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2D frequency-domain elastic full-waveform inversion using time-domain
modeling and a multistep-length gradient approach

Kun Xu1 and George A. McMechan1

ABSTRACT

To decouple the parameters in elastic full-waveform inversion
(FWI), we evaluated a new multistep-length gradient approach
to assign individual weights separately for each parameter gra-
dient and search for an optimal step length along the composite
gradient direction. To perform wavefield extrapolations for the
inversion, we used parallelized high-precision finite-element
(FE) modeling in the time domain. The inversion was imple-
mented in the frequency domain; the data were obtained at every
subsurface grid point using the discrete Fourier transform at
each time-domain extrapolation step. We also used frequency
selection to reduce cycle skipping, time windowing to remove
the artifacts associated with different source spatial patterns be-
tween the test and predicted data, and source wavelet estimation
at the receivers over the full frequency spectrum by using a fast
Fourier transform. In the inversion, the velocity and density re-

constructions behaved differently; as a low-wavenumber tomog-
raphy (for velocities) and as a high-wavenumber migration (for
density). Because velocities and density were coupled to some
extent, variations were usually underestimated (smoothed) for
VP and VS and correspondingly overestimated (sharpened)
for ρ. The impedances IP and IS from the products of the veloc-
ity and density results compensated for the under- or overesti-
mations of their variations, so the recovered impedances were
closer to the correct ones than VP, VS, and ρ were separately.
Simultaneous reconstruction of VP, VS, and ρ was robust on the
FE and finite-difference synthetic data (without surface waves)
from the elastic Marmousi-2 model; satisfactory results are ob-
tained for VP, VS, ρ, and the recovered IP and IS from their prod-
ucts. Convergence is fast, needing only a few tens of iterations,
rather than a few hundreds of iterations that are typical in most
other elastic FWI algorithms.

INTRODUCTION

Multiparameter elastic full-waveform inversion (FWI) is more
suitable for wide-aperture, multicomponent seismic data than mo-
noparameter scalar-wave velocity (or acoustic) FWI because the
acoustic solution is not able to fit P-S-mode conversions well at
wide apertures (Mulder and Plessix, 2008). As more parameters
are obtained in elastic FWI, it is increasingly useful for geologic
interpretation of rock properties (e.g., reservoir characterization
and monitoring). However, because different parameters are more
or less coupled as functions of the incident angles in elastic FWI
(Tarantola, 1986; Virieux and Operto, 2009), it is more ill-condi-
tioned than acoustic velocity-only FWI. Especially, among all elas-
tic parameters in the inversion, ρ has no impact on the phases of
seismic wavefields and has a radiation pattern similar to that of
VP at short apertures. Hence, ρ is the most difficult parameter to

be inverted, so it is typically fixed, or recovered from very low
frequencies (e.g., below 1 Hz) along with other parameters in
the elastic inversion.
To date, only a few studies of elastic FWIs are conducted in the

time or frequency domains. In the time domain, Tarantola (1986)
and Mora (1987) expand 2D FWI from the monoparameter scalar,
to the multiparameter elastic, inversions with different combinations
of elastic parameters; they found that ρ cannot be well resolved be-
cause of the ambiguity of the second diffraction patterns between
VP and ρ. Therefore, they suggest that probably only two velocities
(VP and VS) or their impedances (IP and IS) are suitable parameters
for the elastic FWI. Crase et al. (1990) reconstruct the short-wave-
length impedances IP and IS using a 2D time-domain elastic FWI
with different minimization criteria. The impedance results are
similar to migration profiles, which lack low-wavenumber informa-
tion. Shipp and Singh (2002) and Sears et al. (2008) perform 2D
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time-domain elastic FWIs to recover velocities using wide-aperture
marine data. Using a time-windowing strategy, they design hierar-
chical multistep approaches to mitigate the nonlinearity in the data-
to-parameter coupling, which makes the inversion convergence
slow or difficult. Nevertheless, not all three parameters VP, VS,
and ρ are recovered during the inversions in their work; VS or ρ
is reconstructed using empirical relation equations to predict from
VP. Köhn et al. (2012) show successful reconstructions of VP, VS,
and ρ for the elastic Marmousi-2 model (Martin et al., 2002) with a
multiscale strategy using different frequency bands in the time do-
main. However, they conclude that low frequencies are essential for
the reconstruction of ρ, so very low frequencies (close to 0 Hz) in
the full frequency band are included in the time-domain inversion of
their synthetic data.
In the frequency domain, Pratt et al. (1998) describe least-squares

optimization schemes in detail using different approximate forms of
the Hessian matrix for the monoparameter scalar-wave velocity
FWI, which can be generalized into elastic FWIs. Xu et al.
(2006) discuss different source-independent methods used in a fre-
quency-domain elastic FWI, on 2D crosswell synthetic data. Gelis
et al. (2007) linearize the inverse problem using Born and Rytov
approximations in a 2D frequency-domain elastic FWI. Brossier
et al. (2009) conduct a 2D frequency-domain elastic FWI on a
2D slice of the SEG/EAGE overthrust model by using frequencies
above 1.7 Hz; to mitigate the nonlinearity and thus to improve the
convergence, they apply frequency selection and multiple damping
terms in the frequency domain. All the above frequency-domain
elastic FWIs are limited to solving only for VP and VS by fixing
ρ in the inversion. Abubakar et al. (2012) propose an elastic
FWI scheme using a compressed implicit Jacobian matrix to invert
VP, VS, and ρ simultaneously, but fail to give a good estimation of ρ.
Choi et al. (2008) successfully recover VP, VS, and ρ simultane-
ously on the elastic Marmousi-2 model in a marine acoustic-elastic
environment. To improve the reconstruction of ρ, Jeong et al. (2012)
propose a hierarchical strategy to estimate the velocities VP and VS

initially, and then subsequently to estimate the density and veloc-
ities simultaneously. They show successful reconstructions of VP,
VS, and ρ on the elastic Marmousi-2 model and on a modified 2D
SEG elastic salt model. However, they (Choi et al., 2008; Jeong
et al., 2012) perform the frequency-domain inversions from very
low frequencies (e.g., 0.167 Hz), which are usually not available
in field data.
Because the time and frequency domains have their own advan-

tages and disadvantages for the inversion, some researchers (Sirgue
et al., 2008; Etienne et al., 2010) recently propose to combine both
for FWI. Source and receiver wavefield extrapolations are per-
formed using time-domain finite-difference (FD) or finite-element
(FE) modeling, which is fast, memory-efficient, and easily parallel-
ized, especially for 3D computations. Time windowing can be ap-
plied to the inversion to mitigate the nonlinearity, by gradually
extending the window length or removing strong interference waves
(e.g., surface waves or direct waves). The inversion is implemented
in the frequency domain to calculate the objective function and gra-
dients. The frequency data are calculated at each extrapolation time
step using a discrete Fourier transform (DFT) (Sirgue et al., 2008;
Etienne et al., 2010), or phase sensitive detection (Nihei and
Li, 2007). The storage of the whole time-domain source wavefields
at every subsurface grid point is greatly reduced to that for only a
few frequency snapshots. Most importantly, the gradual low-to-high

frequency-selection strategy can be naturally applied in the inver-
sion to avoid cycle skipping.
In this paper, we use two strategies to improve the computational

efficiency, to reduce the inversion nonlinearity, and to decouple VP,
VS, and ρ in elastic inversion. First, a time-domain high-precision
FE extrapolation is parallelized over shots with the message-passing
interface (MPI), for forward and backward elastic wavefield prop-
agations, and the inversion is implemented in the frequency domain.
This improves the computational efficiency. Frequency-selection
and time-windowing techniques are applied to mitigate the nonli-
nearity in the elastic FWI.
In the second strategy, to decouple VP, VS, and ρ in the inversion,

we propose a multistep-length gradient approach to assign different
optimal weights to each of the parameter gradients, and then we
search for an overall optimal steplength along the composite gra-
dient at each iteration. Because different model parameters have dif-
ferent contributions to the elastic multicomponent wavefields, it is
reasonable to treat them with different weights (individual step
lengths) in elastic FWI. For the elastic Marmousi-2 model, which
has complicated structures, the elastic FWI scheme gives satisfac-
tory results even using frequencies above 3 Hz. Because the ap-
proach always searches for a minimum using parabolic fits at
each iteration, the convergence is stable and fast.
In the gradients and inverted results of different parameters, the

long-wavenumber velocity results that contribute to propagation
times (phases) and amplitudes of the full wavefields are often
underestimated or smoothed in their variations, while the short-
wavelength density result that contributes only to reflection
amplitudes is overestimated or sharpened in its variations, corre-
spondingly. Mora (1989) reveals the insight that inversion can be
interpreted as a composite of a tomography and a migration to re-
cover the low- and high-wavenumber parts of the model, respec-
tively. Here, we distinguish between full-waveform inversion
(FWI) and full-waveform tomography (FWT), which are often con-
fused as being the same (Xu and Greenhalgh, 2010; Köhn et al.,
2012). FWI tries to recover the complete wavenumber information
using the full wavefields including phases and amplitudes, whereas
FWT reconstructs the low-wavenumber velocities using predomi-
nantly phase (or traveltime) information rather than amplitude in-
formation. The recovered impedances (IP and IS) from the velocity
and density products compensate for the under- or overestimations
of the velocity and density variations, respectively, because the am-
plitudes in the data that are fitted to recover impedances depend on
velocities and density. Therefore, the impedance results are closer to
the correct ones than VP, VS, and ρ are separately.

TIME-DOMAIN FE MODELING

In the time domain, we use a high-precision elastic-wave FE
method to simulate forward and backward wavefield propagations.
The elastic-wave FE equation can be expressed in matrix form
(Marfurt, 1984):

KûðtÞ þM
∂2ûðtÞ
∂t2

¼ f̂ðtÞ; (1)

where K is the stiffness matrix,M is the mass matrix, ûðtÞ is the 2D
2C time-domain elastic wavefield, and f̂ðtÞ is the source vector.

Because the standard FE method has only second-order spatial
accuracy, we apply a dispersion correction (Krenk, 2001) to reduce
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the wavefield’s spatial dispersion using an average mass matrix
combined with the lumped and consistent mass matrices (Marfurt,
1984) at each explicit time step. The FE scheme is parallelized with
MPI to distribute shot simulations over cluster nodes.
To calculate the frequency wavefields at every subsurface grid

point, we apply the DFT equation at each step of time-domain
wavefield extrapolations:

uðωÞ ¼
XT
t¼0

ûðtÞeiωt; (2)

where uðωÞ is the monofrequency snapshot at the circular frequency
ω and T is the total recording time. Thus, a few selected frequency
snapshots are calculated at each subsurface grid point for the gra-
dient calculation. The gradual low-to-high frequency-selection
strategy (Mora, 1987; Xu et al., 1995) can be applied. The whole
time-domain source wavefields are recorded only at receivers to cal-
culate the residual wavefields for backward propagation. The time-
windowing strategy can also be applied in the time-domain residual
wavefields at the receivers.

FREQUENCY-DOMAIN GRADIENT EQUATION

The frequency-domain FE modeling equation (Marfurt, 1984)
corresponding to equation 1 is

ðK − ω2MÞuðωÞ ¼ SuðωÞ ¼ fðωÞ; (3)

where S is the complex-valued impedance matrix. In the FWI algo-
rithm, the same stiffnessK and massMmatrices in the time-domain
equation 1 and frequency-domain equation 3 are defined piecewise
and assembled from their element matrices Ke and Me for each 2D
rectangular element, respectively. According to Hamilton’s princi-
ple in elastodynamic media (Nikishkov, 2007),

Ke ¼
ZZ

e
BTDBds; and Me ¼

ZZ
e
ρNTNds; (4)

where N is the Lagrangian bilinear rectangular function matrix; B is
the displacement differentiation matrix, which is obtained with
the spatial differentiation of N;

RR
e ds represents the 2D spatial in-

tegral over each rectangular element; the superscript T indicates
the transpose of the matrix; and D is the matrix of elastic coeffi-
cients (Nikishkov, 2007), which can be expressed using VP, VS,
and ρ as

D ¼
� V2

Pρ ðV2
P − 2V2

SÞρ 0

ðV2
P − 2V2

SÞρ V2
P ρ 0

0 0 V2
S ρ

�
: (5)

The impedance matrix S is also defined piecewise and assembled
from its element matrices; Se ¼ Ke − ω2Me.
Based on equation 3, the least-squares objective misfit function

for the elastic FWI is

minðEÞ ¼ 1

2

X
ω

X
s

½ufðxR;ωÞ − dðxR;ωÞ�T

× ½ufðxR;ωÞ − dðxR;ωÞ��; (6)

where ufðxR;ωÞ contains the predicted frequency data at the receiv-
ers xR, dðxR;ωÞ contains the measured frequency data at the receiv-
ers xR,

P
ω indicates summation over all the selected frequencies in

the inversion,
P

s indicates summation over all shots, and the super-
script * indicates the complex conjugate of the matrix.
Each element of the gradient vectors is the derivative of the ob-

jective function 6 with respect to a corresponding elastic parameter
pj at the subsurface grid element j. According to Shin and Cha
(2009), the gradient can be calculated using a virtual-source nor-
malization as

∂E
∂pj

≈
X
ω

Re

�P
su

T
f ðx;ωÞ ∂ST

∂pj
u�bðx;ωÞ

�
P
s
uTf ðx;ωÞ ∂ST

∂pj

∂S�
∂pj

u�fðx;ωÞ þ γ
; (7)

where ufðx;ωÞ are the frequency data of the forward-propagated
source wavefields at each subsurface grid point x, ubðx;ωÞ are
the frequency data of the backward-propagated residual wavefields
from receivers at each subsurface grid point x, γ is a small damping
term, and Re represents the operation to take the real part. Hence,
we construct the gradient vectors gVP

, gVS
, and gρ independently for

VP, VS, and ρ, respectively. In equation 7, ∂S
∂pj

has nonzero coeffi-
cients only for the corresponding elastic parameters VPj

, VSj
, and ρj

at the jth element. The element matrices ∂Se
∂VPj

, ∂Se
∂VSj

, and ∂Se
∂ρj

at the jth
element are solved as

∂Se
∂VPj

¼ ∂Ke

∂VPj

¼
ZZ

e
BT ∂D

∂VPj

Bds;

∂Se
∂VSj

¼ ∂Ke

∂VSj

¼
ZZ

e
BT ∂D

∂VSj

Bds; and

∂Se
∂ρj

¼ ∂Ke

∂ρj
− ω2

∂Me

∂ρj
¼

ZZ
e
BT ∂D

∂ρj
Bds

− ω2

ZZ
e
NTNds; (8)

respectively.

MULTIPLE STEP LENGTHS

Theory

To update the model parameters, we implement the steepest-
descent gradient approach by assigning different weights (individ-
ual step lengths) to the gradients of three elastic parameters VP, VS,
and ρ. The update equation is

Pkþ1ðVP; VS; ρÞ ¼ PkðVP; VS; ρÞ
− αkðβk1gkVP

þ βk2g
k
VS

þ βk3g
k
ρÞ; (9)

where pðVP; VS; ρÞ is the model parameter vector including three
parameters VP, VS, and ρ at every element; kþ 1 and k indicate
the iterations; αk is the overall step length at the kth iteration;
βk1, β

k
2, and βk3 are the individual step lengths (weights) at the

kth iteration for the individual elastic parameters VP, VS, and ρ,
respectively.
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Similar to Pica et al. (1990) and Meles et al. (2010), we evaluate
the optimal values of the individual weights βj, for j ¼ 1; 2; 3 by
giving a small perturbation of the corresponding parameter to the
current model along their own gradient directions gVp

, gVs
, and gρ,

respectively. Because the parameters VP, VS, and ρ are coupled
more or less in the elastic FWI, the weights βj that are estimated
independently cannot guarantee the convergence of the inversion.
We further use the overall step-length factor α to adjust the length
of the composite gradient ðβk1gkVP

þ βk2g
k
VS

þ βk3g
k
ρÞ, to guarantee the

updated objective function to be the minimum at each iteration.
In the best situation, in which the parameters are completely un-

coupled, and the individual weights βj for different parameters are
estimated very well, the value of α is, or very close to, 1. Normally,

we give two trial values of α near 1 such as 0.7 (smaller than 1) and
1.3 (larger than 1) and solve for the objective functions at these two
trial values. Then we perform (at most) two parabolic fits (Press
et al., 1992; Vigh and Starr, 2008) to search for the optimal value
of α using three values at each fitting, picked from 0, 0.7, 1.3, a new
estimated one, or the maximum one. The maximum value of α is set
far away from 1 (e.g., 2 or 3), in case the parabolic fits cannot locate
the minimum value of the objective function below 1.3.

Physical meaning

Here, we give a simple example to show the implementation and
advantages of the proposed multistep-length gradient approach for
multiparameter inversion. If we invert for two elastic parameters VP

and VS, there are usually three possible procedures to update the
model using the gradient method (see Figure 1). In Figure 1a, as
Tarantola (1986) suggests, a minimum is searched along the VP gra-
dient gVP

, then only VP is updated. Next, only VS is updated in the
same way. VP and VS are updated in turn until convergence. This
approach is relatively stable but converges slowly. In Figure 1b, the
difference between parameter types is ignored, and all parameters
are inverted together with the same weights. By using more expen-
sive optimization approaches such as Gauss-Newton or quasi-New-
ton algorithms (Pratt et al., 1998; Virieux and Operto, 2009), the
convergence can be accelerated. However, it still has difficulties
in inverting ρ along with VP and VS simultaneously because ρ
has a very different behavior from VP and VS.
In Figure 1c, the gradients gVP

and gVS
are assigned different

weights using our new scheme (or a subspace method) (Kennett
et al., 1988; Sambridge et al., 1991). Using our new scheme, we
treat them with different weights β1 and β2 at each iteration step;
the weights are evaluated as the optimal individual step lengths to
reach a minimum along their own gradient directions, respectively.
Then, the overall optimal step length α is evaluated along the
composite gradient direction using parabolic fits. This scheme guar-
antees a suitable composite gradient direction (adjusted by β1 and
β2) with an optimal overall step length α at each step. Therefore, its
convergence is fast and stable for simultaneous reconstruction of
different parameters (including ρ); each only needs to be assigned
a different weight.
The subspace method (Kennett et al., 1988; Sambridge et al.,

1991) is similar to our multistep-length gradient approach to assign
different weights for different parameter gradients, but without the
overall step length α. Because the cross variances between different
model parameter types are generally impossible to estimate at each
subsurface grid point, to resolve different parameters simultane-
ously in the inversion, the subspace approach normally assumes that
the subsurface parameter types are completely independent (Sam-
bridge et al., 1991; Sakai, 2011). The assumption is opposed to
most real cases that subsurface parameters are correlated to some
extent. Brossier et al. (2009) and Sakai (2011) conclude that the
subspace approach is not better than the standard quasi-Newton
or preconditioning conjugate gradient methods in elastic inversion
for VP and VS. In comparison, our new scheme uses one more over-
all step length α to always determine the “best” length for the
composite gradient direction, so it does not have the limitation
of the independent-parameter assumption. Without this limitation,
the multistep-length gradient approach can be expanded into the
inversion for any combinations of multiple parameters.
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Figure 1. Three procedures are used to update two model param-
eters VP and VS: (a) one by one in turn, (b) simultaneously, all with
the same weights, and (c) simultaneously with different weights.
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NUMERICAL TESTS

Elastic Marmousi-2 model and experiment setup

We test our elastic FWI on a modified elastic Marmousi-2 model.
The original Marmousi-2 model (Martin et al., 2002) has a water
layer (VS ¼ 0) and very low VS values (i.e., high Poisson’s ratios),
which requires a large number of grid points with a small grid size
in wavefield simulations. To simulate an onshore environment and
avoid the computational burden, we remove the upper water layer
and retain only the central portion of the VP and ρ models from the
original Marmousi-2 model. We also regenerate the VS model from
the original VP model using two VS∕VP ratios:

VS ¼
�
0.6VP VP < 3.5 km∕S;
1ffiffi
3

p VP VP ≥ 3.5 km∕S: (10)

The nonlinearity of the inversion is increased by using two VS∕VP

ratios, rather than only one constant ratio. Figure 2 shows the modi-
fied Marmousi-2 VP, VS, and ρmodels with the dimensions of 9.2 ×
3.04 km and with a uniform grid interval of 0.01 km. Hence, the
total number of the grid elements for the FE modeling is
nxe � nze ¼ 920 × 304, where nxe is the number of grid elements
along the horizontal direction and nze is along the vertical direction.
The total number of the unknowns in the inversion is 920 × 304 × 3

for VP, VS, and ρ. To reduce the inversion nonlinearity, each gra-
dient vector (e.g, gVP

, gVS
, or gρ) to update the corresponding model

parameter is discretized into a coarser grid mesh as 460 × 152, with
a larger grid interval of 0.02 km. In Figure 3, the corresponding
correct P- and S-impedance (IP and IS) models are also calculated
from the products of the velocities and density (Figure 2).

To remove unwanted model edge reflections, for our FE model-
ing and inversion, we put a hybrid absorbing boundary condition
composed of a damping zone (Shin, 1995), and a second-order
one-way wave-equation boundary condition (Higdon, 1991), along
the bottom, left, and right edges of the models. To further remove

free-surface effects (i.e., surface waves and body-wave reflections
from the free surface) that increase the nonlinearity of the inversion
(Brossier et al., 2009), we also place the hybrid absorbing condition
on the top of model. To simulate onshore synthetic data on the Mar-
mousi-2 model (Figure 2), 111 explosive sources along the top sur-
face of the model are spaced every 0.08 km, and are excited in turn
with a Ricker wavelet with peak frequency of 6 Hz and maximum
frequency of about 13 Hz. For every shot, 231 2C receivers are
spaced every 0.04 km along the top surface. The survey line is long
enough to record all wave types (without surface waves) and P-S
conversions, which are all accounted for in the elastic FWI. For
comparison, the acoustic FWI has many problems with long-offset
elastic data (Mulder and Plessix, 2008).
To provide a starting model (Figure 4) for the following FWI

tests, the correct model (Figure 2) is smoothed using a 2D Gaussian
filter with a correlation distance of 1.6 km. Thus, all the small-scale
structures vanish, and only the large-scale (low-wavenumber)

Figure 4. The smooth starting models for (a) VP, (b) VS, and (c) ρ
for the elastic FWI.

Figure 2. The target elastic Marmousi-2 models for (a) VP, (b) VS,
and (c) ρ.

Figure 3. The target model impedances for (a) IP and (b) IS from
the products of the velocities and density in Figure 2.

Elastic full-waveform inversion R45



structures are present. Because very low frequencies are usually
unavailable in field data, we use frequencies above 3 Hz for all in-
version tests. The requirement here is that the initial predicted data
must match the measured data to within a half-cycle at the lowest
available frequency (e.g., here, 3.09 Hz) (Mora, 1987). More highly
smoothed starting models are also feasible for the inversion algo-
rithm, if we can start the inversion from lower frequencies (e.g.,
<3 Hz) to retrieve the corresponding lower wavenumber velocity
information, which is missing in the starting model. For field data,
the starting model can be estimated using migration velocity analy-
sis or kinematic tomography for VP, and empirical geologic rela-
tions for VS and ρ, or Laplace-domain inversion (Chung et al.,
2008) for all VP, VS, and ρ.

FWI test on FE synthetic data

In this subsection, we use our high-precision dispersion-cor-
rected elastic FE modeling to generate time-domain 2C (vertical
and horizontal) particle-displacement wavefields for 111 explosive
shots, recorded at 4096 time samples with the increment of
0.0015 s. Figure 5 shows the 2C elastic particle-displacement whole
wavefields (without surface waves) for the 50th shot. For the inver-
sion in this subsection, the source wavelet is assumed to be known a
priori (in the later example, it is not). The elastic FWI using the
multistep-length gradient approach straightforwardly works well
on the whole test wavefields (Figure 5), partly because the extrap-
olations for the test data and the predicted data in the inversion are
performed using the same time-domain FE modeling engine (in the
later example, it is not). Hence, we do not apply the time-window-
ing strategy here.
Before inversion, we calculate the scaled (i.e., multiplied by step

lengths αβi, i ¼ 1; 2; 3) gradients gVP
, gVS

, and gρ (Figure 6) using
all FE-synthetic shot gathers, at the first iteration of the elastic FWI
and using 29 frequencies with an equal interval of 0.326 Hz in the
frequency band of 3.09–12.2 Hz. The frequency increment of
0.326 Hz is double that defined by Nyquist sampling of the
time-domain synthetic input shot gathers (e.g., Figure 5). The fre-
quency increment is small enough to prevent frequency leakage, as
long as the time length of the shot profiles (Figure 5) is long enough
to record all relevant waves. We do not use the uneven frequency
sampling strategy (Sirgue and Pratt, 2004) because it is not suitable
for the fast Fourier transform (FFT), which is used for the later

source wavelet estimation at the receivers. The gradient calculation
can be considered as an elastic least-squares migration (Chung et al.,
2011), but the velocity and density gradients have quite different
characteristics. The velocity gradients (Figure 6a and 6b) recover
the low-wavenumber spatial information with lower resolutions;
they have higher amplitudes at shallower depths because the main
contributions are from direct waves and refractions. The density
gradient (Figure 6c) recovers the high-wavenumber spatial informa-
tion with high resolution. It has a balanced amplitude (fairly inde-
pendent of depth) background mainly from reflections; the shallow
part is not affected by the strong energy of direct waves and refrac-
tions. This conforms to the elastic wavefield theory that the density
variations affect only the reflection and transmission coefficients
between layers to change the amplitudes of the propagated wave-
fields (mainly reflections recorded at the surface receivers), but they
do not affect the phases or traveltimes of the whole wavefields ex-
cept for the phase shifts of postcritical reflections.
Then, we apply the frequency-selection strategy in two phases

(for two frequency ranges) to avoid waveform cycle-skipping fitting
in the elastic FWI. In phase I, 15 lower frequencies with an equal
interval of 0.326 Hz from 3.09 to 7.65 Hz are used in the elastic
FWI for 30 iterations, which uses the smooth model (Figure 4)
as the starting model. In phase II, 15 higher frequencies from
7.65 to 12.2 Hz are used in the elastic FWI for 30 iterations, which
uses the final results in phase I as the initial model. Figure 7 shows
the final results after the two phases; VP, VS, and ρ are all well
resolved. The velocity results (Figure 7a and 7b) are better resolved
at shallow depths, because the strong shallow direct waves and re-
fractions dominate their shallow reconstructions. In contrast, the
density result (Figure 7c) has the highest resolution with a balanced
amplitude background, which is similar to a depth migration. This is
because it reconstructs the high-wavenumber part of the whole
model using the amplitude information mainly from reflections.
Figure 8 shows the comparisons between the target (red lines),

the starting (green lines), and the inverted (blue lines) parameter
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Figure 5. (a) The synthetic vertical-component and (b) horizontal-
component elastic particle-displacement wavefields (without sur-
face waves) for the 50th shot, using FE modeling.

Figure 6. The scaled gradients (multiplied by step lengths αβi
i ¼ 1; 2; 3) using all FE-synthetic shot gathers, at the first iteration
and using 29 frequencies in the range of 3.09–12.2 Hz.
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values in the depth profiles at the horizontal positions x ¼ 3.5 km

and 6.5 km in the models in Figures 2, 4, and 7. The VP and VS

variations are underestimated (smoothed), especially in depth, while
the density variations are overestimated (sharpened) correspond-
ingly; for example, the under- and overestimations are obvious
at 2.5 km depth, in the depth profile at x ¼ 3.5 km. The density
result (Figure 7c) is completely different from that which would
be approximated from the recovered VP (Figure 7a) using an em-
pirical relation; it does not have the same smooth (or underesti-
mated) variations that the VP result does. Because the density
and velocities are partly coupled (in their influence on the reflection
amplitudes), the variations in the inverted density (Figure 7c) are
overestimated to compensate for the underestimation of the varia-
tions in the inverted velocities (Figure 7a and 7b) to make the am-
plitudes of the predicted data a better match to those of the
input data.
As the velocity deviations are often underestimated and the den-

sity deviations are correspondingly overestimated, we calculate the
impedances IP and IS (Figure 9) from their products. The recovered
impedances (Figure 9) are closer to those of the target model (Fig-
ure 3) in structural and physical meanings, than VP, VS, and ρ (Fig-
ure 7) are separately. Figure 10 contains the comparisons between
the target (the red lines), the starting (the green lines), and the re-
covered (the blue lines) impedances in the depth profiles at the hori-
zontal positions x ¼ 3.5 km and 6.5 km in the models in Figures 3
and 9. Note, the starting impedance models are not shown before
because the impedances are calculated from the velocities and den-
sity. The recovered impedances (Figure 10) are better matched to
the correct ones than VP, VS, and ρ (Figure 8) are, separately.
To further evaluate the inverted results quantitatively, we calcu-

late the posterior model errors separately for the elastic parameters
VP, VS, ρ, IP, and IS, using

errormodel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nxe � nze
���� pinverted − ptrue

ptrue

����
s

; (11)

where ptrue and pinverted are the true and inverted parameter vectors
with the dimension of nxe � nze for each of the elastic parameters,
respectively. If the error is smaller, the corresponding parameter is
closer to that of the target. To judge which parameter is recon-
structed better in inversion, we also calculate the error decrease
(the initial model error minus the inverted model error). Table 1
gives the initial and inverted model errors, and the error decreases
for VP, VS, ρ, IP, and IS. The model error of ρ is increased during
the elastic FWI because of the overestimation of the density

Figure 7. The inverted results for (a) VP, (b) VS, and (c) ρ using the
whole FE-synthetic shot gathers (see Figure 5), after phases I and II
(using 15 frequencies from 3.09 to 7.65 Hz and from 7.65 to
12.2 Hz, with 30 iterations each).

Figure 8. Comparisons between the target (red lines), starting
(green lines), and inverted (blue lines) parameter values in the depth
profiles at (a) x ¼ 3.5 km, and (b) x ¼ 6.5 km in the models in
Figures 2, 4, and 7, respectively.

Figure 9. The recovered impedances for (a) IP and (b) IS, from the
products of the velocity and density results in Figure 7.
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variations, which is the opposite of the other parameters’ behaviors.
We consider the density reconstruction to be more like a depth mi-
gration than an inversion (Mora, 1989). Noticeably, among all the
parameters, the impedances have the largest error decreases; their
results are the best matched to the correct ones.
In Figure 11, the 2C (vertical and horizontal) elastic whole

wavefields for the 50th shot are simulated for the starting model
(Figure 4) and the final model (Figure 7) using our FE modeling.
The corresponding initial and final residuals between themselves
and the measured shot gather (Figure 5) are also displayed. All
the figures are plotted using the same amplitude level. The final
time-domain data residuals (Figure 11d) are significantly decreased
by the inversion.
Figure 12 shows the normalized least-squares errors of the fre-

quency data residuals (i.e., the objective function in equation 6 with
a normalization that makes the error at iteration 1 to be 1) for phases
I (the dashed line) and II (the dotted line), with 30 iterations each. At
each iteration, the elastic FWI performs two extrapolations for the
gradient calculation, three for the estimation of the individual
weights βi, i ¼ 1; 2; 3, and three or four for the estimation of the
overall step length α (equation 9). Thus, the elastic FWI needs three
more extrapolations than other elastic FWIs using the standard
steepest-descent gradient approach, which do not assign different
weights for different parameter gradients. However, our elastic
FWI has improved convergence and stability by using optimal step

lengths; the total number of iterations is decreased to a few tens
from the several hundreds that most other elastic FWIs need (Jeong
et al., 2012; Köhn et al., 2012). The computation for all 60 iterations
for the elastic FWI is done in parallel over sources using MPI on 56
CPU cores of an Intel Xeon X5650 cluster, using about 115 hours
elapsed time.

FWI test on FD synthetic data

To verify the robustness of our elastic FWI, we use a 2D P-SV-
wave fourth-order stress-velocity staggered-grid FD modeling
algorithm (Virieux, 1986; Levander, 1988) to produce onshore
time-domain elastic particle-velocity wavefields for 111 explosive
shots, recorded at 4096 time samples with the increment of
0.0015 s. The perfectly matched layer absorbing boundary condi-
tions (Berenger, 1994) are placed along the four edges of the model
to remove unwanted model edge reflections and highly nonlinear
free-surface effects at the top surface. After the FD simulation,
to adjust the FD and FE modeled wavefields to the same amplitude
level, all FD-synthetic shot gathers are scaled by a factor of −50.
Figure 13 shows the 2C particle-velocity whole wavefields (without
surface waves) for the 50th shot, using FD modeling.
The FD and FE modeling schemes are different. FE modeling

that simulates particle-displacement wavefields can also generate
the particle-velocity wavefields, if the source wavelet is changed
to its time derivative. However, the source wavelet used for FE
extrapolations in the inversion is not equal to the time derivative
of that used for the FD synthetic data (see Figure 14), due to their
different modeling engines. To match the FD synthetic wavefields
(Figure 13) in our elastic FWI with the FE modeling engine, we
estimate the time-domain source wavelet for each shot gather at
each iteration. Using FFT, the source-wavelet estimation is per-
formed at every discrete frequency in the full frequency spectrum
(e.g., 0.326–29.3 Hz) at the receivers (Song et al., 1995; Xu et al.,
2006), and they are then transformed back to a time-domain source
wavelet for the later time-domain wavefield extrapolations. Because
FFT runs much faster than DFT on the whole time traces at the
receivers to solve for the full frequency spectra, the source wavelet
estimation is fast and efficient. Figure 14 shows the estimations of
the source wavelet for the 50th shot gather. At the first iteration,
starting from the first derivative of a Gaussian function wavelet
(the green line), the estimated wavelet (the blue line) is quite good,
with some phase errors at the later times. At the final iteration (24th
iteration in phase II), the phases (of the yellow line) match well, and
the amplitudes are a little higher than those of the correct Ricker

Figure 10. Comparisons between the target (the red lines), starting
(the green lines), and recovered (the blue lines) impedances in the
depth profiles at (a) x ¼ 3.5 km and (b) x ¼ 6.5 km in the models
in Figures 3 and 9. Note that the starting impedance models are not
shown before because the impedances are calculated from the
velocities and density.

Table 1. Initial and inverted errors, and error decreases in
the elastic FWI, using the FE-synthetic data.

Parameter Initial error (%) Inverted error (%) Error decrease (%)

VP 11.9 9.49 2.37

VS 11.1 8.67 2.41

ρ 3.70 5.65 −1.95
IP 14.2 10.4 3.81

IS 13.4 9.67 3.78
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wavelet (the red line) to compensate for errors in
the estimated model velocities and density.
From tests, the inversion still converges

very slowly if using the whole FD synthetic shot
gathers because of strong artifacts around the
source locations associated with their inconsis-
tent source spatial patterns (combinations of
source vectors in space that are implemented
for numerical calculations). Therefore, we apply
the time-windowing strategy to mute out the
strong direct waves or refractions from the inver-
sion, for which the waveforms are severely af-
fected by source spatial patterns, especially
around source locations.
Because the density initial model for inversion

is difficult to estimate for field data, we consider
the elastic FWI by using a constant density of
2.25 g∕cm3 (the average value of the density
model) (Figure 2c) as the density starting model
and the same velocity starting models and
frequencies as those in the previous test. Before
inversion, we calculate the scaled gradients gVP

,
gVS

, and gρ (Figure 15) using all time-windowed
FD-synthetic shot gathers, at the first itera-
tion and using 29 frequencies from 3.09 to
12.2 Hz. The density gradient (Figure 15c) is
similar to the previous one (Figure 6c) because
the density variations are mainly related to the
amplitudes of reflections. Compared with the

previous velocity gradients (Figure 6a and 6b), the current gradients
(Figure 15a and 15b) have higher resolutions and are less influenced
by strong direct waves and refractions because most of them are
muted out in the inversion.
We perform the inversion in the same two phases (frequency

groups) as the previous ones. In phase II, the inversion stops
at the 24th iteration as the convergence becomes slow. The final
results of VP, VS, and ρ after two phases of inversion are shown
in Figure 16. Even for the FD particle-velocity synthetic data,
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Figure 11. The predicted 2C elastic wavefields for (a) the starting model (Figure 4) and
(b) the final result (Figure 7) for the 50th shot, using the FE modeling; and the corre-
sponding (c) initial and (d) final residuals between themselves and the measured shot
gather (Figure 5). Note that in each subfigure, the left panel is the vertical component
wavefield and the right panel is the horizontal component. The amplitude scaling is the
same as that in Figure 5.

Figure 12. The normalized least-squares (l2) errors of the frequency
data residuals for the inversion using the FE-synthetic shot gathers.
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Figure 13. The (a) synthetic vertical-component and (b) horizontal-
component elastic particle-velocity wavefields (without surface
waves) for the 50th shot, using a staggered-grid FD modeling
and scaled by a factor of −50. Compare with Figure 5.

Figure 14. The time-domain source wavelets. The original Ricker
source wavelet (the red line) used for the FD-synthetic wavefields
(Figure 13); the initial source wavelet of the first derivative of the
Gaussian function (the green line) as the input for the first iteration
of the inversion, the estimated Ricker wavelet (the blue line) after
the first iteration of the inversion, and the estimated Ricker wavelet
(the yellow line) after the final iteration (the 24th iteration in phase
II) of the inversion.
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by using the frequency-domain source wavelet estimation (Song
et al., 1995; Xu et al., 2006) and the time windowing to remove
direct waves and refractions, the elastic FWI still gives the satisfac-
tory velocity results (Figure 16a and 16b) similar to the previous
one (Figure 7a and 7b). Because of the removal of direct waves
and refractions, the qualities of the velocity results (Figure 16a
and 16b) become somewhat worse near both sides of the model,
while the resolutions in depths are enhanced. In addition, because

the velocity reconstructions try to retrieve the long-wavelength spa-
tial information, their results (Figure 16a and 16b) are not signifi-
cantly affected by using a constant density initial model. The
density result (Figure 16c) still gives a correct structural image with
high resolution, even though it has an inaccurate low-wavenumber
background. The density reconstruction is similar to a depth migra-
tion to reveal the short-wavelength density perturbation informa-
tion, as long as the long-wavelength velocities are adequately
recovered.
Figure 17 shows the comparisons between the target (red lines),

the previously inverted (green lines), and the currently inverted
(blue lines) parameter values in the depth profiles at the horizontal
positions of x ¼ 3.5 km and x ¼ 6.5 km in the models in Figures 2,
7, and 16, respectively. The velocity results (the left two panels) for
both tests (green and blue lines) are very similar. The density results
(the right panels) for both tests (green and blue lines) have different
backgrounds, while their short-wavelenegth variations are well
matched and close to the true ones (red lines).
The recovered impedances IP and IS (using the constant density

starting model) in Figure 18 are again closer to the correct ones
(Figure 3) in structural and physical meanings, than VP, VS, and
ρ (Figure 16) are separately. Figure 19 shows the comparisons be-
tween the correct (the red lines), the previously recovered (the green
lines), and the currently recovered (the blue lines) impedances in the
depth profiles at the horizontal positions of x ¼ 3.5 km and 6.5 km
in the models in Figures 3, 9, and 18, respectively. Because the er-
rors of the density results are smaller than those of the velocity re-
sults, the density errors have lower impacts on the impedances. The
currently recovered impedances (the blue lines) are close to the pre-
viously recovered ones (the green lines), and they are only a little
worse matched to the target impedances (the red lines).

Figure 15. The scaled gradients (multiplied by step lengths αβi
i ¼ 1; 2; 3) using all time-windowed FD-synthetic shot gathers,
at the first iteration and using 29 frequencies in the range of
3.09–12.2 Hz.

Figure 16. The inverted results for (a) VP, (b) VS, and (c) ρ by time-
windowing the FD-synthetic shot gathers (see Figure 13) to remove
direct waves and refractions, after phase I (using 15 frequencies
from 3.09 to 7.65 Hz, with 30 iterations) and phase II (using 15
frequencies from 7.65 to 12.2 Hz, with 24 iterations).

Figure 17. Comparisons between the target (red lines), the previ-
ously inverted (green lines), and the currently inverted (blue lines)
parameter values in the depth profiles at (a) x ¼ 3.5 km and
(b) x ¼ 6.5 km in the models in Figures 2, 7, and 16, respectively.
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Table 2 gives the initial and inverted model errors and the error
decreases for different parameters in this test. The model error of ρ
is again increased in the elastic FWI because of the overestimation
of density deviations and a constant initial model that is far from the
correct one. Noticeably, among all the parameters, the impedances
still have the largest error decreases. Compared with Table 1, VP

and Vs in Table 2 are better resolved (especially for VP) with smaller
inverted errors. This is because the velocity reconstructions are not
dominated by strong shallow direct waves and refractions in this
example because most of them are removed by using the time win-
dowing.
The 2C elastic whole wavefields for the 50th shot are simulated

using our FE modeling engine with the corresponding estimated

source wavelets, for the starting model (Figure 4), and the final re-
sult (Figure 16). Because the synthetic wavefields are similar to
those in the previous test (Figure 11a and 11b), we do not display
them again. Compare the whole-wavefield initial (Figure 20a)
and final (Figure 20b) residuals and the time-windowed initial
(Figure 20c) and final (Figure 20d) residuals that are used in
the inversion. Strong residuals exists for the direct waves and re-
fractions (Figure 20a), and are not reduced after the inversion
(Figure 20b). This is because the FD modeling for the synthetic
measured data (Figure 13) and the FE modeling engine for the
wavefield extrapolations of the inversion have different source spa-
tial patterns. Using the time-windowing technique to mute out the
direct waves and refractions, the residuals of the remaining reflec-
tions and diffractions are obviously reduced by the inversion
(Figure 20d).
Figure 21 shows the normalized objective function of the fre-

quency data residuals in the two phases; the convergence is still fast
and stable. All 54 iterations are performed in parallel in the same
cluster as in the previous test, using about 132 hours elapsed time.
The reason for a longer run time even for fewer iterations (than 60)
in this example is that the source-wavelet estimation and some addi-
tional wavefield simulations for the second parabolic fits at itera-
tions to search for an optimal value of α are required at each
iteration.

DISCUSSION

Using a parallelized time-domain modeling engine for wavefield
extrapolations, the FWI algorithm is more efficient than a pure fre-
quency-domain FWI algorithm for multiple-frequency simulations.
Because the inversion is implemented in the frequency domain, the
FWI needs storage for only a few frequency snapshots, not for all
the source time-domain wavefields. For comparison, the pure time-
domain parallelized inversion conventionally saves the whole
source wavefields at all subsurface grid points, so storage in each
cluster node is usually unavoidable even when using optimal ap-
proaches. However, in our hybrid FWI scheme, the DFT calculation
at each time step for all subsurface grid points is more expensive for
more frequencies, which needs to be considered for improvement in
future research.
In the above FE and FD synthetic tests, the elastic FWI is robust

by using the time-windowing and frequency-selection strategies.
Unlike the usual one single point in acoustic-wave modeling, the
source function has different spatial patterns (different combina-
tions of the source vectors in space) in elastic-wave modeling,
which have an important impact on the success of the inversion.
It is sometimes hard to match the source spatial pattern of the

Figure 19. Comparisons between the target (red lines), the previ-
ously recovered (green lines), and the currently recovered (blue
lines) impedances in the depth profiles at (a) x ¼ 3.5 km and
(b) x ¼ 6.5 km in the models in Figures 3, 9, and 18, respectively.

Table 2. Initial and inverted errors, and error decreases in
the elastic FWI, using the FD-synthetic data.

Parameter Initial error (%) Inverted error (%) Error decrease (%)

VP 11.9 8.79 3.08

VS 11.1 8.57 2.51

ρ 7.63 9.13 −1.49
IP 15.9 12.4 3.46

IS 15.3 11.7 3.61

Figure 18. The recovered impedances for (a) IP and (b) IS, from the
products of the velocity and density results in Figure 16.
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observed elastic data, but it is easy and feasible to mute out direct
waves (or refractions) using time windowing to remove the un-
matched effects in inversion. However, as long as the modeling en-
gine can match the observed source patterns well (as in the first
test), this step is not required, and more low-wavenumber informa-
tion is then available for inversion in the shallow part of the model.
The time windowing can also be used to remove surface waves for
field data. Meanwhile, a stable source wavelet estimation is per-
formed at each inversion iteration in the full frequency spectrum
to obtain a complete time-domain wavelet via an FFT, for the
time-domain source and receiver wavefield extrapolations. Here,
the reason to choose FFT not DFT to perform the Fourier transfor-
mation is that FFT runs faster on the whole time traces at the receiv-
ers to solve for the full frequency spectra.
To decouple different parameters by assigning corresponding

individual weights, the multistep-length gradient approach recon-
structs multiple (velocities and density) parameters simultaneously.
Using one more overall optimal steplength along the composite gra-
dient direction, the multistep-length gradient approach always guar-

antees a stable convergence, and it does not have the limitation of
the independent-parameter assumption that is normally present in
the subspace method. Therefore, our multistep-length gradient
approach is general, and it can be expanded, in a straightforward
manner, for use with any multiple-parameter media such as acous-
tic-density, viscous, anisotropic, or porous. The multistep-length
gradient approach is also feasible for any type of FWI such as
2D or 3D, in the frequency or time domains, and for land or marine
environments, as long as a suitable FE or FD modeling engine is
implemented for wavefield extrapolations.
In the inversion, the density reconstruction tries to image subsur-

face high-wavenumber density perturbations and has the highest
resolution among all three reconstructions, using the amplitude in-
formation mainly from reflections. The density gradient imaging
using all effective frequencies at the first iteration can be considered
as an elastic least-squares migration to provide the subsurface struc-
tural information of the density distribution.

CONCLUSIONS

A composite of advances in inversion tech-
niques leads to a performance improvement of
approximately an order of magnitude in elastic
FWI. Wavefield extrapolations are done in
time-space with finite element; computations
of the parameter gradients and the objective
function are done in the frequency domain.
Frequencies are divided into two ranges; lower
frequencies are fitted first; the resulting elastic
model is used as the starting model to fit the
higher frequencies. A multistep-length gradient
assigns optimal weights to each of the parameter
gradients to decouple the parameters and to
search for an optimal overall step length for
the composite gradient to stabilize the nonlinear-
ity of the solution. Even though requiring a few
more simulations to search for the optimal values
of the individual weights, the inversion algorithm
converges stably and fast within a few tens of
iterations, rather than several hundreds that most
other elastic inversions need. By using effective
strategies such as frequency selection, time win-
dowing, and source wavelet estimation in the full
frequency spectrum, frequency-domain elastic
FWI based on the parallelized time-domain FE
modeling engine is still successful on the elastic
Marmousi-2 model, even when using a constant
density model and for synthetic data that are gen-

erated by an FD modeling scheme.
The velocity and density reconstructions have different behaviors

in the inversion, but they are also partly coupled. Velocities contrib-
ute to fitting of the phases (times) and amplitudes; density contrib-
utes mainly to amplitudes. Thus, the velocity component of the
inversion behaves as a tomography to provide information inside
layers as well as at layer boundaries; the density component of
the inversion behaves as a least-squares migration to provide am-
plitudes only on layer boundaries. The inverted velocities have
lower resolutions than the inverted density. However because veloc-
ities and density are coupled to some extent, variations are usu-
ally underestimated (smoothed) for velocities, and overestimated
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Figure 20. The whole (a) initial and (b) final residuals between the FE predicted and the
FD measured wavefields (Figure 13), for the 50th shot and the corresponding time-win-
dowed (c) initial and (d) final residuals. The amplitude scaling is the same as that in
Figure 13.

Figure 21. The normalized least-squares (l2) errors of the frequency
data residuals for the inversion using the FD-synthetic shot gathers.
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(sharpened) for density correspondingly. The resulting P and S
impedances are more accurate than velocities and density that
are separately because the data amplitudes depend on the imped-
ances rather than the velocities and density separately; errors in
one are compensated by those in the other as they are fitted
concurrently.
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