selected from the

ACTIVSg2000 system, i.e., a 2000-bus synthetic grid on the footprint of Texas (Birchfield et al.,

2016). The data information at the 7 selected solar sites is briefly summarized in Table 6.1. To

ensure the generality and diversity of data, some of the selected solar farms are closed to each

other (e.g., C2 and C3; C5, C6, and C7), and some of the solar farms are geographically dispersed

(e.e., C1 and C4). In addition, all the selected solar farms have different capacity which ranges

from 1.05 MW to 230 MW. To match the solar power with corresponding weather information, the

weather data is collected from the National Solar Radiation Database (NSRDB) (Sengupta et al.,

2018). The NSRDB includes solar radiation and other meteorological information (e.g., wind
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speed, air temperature, solar zenith angle) over the United States from 1998 to 2017 computed

by the National Renewable Energy Laboratory’s (NREL’s) Physical Solar Model (PSM), with a

30 min temporal resolution. The solar power is generated based on NSRDB weather data using

System Advisor Model (SAM) (Freeman et al., 2019). In this study, the duration of the collected

data at the 7 selected solar sites spans four years from January 1st 2008 to December 31st 2011. Fig.

6.2 summaries the data partition of the case study. For all the 7 locations, the first 3/4 of the data

is used as training data, in which the first 2/3 is used to train the deterministic weather forecasting

model and the remaining 1/3 of the training data is used to train the conditional weather scenario

model. The accuracy of the forecasts is evaluated by the remaining 1/4 of data. The number

of weather scenarios generated from the conditional distribution is set as Ns=5,000. Though the

developed wsp-SPF method is capable of generating forecasts at multiple forecasting horizons,

only 1-h-ahead solar power forecasts are explored in this study.

Table 6.1: Data summary of the selected 7 solar sites

Site Name Site ID Lat. Long. Capacity (MW) State
C1 3 29.58 -104.29 10 TX
C2 21 32.26 -101.41 1.5 TX
C3 22 32.25 -101.42 230 TX
C4 109 29.32 -100.38 29.7 TX
C5 286 30.55 -97.69 1.05 TX
C6 287 30.55 -97.69 22.5 TX
C7 288 30.54 -97.69 5.5 TX

Since the Copula-based weather scenario generation method is a two-step method. It is im-

portant to compare the performance of different deterministic forecasting models in the first step.

Normalized indices of standard metrics like root mean squared error and mean absolute error, i.e.,

NRMSE and NMAE, are adopted to evaluate the performance of deterministic forecasts. The 1HA

deterministic forecasting errors by using the M3 deterministic forecasting model at the selected lo-

cations are summarized in Table 6.2. The persistence of cloudiness method (PS) (Cui et al., 2017)

has been proved to be accurate in the shorter forecasting period. Therefore, to show the superiority

of the M3 deterministic forecasting model, the PS method is adopted as the baseline. Overall,
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Figure 6.2: Data splitting for model training and testing

the accuracies of the M3 deterministic forecasts are better than those of persistence of cloudiness

forecasts.

In this study, four benchmark models are selected for comparison, including one single prob-

abilistic forecasting baseline model, and three other weather scenario generation-based models.

The single benchmark model is quantile regression (QR). The three benchmark weather scenario

generation models are fixed-date (FD), shifted-date (SD), and bootstrap (BS) methods, which have

been used by Xie et al. in (Xie and Hong, 2016). Note that the same M3 deterministic forecasting

model is used in the three weather scenario generation-based models.

1. FD: The fixed-date method assigns the weather profile of historical years to the current year.

The number of scenarios equals to the number of years the weather profiles is available.
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Table 6.2: 1HA deterministic weather forecasting results by using M3 and PS

Model Feature Metric
Site

C1 C2 C3 C4 C5 C6 C7

M3

GHI
NMAE(%) 4.32 3.98 4.11 4.23 3.53 3.72 3.48
NRMSE(%) 7.16 6.59 6.81 6.99 5.91 6.21 5.94

WS
NMAE(%) 1.82 1.96 1.89 1.83 1.77 1.77 1.81
NRMSE(%) 2.74 2.92 2.77 2.60 2.47 2.49 2.53

TEMP
NMAE(%) 1.91 1.68 1.69 1.69 1.35 1.36 1.36
NRMSE(%) 2.46 2.19 2.19 2.15 1.79 1.79 1.79

PS

GHI
NMAE(%) 6.79 6.63 6.63 6.62 6.59 6.60 6.57
NRMSE(%) 10.84 10.79 10.79 10.95 11.00 11.01 10.94

WS
NMAE(%) 3.10 3.61 3.61 3.34 3.31 3.31 3.31
NRMSE(%) 4.60 5.27 5.27 4.85 4.91 4.91 4.91

TEMP
NMAE(%) 2.57 2.23 2.23 2.31 2.12 2.12 2.11
NRMSE(%) 3.40 3.07 3.07 3.13 2.94 2.94 2.94

Assume that m years weather profiles are available, we could generate m weather scenarios

at each time step.

2. SD: The shifted-date method generally shifts the historical weather profile with a number of

days. Then these shifted weather profiles are treated as weather scenarios of the current year.

Assume that m years weather profiles are available, we could generate (2n+ 1)m weather

scenarios at each time step, where n is the number of days shifted forward or backward. The

n is set to be 4 in this study.

3. BS: The bootstrap method divides the weather profile of each historical year into an equal

length of blocks, and then randomly picks the blocks with replacement from any of the

historical years to form a new temperature profile. In this study, we set the block length be

10. Overall, there are 37 blocks, where each of the first 36 blocks has a length of 10 and the

37th block has a length of 5.

The reasons for choosing these four baseline models are: (i) QR is a widely used method in

probabilistic forecasting, which allows us to explore the forecasting enhancement by considering

106



weather scenario generation; (ii) since a weather scenario generation model is included in the

proposed wsp-SPF method, it is important to compare the accuracy of the proposed method with

different weather scenario generation techniques. Note that the empirical probability distribution

is adopted to calculate the quantile forecasts. However, for the FD and SD methods, the number of

both weather and solar power scenarios is limited. As a result, some of the adjacent quantiles may

share a same value.

Fig. 6.3(a) shows the 1HA probabilistic solar power forecasts of the C2 site from 2011-01-

31 to 2011-02-03, generated from the proposed wsp-SPF model. It is observed that at the entire

representative period, the solar power reasonably lies within the PIs. Figs. 6.3(b), 6.3(c), 6.4(d),

and 6.4(e) show the probabilistic forecasts generated from the baseline M3-FD, M3-SD, M3-BS,

and QR methods, respectively. It is seen that the PIs of the wsp-SPF model in Fig. 6.3(a) is nar-

rower than the PIs with other weather scenario generation methods. This is due to that considering

the correlation among weather variables has improved the weather scenario generation accuracy.

In addition, the PIs of wsp-SPF are smoother than those of QR, which indicates stable and reli-

able probabilistic forecasts. Among the three weather scenario generation-based baseline methods,

M3-BS outperforms M3-FD and M3-SD. It is mainly due to the limited number of scenarios in FD

and SD models. It is also observed that the width of the PIs varies with the variability of solar

power. For example, when the solar power fluctuates more frequently, the PI tends to be wider,

and thereby the uncertainty in solar power forecasts is relatively higher.

To show the effectiveness of the developed weather scenario generation based probabilistic

forecasting framework, the normalized pinball loss (NPL) values of 1HA solar power forecasts

from different models and their relative improvement (IP) with respect to wsp-SPF model are

compared in Table 6.3. The sum of pinball loss is averaged over all quantiles from 1% to 99% and

normalized by the solar power capacity. A lower pinball loss score indicates a better probabilistic

forecast. Results show that the proposed wsp-SPF model gives the best performance. Moreover,

the proposed wsp-SPF model has improved the pinball loss from 5.08% to 140.44% compared to
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(c) M3-SD

Figure 6.3: 1HA probabilistic solar power forecasts
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(d) M3-BS
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Figure 6.3: (continued) 1HA probabilistic solar power forecasts

the four benchmark models, which validates the effectiveness of the proposed method. It is inter-

esting to see the highest NPL improvement is from C5, which has the smallest solar capacity. This

may due to the solar farms with smaller capacity are more susceptible to weather conditions, thus

the correlation between weather scenarios and PV power outputs becomes stronger. In contrast,

for solar farm owns the biggest capacity like C3, the NPL improvement is intermediate. Therefore,

there is no obvious linear relationship between NPL improvement brought from weather scenario

generation and solar farm capacity. The improvement may be a joint result from different factors

such as geographic location and capacity. Note that the wsp-SPF method has shown a better accu-
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racy than M3-FD, M3-SD, and M3-BS, which indicates the improvement of the weather scenario

generation by considering the correlation among weather variables. Furthermore, the wsp-SPF

model outperforms QR, which shows the improvement by considering weather scenario genera-

tion modeling. In addition to pinball loss, two more standard metrics, i.e., reliability and sharpness,

are also calculated to assess the performance of wsp-SPF.

Table 6.3: Normalized pinball loss and relative improvement of different models

Model
Site

C1 C2 C3 C4 C5 C6 C7

NPL

wsp-SPF 1.77 1.62 1.75 2.13 1.35 1.49 1.46
M3-FD 1.86 2.07 2.08 2.43 2.38 2.38 2.34
M3-SD 3.08 3.11 3.11 2.99 3.12 3.11 3.11
M3-BS 3.09 3.43 3.74 2.94 3.74 3.27 3.29
QR 2.46 2.64 2.64 2.44 1.40 2.66 2.64

IP (%)

M3-FD 5.08 27.78 18.86 14.08 75.00 59.73 60.27
M3-SD 74.01 91.97 77.71 40.37 128.68 108.72 113.01
M3-BS 74.58 111.72 113.71 38.02 140.44 119.46 125.34
QR 38.98 62.96 50.86 14.55 95.59 78.52 80.82

Note: The smallest normalized pinball loss value is in boldface. The highest relative improvement with
respect to wsp-SPF model is in italic.

Fig. 6.4 shows the reliability plots of the probabilistic solar power forecasts with different

forecasting models at the 7 sites. A forecast presents better reliability when the curve is closer to

the diagonal. It is seen from Fig. 6.4 that overall the proposed wsp-SPF has better reliability per-

formance than M3-FD, M3-SD, and M3-BS, indicating the enhancement resulted from correlation

modeling between weather variables. In addition, the proposed wsp-SPF model has shown similar

reliability to QR, while the PIs of wsp-SPF are narrower than those of QR, which secures accu-

racy without sacrificing reliability. In addition, note that the reliability at C5 is worse than those

from other solar farms, and C3 has the best reliability. It is mainly because C5 has the smallest

capacity, which is susceptible to weather variation. In contrast, C3 has the largest capacity, which

is supposed to be more reliable and stable.

The sharpness plots of wsp-SPF and four baseline models at different sites are compared in

Fig. 6.5. The expected interval size increases with increasing the nominal coverage rate, and
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(c) C3
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Figure 6.4: Reliability comparison of different models at different sites
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Figure 6.4: (continued) Reliability comparison of different models at different sites

the sharpness of the proposed wsp-SPF model is significantly better than that of the four baseline

models. Overall, the interval size of the proposed cp-AWPF model ranges from 1% to 10%, which

indicates low sharpness. In addition, wsp-SPF has significantly better sharpness than M3-FD, M3-

SD, and M3-BS at all sites, which validates the enhancement of correlation modeling in weather

scenario generation. Since all the sites share low sharpness, it is hard to conclude the relationship

between site capacity and sharpness. Moreover, it is seen that for solar farms in the same region

(similar longitude and latitude), the sharpness is also similar. This characteristic may be used for

solar resource assessment.

6.4 Conclusion

In this chapter, a weather scenario generation-based probabilistic solar power forecasting frame-

work was developed. Gaussian mixture model was used to accurately model the weather marginal

distribution. Copula was adopted to model the correlation among different weather variables

through a high-dimensional joint distribution. Gibbs sampling was applied on the conditional

CDF of the joint distribution to generate a large number of weather scenarios. Then, these weather

scenarios are fed into a machine learning-based multi-model deterministic forecasting model to

generate probabilistic solar power forecasts. Results at 7 selected solar farms showed that:
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Figure 6.5: Sharpness comparison of different models at different sites
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Figure 6.5: (continued) Sharpness comparison of different models at different sites

1. wsp-SPF could reduce the pinball loss score by up to 140% compared to four benchmark

models.

2. The GMM model has shown better goodness-of-fit to weather distribution than single distri-

bution models and KDE.

3. Considering correlation among weather variables could enhance weather scenario genera-

tion, thus providing better probabilistic forecasting accuracy.

4. The developed wsp-SPF framework is robust for solar farms at different locations with dif-

ferent capacities.

5. wsp-SPF has shown better sharpness than models without using weather scenario generation

and models with other weather scenario generation methods (i.e., FD, SD, and BS). The

reliability of wsp-SPF is close to the ideal diagonal, which indicates reasonable reliability.
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CHAPTER 7

UTILIZING PROBABILISTIC FORECASTING FOR ANOMALY DETECTION IN

RENEWABLE ENERGY

With the fast-growing trend of solar energy, accurate solar power forecasting plays an important

role in grid integration of solar power and power system operations. Recently cyberattacks on solar

power forecasting emerge with the increase of solar penetration, which may lead to substantial

economic losses and power system reliability issues.

As suggested in chapter 2.1, probabilistic forecasting could be used for anomaly detection thus

better assisting energy system cyber security. This chapter presents a novel probabilistic anomaly

detection framework to effectively and accurately detect cyberattacks in solar power forecasting,

which consists of three major components. First, a convolutional neural network is used to ex-

tract spatial correlations among solar farms at the bottom of the model. Second, a long short-term

memory network is used to capture the temporal dependencies within solar power data and gener-

ate deterministic solar power forecasts, which is then converted to probabilistic forecasts through

pinball loss optimization. Finally, the probabilistic solar power forecasts are used for anomaly

detection. The effectiveness of the proposed framework is validated by using solar farms from the

Texas 2000-bus synthetic grid system with a variety of data integrity attacks. Numerical results

of case studies at the sites show that the developed probabilistic anomaly detection methodology

could effectively detect data integrity attacks in solar power forecasting with a relatively high ac-

curacy.

7.1 Motivation and Objective

Machine learning and deep learning based deterministic forecasting models have been widely

adopted in the literature to assist the aforementioned three types of anomaly detection methods

due to their strong abilities of modeling the non-linearity within data (Xin et al., 2018). Trained
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forecasting models are tested on input data and to compare the predicted values with the measure-

ments. A model trained through health data will be able to predict the expected behavior based on

history observations. However, there will be a mismatched behavior between the prediction and

observation if the data is under cyberattacks. For example, Wang et al. (Wang et al., 2019) pre-

sented a power consumption anomaly detection method based on long short-term memory (LSTM)

point forecasts and error patterns. In (Wang and Ahn, 2020), a real-time anomaly detection method

was proposed for electric load based on an integration of support vector machine (SVM), k-nearest

neighbors (KNN), and a cross-entropy loss function. However, most of the existing anomaly de-

tection methods are deterministic and thus insufficient to characterize the uncertainties in cyberat-

tacks. Probabilistic approaches that provide quantitative uncertainty information associated with

cyberattacks are therefore expected to better assist power system operations and renewable energy

integration. Probabilistic forecasting usually takes the form of prediction intervals (PIs) or scenar-

ios (Sun et al., 2020a). The PIs of different confidence levels are generally used to assist decision

making, which could naturally be used as thresholds to label anomaly events. If a prediction falls

outside a desired PI, such prediction may be labeled as anomaly. Probabilistic forecasting methods

can be classified into parametric methods and non-parametric methods (Sun et al., 2020b). How-

ever, none of these two types of probabilistic forecasting methods has been applied to data integrity

anomaly detection in solar power forecasting.

Overall, several challenges present in existing methods for energy anomaly detection: (i) most

of the existing anomaly detection methods focus on load forecasting and electricity price forecast-

ing, and little work has been done on solar power forecasting and wind power forecasting; (ii) most

of the anomaly detection models are deterministic, which could not well describe the uncertainties

in solar power; (iii) the spatial-temporal correlation between different targets (e.g., solar farms,

wind farms, or load centers) is not considered, which may not be reliable towards sophisticated

designed cyberattacks; (iv) most anomaly detection methods could not detect multiple solar farms

simultaneously.
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7.2 Methodology

In this chapter, we plan to utilize deep learning-based probabilistic forecasting methods for anomaly

detection for solar farms under cyberattacks. The cyberattacks on solar power forecasting may lead

to substantial economic losses and power system reliability issues. Therefore, an accurate anomaly

detection method is need to assist solar energy integration and system reliability.

The anomaly detection is formulated as a binary classification problem through probabilistic

solar power forecasts. The details of the two cornerstone components in deterministic forecasting,

i.e., CNN and LSTM, are first introduced. Then, a pinball loss optimization-based probabilistic

solar power forecasting method is described. At last, the overall anomaly detection framework for

solar power forecasting under data integrity attack is presented.

In this chapter, we seek to identify the anomaly behavior in solar power forecasting. The

overview of data integrity attacks is depicted in Fig. 7.1. Different from other related works,
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Figure 7.1: Overview of data integrity attacks in solar power forecasting

our proposed method focuses on utilizing probabilistic forecasting to detect anomaly behaviors.

Moreover, the spatial-temporal correlation among different solar farms is considered, which not

only enhances the probabilistic solar power forecasting accuracy, but also allows us to cross-check

the possible malicious correlation changes within different solar farms.

Studies have shown that geographically dispersed solar farms are correlated to a certain extent

(Zhang et al., 2016). In addition, power produced from the same solar farm at different times is
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typically temporally correlated (Prasad et al., 2017). It would be interesting to explore the impacts

of spatial-temporal correlation on the performance of anomaly detection in solar power forecasting.

Instead of detecting the anomaly behavior in one solar farm, in this study, we detect multiple

solar farms simultaneously. To model multiple solar farms, we assume the target solar farms over

a geographic region are non-uniformly distributed as an array with P rows and Q columns as

illustrated in Fig. 7.2. The solar power time-series at site (1,Q) is represented with the red curve.
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Figure 7.2: Spatial solar power sequence

Therefore, the solar power time-series of multiple solar farms at time t can be represented by a

matrix. Let y(p,q)t denotes the solar power at (p,q), the solar power spatial matrix (SPSM) of all
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the solar farms in the array at time t could be represented as:

yt =



y(1,1)t y(1,2)t . . . y(1,Q)t

y(2,1)t y(2,2)t . . . y(2,Q)t

...
...

...

y(P,1)t y(P,2)t . . . y(P,Q)t


(7.1)

This SPSM contains the spatial correlation of all the solar farms at time t. To model the temporal

correlation, similarly, the spatial-temporal sequence describing the solar power of the array could

be constructed by organizing the SPSM in chronological order, as illustrated in Fig. 7.3. To this

end, the outputs of the solar power forecasting model become an array instead of a single value.
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Figure 7.3: Spatial-temporal solar power sequence

7.2.1 CNN-based Feature Extraction

CNN is one of the most widely used deep learning models for extracting hierarchical spatially in-

variant features (Selvin et al., 2017). CNN usually consists of convolutional layers, pooling layers,

and fully-connected layers. At the convolutional layers, a convolution operation is applied to the
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input feature maps and then these feature maps are transformed through a non-linear activation

function. Through the convolution operation, most revealing features of the input can be extracted.

The convolutuion operation process can be expressed as:

xo
m = Φ( ∑

n∈Dm

xo−1
n ∗ ko

mn +bo
m) (7.2)

where xo
m denotes the mth feature map of the oth layer, ∗ denotes the convolution operation, Dm is

the inputs pool, bo
m denotes the bias, kmn is the kernel of the oth layer, and Φ(·) is the activation

function.

The goal of pooling layer is to progressively reduce the spatial size of the output feature maps

from the convolutional layer through a down sampling function, which is expressed as:

xo
m = d(·)(xo−1

m ) (7.3)

where d(·) denotes the down sampling function. The feature map is downsampled in such a way

that the maximum feature response within a given sample size is retained.

The fully-connected layer connects every neuron in one layer to every neuron in another layer,

thus combining all local features into global features to form the output:

xo = Φ(ωoxo−1 +bo) (7.4)

where ωo and bo are the weight matrix and bias vector of the oth layer, respectively.

7.2.2 LSTM Network

LSTM is a special recurrent neural network (RNN) architecture for time series modeling and fore-

casting, which has the capability of learning and memorizing long-term dependencies within the

time-series data. A standard RNN has one hidden layer, which could only trace back to few time

steps due to the vanishing gradient effect (Bouktif et al., 2018). To better capture the long-term
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dependencies, LSTM introduces different gates which could regulate the gradient flow of the net-

work. Following the work of (Olah, 2015), the inner structure of the LSTM unit is illustrated in

the bottom right block of Fig. 7.4 and described in Eq. 7.5.

it = σ(xtWix +ht−1Wih + ct−1Wic +bi)

ft = σ(xtWf x +ht−1Wf h + ct−1Wf c +b f )

ct = ct−1 ft + it · tanh(xtWxc +ht−1Wch +bc)

ot = σ(xtWox +ht−1Woh +bo)

ht = ot · tanh(ct)

(7.5)

where i(·), f(·), and o(·) are the input gate, forget gate, and output gate, respectively. σ denotes the

sigmoid activation function, ht is the state at t, xt denotes input, ot is the cell output, and ct is the

memory state. LSTM updates its hidden state ct by using the current input xt and the previous state

ct−1. The final state ht is determined by ct and ot . The weights are optimized by minimizing the

difference between the LSTM outputs and training samples. In this study, the input vector of the

multi-input LSTM can be expressed as:

xt = [yt−1,Φt ] (7.6)

where Φt denotes the feature vector of the time step t, and yt denotes the observation at time step

t.

The Overall Probabilistic Anomaly Detection Framework

The overall framework of the proposed probabilistic anomaly detection methodology is illustrated

in Fig. 7.4. It consists of three major steps:

1. Step 1 (gray blocks): Feed historical data into an CNN-LSTM-based forecasting machine to

predict solar power.
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2. Step 2 (orange blocks): Convert point forecasts to prediction intervals (PIs) using a paramet-

ric probabilistic forecasting method based on designated predictive distribution shapes and

pinball loss optimization.

3. Step 3 (green blocks): Detect anomalies based on the threshold confidence and evaluate the

performance.
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Figure 7.4: Overall framework of CNN-LSTM-based probabilistic anomaly detection

Followed the work by (Zhu et al., 2019), the CNN-LSTM architecture is built with historical

SPSMs data in an end-to-end manner. A batch of SPSM data is first convoluted to spatial feature

maps through the CNN configuration of CNN-LSTM. In this way, the spatial feature maps, such as

distance, solar zenith angle, etc., could be relatively easier capsuled in the parameters of the CNN.

As shown in the bottom left box of Fig. 7.4, the CNN configuration has a total of four layers (two

convolutional layers, one max-pooling layer, and a fully-connected layer). The filter numbers of the
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first and second convolution layer are 10 and 50, respectively. The topology and hyperparameters

of the designed CNN architecture are determined by grid search optimization with 10-fold cross

validation. The designed CNN is expected to extract high-level abstract spatial features from the

SPSMs. The extracted abstract CNN features are then fed into the LSTM configuration. Although

LSTM with one hidden layer might be able to capture the temporal patterns in the solar power

data, increasing the depth of the architecture by increasing hidden layers can further enhance the

performance (Graves et al., 2013). Therefore, two LSTM layers are adopted to operate the hidden

state at different timescales and learn temporal correlations that lie within the solar power data.

As shown in Fig. 7.4, the first LSTM layer extracts temporal features in the form of hidden state

from the previous convolutional feature maps. Then, the second LSTM layer outputs the predicted

SPSMs. The numbers of neurons in the first and second LSTM layers are 50 and 100, respectively.

Similar to CNN, the hyperparameter optimization of the LSTM are performed by the grid search

with 10-fold cross validation on top of the optimal architecture. To avoid overfitting, 10% of

neurons are randomly dropped in the LSTM layers.

Though the CNN-LSTM model is composed of two kinds of network architectures, i.e., the

CNN and LSTM, it can be jointly trained with one loss function. Note that, the loss function in

this task is constructed by the differences between the predicted SPSMs and their corresponding

observations, instead of those between the single values in solar power forecasting for a single site.

Once deterministic solar power forecasts are generated, a Gaussian distribution is adopted to

model the solar power predictive distribution. The Gaussian distribution is characterized by a mean

value (µ) and a standard deviation (σ ). The mean value is approximated by the deterministic point

forecast and the standard deviation σ is calculated by minimizing the pinball loss of the quantile

function at each time step. The pinball loss value of a certain quantile Lm is expressed as:

Lm,t(qm,t ,yt) =


(1− m

100
)× (qm,t− yt), yt < qm,t

m
100
× (yt−qm,t), yt ≥ qm,t

(7.7)
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where yt represents the tth observation, m represents a quantile percentage from 1 to 99, and qm

represents the predicted quantile. For a given m percentage, the quantile qm represents the value

of a random variable whose cumulative distribution function (CDF) is m percentage. Pinball loss

is one of the most widely used metrics for evaluating probabilistic forecasts (Sun et al., 2019).

Smaller pinball loss values indicate better probabilistic forecasting. The process of probabilistic

anomaly detection is described as follows.

1. Parameterize the quantile in terms of µ and σ , where µ is assumed to be the point forecast.

The mth quantile of the tth point forecast, qm,t , is expressed as:

qm,t = F−1(
m

100
, ŷt ,σt) (7.8)

where ŷt and yt are deterministic forecasts and observations, respectively. F−1(·) is the

inverse CDF function. The corresponding pinball loss is expressed in Eq. 7.7.

2. Calculate the unknown parameter σ at each time step by minimizing the averaged sum of

pinball loss through a genetic algorithm (GA) (Koza and Koza, 1992):

σ
∗
t = argmin

σt

1
Nm

Nm

∑
m=1

Lm,t(σt ,yt , ŷt ,m)

sub ject to σl ≤ σt ≤ σu (7.9)

where σ∗t is the optimal standard deviation of the tth time step; Nm = 99 is the number of

quantiles; σl and σu are the lower and upper bound of σ , which are set as 0.01 and 50,

respectively.

3. A support vector regression (SVR) surrogate model (Sun et al., 2020a) is used to fit the point

forecast and σ∗ in the training stage, which is used to generate unknown pseudo optimal

standard deviations, σ̂∗, in the forecasting stage.

4. During probabilistic forecasting, both the deterministic forecasts, i.e., µ , generated by CNN-

LSTM and the estimated pseudo optimal standard deviation σ̂∗ generated by SVR are used

to determine the prediction intervals (PIs) (Feng et al., 2019).
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5. For each time step, the prediction falls into a certain PI, which is used to estimate the like-

lihood of it being anomaly (outliers). The deterministic prediction decides the best estimate

of next step solar power, while the probabilistic prediction quantifies the uncertainty of all

possible observations. A larger PI denotes further deviation from its nominal value. In this

study, we assume that an anomaly is spotted whenever the prediction falls out of the 70% PI.

This detection threshold can be further tuned through a sensitivity study, which is beyond

the scope of this study.

7.3 Case Studies and Results

This section applies the developed probabilistic anomaly detection method to 16 wind farms in

Texas, and analyze the results based on different types of data integrity attacks.

7.3.1 Data Summary

The developed probabilistic anomaly detection framework is evaluated at 16 solar farms in Texas

that are selected from the ACTIVSg2000 system, i.e., a 2000-bus synthetic grid on the footprint of

Texas (Birchfield et al., 2016). These 16 non-uniformly distributed solar farms are represented by

a 4×4 array based on their related locations. All the selected solar farms have different capacities

which range from 1.05 MW to 230 MW. In this study, the duration of the collected data at the

16 selected solar sites spans four years from January 1st 2008 to December 31st 2011. For all the

selected solar farms, the first 3/4 of the data is used as training data, in which the first 2/3 is used to

train the deterministic forecasting model and the remaining 1/3 of the training data is used to train

the probabilistic forecasting model. The accuracy of the forecasts is evaluated by the remaining

1/4 of data. The forecast horizon in this study is 1 hour. Note that the data integrity attacks are

only applied to the test data, i.e., the test SPSMs.
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7.3.2 Data Integrity Attack Templates

Four kinds of data integrity attacks in the literature are implemented in this study: scaling attack

(SA), correlated attack (CA), replay/swap attack (RSA), and random attack (RA). We assume that

these data integrity attacks only apply to the test data, i.e., the forecasting model is healthy.

1. SA: scaling attacks modify the sensor measurement down or up through a scaling attack

parameter λs.

x̂t =


xt for t /∈ τa

(1+λs)× xt for t ∈τa

(7.10)

where τa denotes the attack period, xt denotes the test tampered with cyberattacks. In this

study, λs is 0.1 and the scaling attacks are applied to all test periods.

2. CA: correlated attacks replace the measurements with historical data of the same period (i.e.,

historical data from the same time of a day/same day of a week). In this way, the tampered

data will share the same correlation structure. In this study, historical data are separated by

day of a week, and we randomly replace the test data with historical data which shares the

same period.

3. RSA: replay/swap attacks assume that the attackers possess the test data of a nearby solar

farm, which shares similar weather condition. In this study, a nearby solar farm is selected

based on the minimum geographical distance. If the capacity of the nearby solar farm is

different from the target farm, the solar power is scaled to the same capacity level.

4. RA: random attacks add a random number to the test dataset. This random number could be

generated by a uniform random function.

x̂t =


xt for t /∈ τa

xt +λRA× rand(t) for t ∈τa

(7.11)
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where rand(t) is a random number generator and λRA is a scale factor and normally defined

as a half of the maximum solar power forecast value (Cui et al., 2019).

7.3.3 CNN-LSTM Deterministic Forecasting Results

Since the probabilistic forecasting method used for anomaly detection is a two-step method, it

is important to compare the performance of different deterministic forecasting models in the first

step. For a single site (p,q), standard metrics like root mean squared error and mean absolute error,

i.e., RMSE and MAE, are usually adopted to evaluate the performance of deterministic forecasts.

They are defined by:

MAE(p,q) =
1
T

T

∑
t=1
|ŷ(p,q)t− y(p,q)t | (7.12)

RMSE(p,q) =

√
∑

T
t=1(ŷ(p,q)t− y(p,q)t)2

T
(7.13)

where ŷt is the forecasted solar power, yt is the solar power observation, and T is the sample size.

However, the solar power forecasts in this study are matrices instead of single values. Therefore,

two modified indices, i.e., RMSE for array (RMSE-A) and MAE for array (MAE-A) are adopted

to evaluate the overall performance of the model. They are defined by:

MAE–A =
1

P×Q

P

∑
p=1

Q

∑
q=1

MAE(p,q) (7.14)

RMSE–A =

√√√√ 1
P×Q

P

∑
p=1

Q

∑
q=1

RMSE(p,q)2 (7.15)

A smaller MAE-A or RMSE-A indicates better forecasting performance. The 1HA determin-

istic forecasting errors by using the CNN-LSTM deterministic forecasting model at the selected

locations are summarized in Table 7.1. The persistence of cloudiness method (PS) (Cui et al., 2017)

has been proved to be accurate in shorter forecasting horizons. Therefore, to show the superiority
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of the CNN-LSTM deterministic forecasting model, the PS method is adopted as a baseline. Over-

all, the accuracies of the CNN-LSTM deterministic forecasts are better than those of PS forecasts

under both normal and abnormal circumstances.

Table 7.1: 1HA deterministic solar power forecasting results by using CNN-LSTM and PS

Model Metric
Scenario

SA CA RSA RA w/o attack

CNN-LSTM
MAE-A 2.33 2.65 2.76 2.81 1.33
RMSE-A 4.98 5.70 5.73 5.68 4.81

PS
MAE-A 2.52 2.74 2.98 3.09 1.52
RMSE-A 5.05 5.71 5.82 5.90 5.03

7.3.4 Benchmarks and Comparison Settings

In this study, three anomaly detection benchmark models are selected for comparison, includ-

ing two probabilistic forecasting based models and one deterministic model. The deterministic

anomaly detection model is based on error distribution clustering, i.e., the one that doesn’t belong

to any cluster is marked as anomaly behavior. To guarantee a fair comparison, CNN-LSTM with

same parameter settings are adopted as the predictor. It is named as CNN-LSTM-D for comparison

in the results analysis. The two probabilistic forecasting benchmark models are quantile regression

(QR), and the same CNN-LSTM-based probabilistic forecasting model but without considering

spatial-temporal correlation (CNN-LSTM-w/o), i.e., each solar farm is forecasted separately.

The reasons for choosing these three baseline models are: (i) it is important to understand the

advantages of probabilistic anomaly detection methods compared with state-of-the-art determinis-

tic methods; (ii) QR is a widely used non-parametric method in probabilistic forecasting, which

allows us to explore the effectiveness of non-parametric methods; (iii) since a spatial-temporal

model is included in the proposed CNN-LSTM method, it is important to understand the advan-

tages by considering spatial-temporal correlation. Note that the empirical probability distribution

is adopted to calculate the quantile forecasts.
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7.3.5 Probabilistic Forecasting Results

Once probabilistic solar power forecasts are generated, with the estimated empirical predictive

PDF of solar power, the quantiles q1, q2, ..., q99 can be calculated. Pinball loss is a widely used

metric to evaluate the overall performance of probabilistic forecasts, which is defined by:

PLp,q =


(1− m

100
)× (qm,t− yt), yt < qm,t

m
100
× (yt−qm,t), yt ≥ qm,t

(7.16)

where qm,t represents the mth quantile at time t. However, to evaluate probabilistic forecasts of

matrices instead of single values, a modified pinball loss, i.e., pinball loss for array (PL-A) is

adopted. For a solar farm located at (p,q), PL-A is defined by:

PL–A =
1

P×Q

P

∑
p=1

Q

∑
q=1

PLp,q (7.17)

To show the effectiveness of the developed probabilistic forecasting framework, the normalized

PL-A (NPL-A) of 1HA solar power forecasts of different models under both normal and abnormal

circumstances are compared in Table 7.2. The sum of PL-A is averaged over all quantiles from

1% to 99% and normalized by the solar farm capacity. A lower NPL-A score indicates a bet-

ter probabilistic forecast. Results show that the proposed CNN-LSTM-Gaussian model gives the

best performance compared to the two benchmark probabilistic forecasting models, which shows

the improvement brought from spatial-temporal correlation modeling and pinball loss optimiza-

tion. For the cases under data integrity attacks, the NPL-A is much larger than those of normal

conditions, it also explains why a reliable and accurate anomaly detection is needed.

7.3.6 Probabilistic Anomaly Detection Results

This section evaluates the performance of the proposed probabilistic anomaly detection method.

Performance skill scores are calculated based on a contingency table as shown in Table 7.3. True

positive (TP) denotes the number of detected attacks; false negative (FN), i.e., type II error, denotes
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Table 7.2: Normalized NPL-A under different attack templates

Model
Site

SA CA RSA RA w/o attack
CNN-LSTM-Gaussian 2.68 2.73 2.96 3.13 1.23
CNN-LSTM-w/o 2.90 3.12 3.69 3.99 2.30
QR 2.73 3.03 3.43 3.67 2.12

Note: The smallest NPL-A value is in boldface.

the number of cases where missed detection of attacks; false positive (FP), i.e., false alarm or

type I error, denotes the number of cases where normal data is treated as attacks; true negative

(TN) denotes the number of normal data is correctly identified. Ns is the total number of test

samples. Among these indexes, FP can cause false alarms, which may add redundant work to

system operators, while FN missed by the detection model may cause losses to market end users.

Table 7.3: Contingency table of attack detection

Attack (Yes) Attack (No) Total

Detected
(Yes)

TP (hit) FP (miss) TP+FP

Detected
(No)

FN (miss) TN (hit) FN+TN

Total TP+FN FP+TN Ns=TP+FP+FN+TN

We calculated the true positive rate (TPR), false positive rate (FPR), and F-1 score of the

anomaly detection results. Mathematical expressions of the three metrics are expressed as:

T PR =
T P

T P+FN
(7.18)

FPR =
FP

FP+T N
(7.19)

F-1 =
2T P

2T P+FP+FN
(7.20)

where TPR measures the proportion of actual attacks that are correctly identified, FPR measures the

portion of normal data mistakenly categorized as attacks, and the F-1 score is the harmonic mean
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of the precision and recall. For the TPR and F-1 score metrics, a value approaching 1.0 indicates

better performance; while for the FPR metric, a value closer to 0 indicates better performance.

The evaluation metrics of different models are compared and summarized in Table 7.4. Overall,

the proposed CNN-LSTM-Gaussian anomaly detection method has a higher TPR, F-1 Score, and

lower FPR compared with other anomaly detection methods, which shows the effectiveness of the

proposed probabilistic anomaly detection algorithm. Note also that the models of CNN-LSTM-

Gaussian perform better than the CNN-LSTM-w/o, which indicates that the optimization can help

achieve better detection performance in parametric methods. In addition, it is shown that the scores

of SA, CA, RSA are better than that of RA. It is mainly due to the larger solar power magnitude

change under RA. Moreover, the false alarm rate of QR is relatively higher than that of other

detection methods. It is mainly because the PIs of the QR method is generally wider, and anomaly

behaviors may be mistakenly easier treated as normal behavior. It is worth mention that the CNN-

LSTM-D deterministic method performs similar to the proposed method. It also explains why

the deterministic anomaly detection method dominates the anomaly detection literature due to its

simplicity and relatively good performance.

Table 7.4: Probabilistic Anomaly Detection Results

Method Metrics Attack Scenario
SA CA RSA RA

CNN-LSTM-Gaussian
TPR 0.91 0.82 0.94 0.89
FPR 0.21 0.23 0.30 0.41

F-1 score 0.82 0.86 0.78 0.71

CNN-LSTM-w/o
TPR 0.89 0.81 0.88 0.84
FPR 0.24 0.27 0.33 0.38

F-1 score 0.80 0.82 0.76 0.70

QR
TPR 0.80 0.77 0.72 0.60
FPR 0.39 0.48 0.36 0.40

F-1 score 0.65 0.68 0.58 0.71

CNN-LSTM-D
TPR 0.90 0.80 0.89 0.86
FPR 0.21 0.24 0.30 0.41

F-1 score 0.81 0.85 0.76 0.70

Note: The best TPR, FPR, and F-1 score among different models are marked in boldface.
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To better visualize the probabilistic anomaly detection results, the PIs of a selected time period

under different types of data integrity attacks are illustrated in Fig. 7.5.

It is observed that at most part of the period without attacks, the solar power reasonably lies

within the PIs. When the prediction in the attack period falls out of the 70% PI , it is defined as

a truth positive detection. In contrast, a failed detection happens when the prediction falls within

the 70% CI during the attack period. It is seen from Fig. 7.5 that the magnitude change of solar

power under RA and RSA is higher than that of CA and SA. It is mainly because in SA and CA,

spatially correlated solar farms receive similar amount of solar irradiance and experience similar

weather effects. However, under both normal and attack scenarios, the high detection accuracy

validates the robustness of the proposed method. In addition, the variability of RA is higher than

that of other attacks, thereby the uncertainty under RA is relatively higher. Note that the designed

data integrity attack frequency and magnitude may largely affect the detection rate. In addition,

the selected threshold of PIs for anomaly detection also affects the detection accuracy. Therefore,

it is hard to conclude which kind of data integrity attack is relatively easier to be detected by the

probabilistic method. It is important to emphasize that the objective of this study is not to design

new advisory models or beat state-of-the-art detection algorithms, but to explore the possibility of

utilizing probabilistic forecasting for anomaly detection in solar power forecasting.

7.4 Conclusion

This chapter developed a deep learning-based probabilistic anomaly detection method in solar

power forecasting. Results of the case study under different attack scenarios showed that the

developed probabilistic anomaly detection method was able to effectively detect different types of

cyberattack with high accuracy. The proposed probabilistic anomaly detection framework could

be applied in the decision-making process of real-time unit commitment and economic dispatch

and to inform the system operator of abnormal events. In addition, this proposed probabilistic

anomaly detection framework could also be used to promote the integration of solar power in
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(a) SA

(b) CA

(c) RSA

Figure 7.5: Probabilistic anomaly detection on different attack templates
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(d) RA

Figure 7.5: (continued) Probabilistic anomaly detection on different attack templates

power systems by providing a reliable ancillary services. Potential future work will (i) extend the

probabilistic anomaly detection model to wind power and load, and (ii) explore the vulnerability

of different probabilistic forecasting models against different data integrity attacks.
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CHAPTER 8

CONCLUSION

Accurate renewable energy forecasts benefit reliable and economic power system operations. How-

ever, most current forecasting methods are deterministic, which might not be sufficient to charac-

terize the inherent uncertainty of renewable energy. In summary, the use of probabilistic renewable

energy forecasts is still young. The probabilistic renewable energy forecasts are only used in a

primitive way in most systems, and there is not a systematic way to integrate them into system op-

eration and scheduling routines. However, operators start to realize the importance of probabilistic

renewable energy forecasts in shaping more cost-effective, stable and reliable power systems. In

addition, the spatial-temporal correlation among renewable energy farms are not well studied in

the literature.

This dissertation presents a formal study of probabilistic renewable energy forecasting by con-

sidering spatial-temporal correlation. The study dissects the probabilistic renewable energy fore-

casting problem into three thrusts. The first two thrusts improved probabilistic renewable energy

forecasting accuracy and the third thrust applied the developed probabilistic renewable energy

forecasting method to anomaly detection.

In the first two thrusts, we developed several data-driven probabilistic renewable energy fore-

casting methodologies to enhance the short-term probabilistic wind and solar forecasting with

spatial-temporal modeling. In the third thrust, a probabilistic anomaly detection method based on

spatial-temporal correlation was proposed against cyberattacks in renewable energy forecasting.

The successful development of this research accomplished five major achievements:

• A two-step probabilistic wind forecasting approach based on predictive distribution opti-

mization was developed. The proposed methodology was able to improve the pinball loss by

up to 35%.

• A multi-distribution ensemble probabilistic wind power forecasting method was developed.

The proposed methodology was able to improve the pinball loss by up to 20.5%
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• An aggregated probabilistic wind power forecasting approach was developed based on spatial-

temporal correlation among different wind farms. The proposed methodology was proved to

enhance the probabilistic wind power forecasting.

• A weather scenario generation-based probabilistic solar power forecasting framework was

developed by considering correlations between weather variables. The proposed methodol-

ogy could improve short-term probabilistic solar power forecasting accuracy.

• The advanced deep learning network, i.e., CNN-LSTM, was utilized to provide probabilistic

anomaly detection by modeling spatial-temporal correlation among solar farms. The devel-

oped CNN-LSTM network provided high anomaly detection rate and low false alarms.

The proposed methodologies provided more accurate and robust forecasts, compared to the

state-of-the-art probabilistic forecasting models. Moreover, the proposed methodologies showed

high detection rate and low false alarm rate on anomaly detection problems. Successful deploy-

ments of these methodologies are highly potential to mitigates the intrinsic uncertainty in renew-

able energy integration to power systems. Moreover, with the development of artificial intelligence

techniques, large amounts of data are being collected by smart grid devices, such as the advanced

metering infrastructures (AMIs) and the phasor measurement units (PMUs), which facilitate the

deep applications of AI techniques together with renewable energy forecasting, and thus better

assisting power systems.

Beyond these, although probabilistic renewable energy forecasting is adopted in some markets,

most of them use it to improve situational awareness and it rarely plays any important role in the

decision-making process. By giving a thorough review on the potential methods and latest trends

in the literature to promote the integration of probabilistic renewable energy forecasting, we have

the following findings. First, many probabilistic methods are proposed in the literature to handle

various forms of uncertainties in renewable energy. Naturally, probabilistic renewable energy fore-

casts can also be integrated into the decision making process of real-world power markets. Each
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method has its own advantages and disadvantages and the correct tool should be selected accord-

ingly. For example, the spatial and temporal correlations across the renewable energy productions

are important in the modeling process and it may has adverse impact on power system economy

and reliability to neglect such correlations. The scenario based methods, such as the MC method

and stochastic optimization, are better at capturing such correlations, while they tend to be more

computationally demanding and often require scenario reduction. In contrast, robust optimization

requires less computation time and can be applied to large scale power systems. However, the solu-

tion tends to be conservative. In addition, while probabilistic forecasts can take a variety of forms,

such as PDFs, prediction intervals or quantiles, they must be converted into the correct form to be

used as input of a specific method. For example, scenarios are used in the Monte Carlo simulation

and stochastic optimization while uncertainty sets must be constructed for robust optimization.

Therefore, most of the probabilistic renewable energy forecasting methods have their own dedi-

cated area for the representation of model uncertainties. We find that parametric methods are more

frequently used in most studies since they are the most fundamental form, and a distribution with

closed form is friendly to computation. However, in the literature, non-parametric probabilistic

renewable energy forecasting methods, particularly quantiles, dominate the studies of probabilis-

tic renewable energy forecasting. Therefore, there is a clear gap between probabilistic renewable

energy forecasting and the use of probabilistic renewable energy forecasting. Particularly, future

studies should bridge the gap by placing more emphasis on the use of parametric probabilistic

renewable energy forecasting, even the predominant non-parametric methods typically has better

performance. To this end, ensemble methods and hybrid methods, which take the advantages of

both parametric methods and non-parametric methods, might be more suitable.

It is also worthwhile mention that most of the existing anomaly detection methods focus on

load forecasting and electricity price forecasting, and little work has been done on renewable en-

ergy forecasting. One possible reason is the lack of public available well-labelled renewable energy

dataset under cyberattacks. Another reason might be that releasing a real-world cyberattack sce-

nario in renewable energy forecasting to public may help attackers design sophisticated enough
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attack templates to bypass the detection algorithms. To bridge this gap and promote the devel-

opment of anomaly detection methods in renewable energy forecasting, simulated dataset under

cyberattack in renewable energy field should be paid with more attention.

Potential further extensions on this topic include: (i) quantify vulnerability of different prob-

abilistic forecasting models, (ii) perform probabilistic forecasting under extreme weather condi-

tions, and (iii) explore probabilistic behind-the-meter solar forecasting.
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