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Ebola virus (EBOV) causes a highly lethal hemorrhagic fever syndrome in humans and has been associated with mortality 
rates of up to 91% in Zaire, the most lethal strain. Though the viral envelope glycoprotein (GP) mediates widespread inflam-
mation and cellular damage, these changes have mainly focused on alterations at the protein level, the role of microRNAs 
(miRNAs) in the molecular pathogenesis underlying this lethal disease is not fully understood. Here, we report that the mi- 
RNAs hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p were induced in human umbilical vein endothelial cells (HUVECs) 
following expression of EBOV GP. Among the proteins encoded by predicted targets of these miRNAs, the adhesion-related 
molecules tissue factor pathway inhibitor (TFPI), dystroglycan1 (DAG1) and the caspase 8 and FADD-like apoptosis regulator 
(CFLAR) were significantly downregulated in EBOV GP-expressing HUVECs. Moreover, inhibition of hsa-miR-1246, 
hsa-miR-320a and hsa-miR-196b-5p, or overexpression of TFPI, DAG1 and CFLAR rescued the cell viability that was in-
duced by EBOV GP. Our results provide a novel molecular basis for EBOV pathogenesis and may contribute to the develop-
ment of strategies to protect against future EBOV pandemics. 
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Ebola virus (EBOV) is an aggressive, virulent pathogen that 
causes a highly lethal hemorrhagic fever syndrome in hu-
mans and non-human primates [1]. To date, five species of 
Ebola virus have been identified: Zaire EBOV, Sudan 

EBOV, Ivory Coast EBOV, Reston EBOV and Bundibugyo 
EBOV [2]. Of these, Zaire EBOV is the most deadly patho- 
genic strain, with mortality rates of up to 91% [3]. Previous 
studies have demonstrated that the viral glycoprotein (GP) 
plays a crucial role in the manifestations of EBOV infection, 
including inflammatory dysregulation, immune suppression 
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and a loss of vascular integrity [4,5].  
EBOV GP is a highly glycosylated transmembrane pro-

tein that forms spikes on the virion, where it mediates re-
ceptor [614] binding on the host cell and subsequent fu-
sion of the viral and host membranes [15,16]. GP consists of 
a single 160 kD precursor, which is cleaved into two disul-
fide-linked subunits, GP1 and GP2 [17]. Expression of 
EBOV GP from recombinant adenoviruses or transfected 
plasmids induces cell detachment and injury in several cell 
lines, including human umbilical vein endothelial cells 
(HUVECs) [4]. The cytotoxicity of EBOV GP on vein en-
dothelial cells is believed to contribute to the disruption of 
blood vessel integrity and to increase vascular permeability; 
these processes may be some of the most important events 
during EBOV infection and are likely to be a major cause of 
death in patients with Ebola hemorrhagic fever [18,19]. 
Similar to live Ebola virus infections, overexpression of GP 
leads to the detachment of infected vein endothelial cells 
and cytotoxicity [20,21], suggesting that GP overexpression 
in the HUVECs model could be used to investigate the 
mechanisms involved in EBOV GP-mediated cytotoxicity.  

Previous studies have shown important roles of cell sur-
face molecules, such as integrins and epidermal growth 
factor receptor, and immune signaling molecules including 
MHC class I upon GP infection [4]. In addition, dy-
namin-dependent protein-trafficking pathway [22] and ERK 
signaling cascade [23] were also involved in GP-mediated 
cytotoxicity. Moreover, GP has other functions including 
induction of anoikis [19], stimulation of cytokines [24] and 
tissue factors [25,26] secreted from monocytes/macro- 
phages and dendritic cells which induced the endothelial 
disturbances and coagulation irregularities [18,27,28]. Alt-
hough GP expression induces changes in cell surface pro-
tein levels, the molecular mechanisms and cellular signaling 
events underlying EBOV pathogenesis remain to be further 
elucidated. 

microRNAs (miRNAs) are endogenous small noncoding 
RNAs of length 18–23 nucleotides (nt) that play a signifi-
cant role in various physiological processes, including cell 
growth, differentiation, metabolism and apoptosis [29,30]. 
Recent studies have shown that miRNAs were critical mod-
ulators in host-virus interaction and were thought to play a 
major role in viral pathogenesis [31]. miR-32 restricted the 
accumulation of the retrovirus primate foamy virus type 1 
(PFV-1) in human cells [32]. Hsa-miR-146a maintained 
Epstein-Barr virus (EBV) latency by modulating innate 
immune responses [33]. miR-323, miR-491, and miR-654 
impeded replication of the H1N1 influenza A virus by 
binding to the PB1 gene [34]. Thus, further studies of 
miRNAs mediated cross-talk in viral infections would help 
us not only to understand the basic biological processes 
induced by virus, but also to develop novel biomarkers and 
therapeutics. 

Here, we report that the expression of the miRNAs 
hsa-miR-1246, hsa-miR320a and hsa-miR-196b-5p in 

HUVECs increased upon infection with EBOV GP-    
expressing adenovirus. Up-regulation of these miRNAs led 
to decreased protein expression levels of tissue factor path-
way inhibitor (TFPI), dystroglycan1 (DAG1) and Caspase 8 
and FADD-like apoptosis regulator (CFLAR). Inhibitors of 
hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p could 
effectively ameliorate cytotoxicity induced by EBOV GP, 
and may therefore represent potential therapeutics for treat-
ing Ebola virus infections.  

1  Materials and methods  

1.1  Cell lines and primary cell types 

Human embryonic kidney 293T cells and 293A cells were 
purchased from the Peking Union Medical College Cell 
Culture Center and cultured in Dulbecco’s modified Eagle’s 
medium (DMEM; Gibco, Life Technologies, USA) sup-
plemented with 10% fetal bovine serum (FBS), penicillin 
(100 U mL1) and streptomycin (100 mg mL1) at 37°C with 
5% CO2. Human umbilical vein endothelial cells (HUVECs; 
Sciencell, USA) were maintained in endothelial cell medi-
um (ECM; Sciencell) with 5% FBS (Sciencell, Cat. No. 
0025), 1% endothelial cell growth supplement (ECGS; Sci-
encell, Cat. No. 1052) and 1% penicillin/streptomycin solu-
tion (Sciencell, P/S, Cat. No. 0503). 

1.2  High-throughput sequencing data analysis  

RNA-Seq libraries were sequenced with PE100 using Illu-
mina HiSeq2500. To analyze the differentially expressed 
genes (DEGs), we performed TopHat to map the reads to 
human genome (HG19) and Cufflinks to get the reads per 
kilobases per million reads (RPKM) of each transcript [35]. 
Then, transcripts with more than or equal to one RPKM 
were defined as expressed. When the glycoprotein group 
and vehicle group were compared, an RNA with a fold 
change greater than or equal to two was defined as 
up-regulated; an RNA with a fold change less than or equal 
to 0.5 was defined as down-regulated genes. 

miRNA-Seq libraries were sequenced with SE36 using 
an Illumina HiSeq2500. To analyze the differentially ex-
pressed miRNAs (DEmiRs), we performed miRDeep to 
obtain the RPM of each transcript [36]. Then, miRNAs with 
greater than or equal to one RPM were defined as expressed. 
When the glycoprotein group and the vehicle group were 
compared, a miRNA with a fold change greater than or 
equal to two was defined as up-regulated; a miRNA with a 
fold change less than or equal to 0.5 was defined as 
down-regulated.  

1.3  DEmiRs analysis and miRNA target prediction   

We performed Heatmap2, from R package gplots, to cluster 
DEmiRs (Supplementary Figure S1). To investigate the 
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target genes of miRNAs, miRDB was used for prediction. 
Target genes that were down-regulated in at least one time 
point from 3 to 24 h were selected as candidate miRNA 
targets for following analysis.  

1.4  Plasmids and expression 

The ZEBOV GP sequence (NCBI, Ebola virus-Mayinga, 
Zaire, 1976, NP_066246) was codon-optimized to increase 
the protein expression in mammalian cells [37]. The se-
quence of GP was further optimized by removing the new 
splice sites and optimizing the secondary structure; it was 
then synthesized by Sangon Biotech (China). The optZGP 
sequence was inserted into pEAK13 expression vector and 
pAd-TrackCMV vector (Quantum Biotechnologies) [38], 
the pAd-TrackCMV vector is designed for simultaneous 
expression of purpose protein and green fluorescent protein 
(GFP), and then the constructs were confirmed by sequenc-
ing. EboZ GP mutant lacking the mucin-like domain at the 
C terminus of GP1 (GP-mucin) was constructed by over-
lapping extension PCR. TFPI, DAG1, CFLAR, KIAA1429 
and ZCCHC6 sequences were amplified from human lung 
cDNA (Invitrogen, USA) using Q5 High-Fidelity DNA 
Polymerase (New England Biolabs, USA), and their coding 
sequences were cloned into the pEAK13 expression vector. 
All primer sequences for PCR are listed in Supplementary 
Table S1. HEK293T cells were co-transfected with 0.5 µg 
Peak13-GP-gfp or Peak13-GP-mucin and 0.5 µg  
Peak13-TFPI-flag/Peak13-DAG1-flag/Peak13-CFLAR-flag  
using Lipofectamine 2000 (Invitrogen). At 48 h post-trans- 
fection, the cells were monitored to determine the extent of 
rounding; both floating and adherent cells were counted to 
calculate percentage of detachment.  

1.5  Production and assay of adenovirus vectors 

The production of adenovirus vectors with E1/E3 deleted 
was carried out as previously described [38]. The virus was 
titered by limiting dilution in 293A cells. An adenovirus 
vector expressing EboZ GP (Ad-GP) and mock vector 
(Ad-E1) were used to transduce HUVECs (MOI, 500). 
The cells were monitored at regular intervals for evidence 
of cell rounding, and total RNA was obtained at the indi-
cated time points with TRIZOL reagent in accordance with 
the manufacturer’s protocol (Invitrogen). 

1.6  miRNA inhibitor and mimic 

All miRNA inhibitor and mimic were obtained from Ribo 
Biotechnology, China. The sequence of micrOFF™ miRNA 
inhibitor control was as follows: 5′-mUmCmUmAm- 
CmUmCmUmUmUmCmUmAmGmGmAmGmGmUmUm- 
GmUmGmA-3′; the sequence of hsa-miR-1246 was as fol-

lows: 5′-mCmCmUmGmCmUmCmCmAmAmAmAm- 
AmUmCmCmAmUmU-3′; the sequence of hsa-miR-320a 
was as follows: 5 ′-mUmCmGmCmCmCmUmCm- 
UmCmAmAmCmCmCmAmGmCmUmUmUmU-3′; the 
sequence of hsa-miR-196b-5p was as follows: 5′-mCm- 
CmCmAmAmCmAmAmCmAmGmGmAmAmAm CmUm 
AmCmCmUmA-3′.  

1.7  Cell viability assays 

Cell viability was determined by MTS assay (Promega, 
USA). HUVECs were seeded at a concentration of 1105 
mL1 in 96-well plates and subsequently challenged with 
Ad-GP (MOI, 500) or an equal volume of Ad-E1 at the 
indicated time points (0, 3, 6, 12, 24, 36, and 48 h). The 
medium was then removed from each well, and the wells 
were washed twice with PBS. Next, 100 L of fresh medi-
um and 20 L of Cell Proliferation Assay solution were 
added. The cells were incubated at 37C for 1 h before the 
absorbance was measured at 490 nm. In the miRNA inhibi-
tor/mimic rescue assays, miRNA inhibitors/mimics (final 
concentration, 100 nmol L1) were transfected into HU-
VECs with Lipofectamine RNAiMAX (Invitrogen) 24 h 
before the cells were exposed to Ad-GP and Ad-E1.  

1.8  Western blot analysis 

HUVECs (1105 mL1) were transfected in 6-well plates 
with 100 nmol L1 control miRNA inhibitor, hsa-miR-1246 
inhibitor, hsa-miR-196b-5p inhibitor and hsa-miR-320a 
inhibitor using Lipofectamine RNAiMAX (Invitrogen); 24 
h later, the cells were treated with Ad-GP and Ad-E1 con-
trol. After 24 h, the cells were lysed with ice-cold RIPA and 
denatured for 10 min at 95C. The production of Western 
blot was carried out as previously described [23]. All pri-
mary antibodies for Western blot are listed in Supplemen-
tary Table S2.  

1.9  Luciferase activity assay 

Vectors used in the luciferase activity assay were made by 
Sangon Biotech, and wild-type and mutant-type target gene 
3′ UTRs were cloned into the Not I and Xho I sites of the 
psiCHECk-2 vectors (Promega). Both constructs were veri-
fied by sequencing. 293T cells were cultured in 24-well 
plates, and each was transfected with 100 nmol L1 control 
miRNA mimic, hsa-miR-1246 mimic, hsa-miR-320a mimic 
and hsa-miR-196b-5p mimic using Lipofectamine RNAi 
MAX (Invitrogen). After 24 h, 1 µg of either wild-type 
vector or mutant vector containing Renilla luciferase as well 
as firefly luciferase as an internal control were transfected 
into 293T cells using Lipofectamine 2000 (Invitrogen). At 
48 h post-transfection, the relative luciferase activity was 
calculated by normalizing the Renilla luminescence to the 
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firefly luminescence using the Dual-Luciferase Reporter 
Assay (Promega) according to the manufacturer’s instruc-
tions. Values represent the mean±standard error of the mean 
(SEM) of three experiments from three independent assays. 

1.10  siRNA-mediated knockdown 

The negative control siRNA and TFPI/DAG1/CFLAR/ 
KIAA1429/ZCCHC6/CPD-specific short interfering RNAs 
were obtained from Ribo Biotechnology, China. HUVECs 
(1105 mL1) were transfected with 100 nmol L1 siRNA 
using Lipofectamine RNAiMAX transfection reagent (Invi-
trogen). After 24 h of incubation, HUVECs were transduced 
with an adenovirus expression vector containing EboZ GP 
or mock; 48 h later, the cells were harvested and analyzed to 
determine both GP cytotoxicity by MTS assay and the ef-
fect of TFPI/DAG1/CFLAR/KIAA1429/ZCCHC6/CPD- 
specific knockdown by Western blot analysis. The blots 
were analyzed with antibodies against the indicated proteins 
(Quantity One, Bio-Rad, USA), as described earlier. The 
sequence of TFPI-specific siRNA was as follows: 5′ 
CUGGAAUAUGUCGAGGUUA dTdT 3′/3′ dTdT GAC- 
CUUAUACAGCUCCAAU 5′. The sequence of DAG1- 
specific siRNA was as follows: 5′ GCACUGGUGUUGA- 
AUGACA dTdT 3′/3′ dTdT CGUGACCACAACUUA- 
CUGU 5′. The sequence of CFLAR-specific siRNA was as 
follows: 5′ GAUGUG UCCUCAUUAAUUU dTdT 3′/3′ 
dTdT CUACA CAGGAGUAAUUAAA 5′. The sequence 
of KIAA1429-specific siRNA was as follows: 5′ 
GGUUGUUACUGCU GGUUCA dTdT 3′/3′ dTdT CCAA- 
CAAUGACGACCAAGU 5′. The sequence of ZCCHC6- 
specific siRNA was as follows: 5′ CAAGAGAAACGCC- 
GAUUAA dTdT 3′/3′ dTdT GUUCUCUUUGCGGCUA- 
AUU 5′. The sequence of CPD-specific siRNA was as fol-
lows: 5′ GCCAUUGACUGUUACUAAU dTdT 3′/3′ 
dTdTCGGUAA CUGACAAUGA UUA 5′. 

1.11 Statistical analysis 

Statistical significance was determined using a two-tailed 
Student’s t-test unless indicated otherwise. A value of 
P<0.05 was considered statistically significant. 

2  Results  

2.1  Differential miRNAs expression in EBOV GP- 
expressing HUVECs 

EBOV GP plays a key role in the manifestations of EBOV 
infection, including inflammatory dysregulation, immune 
suppression and a loss of vascular integrity [4,6,20,22,39]. 
However, these changes have mainly focused on alterations 
at the protein level. As miRNAs have been increasingly 
shown to be important in various viral infections, it is quite 
interesting to explore the role of miRNAs in the molecular 

pathogenesis underlying EBOV GP-induced cytotoxicity. 
We infected HUVECs with GP-expressing adenovirus 
(Ad-GP) and Ad-E1, which served as a vehicle control. 
After 24 h, cell rounding and detachment were observed in 
the Ad-GP-infected (but not in the Ad-∆Ε1-infected) HU-
VECs cultures (Supplementary Figure S2A and B), and 
similar results were obtained in 293T cells (Supplementary 
Figure S2C and D). The percentage of detached and injured 
cells was analyzed using MTS assay and cell viability was 
decreased to approximately 50% at 48 h after Ad-GP treat-
ment compared to Ad-E1 control treatment (Supplemen-
tary Figure S2E). Therefore, the cell rounding and death 
model induced by EBOV GP was established.   

Then, RNA extracts were isolated from Ad-GP- and 
Ad-∆Ε1-infected HUVECs at 0, 3, 6, 12, 24, 36, and 48 h 
after infection and were sent for next generation sequencing. 
Among the 13 samples of RNA-Seq data and miR-Seq data 
that were analyzed (Supplementary Figure S1), 18 miRNAs 
were found to be significantly differentially expressed by  
at least one time point from 3 to 24 h in the Ad-GP-infected 
cells as compared with Ad-∆Ε1-infected HUVECs (Figure 
1; Supplementary Table S3). 

2.2  Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b- 
5p were involved in EBOV GP-induced cytotoxicity 

To further investigate the biological significance of these 
differentially expressed miRNAs, we transfected HUVECs 
with mimics or inhibitors of selected miRNAs 24 h before 
the cells were exposed to Ad-GP or Ad-E1, and cell via-
bility and detachment were analyzed 48 h after infection. 
None of the miRNA mimics demonstrated any effect on cell 
viability (Figure 2B); only inhibitors of hsa-miR-1246, 
hsa-miR-320a and hsa-miR-196b-5p could effectively ame-
liorate EBOV GP-induced cytotoxicity (Figure 2A). Thus, 
we focused on the role of these three miRNAs. The 
hsa-miR-1246 inhibitor was the most effective at rescuing 
cell detachment, which fits with the fact that levels of this 
miRNA increased the most in HUVECs infected after 3 or 6 
h (Figure 1; Supplementary Table S3). These results indi-
cated that elevated levels of these three miRNAs may play a 
key role in EBOV GP-induced cytotoxicity.   

2.3  TFPI, DAG1, CFLAR, ZCCHC6 and TRIM24 
protein levels were up-regulated by hsa-miR-1246, 
hsa-miR-320a and hsa-miR-196b-5p inhibitors in EBOV 
GP-expressing HUVECs 

To investigate the potential molecular mechanisms through 
which EBOV GP-induced hsa-miR-1246, hsa-miR-320a 
and hsa-miR-196b-5p mediate cytotoxicity, we analyzed the 
target genes of these miRNAs using the miRDB database. 
We found that hsa-miR-1246, hsa-miR-320a and hsa-miR- 
196b-5p had eight, nine, and five potential target genes, 
respectively, making a total of 21 potential target genes 
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(Table 1).  
Western blot analysis showed that seven of 21 candidate 

target genes were down-regulated in Ad-GP group as com-

pared with Ad-∆Ε1 group, and inhibition of any one of 
these three miRNAs could significantly enhance the expres-
sion of five proteins: TFPI, DAG1, CFLAR, zinc finger  

 

 

Figure 1  Eighteen miRNAs were involved in GP induced cytotoxicity. Heat map shows time-course fold changes of selected 18 significant DEmiRs in 
glycoprotein-induced vascular endothelial cell injury. A red block indicates up-regulated genes and a green block indicates down-regulated genes. Each 
expression result is labeled with the official symbol of the miRNA from miRBase. 

Table 1  The differentially expressed target genes of three miRNAs 

miRNAs Gene ID Gene Ad-E1 Ad-GP Fold change Log2 Abs 

Hsa-miR1246        

 79772 MCTP1 62.8404 31.0496 0.4941 1.0171 1.0171 

 7328 UBE2H 6.24955 3.06634 0.4906 1.0272 1.0272 

 79670 ZCCHC6 3.84888 1.87644 0.4875 1.0364 1.0364 

 6498 SKIL 7.65524 3.66433 0.4787 1.0629 1.0629 

 8837 CFLAR 9.39462 4.34707 0.4627 1.1118 1.1118 

 9807 IP6K1 7.10177 3.17725 0.4474 1.1604 1.1604 

 122786 FRMD6 9.74299 4.35498 0.4470 1.1617 1.1617 

 84268 RPAIN 10.5843 4.24862 0.4014 1.3169 1.3169 

Hsa-miR196b-5p        

 10479 SLC9A6 3.0474 1.4090 0.4624 1.1129 1.1129 

 6386 SDCBP 3.3731 1.4383 0.4264 1.2297 1.2297 

 3964 LGALS8 4.1873 1.7810 0.4253 1.2333 1.2333 

 3910 LAMA4 31.8476 11.6351 0.3653 1.4527 1.4527 

 25962 KIAA1429 4.4740 1.4920 0.3335 1.5843 1.5843 

Hsa-miR320a        

 6596 HLTF 7.7760 3.7750 0.4855 1.0425 1.0425 

 7035 TFPI 364.7290 175.4280 0.4810 1.0559 1.0559 

 3269 HRH1 3.9470 1.8268 0.4628 1.1115 1.1115 

 1362 CPD 12.3998 5.6404 0.4549 1.1364 1.1364 

 11082 ESM1 9.4389 4.2075 0.4458 1.1656 1.1656 

 9589 WTAP 9.8388 3.8808 0.3944 1.3422 1.3422 

 8805 TRIM24 7.3172 2.8571 0.3905 1.3568 1.3568 

 25962 KIAA1429 4.4740 1.4920 0.3335 1.5843 1.5843 

 1605 DAG1 5.9065 1.5626 0.2646 1.9183 1.9183 
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CCHC domain-containing 6 (ZCCHC6) and tripartite motif 
containing 24 (TRIM24). Additionally, inhibition of hsa- 
miR-320a or hsa-miR-196b-5p enhanced the expression of 
carboxypeptidase D (CPD) and KIAA1429 (Figure 3; Sup-
plementary Figure S3).  

To our surprise, although the inhibitory effects of hsa- 
miR-1246 on TFPI, DAG1 and TRIM24 were identified by 
Western blot analysis, the predicted hsa-miR-1246 target 
gene list did not include TFPI, DAG1 and TRIM24. Simi-
larly, CFLAR and ZCCHC6 were not included in the pre-
dicted hsa-miR-320a target gene list, and TFPI, DAG1, 
CFLAR, ZCCHC6, CPD and TRIM24 were not included in 
the predicted hsa-miR-196b-5p target gene list (Table 1), 
indicating that further optimization of the miRDB database 
is necessary. Nevertheless, these findings suggest that these 
genes might be regulated by hsa-miR-1246, hsa-miR-320a, 
and hsa-miR-196b-5p in EBOV-induced cytotoxicity of 
HUVECs. 

To determine whether TFPI, DAG1, CFLAR, ZCCHC6, 
CPD, TRIM24 and KIAA1429 are direct targets of hsa- 
miR-1246, hsa-miR-320a and hsa-miR-196b-5p, we con-
structed recombinant plasmids that contained a luciferase 

gene that had been fused with the native or mutated 3′  
UTR mRNA sequences of the potential target genes. Analy-
sis of luciferase activity in the presence of hsa-miR-1246, 
hsa-miR-320a and hsa-miR-196b-5p indicated that CFLAR 
and ZCCHC6 may be direct targets of hsa-miR-1246; TFPI, 
DAG1, CPD and KIAA1429 may be direct targets of 
hsa-miR-320a; and TFPI may be the only direct target of 
hsa-miR-196b-5p (Figure 4; Supplementary Figure S4).  

2.4  Forced expression of TFPI, DAG1 and CFLAR 
ameliorated EBOV GP-induced cytotoxicity 

To further investigate the roles of the identified target genes 
(TFPI, DAG1, CFLAR, KIAA1429, ZCCHC6 and CPD) in 
EBOV GP-induced cytotoxicity, we knocked down their 
protein expression in HUVECs before infection with Ad-GP 
(Figure 5AF; Supplementary Figure S5AF). Cell death 
induced by EBOV GP became more severe when the pro-
tein expressions of TFPI, DAG1 and CFLAR were down- 
regulated (Figure 5AF). In contrast, the cell detachments 
induced by EBOV GP in transfected HEK293T cells were 
significantly reduced when the TFPI, DAG1 and CFLAR  

 

 

Figure 2  Inhibitors of hsa-miR-1246, hsa-miR-196b-5p and hsa-miR-320a could ameliorate cell death induced by EBOV GP. HUVECs were transfected 
with control inhibitors or miRNA inhibitors (A) (control mimics or miRNA mimics, B) as indicated at a final concentration of 100 nmol L1. After 24 h, the 
cells were exposed to Ad-GP and Ad-E1 (MOI, 500). After 48 h, the cell viability was assayed. The data are shown as the mean±SEM of three independent 
experiments. *, P<0.05. 
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Figure 3  Identification of direct target genes of hsa-miR-1246, hsa-miR-196b-5p and hsa-miR-320a by Western blot in HUVECs. A, Hsa-miR1246, 
hsa-miR320a and hsa-miR196b-5p inhibitors (final concentration, 100 nmol L1) were transfected into HUVECs 24 h before the cells were exposed to 
Ad-GP and Ad-E1 (MOI, 500). Target gene expression was analyzed at 24 h post-transduction by Western blot. The blots were analyzed with antibodies 
against the indicated proteins. B, The bar graph shows the DAG1/GAPDH, TFPI/GAPDH, CFLAR/GAPDH, ZCCHC6/GAPDH, CPD/GAPDH, 
TRIM24/GAPDH and KIAA1429/GAPDH relative ratios from three experiments. *, P<0.05; **, P<0.01. 
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Figure 4  Identification of direct target genes of hsa-miR-1246, hsa-miR-196b-5p and hsa-miR-320a by luciferase in HEK293T cells. A, Relative luciferase 
activity assays of Renilla luciferase reporters with CFLAR and ZCCHC6 wild-type or mutant 3′ UTRs were performed in HEK293T cells after transfection 
with control mimic or hsa-miR-1246 mimic. Luciferase activity was determined 48 h after transfection and normalized to firefly luciferase activity. Values 
represent the mean±SEM of three experiments from three independent assays. **, P<0.01. B, Relative luciferase activity assays of Renilla luciferase report-
ers with TFPI wild-type or mutant 3′ UTRs were performed in HEK293T cells after transfection with control mimic or hsa-miR-196b-5p mimic. Luciferase 
activity was determined 48 h after transfection and normalized to firefly luciferase activity. The values represent the mean±SEM of three experiments from 
three independent assays. **, P<0.01. C, Relative luciferase activity assays of Renilla luciferase reporters with TFPI, DAG1, CPD and KIAA1429 wild-type 
or mutant 3′ UTRs were performed in HEK293T cells after transfection with control mimic or hsa-miR-320a mimic. Luciferase activity was determined 48 h 
after transfection and normalized to the firefly luciferase activity. Values represent the mean±SEM of three experiments from three independent assays. **, 
P<0.01.  
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Figure 5  Forced expression of TFPI, DAG1 and CFLAR ameliorated EBOV GP-induced cytotoxicity. Control siRNA or TFPI-specific siRNA 
(A)/DAG1-specific siRNA (B)/CFLAR-specific siRNA (C) were transfected into HUVECs 24 h before the cells were exposed to Ad-GP and Ad-E1 (MOI, 
500), cell viability was assayed by MTS at 48 h after transduction. The data are from three experiments. *, P<0.05. Western blotting analysis of the efficien-
cy of TFPI (D), DAG1 (E) or CFLAR (F) knockdown in HUVECs. The bar graph indicates TFPI/GAPDH, DAG1/GAPDH and CFLAR/GAPDH relative 
ratios. The data are shown as the mean±SEM of three experiments. **, P<0.01. HEK293T cells were cotransfected with 0.5 µg of EboZ GP or EboZ 
GP-mucin and 0.5 µg of control plasmid Peak13-TFPI-flag (G), Peak13-DAG1-flag (H), Peak13-CFLAR-flag (I). The cells were incubated for 48 h, and 
both floating and adherent cells were counted to calculate the percentage rounding. The data are from three experiments. *, P<0.05; **, P<0.01. Western 
blotting analysis of the efficiency of TFPI (J), DAG1 (K) or CFLAR (L) overexpression in HEK293T cells. The bar graph indicates TFPI/GAPDH, 
DAG1/GAPDH and CFLAR/GAPDH relative ratios. The data are shown as the mean±SEM of three experiments. **, P<0.01. 
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proteins were overexpressed (Figure 5GL; Supplementary 
Figure S5GJ). Due to the unsatisfactory transfection effi-
ciency of HUVECs, we chose another commonly used cells, 
HEK293T cells. These results indicated that TFPI, DAG1 
and CFLAR may play critical roles in EBOV GP-induced 
cell cytotoxicity.  

TFPI, DAG1 and CFLAR have been previously shown to 
be associated with cell adhesion [4043], while TFPI also 
plays a part in the inhibition of coagulation [44] and CFLAR 
has an inhibitory role in apoptosis [45]. Therefore, we 
sought to evaluate whether the rescue effect of cell viability 
could be enhanced when cells were treated with these pro-
teins in combination. We overexpressed TFPI, DAG1 and 
CFLAR in HEK293T cells that had been previously trans- 
fected with EBOV GP either alone or in combination (Fig-
ure 6A and B). Notably, TFPI demonstrated the most pro-
nounced effect among the single-overexpressed proteins, 
and combined overexpression of all three proteins demon-
strated a significantly stronger effect compared to overex-
pression of single proteins only (Figure 6A). Thus, these 
data suggested that combined therapy with TFPI, DAG1, 
and CFLAR may have the best rescue effect on EBOV 
GP-induced cytotoxicity.  

2.5  miRNA inhibitors reversed EBOV GP-induced 
cytotoxicity 

We next treated Ad-GP-infected HUVECs with a combina-
tion of inhibitors of hsa-miR-1246, hsa-miR-320a, and 
hsa-miR-196b-5p. Interestingly, the combination of all three 
miRNA inhibitors had a greater effect on cell viability than 
hsa-miR-320a or hsa-miR-196b-5p inhibitor alone, although 
the effect of the combined inhibitors was not significantly 
different compared to that of the hsa-miR-1246 inhibitor 
alone (Figure 6C). Furthermore, we found that only inhibi-
tors of hsa-miR-1246 and hsa-miR-320a demonstrated a 
therapeutic effect on EBOV GP-induced cell rounding and 
detachment, although all of them demonstrated prophylactic 
effects (Figure 6D).   

We have identified the adhesion-related molecules TFPI, 
DAG1 and CFLAR as important target genes in EBOV 
GP-induced vein endothelial cell detachment, and showed 
that overexpression of these genes could rescue EBOV 
GP-mediated cytotoxicity. We also showed that hsa-miR- 
1246, hsa-miR-320a, and hsa-miR-196b-5p were elevated 
following EBOV GP transfection, and inhibitors of these 
miRNAs could rescue EBOV GP-mediated cytotoxicity 
(Figure 6E). 

3  Discussion 

Cytotoxicity caused by EBOV GP is believed to play an 
important role in the hemorrhagic manifestations that are 
widely observed in patients and laboratory-infected mon-

keys [4,18,20,22]. However, the molecular events that lead 
to these cytopathic effects during viral infection are poorly 
understood. Using next-generation sequencing technology 
and differential miRNAs expression analysis, we identified 
novel molecular targets that were involved in EBOV 
GP-induced cytotoxicity in HUVECs. Moreover, we could 
significantly reduce EBOV GP-induced HUVECs’ death 
using hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p 
inhibitors, both alone and in combination. We found that the 
sponges of hsa-miR-1246, hsa-miR-320a, and hsa-miR- 
196b-5p were located at different genomic locations [46] 
(Supplementary Figure S6), and further studies of the mod-
ulation of expression of these miRNAs upon EBOV GP 
induction are necessary.  

Previous study showed that endothelial adherens contrib-
ute to the functional integrity of the endothelium, and the 
mainly adherens-type junctions were the targets for in-
creased cellular permeability after EBOV infection [24]. 
The adherent molecules such as transmembrane vascular 
endothelial cadherin, beta- and gama-catenins, integrins and 
EGFR were involved in the process [4,6,24]. Among the 
miRNA target genes identified, the protein products of TFPI, 
DAG1, CFLAR, ZCCHC6, CPD, TRIM24 and KIAA1429 
were shown by Western blot analysis to be regulated by 
hsa-miR-1246, hsa-miR-320a, and hsa-miR-196b-5p (Fig-
ure 3). However, our data showed that only adhesion-related 
molecules (TFPI, DAG1 and CFLAR) had functional roles 
in EBOV GP-induced cytotoxicity in HUVECs (Figure 5; 
Supplementary Figure S5), suggesting that adhesion indeed 
plays an important role in maintaining blood vessel integrity 
and limiting vascular permeability upon Ebola virus infec-
tion in humans. At the same time, the interaction between 
the three target proteins and other proteins previously im-
plicated in GP toxicity remains to be studied. 

In this study, expression of miRNAs mimic in 
Ad-∆Ε1-infected HUVECs did not mimic the detachment 
effects of GP expression, which might be because overex-
pression of these miRNAs alone is not sufficient to induce 
cell detachment and death. Studies showed that pathological 
changes of cell morphology happened when GP protein was 
highly expressed but not moderately expressed [47]. It also 
implied that there might be other molecules involved in 
GP-induced cytotoxicity in addition to the target genes of 
hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p.   

ZCCHC6 (http://www.ncbi.nlm.nih.gov/gene/79670) and 
TRIM24 are transcriptional regulators [48]. They might be 
indirectly regulated by the miRNAs and further analysis and 
experiments are necessary to determine the roles of their 
transcriptional targets in EBOV GP-induced cytotoxicity.   

It is interesting to note that TFPI showed the best rescue 
effect upon GP overexpression and the inhibition of 
hsa-miR-1246 demonstrated the best effect for miRNAs. 
However, TFPI is not directly targeted by hsa-miR-1246. It 
is likely that hsa-miR-1246 has multi-targets besides 
CFLAR. Further bioinformatics analysis and experimental  
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Figure 6  miRNA inhibitors and recombinant proteins could be potential prophylactic and therapeutic remedies against EBOV infections. A, HEK293T 
cells were cotransfected with 0.5 µg of Peak13-gp-gfp or Peak13-gp-mucin and 0.5 µg of control plasmid/Peak13-TFPI-flag/Peak13-DAG1-flag/ 
Peak13-CFLAR-flag in various combinations. The cells were incubated for 48 h, and both floating and adherent cells were counted to calculate the percent-
age rounding. The data are from three experiments. *, P<0.05; **, P<0.01. #, P<0.05, the percentage rounding between overexpression of TFPI and com-
bined overexpression of all three proteins. B, HEK293T cells were cotransfected with 0.5 µg of Peak13-GP-gfp and 0.5 µg of control plas-
mid/Peak13-TFPI-flag/Peak13-DAG1-flag/Peak13-CFLAR-flag in various combinations. Protein expression levels were assayed by Western blot at 48 h 
after transfection. C, miRNA inhibitors (final concentration of each miRNA, 50 nmol L1) were transfected into HUVECs 24 h before the cells were exposed 
to Ad-GP and Ad-E1 (MOI, 500) in various combinations. Cell viability was assayed by MTS at 48 h after transduction. The data are shown as the 
mean±SEM of three experiments. *, P<0.05; **, P<0.01. D, The cells were exposed to Ad-GP and Ad-E1 (MOI, 500) 3 h before HUVECs were transfect-
ed with control inhibitors or miRNA inhibitors as indicated at a final concentration of 100 nmol L1. After 48 h, the cell viability was assayed. The data are 
shown as the mean±SEM of three independent experiments. *, P<0.05. E, A summary schematic shows the potential pathogenesis of Ebola glycopro-
tein-induced cell rounding and detachment in human umbilical vein endothelial cells. Up-regulated genes are shown in red; down-regulated genes are shown 
in green.  
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studies are necessary. TFPI has been reported to inhibit tis-
sue factor-mediated coagulation in addition to its role in cell 
adhesion [49]. Previous studies have shown that treatment 
with recombinant nematode anticoagulant protein c2 
(rNAPc2) significantly increased the survival rate of 
EBOV-infected non-human primates [50]. We showed here 
that TFPI was the most effective protein at rescuing EBOV 
GP-induced detachment and death, indicating that TFPI 
may have combined roles in cell adhesion and coagulation.  
As GP alone could induce cell detachment and increase the 
permeability of blood vessels [20], in this study we used GP 
EBOV expression instead of live EBOV and HUVECs in-
stead of whole organism. In addition, the molecular mecha-
nism elucidated here focused on the disruption of adhesion 
molecules involved in late-stage disease pathogenesis. Alt-
hough these results may reflect the molecular events that 
take place during pathogenesis of live EBOV infection, fur-
ther studies with live EBOV are needed. 

At present, no effective filovirus vaccine has been de-
veloped. As the only surface envelope glycoproteins of 
ebola virus, GP is a kind of multifunctional proteins in virus 
adsorption, cells cytotoxicity and host immune response. At 
the same time, it is the most ideal vaccine antigen [51]. 
Considering the safety and immunogenicity of vaccine, the 
dosage levels of the vaccine must be restricted strictly. GP 
can induce cell cytotoxicity when it was highly expressed 
but not moderately expressed [47]. Ongoing and upcoming 
EBOV GP studies will provide scientific basis for develop-
ment of candidate preventive vaccine. 

In summary, this study provided novel insight into the 
molecular pathogenesis of Ebola virus infection. In particu-
lar, we show that EBOV GP induces elevated expression of 
hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p; de-
creases expression of their cell adhesion-related target genes 
TFPI, DAG1 and CFLAR; disrupts the integrity of blood 
vessels to increase vascular permeability and the leakage of 
red blood cells; and finally contributes to the highly lethal 
hemorrhagic fever syndrome observed in humans (Figure 
6E). Thus, we suggest that inhibitors of hsa-miR-1246, 
hsa-miR-320a, and hsa-miR-196b-5p, as well as recombi-
nant TFPI, DAG1 and CFLAR target proteins may repre-
sent prophylactic and therapeutic remedies against future 
EBOV infection. 
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Figure S1  Differentially expressed miRNAs (DEmiRs) and differentially expressed genes (DEGs) in the process of glycoprotein-induced vascular endo-
thelial cell injury. A, Number of differentially expressed miRNAs (DEmiRs) and differentially expressed mRNA (DEGs). B, Heat map showing time-course 
fold changes of DEmiRs in glycoprotein-induced vascular endothelial cell injury. A red block indicates up-regulated genes and a green block indicates 
down-regulated genes. 
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Figure S2  Ebola virus GP expression induced cell rounding and death. Adenovirus vectors expressing EboZ GP or mock were used to transduce primary 
HUVECs (MOI, 500) (A) and 293T cells (MOI, 1) (C). The cells were monitored at regular intervals for evidence of cell rounding, and representative pho-
tographs were taken at 48 h post-transduction. B and D, Western blotting analysis of the expression level of green fluorescent protein (GFP protein). E, MTS 
assay results for HUVECs transduced with Ad-GP or Ad-E1 (MOI, 500) for 3, 6, 12, 24, 36, and 48 h. **, P<0.01, Ad-GP vs. Ad-E1. 
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Figure S3  Analysis of target genes of miRNAs by Western blot. A, Hsa-miR1246, hsa-miR320a and hsa-miR196b-5p inhibitors (final concentration, 100 
nmol L1) were transfected into HUVECs 24 h before the cells were exposed to Ad-GP and Ad-E1 (MOI, 500). Target gene expression was analyzed at 24 
h post-transduction by Western blot. The blots were analyzed with antibodies against the indicated proteins. B, The bar graph shows the FRMD6/GAPDH, 
HLTF/GAPDH, SDCBP/GAPDH, IP6K1/GAPDH, SLC9A6/GAPDH, UBE2H/GAPDH and MCTP1/GAPDH relative ratios from three experiments. *, 
P<0.05. 
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Figure S4  Analysis of miRNA target genes by luciferase. A, Relative luciferase activity assays of Renilla luciferase reporters with TFPI wild-type or mu-
tant 3′ UTRs were performed in HEK293T cells after transfection with control mimic or hsa-miR-1246 mimic. Luciferase activity was determined 48 h after 
transfection and was normalized to the firefly luciferase activity. The values represent the mean±SEM of three experiments from three independent assays. B, 
Relative luciferase activity assays of Renilla luciferase reporters with KIAA1429 or DAG1 wild-type or mutant 3′ UTRs were performed in HEK293T cells 
after transfection with mimic control or mimic hsa-miR-196b-5p. Luciferase activity was determined 48 h after transfection and was normalized to the firefly 
luciferase activity. The values represent the mean±SEM of three experiments from three independent assays. C, Relative luciferase activity assays of Renilla 
luciferase reporters with TRIM24 wild-type or mutant 3′ UTRs were performed in HEK293T cells after transfection with control mimic or hsa-miR-320a 
mimic. Luciferase activity was determined 48 h after transfection and was normalized to the firefly luciferase activity. The values represent the mean±SEM 
of three experiments from three independent assays. 
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Figure S5  KIAA1429, ZCCHC6 and CPD could not ameliorate Ebola virus GP-induced cytotoxicity. Control siRNA or KIAA1429-specific siRNA 
(A)/ZCCHC6-specific siRNA (B)/CPD-specific siRNA (C) were transfected into HUVECs 24 h before the cells were exposed to Ad-GP and Ad-E1 (MOI, 
500), cell viability was assayed by MTS at 48 h after transduction. The data are from three experiments. Western blotting analysis of the effectiveness of 
KIAA1429 (D), ZCCHC6 (E) or CPD (F) knockdown in HUVECs. The bar graph indicates KIAA1429/GAPDH, ZCCHC6/GAPDH and CPD/GAPDH 
relative ratios. The data are shown as the mean±SEM of three experiments. **, P<0.01. HEK293T cells were cotransfected with 0.5 µg of EboZ GP or EboZ 
GPmucin and 0.5 µg of control plasmid/Peak13-KIAA1429 (G)/Peak13-ZCCHC6 (H). The cells were incubated for 48 h, and both floating and adherent 
cells were counted to calculate percent rounding. The data are from three experiments. Western blotting analysis of the effectiveness of overexpression of 
KIAA1429 (I) or ZCCHC6 (J) in HEK293T cells. The bar graph indicates the KIAA1429/GAPDH and ZCCHC6/GAPDH relative ratios. The data are 
shown as the mean±SEM of three experiments. *, P<0.05; **, P<0.01. 
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Figure S6  Genomic locations of microRNAs hsa-miR-1246, hsa-miR-196b-5p and hsa-miR-320a. Different genomic locations of microRNAs 
hsa-miR-1246, hsa-miR-196b-5p and hsa-miR-320a were analyzed by the UCSC data base (http://genome.ucsc.edu/cgi-bin/hgGateway). 
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Table S3  Expression fold change of 18 miRNAs which were found to be significantly differentially expressed in the GP-induced HUVECs 

No. miRNA 3 h 6 h 12 h 24 h 36 h 48 h 
Order of 

oligonucleotides 

1 hsa-miR-151a-5p 1.269094 1.147848 1.662109 1.293469 0.974547 1.110217 inhibitor 

2 hsa-miR-152 0.532175 0.52408 1.425069 1.167242 1.016099 0.778609 inhibitor 

3 hsa-miR-22-3p 0.05163 0.984645 1.364907 1.054959 0.05183 0.886469 inhibitor 

4 hsa-miR-196b-5p 0.395463 1.028573 1.152811 1.206606 0.400748 0.04454 inhibitor 

5 hsa-miR-424-5p 0.195012 0.44247 1.304861 1.030804 0.46495 1.008352 inhibitor 

6 hsa-miR-374a-5p 1.14883 1.17302 1.207216 0.259833 0.03382 0.845957 both 

7 hsa-miR-24-3p 0.880868 1.111113 0.761909 0.401233 0.207918 0.998961 inhibitor 

8 hsa-miR-744-5p 0.998487 1.339037 0.881082 0.594796 0.05134 0.599302 inhibitor 

9 hsa-miR-222-3p 1.497371 1.559117 0.405156 0.129881 0.382795 1.230315 inhibitor 

10 hsa-miR-4521 0.956015 1.138905 0.08723 0.8054 0.33448 1.147574 both 

11 hsa-miR-34a-5p 1.262469 0.897093 0.005463 0.158376 1.07796 0.41306 inhibitor 

12 hsa-miR-1246 2.541367 2.950668 0.64206 0.24144 0.248045 0.24214 both 

13 hsa-miR-93-5p 0.361414 1.102215 0.39996 0.15847 0.12624 0.23836 both 

14 hsa-miR-193a-5p 0.543579 1.261469 0.93546 0.61432 0.62781 0.19474 both 

15 hsa-miR-320a 0.067418 1.107549 0.9758 0.6253 0.584 0.44248 both 

16 hsa-miR-15b-5p 0.599424 0.61668 0.36254 1.02625 1.75719 0.400898 mimic 

17 hsa-miR-29a-3p 0.6986 0.22843 1.56439 1.0775 0.69906 0.29281 mimic 

18 hsa-miR-29c-3p 0.47883 0.45975 1.78741 1.26871 1.35619 0.31176 mimic 

 

 


