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Abstract: A search for flavour-changing neutral current decays of a top quark to an up-

type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays

to bb̄, is presented. The analysis searches for top quark pair events in which one top quark

decays to Wb, with the W boson decaying leptonically, and the other top quark decays

to Hq. The search is based on pp collisions at
√
s = 8 TeV recorded in 2012 with the

ATLAS detector at the CERN Large Hadron Collider and uses an integrated luminosity of

20.3 fb−1. Data are analysed in the lepton-plus-jets final state, characterised by an isolated

electron or muon and at least four jets. The search exploits the high multiplicity of b-

quark jets characteristic of signal events, and employs a likelihood discriminant that uses

the kinematic differences between the signal and the background, which is dominated by

tt̄ → WbWb decays. No significant excess of events above the background expectation is

found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and 0.61% (0.64%)

are derived for the t → Hc and t → Hu branching ratios respectively. The combination

of this search with other ATLAS searches in the H → γγ and H → WW ∗, ττ decay

modes significantly improves the sensitivity, yielding observed (expected) 95% CL upper

limits on the t → Hc and t → Hu branching ratios of 0.46% (0.25%) and 0.45% (0.29%)

respectively. The corresponding combined observed (expected) upper limits on the |λtcH |
and |λtuH | couplings are 0.13 (0.10) and 0.13 (0.10) respectively. These are the most

restrictive direct bounds on tqH interactions measured so far.
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1 Introduction

Following the observation of a Higgs boson by the ATLAS and CMS collaborations [1, 2],

a comprehensive programme of measurements of its properties is underway looking for

deviations from the Standard Model (SM) predictions. An interesting possibility is the

presence of flavour-changing neutral current (FCNC) interactions between the Higgs boson,

the top quark, and a u- or c-quark, tqH (q = u, c). Since the Higgs boson is lighter than

the top quark, with a measured mass mH = 125.09±0.24 GeV [3], such interactions would

manifest themselves as FCNC top quark decays, t → Hq. In the SM, such decays are

extremely suppressed relative to the dominant t→Wb decay mode, since tqH interactions

are forbidden at the tree level and even suppressed at higher-orders in the perturbative

expansion due to the Glashow-Iliopoulos-Maiani (GIM) mechanism [4]. As a result, the SM

predictions for the t → Hq branching ratios are exceedingly small: BR(t → Hu) ∼ 10−17

and BR(t→ Hc) ∼ 10−15 [5–8]. On the other hand, large enhancements in these branching

ratios are possible in some beyond-SM scenarios, where the GIM suppression can be relaxed

and/or new particles can contribute to the loops, yielding effective couplings orders of

magnitude larger than those of the SM. Examples include quark-singlet models [9], two-

Higgs-doublet models (2HDM) of type I, with explicit flavour conservation, and of type

II, such as the minimal supersymmetric SM (MSSM) [10–12], or supersymmetric models

with R-parity violation [13]. In those scenarios, typical branching ratios can be as high

as BR(t → Hq) ∼ 10−5. An even larger branching ratio of BR(t → Hc) ∼ 10−3 can be

reached in 2HDM without explicit flavour conservation (type III), since a tree-level FCNC

coupling is not forbidden by any symmetry [14–16]. While other FCNC top couplings, tqγ,

tqZ, tqg, are also enhanced relative to the SM prediction in those scenarios beyond the

SM, the largest enhancements are typically for the tqH couplings, and in particular the

tcH coupling. See ref. [7] for a review.

Searches for t→ Hq decays have been performed by the ATLAS and CMS collabora-

tions, taking advantage of the large samples of tt̄ events collected during Run 1 of the LHC.

In these searches, one of the top quarks is required to decay into Wb, while the other top

quark decays into Hq, yielding tt̄ → WbHq.1 Assuming SM decays for the Higgs boson

and mH = 125 GeV, the most sensitive single-channel searches have been performed in

the H → γγ decay mode which, despite the tiny branching ratio of BR(H → γγ) ' 0.2%,

is characterised by very small background and excellent diphoton mass resolution. The

resulting observed (expected) 95% confidence level (CL) upper limits on BR(t→ Hq) are

0.79% (0.51%) and 0.69% (0.81%), respectively from the ATLAS [17] and CMS [18] collab-

orations. These searches are insensitive to the difference between t→ Hu and t→ Hc, and

thus the above limits can be interpreted as applying to the sum BR(t→ Hu)+BR(t→ Hc).

The CMS Collaboration has also reinterpreted searches in multilepton (three or four lep-

tons) final states [18] in the context of tt̄ → WbHq with H → WW ∗, ττ , resulting in an

observed (expected) upper limit of BR(t → Hc) < 1.28% (1.17%) at the 95% CL. Multi-

lepton searches are able to exploit a significantly larger branching ratio for the Higgs boson

1In the following WbHq is used to denote both W+bHq̄ and its charge conjugate, HqW−b̄. Similarly,

WbWb is used to denote W+bW−b̄.
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decay compared to the H → γγ decay mode, and are also characterised by relatively small

backgrounds. However, in general they do not have good mass resolution,2 so any excess

would be hard to interpret as originating from t → Hq decays. The combination of CMS

searches in diphoton and multilepton (three or four leptons) final states yields an observed

(expected) upper limit of BR(t→ Hc) < 0.56% (0.65%) at the 95% CL [18].

Upper limits on the branching ratios BR(t → Hq) (q = u, c) can be translated to

upper limits on the non-flavour-diagonal Yukawa couplings λtqH appearing in the following

Lagrangian:

LFCNC = λtcH t̄Hc+ λtuH t̄Hu+ h.c. (1.1)

The branching ratio BR(t → Hq) is estimated as the ratio of its partial width [8] to the

SM t → Wb partial width [19], which is assumed to be dominant. Both predicted partial

widths include next-to-leading-order (NLO) QCD corrections. Using the expression derived

in ref. [17], the coupling |λtqH | can be extracted as |λtqH | = (1.92± 0.02)
√

BR(t→ Hq).

The results presented in this paper fill a gap in the current programme of searches for

t → Hq decays at the LHC by considering the dominant decay mode H → bb̄, which has

BR(H → bb̄) ' 58%. This search is focused on the tt̄ → WbHq (q = u, c) process, with

W → `ν (` = e, µ, τ) and H → bb̄, resulting in a lepton-plus-jets final state with high b-jet

multiplicity, which can be effectively exploited to suppress the overwhelming tt̄ background.

Early studies of the prospects for this search at the LHC were performed in ref. [20]. Only

events with an electron or muon, including those produced via leptonically decaying taus,

are considered. The lepton-plus-jets final state also allows the kinematic reconstruction of

the final state and in particular the dijet invariant mass spectrum from the H → bb̄ decay,

providing additional handles that would help in detecting tt̄ → WbHq events. Most of

this paper is devoted to the discussion of this particular search, for which background es-

timation techniques, systematic uncertainties and statistical treatment closely follow those

used in recent ATLAS searches using the same final-state signature [21, 22]. This pa-

per also includes a reinterpretation of the ATLAS search for tt̄H associated production,

with H → WW ∗, ZZ∗, ττ , resulting in multilepton final states [23]. This reinterpretation

only considers the final states with a significant expected contribution from tt̄ → WbHq,

H → WW ∗, ττ signal, namely two same-charge leptons with and without an identified

hadronic tau lepton and three leptons. A combination of the three ATLAS searches for

tt̄→WbHq, probing the H → bb̄, H →WW ∗, ττ , and H → γγ decay modes, is performed

and bounds are set on BR(t → Hc) and BR(t → Hu), as well as on the corresponding

non-flavour-diagonal Yukawa couplings.

This paper is organised as follows. A brief description of the ATLAS detector is

provided in section 2. Subsequent sections are devoted to a detailed discussion of the

tt̄ → WbHq,H → bb̄ search, covering the object reconstruction (section 3), the data

sample and event preselection (section 4), the modelling of the backgrounds and the signal

(section 5), the analysis strategy (section 6), and the systematic uncertainties (section 7).

Section 8 provides a discussion of the statistical methods used. Section 9 presents the

2An exception is the H → ZZ∗ → `+`−`′+`′− (`, `′ = e, µ) decay mode, which has a very small branching

ratio and thus is not promising for this search.
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results obtained by the three individual ATLAS searches as well as their combination.

Finally, the conclusions are given in section 10.

2 ATLAS detector

The ATLAS detector [24] consists of the following main subsystems: an inner tracking

system, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner

detector provides tracking information from silicon pixel and microstrip detectors in the

pseudorapidity3 range |η| < 2.5 and from a straw-tube transition radiation tracker cover-

ing |η| < 2.0, all immersed in a 2 T axial magnetic field provided by a superconducting

solenoid. The electromagnetic (EM) sampling calorimeter uses lead as the absorber mate-

rial and liquid-argon (LAr) as the active medium, and is divided into barrel (|η| < 1.475)

and end-cap (1.375 < |η| < 3.2) regions. Hadron calorimetry is also based on the sam-

pling technique, with either scintillator tiles or LAr as the active medium, and with steel,

copper, or tungsten as the absorber material. The calorimeters cover |η| < 4.9. The

muon spectrometer measures the deflection of muons with |η| < 2.7 using multiple layers

of high-precision tracking chambers located in a toroidal field of approximately 0.5 T and

1 T in the central and end-cap regions of ATLAS, respectively. The muon spectrometer is

also instrumented with separate trigger chambers covering |η| < 2.4. A three-level trigger

system [25] is used to select interesting events. The first-level trigger is implemented in

custom electronics and uses a subset of detector information to reduce the event rate to

at most 75 kHz. This is followed by two software-based trigger levels exploiting the full

detector information and yielding a typical recorded event rate of 400 Hz during 2012.

3 Object reconstruction

Electron candidates [26] are reconstructed from energy clusters in the EM calorimeter that

are matched to reconstructed tracks in the inner detector. Electron clusters are required

to have a transverse energy ET greater than 25 GeV and |ηcluster| < 2.47, excluding the

transition region 1.37 < |ηcluster| < 1.52 between sections of the EM calorimeter. The lon-

gitudinal impact parameter of the electron track with respect to the event’s primary vertex

(see section 4), z0, is required to be less than 2 mm. Electrons are required to satisfy

“tight” quality requirements [26] based on calorimeter, tracking and combined variables

that provide good separation between prompt electrons and jets. To reduce the back-

ground from non-prompt electrons resulting from semileptonic decays of b- or c-hadrons,

and from jets with a high fraction of their energy deposited in the EM calorimeter, elec-

tron candidates must also satisfy calorimeter- and track-based isolation requirements. The

calorimeter isolation variable is based on the energy sum of cells within a cone of size

3ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from

the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,φ) are used

in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined

in terms of the polar angle θ as η = − ln tan(θ/2).
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∆R =
√

(∆φ)2 + (∆η)2 = 0.2 around the direction of each electron candidate, and an

η-dependent requirement is made, giving an average efficiency of 90% across η for prompt

electrons from Z boson decays. This energy sum excludes cells associated with the electron

cluster and is corrected for leakage from the electron cluster itself as well as for energy de-

posits from additional pp interactions within the same bunch crossing (“pileup”). A further

90%-efficient isolation requirement is made on the track transverse momentum (pT) sum

around the electron (excluding the electron track itself) in a cone of size ∆R = 0.3.

Muon candidates [27, 28] are reconstructed from track segments in the various layers of

the muon spectrometer that are matched with tracks found in the inner detector. The final

candidates are refitted using the complete track information from both detector systems

and are required to have pT > 25 GeV and |η| < 2.5. The longitudinal impact parameter

of the muon track with respect to the primary vertex, z0, is required to be less than 2 mm.

Muons are required to satisfy a pT-dependent track-based isolation requirement: the scalar

sum of the pT of the tracks within a cone of variable size ∆R = 10 GeV/pµT around the

muon (excluding the muon track itself) must be less than 5% of the muon pT (pµT). This

requirement has good signal efficiency and background rejection even under high-pileup

conditions, as well as in boosted configurations where the muon is close to a jet. For

muons from W boson decays in simulated tt̄ events, the average efficiency of the isolation

requirement is about 95%.

Jets are reconstructed with the anti-kt algorithm [29–31] with a radius parameter

R = 0.4, using calibrated topological clusters [32, 33] built from energy deposits in the

calorimeters. Prior to jet finding, a local cluster calibration scheme [34] is applied to

correct the topological cluster energies for the non-compensating response of the calorime-

ter, as well as for the energy lost in dead material and via out-of-cluster leakage. The

corrections are obtained from simulations of charged and neutral particles. After energy

calibration [35], jets are required to have pT > 25 GeV and |η| < 2.5. To reduce the con-

tamination due to jets originating from pileup interactions, a requirement on the absolute

value of the jet vertex fraction (JVF) variable above 0.5 is applied to jets with pT < 50 GeV

and |η| < 2.4. This requirement ensures that at least 50% of the scalar sum of the pT of

the tracks with pT > 1 GeV associated with a jet comes from tracks originating from the

primary vertex. During jet reconstruction, no distinction is made between identified elec-

trons and jet energy deposits. Therefore, if any of the jets lie within ∆R = 0.2 of a selected

electron, the closest jet is discarded in order to avoid double-counting of electrons as jets.

Finally, any electron or muon within ∆R = 0.4 of a selected jet is discarded.

Jets containing b-hadrons are identified (b-tagged) via an algorithm [36] that uses

multivariate techniques to combine information from the impact parameters of displaced

tracks as well as topological properties of secondary and tertiary decay vertices recon-

structed within the jet. For each jet, a value for the multivariate b-tagging discriminant

is calculated. The jet is considered b-tagged if this value is above a given threshold. The

threshold used in this search corresponds to 70% efficiency to tag a b-quark jet, with a

light-jet4 rejection factor of ∼130 and a charm-jet rejection factor of 5, as determined for

jets with pT > 20 GeV and |η| < 2.5 in simulated tt̄ events.

4Light-jet denotes a jet originating from the hadronisation of a light quark (u, d, s) or gluon.
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The missing transverse momentum (Emiss
T ) is constructed [37] from the vector sum of

all calorimeter energy deposits contained in topological clusters. All topological cluster

energies are corrected using the local cluster calibration scheme discussed previously in the

context of the jet energy calibration. Those topological clusters associated with a high-pT

object (e.g. jet or electron) are further calibrated using their respective energy corrections.

In addition, contributions from the pT of selected muons are included in the calculation of

Emiss
T .

4 Data sample and event preselection

This search is based on pp collision data at
√
s = 8 TeV collected by the ATLAS experiment

between April and December 2012. Only events recorded with a single-electron or single-

muon trigger under stable beam conditions and for which all detector subsystems were

operational are considered. The corresponding integrated luminosity is 20.3±0.6 fb−1 [38].

Single-lepton triggers with different pT thresholds are combined in a logical OR in order to

increase the overall efficiency. The pT thresholds are 24 or 60 GeV for the electron triggers

and 24 or 36 GeV for the muon triggers. The triggers with the lower pT threshold include

isolation requirements on the candidate lepton, resulting in inefficiencies at high pT that

are recovered by the triggers with higher pT threshold.

Events satisfying the trigger selection are required to have at least one reconstructed

vertex with at least five associated tracks with pT > 400 MeV, consistent with originating

from the beam collision region in the x-y plane. The average number of pp interactions per

bunch crossing is approximately 20, resulting in several vertices reconstructed per event.

If more than one vertex is found, the hard-scatter primary vertex is taken to be the one

which has the largest sum of the squared transverse momenta of its associated tracks. For

the event topologies considered in this paper, this requirement leads to a probability to

reconstruct and select the correct hard-scatter primary vertex larger than 99%.

Preselected events are required to have exactly one electron or muon, as defined in

section 3, that matches, within ∆R = 0.15, the lepton candidate reconstructed by the

trigger. In addition, at least four jets are required, of which at least two must be b-tagged.

5 Background and signal modelling

After the event preselection, the main background is tt̄ → WbWb production, possibly in

association with jets, denoted by tt̄+jets in the following. Single top quark production and

production of a W boson in association with jets (W+jets) contribute to a lesser extent.

Small contributions arise from multijet, Z+jets and diboson (WW,WZ,ZZ) production,

as well as from the associated production of a vector boson V (V = W,Z) or a Higgs boson

and a tt̄ pair (tt̄V and tt̄H). Signal and all backgrounds are estimated from simulation and

normalised to their theoretical cross sections, with the exception of the multijet background,

which is estimated with data-driven methods [39].

Simulated samples of tt̄ events are generated with the NLO generator Powheg-Box

2.0 [40–43] using the CT10 [44] set of parton distribution functions (PDF). The nominal
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sample is interfaced to Pythia 6.425 [45] for parton showering and hadronisation with

the CTEQ6L1 PDF set and the Perugia2011C [46] set of optimised parameters for the

underlying event (UE) description, referred to as the “UE tune”. An alternative sam-

ple, used to study the uncertainty related to the hadronisation model, is interfaced to

Herwig v6.520 [47] with the CTEQ6L1 PDF set and Jimmy v4.31 [48] to simulate the

UE. All samples are generated assuming a top quark mass of 172.5 GeV and top quark

decays exclusively through t → Wb. The tt̄ process is normalised to a cross section of

253+15
−16 pb, computed using Top++ v2.0 [49] at next-to-next-to-leading order (NNLO)

in QCD, including resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon

terms [50–54], and using the MSTW 2008 NNLO [55, 56] PDF set. Theoretical uncer-

tainties result from variations of the factorisation and renormalisation scales, as well as

from uncertainties on the PDF and αS. The latter two represent the largest contribution

to the overall theoretical uncertainty on the cross section and were calculated using the

PDF4LHC prescription [57] with the MSTW 2008 68% CL NNLO, CT10 NNLO [44, 58]

and NNPDF2.3 5f FFN [59] PDF sets. In the case where a non-zero BR(t → Hq) is as-

sumed, an additional factor of [1 − BR(t→ Hq)]2 is applied to the sample normalisation.

It is not possible to generate the tt̄ → WbHq signal with Powheg-Box, and a different

event generator is used instead, as discussed below.

The tt̄ samples are generated inclusively, but events are categorised depending on the

flavour content of additional particle jets not originating from the decay of the tt̄ system.5

Details about this categorisation scheme can be found in ref. [21]. In this way, a distinction

is made between tt̄ + bb̄, tt̄ + cc̄ and tt̄+light-jets events. The first two categories are

generically referred to as tt̄+HF events (with HF standing for “heavy flavour”), while the

latter category also includes events with no additional jets. The modelling of tt̄+HF in

Powheg-Box+Pythia is via the parton-shower evolution. To study uncertainties related

to this simplified description, an alternative tt̄+jets sample is generated with Madgraph5

1.5.11 [60] using the CT10 PDF set. It includes tree-level diagrams with up to three

additional partons (including b- and c-quarks) and is interfaced to Pythia 6.425.

Since the best possible modelling of the tt̄+jets background is a key aspect of this

search, a correction is applied to simulated tt̄ events in Powheg-Box+Pythia based on

the ratio of the differential cross sections measured in data and simulation at
√
s = 7 TeV

as a function of top quark pT and tt̄ system pT [61]. This correction significantly improves

agreement between simulation and data at
√
s = 8 TeV in distributions such as the jet

multiplicity and the pT of decay products of the tt̄ system [21], and is applied only to

tt̄+light-jets and tt̄ + cc̄ events. The modelling of the tt̄ + bb̄ background is improved by

reweighting the Powheg-Box+Pythia prediction to an NLO prediction of tt̄ + bb̄ with

massive b quarks and including parton showering [62], based on Sherpa+OpenLoops [63,

64] using the CT10 PDF set. Such treatment is not possible for the tt̄ + cc̄ background

since a corresponding NLO prediction is not currently available. More details about the

modelling of the tt̄+jets background can be found in ref. [21].

5Particle jets are reconstructed by clustering stable particles excluding muons and neutrinos using the

anti-kt algorithm with a radius parameter R = 0.4.
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Samples of single-top-quark backgrounds corresponding to the t-channel, s-channel,

and Wt production mechanisms are generated with Powheg-Box 2.0 [65, 66] using the

CT10 PDF set and interfaced to Pythia 6.425 with the CTEQ6L1 PDF set in combination

with the Perugia2011C UE tune. Overlaps between the tt̄ and Wt final states are avoided

using the “diagram removal” scheme [67]. The single-top-quark samples are normalised

to the approximate NNLO theoretical cross sections [68–70], calculated using the MSTW

2008 NNLO PDF set.

Samples of W/Z+jets events are generated with up to five additional partons us-

ing the Alpgen v2.14 [71] LO generator with the CTEQ6L1 PDF set and interfaced to

Pythia 6.426. To avoid double-counting of partonic configurations generated by both the

matrix-element calculation and the parton shower, a parton-jet matching scheme (“MLM

matching”) [72] is employed. The W+jets samples are generated separately for W+light-

jets, Wbb̄+jets, Wcc̄+jets, and Wc+jets. The Z+jets samples are generated separately

for Z+light-jets, Zbb̄+jets, and Zcc̄+jets. Overlap between V QQ̄+jets (V = W,Z and

Q = b, c) events generated from the matrix-element calculation and those generated from

parton-shower evolution in the W/Z+light-jets samples is avoided via an algorithm based

on the angular separation between the extra heavy quarks: if ∆R(Q, Q̄) > 0.4, the matrix-

element prediction is used, otherwise the parton-shower prediction is used. Both the

W+jets and Z+jets background contributions are normalised to their inclusive NNLO the-

oretical cross sections [73]. Further corrections are applied to W/Z+jets events in order to

better describe data in the preselected sample. Normalisation factors for each of the W+jets

categories (Wbb̄+jets, Wcc̄+jets, Wc+jets and W+light-jets) are derived for events with

one lepton and at least four jets by simultaneously analysing six different event categories,

defined by the b-tag multiplicity (0, 1 and ≥2) and the sign of the lepton charge [74]. The

b-tag multiplicity provides information about the heavy-flavour composition of the W+jets

background, while the lepton charge is used to determine the normalisation of each com-

ponent, exploiting the expected charge asymmetry for W+jets production in pp collisions

as predicted by Alpgen. In the case of Z+jets events, a correction to the heavy-flavour

fraction is derived to reproduce the relative rates of Z+2-jets events with zero and one

b-tagged jet observed in data. In addition, the Z boson pT spectrum is compared between

data and the simulation in Z+2-jets events, and a reweighting function is derived in or-

der to improve the modelling. This reweighting function is also applied to the W+jets

simulated sample and it was verified that this correction further improves the agreement

between data and simulation for W+jets events. In any case, W/Z+jets events constitute

a very small background in this analysis after final event selection.

The WW/WZ/ZZ+jets samples are generated with up to three additional partons

using Alpgen v2.13 and the CTEQ6L1 PDF set, interfaced to Herwig v6.520 and Jimmy

v4.31 for parton showering, hadronisation and UE modelling. The MLM parton-jet match-

ing scheme is used. The WW+jets samples require at least one of the W bosons to decay

leptonically, while the WZ/ZZ+jets samples require one Z boson to decay leptonically

and the other boson decays inclusively. Additionally, WZ+jets samples requiring the W

boson to decay leptonically and the Z boson to decay hadronically, are generated with up

to three additional partons (including massive b- and c-quarks) using Sherpa v1.4.1 and

the CT10 PDF set. All diboson samples are normalised to their NLO theoretical cross

sections [75].
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Samples of tt̄V events, including tt̄WW , are generated with up to two additional par-

tons using Madgraph5 1.3.28 with the CTEQ6L1 PDF set, and interfaced to Pythia

6.425 with the AUET2B UE tune [76]. A sample of tt̄H events is generated with the

PowHel framework [77], which combines the Powheg-Box generator and NLO matrix

elements obtained from the HELAC-Oneloop package [78]. The sample is generated us-

ing the CT10nlo PDF set [44]. Showering is performed with Pythia 8.1 [79] using the

CTEQ6L1 PDF set and the AU2 UE tune [76, 80]. Inclusive decays of the Higgs boson

are assumed in the generation of the tt̄H sample. The tt̄V samples are normalised to the

NLO cross-section predictions [81]. The tt̄H sample is normalised using the NLO cross

section [82–84] and the Higgs decay branching ratios [85–88] collected in ref. [89].

The multijet background contributes to the selected data sample via several production

and misreconstruction mechanisms. In the electron channel, it consists of non-prompt elec-

trons (from semileptonic b- or c-hadron decays) as well as misidentified photons (e.g. from

a conversion of a photon into an e+e− pair) or jets with a high fraction of their energy

deposited in the EM calorimeter. In the muon channel, the multijet background is predom-

inantly from non-prompt muons. Its normalisation and shape are estimated directly from

data by using the “matrix method” technique [39], which exploits differences in lepton-

identification-related properties between prompt and isolated leptons and leptons that are

either non-isolated or result from the misidentification of photons or jets. Further details

can be found in ref. [22].

The tt̄ → WbHq signal process is modelled using the Protos v2.2 [90, 91] LO

generator with the CTEQ6L1 PDF set, and interfaced to Pythia 6.426 and the Peru-

gia2011C UE tune. Two separate samples are generated corresponding to tt̄→WbHc and

tt̄→WbHu, with the W boson forced to decay leptonically, W → `ν (` = e, µ, τ ), The top

quark and Higgs boson masses are set to 172.5 GeV and 125 GeV, respectively. The Higgs

boson is allowed to decay to all SM particles with branching ratios as given in ref. [89]. The

signal sample is normalised to the same NNLO cross section as used for the tt̄ → WbWb

sample, and the corresponding branching ratios: σ(tt̄ → W (→ `ν)bHq) = 2BR(t →
Hq)[1 − BR(t → Hq)]BR(W → `ν)σtt̄, with BR(W → `ν) = 0.324 and BR(t → Hq)

depending on the branching ratio being tested. Typically a reference branching ratio of

BR(t → Hq) = 1% is used. The case of both top quarks decaying into Hq is neglected in

the analysis given existing upper limits on BR(t→ Hq) (see section 1). In order to improve

the modelling of the signal kinematics, a two-step reweighting procedure is applied: the

first step is designed to correct the spectrum of top quark pT and tt̄ system pT to match

that of the uncorrected tt̄ → WbWb Powheg-Box+Pythia sample; the second step in-

volves the same correction to the top quark pT and tt̄ system pT applied to the tt̄+jets

background (see discussion above).

Finally, all generated samples are processed through a simulation [92] of the detector

geometry and response using Geant4 [93]. Additional minimum-bias pp interactions are

simulated with the Pythia 8.1 generator with the MSTW 2008 LO PDF set and the A2 UE

tune [94]. They are overlaid on the simulated signal and background events according to the

luminosity profile of the recorded data. The contributions from these pileup interactions

are modelled both within the same bunch crossing as the hard-scattering process and
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in neighbouring bunch crossings. All simulated samples are processed through the same

reconstruction software as the data. Simulated events are corrected so that the object

identification efficiencies, energy scales, and energy resolutions match those determined

from data control samples.

6 Analysis strategy

This section presents an overview of the analysis strategy followed by the tt̄→WbHq,H →
bb̄ search.

6.1 Event categorisation

Given the focus on the W → `ν and H → bb̄ decay modes, the tt̄ → WbHq signal is

expected to have typically four jets, of which three or four are b-tagged. The latter case

corresponds to the tt̄→WbHc signal where the charm quark, as well as the three b-quark

jets, are b-tagged. Additional jets can also be present because of initial- or final-state radi-

ation. In order to optimise the sensitivity of the search, the selected events are categorised

into different channels depending on the number of jets (4, 5 and ≥6) and on the number of

b-tagged jets (2, 3 and ≥4). Therefore, the total number of analysis channels considered in

this search is nine: (4 j, 2 b), (4 j, 3 b), (4 j, 4 b), (5 j, 2 b), (5 j, 3 b), (5 j, ≥4 b), (≥6 j, 2 b),

(≥6 j, 3 b), and (≥6 j, ≥4 b), where (n j, m b) indicates n selected jets and m b-tagged jets.

The overall rate and composition of the tt̄+jets background strongly depends on the jet

and b-tag multiplicities, as illustrated in figure 1. The tt̄+light-jets background is dominant

in events with exactly two or three b-tagged jets, with the two b-quarks from the top quark

decays being tagged in both cases, and a charm quark from the hadronic W boson decay

also being tagged in the latter case. Contributions from tt̄+cc̄ and tt̄+bb̄ become significant

as the jet and b-tag multiplicities increase, with the tt̄+ bb̄ background being dominant for

events with ≥6 jets and ≥4 b-tags.

In the channels with four or five jets and three or at least four b-tags, which dominate

the sensitivity of this search, selected signal events have a H → bb̄ decay in more than 95%

of the events. The channels most sensitive to the tt̄→WbHu and tt̄→WbHc signals are

(4 j, 3 b) and (4 j, 4 b) respectively. Because of the better signal-to-background ratio in

the (4 j, 4 b) channel, this analysis is expected to have better sensitivity for tt̄ → WbHc

than for tt̄ → WbHu signal. The rest of the channels have significantly lower signal-to-

background ratios, but they are useful for calibrating the tt̄+jets background prediction

and constraining the related systematic uncertainties (see section 7) through a likelihood fit

to data (see section 8). This strategy was first used in the ATLAS search for tt̄H associated

production, with H → bb̄ [21], and is adopted in this analysis. A table summarising the

observed and expected yields before the fit to data in each of the analysis channels can be

found in appendix A.

6.2 Discrimination of signal from background

After event categorisation, the signal-to-background ratio is very low even in the most

sensitive analysis channels, and a suitable discriminating variable between signal and back-
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Figure 1. Comparison between the data and background prediction for the yields in each of the

analysis channels considered before the fit to data (pre-fit). Backgrounds are normalised to their

nominal cross sections discussed in section 5. The expected tt̄ → WbHc and tt̄ → WbHu signals

(dashed histograms) are shown separately normalised to BR(t → Hq) = 1%. The tt̄ → WbWb

background is normalised to the SM prediction. The small contributions from W/Z+jets, single

top, diboson and multijet backgrounds are combined into a single background source referred to as

“Non-tt̄”. The bottom panel displays the ratio of data to the SM background (“Bkg”) prediction.

The hashed area represents the total uncertainty on the background.

ground needs to be constructed in order to improve the sensitivity of the search. A powerful

discriminant between signal and background can be defined as:

D(x) =
P sig(x)

P sig(x) + P bkg(x)
, (6.1)

where P sig(x) and P bkg(x) represent the probability density functions (pdf) of a given

event under the signal hypothesis (tt̄ → WbHq) and under the background hypothesis

(tt̄→WbWb) respectively. Both pdfs are functions of x, representing the four-momentum

vectors of all final-state particles at the reconstruction level: the lepton (`), the neutrino (ν;

reconstructed as discussed below), and the Njets selected jets in a given analysis channel.

Since both signal and background result from the tt̄ decay, there are few experimental

handles available to discriminate between them. The most prominent features are the dif-

ferent resonances present in the decay (i.e. the Higgs boson in the case of tt̄→WbHq and a

hadronically decaying W boson in the case of tt̄→WbWb), and the different flavour content

of the jets forming those resonances. This is the main information exploited in the con-

struction of P sig(x) and P bkg(x) in this analysis, so that x is extended to include not only

the four-momenta of jets pjet, but also the value of their multivariate b-tagging discriminant

wjet, i.e., x ≡ {p`, pν , (pjeti , wjeti)} (i = 1, . . . , Njets). There is also some angular informa-
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tion from the different spins of the daughter resonances (Higgs and W boson) that could be

exploited, but it is expected to be subleading in importance and is neglected in this analysis.

The calculation of P sig(x) and P bkg(x) is discussed in detail in sections 6.2.1 and 6.2.2

respectively. In the following, b` denotes the b-quark jet from the semileptonic top quark

decay, qh and bh denote the light-quark jet (qh = u or c) and b-quark jet from the hadronic

top quark decay in background and signal events respectively, q1 and q2 denote the up-type-

quark jet (u or c) and down-type-quark jet (d or s) from the W boson decay respectively,

and b1 and b2 denote the two b-quark jets from the Higgs boson decay. The level of

separation achieved between signal and background with the resulting discriminant D is

illustrated in section 6.2.3.

6.2.1 Signal probability

The construction of P sig(x) will now be described step by step to illustrate the method.

If the partonic origin of each jet were known [see figure 2(a)], P sig(x) would be defined in

this analysis as the product of the normalised pdfs for each of the reconstructed invariant

masses in the event: the semileptonic top quark mass (M`νb`), the hadronic top quark mass

(Mb1b2qh) and the Higgs boson mass (Mb1b2). Since Mb1b2qh and Mb1b2 are correlated, their

difference in quadrature, Xb1b2qh ≡ Mb1b2qh 	Mb1b2 , is used instead of Mb1b2qh . Therefore

the expression for P sig just making use of the above kinematic information, denoted by

P sig
kin, is:

P sig
kin(x) = P sig(M`νb`)P

sig(Xb1b2qh)P sig(Mb1b2). (6.2)

The distributions of these invariant masses are obtained from simulated signal events

using the reconstructed lepton and/or jets corresponding to the correct parton-jet assign-

ment, determined by matching a given quark (before final-state radiation) to the clos-

est jet with ∆R < 0.3. The corresponding pdfs are constructed as unit-normalised one-

dimensional histograms. To compute M`νb` , the neutrino four-momentum is needed, which

is reconstructed as follows. Initially, the x and y components of the neutrino momentum,

px,ν and py,ν , are identified with those of the reconstructed Emiss
T vector. The z com-

ponent of the neutrino momentum, pz,ν , is inferred by solving M2
W = (p` + pν)2, with

MW = 80.4 GeV being the W boson mass. If two real solutions (“2sol”) exist, they are

sorted according to their absolute value of |pz,ν | i.e., |pz,ν1| < |pz,ν2|. It is found that in

62% of the cases pz,ν1 is closer than pz,ν2 to the generator-level neutrino pz,ν . In this case,

two different pdfs are constructed, one for each solution, and P sig
2sol(M`νb`) is defined as the

average of the two pdfs weighted by their fractions (0.62 for pz,ν1 and 0.38 for pz,ν2). If

no real solution (“nosol”) exists, which happens in about 30% of the cases, the px,ν and

py,ν components are scaled by a common factor until the discriminant of the quadratic

equation is exactly zero, yielding only one solution for pz,ν . This solution for pz,ν is used

to compute M`νb` , from which the corresponding P sig
nosol(M`νb`) is constructed. In the cal-

culation of P sig
kin(x) from equation (6.2), P sig(M`νb`) is identified with P sig

2sol(M`νb`) or with

P sig
nosol(M`νb`), depending on how many neutrino solutions can be found for the event.

In practice, the partonic origin of the jets is not known, so it is necessary to evalu-

ate P sig(x) by averaging over the Np possible parton-jet assignments, which dilutes the
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kinematic information. At this point b-tagging information can be used to suppress the

impact from parton-jet assignments that are inconsistent with the correct parton flavours

as follows:

P sig(x) =

Np∑
k=1

P sig
btag(xk)P sig

kin(xk)

Np∑
k=1

P sig
btag(xk)

, (6.3)

where P sig
kin(x) is given by equation (6.2) and P sig

btag(x) is defined as:

P sig
btag(x) = Pb(jet1)Pb(jet2)Pb(jet3)Pqh(jet4), (6.4)

with jeti (i = 1, . . . , 4) representing the parton-jet assignment being evaluated, and Pf (jeti)

denoting the probability that jet i, characterised by its four-momentum pjeti and b-tagging

weight value wjeti , originates from a parton with flavour f (b, c, or l; l for light parton). The

calibration of the b-tagging algorithm is performed for fixed thresholds on the multivariate

b-tagging discriminant variable, corresponding to different average b-tagging efficiencies

in tt̄ events of 60%, 70%, and 80%, also referred to as “operating points” (OP). The

corresponding thresholds are denoted by wOP
cut , with OP = 60%, 70%, or 80%. Parameteri-

sations of the b-tagging efficiencies for different jet flavours as functions of jet pT and η are

available for each of these operating points, εOP
f (pT, η), which can be used to compute Pf

as follows: if the jet b-tagging weight falls between the thresholds for operating points OP1

and OP2, wOP1
cut < wjet ≤ wOP2

cut , then Pf = εOP1
f − εOP2

f ; alternatively, if the jet b-tagging

weight is below (above) the threshold corresponding to the 80% (60%) operating point,

then Pf = 1− ε80%
f (Pf = ε60%

f ).

6.2.2 Background probability

The calculation of P bkg follows a similar approach to that discussed in section 6.2.1, al-

though it is slightly more complicated to account for the varying fraction and different

kinematic features of the tt̄+light-jets, tt̄+ cc̄ and tt̄+ bb̄ backgrounds as a function of the

analysis channel. This is particularly relevant in the (4 j, 3 b) and (4 j, 4 b) channels,

which dominate the sensitivity of the search. While tt̄+light-jets events often have both

jets from the hadronic W boson decay among the four selected jets [see figure 2(b)], this

is seldom the case for tt̄+ bb̄ and tt̄+ cc̄ events, especially in the (4 j, 4 b) channel. In this

case the four b-tagged jets typically originate from the two b-quarks from the top quark

decays, the charm quark from the W boson decay, and an extra heavy-flavour quark (b or

c) produced in association with the tt̄ system, while the jet associated with the down-type

quark from the W boson decay is not reconstructed [see figure 2(c)].

To account for this, the following kinematic variables are considered: M`νb` , Xq1jbh

and Mq1j , with Xq1jbh ≡Mq1jbh	Mq1j , were j denotes an extra quark-jet which can either

originate from the W boson decay (q2) or from an extra heavy-quark (b or c) produced in

association with the tt̄ system. For each of these possibilities, occurring in a fraction fj of

the cases, corresponding pdfs are constructed. As a generalisation of equation (6.3), the
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Figure 2. Representative Feynman diagrams illustrating the partonic configurations and parton-

jet assignments considered in the construction of (a) the signal probability and (b) and (c) the

background probability used in the definition of the final discriminant (see text for details).

expression for P bkg(x) becomes:

P bkg(x) =

Np∑
k=1

∑
j∈{b,c,q2}

fjP
bkg,j
btag (xk)P bkg,j

kin (xk)

Np∑
k=1

∑
j∈{b,c,q2}

fjP
bkg,j
btag (xk)

, (6.5)

with

P bkg,j
kin (x) = P bkg(M`νb`)P

bkg(Xq1jbh)P bkg(Mq1j), (6.6)

and

P bkg,j
btag (x) = Pb(jet1)Pq1(jet2)Pj(jet3)Pb(jet4). (6.7)

where Pf (jeti) are computed as discussed in section 6.2.1. In the above expression, Pj = Pl
for j = q2, the down-type quark in the W boson decay, and Pq1 = fcPc + (1− fc)Pl, where

fc is the fraction of events where the up-type quark from the W boson decay assigned

to the jet is a charm quark. This fraction is different in each analysis channel, primarily

depending on the b-tag multiplicity requirements. It varies from ∼ 50% for events in the

(4 j, 2 b) channel to ∼ 90% for events in the (4 j, 4 b) channel.
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6.2.3 Final discriminant

The final discriminant D is computed for each event as given in equation (6.1), using the

definitions for P sig and P bkg given in equations (6.3) and (6.5), respectively. Since this

analysis has higher expected sensitivity to a tt̄ → WbHc signal than to a tt̄ → WbHu

signal and, in order to allow probing of the BR(t → Hu) versus BR(t → Hc) plane, the

discriminant optimised for tt̄ → WbHc is used for both the Hc and Hu decay modes. It

was verified that using the tt̄ → WbHc discriminant for the tt̄ → WbHu search does not

result in a significant sensitivity loss. Figure 3 compares the shape of the D distribution

between the tt̄→WbHc and tt̄→WbHu signals and the tt̄→WbWb background in each

of the channels considered in this analysis.

7 Systematic uncertainties

Several sources of systematic uncertainty are considered that can affect the normalisation

of signal and background and/or the shape of their corresponding final discriminant dis-

tributions. Each source of systematic uncertainty is considered to be uncorrelated with

the other sources. Correlations of a given systematic uncertainty are maintained across

processes and channels. Table 1 presents a list of all systematic uncertainties considered

in the analysis and indicates whether they are taken to be normalisation-only, or to affect

both shape and normalisation.

The leading sources of systematic uncertainty vary depending on the analysis channel

considered, but they typically originate from tt̄+jets modelling (including tt̄+HF) and b-

tagging. For example, the total systematic uncertainty in the background normalisation

in the (4 j, 4 b) channel, which dominates the sensitivity in the case of the tt̄ → WbHc

search, is approximately 20%, with the largest contributions originating from tt̄+HF nor-

malisation, b-tagging efficiency, c-tagging efficiency, light-jet tagging efficiency and tt̄ cross

section. However, as shown in section 9, the fit to data in the nine analysis channels al-

lows the overall background uncertainty to be reduced significantly, to approximately 4.4%.

The reduced uncertainty results from the significant constraints provided by the data on

some systematic uncertainties, as well as the anti-correlations among sources of systematic

uncertainty resulting from the fit to the data. The total systematic uncertainty on the

tt̄ → WbHc signal normalisation in the (4 j, 4 b) channel is approximately 17%, with

similar contributions from uncertainties related to b-tagging and overall signal modelling.

After the fit, this uncertainty is reduced to 7.8%. Table 2 presents a summary of the sys-

tematic uncertainties for the tt̄→ WbHc search and their impact on the normalisation of

the signal and the main backgrounds in the (4 j, 4 b) channel.

The following sections describe each of the systematic uncertainties considered in the

analyses.

7.1 Luminosity

The uncertainty on the integrated luminosity is 2.8%, affecting the overall normalisation

of all processes estimated from the simulation. It is estimated from a calibration of the lu-
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Figure 3. Comparison of the shape of the D discriminant distribution between the tt̄ → WbHc

(red dashed) and tt̄→WbHu (blue dotted) signals, and the tt̄→WbWb background (black solid)

in each of the channels considered in the analysis: (a) (4 j, 2 b), (b) (4 j, 3b), (c) (4 j, 4 b), (d) (5

j, 2 b), (e) (5 j, 3 b), (f) (5 j, ≥4 b), (g) (≥6 j, 2 b), (h) (≥6 j, 3 b), and (i) (≥6 j, ≥4 b).
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Systematic uncertainty Type Components

Luminosity N 1

Reconstructed Objects

Electron SN 5

Muon SN 6

Jet reconstruction SN 1

Jet vertex fraction SN 1

Jet energy scale SN 22

Jet energy resolution SN 1

Missing transverse momentum SN 2

b-tagging efficiency SN 6

c-tagging efficiency SN 4

Light-jet tagging efficiency SN 12

High-pT tagging SN 1

Background Model

tt̄ cross section N 1

tt̄ modelling: pT reweighting SN 9

tt̄ modelling: parton shower SN 3

tt̄+HF: normalisation N 2

tt̄+cc̄: pT reweighting SN 2

tt̄+cc̄: generator SN 4

tt̄+bb̄: NLO shape SN 8

W+jets normalisation N 3

W pT reweighting SN 1

Z+jets normalisation N 3

Z pT reweighting SN 1

Single top normalisation N 3

Single top model SN 1

Diboson normalisation N 3

tt̄V cross section N 1

tt̄V model SN 1

tt̄H cross section N 1

tt̄H model SN 2

Multijet normalisation N 4

Signal Model

tt̄ cross section N 1

Higgs boson branching ratios N 3

tt̄ modelling: pT reweighting SN 9

tt̄ modelling: pT reweighting non-closure N 1

tt̄ modelling: parton shower N 1

Table 1. List of systematic uncertainties considered. An “N” means that the uncertainty is taken

as affecting only the normalisation for all relevant processes and channels, whereas “SN” means that

the uncertainty is taken on both shape and normalisation. Some of the systematic uncertainties

are split into several components for a more accurate treatment.
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Pre-fit Post-fit

WbHc tt̄+LJ tt̄+ cc̄ tt̄+ bb̄ WbHc tt̄+LJ tt̄+ cc̄ tt̄+ bb̄

Luminosity ±2.8 ±2.8 ±2.8 ±2.8 ±2.6 ±2.6 ±2.6 ±2.6

Lepton efficiencies ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5

Jet energy scale ±3.3 ±2.9 ±2.3 ±5.8 ±1.4 ±1.2 ±1.8 ±4.1

Jet efficiencies ±1.2 — ±1.9 ±1.7 ±0.9 — ±1.4 ±1.2

Jet energy resolution — ±1.2 ±2.8 ±2.9 — — ±1.0 ±1.1

b-tagging eff. ±7.9 ±5.5 ±5.2 ±10 ±5.7 ±3.9 ±3.7 ±6.6

c-tagging eff. ±7.0 ±6.6 ±13 ±3.5 ±6.3 ±6.0 ±11 ±3.2

Light-jet tagging eff. ±0.8 ±18 ±3.2 ±1.5 ±0.6 ±13 ±2.3 ±1.1

tt̄: reweighting ±5.9 ±2.7 ±4.2 — ±3.8 ±1.9 ±2.3 —

tt̄: parton shower ±5.4 ±4.8 ±10 ±4.9 ±1.7 ±1.5 ±6.5 ±3.1

tt̄+HF: normalisation — — ±50 ±50 — — ±32 ±16

tt̄+HF: modelling — — — ±7.7 — — — ±7.4

Signal modelling ±6.9 — — — ±6.9 — — —

Theor. cross sections ±6.2 ±6.2 ±6.2 ±6.2 ±3.9 ±3.9 ±3.9 ±3.9

Total ±17 ±22 ±54 ±53 ±7.8 ±14 ±28 ±15

Table 2. tt̄ → WbHc,H → bb̄ search: summary of the systematic uncertainties considered in

the (4 j, 4 b) channel and their impact (in %) on the normalisation of the signal and the main

backgrounds, before and after the fit to data. The tt̄ → WbHc signal and the tt̄+light-jets

background are denoted by “WbHc” and “tt̄+LJ” respectively. Only sources of systematic

uncertainty resulting in a normalisation change of at least 0.5% are displayed. The total post-fit

uncertainty can differ from the sum in quadrature of individual sources due to the anti-correlations

between them resulting from the fit to the data.

minosity scale derived from beam-separation scans performed in November 2012, following

the same methodology as that detailed in ref. [38].

7.2 Reconstructed objects

Uncertainties associated with leptons arise from the reconstruction, identification and trig-

ger. These efficiencies are measured using tag-and-probe techniques on Z → `+`− (` = e, µ)

data and simulated samples. The small differences found are corrected for in the simula-

tion. Negligible sources of uncertainty originate from the corrections applied to adjust

the lepton momentum scale and resolution in the simulation to match those in data. The

combined effect of all these uncertainties results in an overall normalisation uncertainty on

the signal and background of approximately 1.5%.

Uncertainties associated with jets arise from the efficiency of jet reconstruction and

identification based on the JVF variable, as well as the jet energy scale and resolution. The

largest contribution results from the jet energy scale, whose uncertainty dependence on jet

pT and η is split into 22 uncorrelated sources that are treated independently in the analysis.

It affects the normalisation of signal and backgrounds by approximately 3–4% in the most

sensitive search channels, (4 j, 3 b) and (4 j, 4 b), and up to 12% in the channels with ≥6 jets.

Uncertainties associated with energy scales and resolutions of leptons and jets are prop-

agated to Emiss
T . Additional uncertainties originating from the modelling of the underlying
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event, in particular its impact on the pT scale and resolution of unclustered energy, are

negligibly small.

The leading uncertainties associated with reconstructed objects in this analysis orig-

inate from the modelling of the b-, c-, and light-jet-tagging efficiencies in the simulation,

which is corrected to match the efficiencies measured in data control samples [36, 95]

through dedicated scale factors. Uncertainties on these factors include a total of six in-

dependent sources affecting b-jets and four independent sources affecting c-jets. Each of

these uncertainties has a different jet-pT dependence. Twelve sources of uncertainty affect-

ing light jets are considered, which depend on jet pT and η. The above sources of systematic

uncertainty are taken as uncorrelated between b-jets, c-jets, and light-jets. They have their

largest impact in the (4 j, 4 b) channel, resulting in 10%, 13%, and 18% normalisation

uncertainties on the tt̄+ bb̄, tt̄+ cc̄, and tt̄+light-jets background associated with the un-

certainties on the b-, c-, and light-jet-tagging scale factors, respectively. An additional

uncertainty is included due to the extrapolation of these scale factors to jets with pT be-

yond the kinematic reach of the data calibration samples used (pT > 300 GeV for b- and

c-jets, and pT > 750 GeV for light-jets), taken to be correlated among the three jet flavours.

This uncertainty has a very small impact in this analysis (e.g. < 0.2% on the signal and

background normalisations in the (4 j, 4 b) channel).

7.3 Background modelling

A number of sources of systematic uncertainty affecting the modelling of tt̄+jets are con-

sidered. A brief summary is provided below, with further details available in ref. [21],

as the uncertainty treatment is identical. An uncertainty of +6.1%/−6.4% is assumed

for the inclusive tt̄ production cross section [49], including contributions from varying the

factorisation and renormalisation scales, and uncertainties arising from the PDF, αS, and

the top quark mass. Uncertainties associated with the reweighting procedure applied to

tt̄+light-jets and tt̄+cc̄ processes include the nine leading sources of uncertainty in the dif-

ferential cross-section measurement at
√
s = 7 TeV [61]. Additional uncertainties assigned

to the modelling of the tt̄ + cc̄ background include a 50% normalisation uncertainty, the

full differences between applying and not applying the reweightings of the top quark and

tt̄ pT spectra, as well as smaller uncertainties associated with the choice of LO generator.

Uncertainties affecting the modelling of tt̄ + bb̄ production include a normalisation uncer-

tainty of 50% (taken to be uncorrelated with the same uncertainty assigned to the tt̄+ cc̄

background) and shape uncertainties (including inter-category migration effects) associ-

ated with the NLO prediction from Sherpa+OpenLoops, which is used for reweighting

of the default Powheg-Box tt̄ + bb̄ prediction. These include three different scale vari-

ations, a different shower-recoil model scheme, and two alternative PDF sets (MSTW

and NNPDF). Additional uncertainties are assessed for the contributions to the tt̄ + bb̄

background originating from multiple parton interactions or final-state radiation from top

decay products, which are not part of the NLO prediction. Finally, an uncertainty due

to the choice of parton shower and hadronisation model is derived by comparing events

produced by Powheg-Box interfaced to Pythia or Herwig. This uncertainty is taken

to be uncorrelated between the tt̄+light-jets, tt̄+ cc̄ and tt̄+ bb̄ processes.
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Uncertainties affecting the modelling of the W+jets background include a 7% nor-

malisation uncertainty for events with ≥4 jets coming from the data-driven normalisation

procedure. The corresponding normalisation uncertainty for Z+jets is 5% for events with

≥2 jets. In addition, a 24% normalisation uncertainty is added in quadrature for each ad-

ditional inclusive jet-multiplicity bin beyond the one where the background is normalised,

based on a comparison among different algorithms for merging LO matrix elements and

parton shower simulations [96]. For example, W+jets events with exactly 4 jets, exactly

5 jets and ≥ 6 jets are assigned normalisation uncertainties of 7%, 7% ⊕ 24% = 25% and

7% ⊕ 24% ⊕ 24% = 35%. Finally, the full size of the W and Z boson pT correction, after

symmetrisation, is taken as a systematic uncertainty. The above uncertainties are taken

as uncorrelated between W+jets and Z+jets.

Uncertainties affecting the modelling of the single-top-quark background include a

+5%/−4% uncertainty on the total cross section, which is estimated as a weighted average

of the theoretical uncertainties on t-, Wt- and s-channel production [68–70]. Similarly to

the case of W/Z+jets, an additional 24% normalisation uncertainty is added in quadrature

for each additional inclusive jet-multiplicity bin above ≥3 jets. An additional systematic

uncertainty on Wt-channel production concerning the separation between tt̄ and Wt at

NLO [97] is assessed by comparing the nominal sample, which uses the so-called “diagram

subtraction” scheme, with an alternative sample using the “diagram removal” scheme.

Uncertainties on the diboson background normalisation include 5% from the NLO

theoretical cross sections [75] and additional 24% normalisation uncertainties added in

quadrature for each additional inclusive jet-multiplicity bin above ≥2 jets. Uncertain-

ties on the tt̄V and tt̄H normalisations are 15% and +9%/−12% respectively, from the

uncertainties on their respective NLO theoretical cross sections [81, 89, 98]. Additional

small uncertainties arising from scale variations, which change the amount of initial-state

radiation and thus the event kinematics, are also considered.

Uncertainties on the data-driven multijet background estimate receive contributions

from the limited sample size in data, particularly at high jet and b-tag multiplicities, as

well as from the uncertainty on the rate of fake leptons, estimated in different control re-

gions (e.g. selected with a requirement on either the maximum Emiss
T or mW

T ). A combined

normalisation uncertainty of 50% due to all these effects is assigned, which is taken as cor-

related across jet and b-tag multiplicity bins, but uncorrelated between electron and muon

channels. No explicit shape uncertainty is assigned since the large statistical uncertainties

associated with the multijet background prediction, which are uncorrelated between bins

in the final discriminant distribution, effectively cover all possible shape uncertainties.

7.4 Signal modelling

Several normalisation and shape uncertainties are taken into account for the tt̄ → WbHq

signal. The uncertainty on the tt̄ cross section (see above) also applies to the tt̄→WbHq

signal and is taken to be the same as, and fully correlated with, that assigned to the

tt̄ → WbWb background. Uncertainties on the H → bb̄ branching ratio are taken into

account following the recommendation in ref. [89]: ±1.1% (∆αS), ±1.4% (∆mb) and ±0.8%

(theory). Additional modelling uncertainties originate from non-closure of the reweighting
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procedure applied to correct the distributions of top quark pT and tt̄ system pT from

Protos to match those from the uncorrected Powheg-Box+Pythia simulation, and the

uncertainties associated with the further reweighting in the same variables to match the

differential cross-section measurements at
√
s = 7 TeV, taken to be fully correlated with

those assigned to the tt̄+light-jets background. Finally, an uncertainty from the choice of

parton shower and hadronisation model is estimated by comparing the tt̄→WbWb yields

between Powheg-Box+Pythia and Powheg-Box+Herwig in the channels with two

b-tags, which are enriched in tt̄+light-jets, and thus taken to be representative of what

would be the signal acceptance uncertainty due to differences in extra jet radiation and

b-quark fragmentation between the two parton shower/hadronisation models.

8 Statistical analysis

The distributions of the final discriminants in each of the analysis channels considered are

combined to test for the presence of a signal. The statistical analysis is based on a binned

likelihood function L(µ, θ) constructed as a product of Poisson probability terms over all

bins considered in the search. In the case of several searches being combined, the product

of Poisson probability terms is extended over all bins considered in all searches. The

function L(µ, θ) depends on the signal-strength parameter µ, defined as a multiplicative

factor to the yield for tt̄→ WbHq signal events normalised to a reference branching ratio

BRref(t → Hq) = 1%, and θ, a set of nuisance parameters that encode the effect of

systematic uncertainties on the signal and background expectations and are implemented

in the likelihood function as Gaussian or log-normal priors with their width parameters

corresponding to the size of the respective uncertainties. The relationship between µ and

the corresponding BR(t→ Hq) is:

µ =
BR(t→ Hq)[1− BR(t→ Hq)]

BRref(t→ Hq)[1− BRref(t→ Hq)]
. (8.1)

For a given µ value, the SM tt̄ → WbWb background contribution is scaled accordingly

in order to preserve the inclusive tt̄ cross section. The corresponding multiplicative factor

would be [1 − BR(t → Hq)]2, with BR(t → Hq) being a function of µ as can be derived

from equation (8.1):

BR(t→ Hq) =
1−

√
1− 4BRref(t→ Hq)(1− BRref(t→ Hq))µ

2
. (8.2)

Therefore, the total number of signal and background events in a given bin depends on µ

and θ. The best-fit BR(t → Hq) is obtained by performing a binned likelihood fit to the

data under the signal-plus-background hypothesis, i.e. maximising the likelihood function

L(µ, θ) over µ and θ. The nuisance parameters θ allow variations of the expectations for

signal and background according to the corresponding systematic uncertainties, and their

fitted values correspond to the deviations from the nominal expectations that globally

provide the best fit to the data. This procedure allows a reduction of the impact of sys-

tematic uncertainties on the search sensitivity by taking advantage of the highly populated

background-dominated channels included in the likelihood fit.
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The test statistic qµ is defined as the profile likelihood ratio: qµ =

−2 ln(L(µ,
ˆ̂
θµ)/L(µ̂, θ̂)), where µ̂ and θ̂ are the values of the parameters that maximise

the likelihood function (with the constraint 0 ≤ µ̂ ≤ µ), and
ˆ̂
θµ are the values of the

nuisance parameters that maximise the likelihood function for a given value of µ. Sta-

tistical uncertainties in each bin of the discriminant distributions are also taken into ac-

count via dedicated nuisance parameters in the fit. The test statistic qµ is implemented

in the RooFit package [99, 100] and is used to measure the compatibility of the observed

data with the background-only hypothesis by setting µ = 0 in the profile likelihood ratio:

q0 = −2 ln(L(0,
ˆ̂
θ0)/L(µ̂, θ̂)). The p-value (referred to as p0) representing the compatibility

of the data with the background-only hypothesis is estimated by integrating the distri-

bution of q0 from background-only pseudo-experiments, approximated using the asymp-

totic formulae given in ref. [101], above the observed value of q0. The observed p0-value is

checked for each explored signal scenario. In the absence of any significant excess above the

background expectation, upper limits on µ, and thus on BR(t → Hq) via equation (8.2),

are derived by using qµ in the CLs method [102, 103]. Values of BR(t → Hq) yielding

CLs<0.05, where CLs is computed using the asymptotic approximation [101], are excluded

at ≥95% CL.

9 Results

This section presents the results obtained from the individual searches for tt̄→WbHq, as

well as their combination.

9.1 H → bb̄

Following the statistical analysis discussed in section 8, a binned likelihood fit under the

signal-plus-background hypothesis is performed on the distributions of the final discrim-

inant in the nine analysis channels considered. Figures 4–6 show a comparison of the

data and prediction in the final discriminant in each of the analysis channels, both pre-

and post-fit to data, in the case of the tt̄ → WbHc search. The post-fit yields can be

found in appendix A. The best-fit branching ratio obtained is BR(t → Hc) = [0.17 ±
0.12 (stat.)± 0.17 (syst.)]%, assuming that BR(t→ Hu) = 0. A similar fit is performed for

the tt̄ → WbHu search, yielding BR(t → Hu) = [−0.07 ± 0.17 (stat.) ± 0.28 (syst.)]%, as-

suming that BR(t→ Hc) = 0. The different measured values for the two branching ratios

is the result of the different sensitivities of the tt̄ → WbHc and tt̄ → WbHu searches, as

discussed in section 6.1.

The large number of events in the analysis channels considered, together with their

different background compositions, allows the fit to place constraints on the combined

effect of several sources of systematic uncertainty. As a result, an improved background

prediction is obtained with significantly reduced uncertainty, not only in the signal-depleted

channels, but also in the most sensitive analysis channels for this search, (4 j, 3 b) and (4 j,

4 b). The channels with two b-tags are used to constrain the leading uncertainties affecting

the tt̄+light-jets background prediction, while the channels with ≥5 jets and ≥3 b-tags are
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sensitive to the uncertainties affecting the tt̄+HF background prediction. In particular,

one of the main corrections applied by the fit is an increase of the tt̄ + bb̄ normalisation

by approximately 20% relative to the nominal prediction by adjusting the corresponding

nuisance parameter. This results in an improved agreement between data and prediction in

the (5 j, ≥4 b) and (≥6 j, ≥4 b) channels, where the tt̄+ bb̄ process provides a significant,

or, in the latter case, dominant background contribution.6 In addition, the corresponding

uncertainty is reduced from the initial 50% down to about 16%. This correction is in

agreement with that found in ref. [21]. However, in contrast with ref. [21], the tt̄ + bb̄

normalisation is not one of the leading uncertainties affecting this search, since the tt̄+ bb̄

background is subdominant in the (4 j, 3 b) channel, and it has a very different final

discriminant shape from that of the signal in the (4 j, 4 b) channel.

As an illustration, figure 7 provides a summary of the leading 15 systematic uncertain-

ties affecting the tt̄ → WbHc search, quantifying their impact on the signal strength µ,

both before and after the fit, and displaying the constraints provided by the data on the

associated nuisance parameters. The pre-fit impact on µ is estimated by fixing the corre-

sponding nuisance parameter at θ0 ± ∆θ, where θ0 is the nominal value of the nuisance

parameter and ∆θ is its pre-fit uncertainty, and performing the fit again. The difference

between the default and modified µ, ∆µ, represents the effect of the systematic uncertainty

in question on µ. The same procedure is followed to estimate the post-fit impact on µ,

but the corresponding nuisance parameter is instead fixed at θ̂ ± σθ, where θ̂ is the fitted

value of the nuisance parameter and σθ is its post-fit uncertainty. For reference, ∆µ = 0.05

corresponds to ∆BR(t→ Hc) ' 0.05%.

Prior to the fit, the systematic uncertainties with the largest impact on µ are the

leading uncertainty for light-jet tagging and the uncertainty on the tt̄ background associated

with the choice of parton shower and hadronisation models. The significant impact from

light-jet tagging results from the large fraction of tt̄+light-jets background present in the

(4 j, 4 b) channel, which peaks at high values of the final discriminant, like the signal,

and thus cannot be strongly constrained by the fit. Because of this, this uncertainty

remains the leading one after the fit. In contrast, the uncertainty related to tt̄ modelling is

significantly constrained by the fit since it has a large impact (∼5–16%) on the tt̄+light-jets

background normalisation in the highly populated channels with two b-tags. As a result,

this uncertainty is ranked only fourth in importance after the fit, becoming comparable to

uncertainties such as the choice of renormalisation scale for tt̄+ bb̄, the leading uncertainty

for c-jet tagging and the tt̄+cc̄ normalisation. Of these, the nuisance parameter associated

with the choice of the renormalisation scale for tt̄+bb̄ is slightly pulled (by half of the prior

uncertainty) to improve agreement with the data in the (4 j, 4 b) and (5 j, 4 b) channels.

In these channels, this uncertainty causes variations of up to ∼5% in the bin contents in

some regions of the final discriminant, i.e. distorting its shape compared to that of the

nominal prediction, but the sensitivity is not sufficient to constrain it significantly. The

leading uncertainty from c-tagging causes small (few percent) distortions in the shape of

6The overall change in tt̄ + bb̄ normalisation can be different across channels due to the different im-

pact of other nuisance parameters affecting tt̄ + bb̄ modelling, such as that related to parton shower and

hadronisation, which is changed by the fit by half of the prior uncertainty.
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the background, and also cannot be constrained by the fit. In contrast, the fit is sensitive

to the tt̄+ cc̄ normalisation and the second-leading uncertainty for c-tagging,7 through the

comparison of data and predictions across channels with different b-tag multiplicity, yielding

results in agreement with the nominal predictions but with half the initial uncertainties.

Other nuisance parameters have a smaller impact on the signal extraction and typically

have small pulls or constraints. One exception is the nuisance parameter associated with

the tt̄ cross section, which affects the signal extraction indirectly through the existing small

fraction of non-tt̄ background, and after the fit is found to be consistent with the nominal

prediction but is constrained owing to the large number of tt̄ events. On the other hand, a

slight pull is obtained for the nuisance parameter associated with one of the uncertainties

for the top quark pT and tt̄ system pT reweightings, which is used by the fit to improve

agreement between data and prediction in the channels with two b-tags but which has very

small effect on the background prediction in the signal region.

In the absence of a significant excess in data above the background expectation, 95%

CL limits are set on BR(t → Hc) and BR(t → Hu). The observed (expected) 95% CL

upper limits on the branching ratios are BR(t → Hc) < 0.56% (0.42%) and BR(t →
Hu) < 0.61% (0.64%). These upper limits can be translated into corresponding observed

(expected) limits on the couplings of |λtcH | < 0.14 (0.12) and |λtuH | < 0.15 (0.15).

9.2 H → γγ

A search for tt̄ → WbHq,H → γγ published by the ATLAS Collaboration uses a data

set corresponding to an integrated luminosity of 4.5 fb−1 at
√
s = 7 TeV and 20.3 fb−1 at√

s = 8 TeV [17]. The event selection requires at least two reconstructed photon candidates

and additional requirements to select t → Wb decays. Events are categorised into two

channels, leptonic and hadronic, depending on the W boson decay modes. The leptonic

channel selects events with exactly one lepton (e or µ), at least two jets, and at least one

b-tagged jet. The hadronic channel selects events with no reconstructed lepton, at least

four jets, and at least one b-tagged jet. In both channels, additional requirements are made

to select events compatible with tt̄→WbHq production by exploiting the invariant masses

of the reconstructed top quark candidates. Finally, the diphoton mass (mγγ) distribution

of the selected events is analysed using a sideband technique in order to estimate the

background in the signal region, defined to be 122 GeV ≤ mγγ ≤ 129 GeV.

Based on the above strategy, this search has essentially no discrimination power be-

tween tt̄ → WbHc and tt̄ → WbHu signals, because their selection acceptances are very

close, although not identical. To facilitate combining it with the other searches discussed

in this paper, minor modifications to the inputs were made with respect to the published

result, all having a negligible impact on the result. They include updates to the tt̄ cross-

section uncertainty and the uncertainty model for Higgs branching ratios, as well as the

separate treatment of tt̄ → WbHc and tt̄ → WbHu signals taking into account their

slightly different acceptances. The best-fit branching ratios obtained are BR(t → Hc) =

7The main effect of this uncertainty is a change in normalisation for the background with almost no

effect on its shape in the final discriminant.
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Figure 4. tt̄→WbHc,H → bb̄ search: comparison between the data and prediction for the distri-

bution of the D discriminant used in the (4 j, 2 b) channel (a) before the fit and (b) after the fit, in

the (5 j, 2 b) channel (c) before the fit and (d) after the fit, and in the (≥6 j, 2 b) channel (e) before

the fit and (f) after the fit. The fit is performed on data under the signal-plus-background hypothe-

sis. In the pre-fit distributions the tt̄→WbHc signal (solid red) is normalised to BR(t→ Hc) = 1%

and the tt̄→WbWb background is normalised to the SM prediction, while in the post-fit distribu-

tions both signal and tt̄→WbWb background are normalised using the best-fit BR(t→ Hc). The

small contributions from W/Z+jets, single top, diboson and multijet backgrounds are combined into

a single background source referred to as “Non-tt̄”. The bottom panels display the ratios of data to

either the SM background prediction before the fit (“Bkg”) or the total signal-plus-background pre-

diction after the fit (“Pred”). The hashed area represents the total uncertainty on the background.
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Figure 5. tt̄→WbHc,H → bb̄ search: comparison between the data and prediction for the distri-

bution of the D discriminant used in the (4 j, 3 b) channel (a) before the fit and (b) after the fit, in

the (5 j, 3 b) channel (c) before the fit and (d) after the fit, and in the (≥6 j, 3 b) channel (e) before

the fit and (f) after the fit. The fit is performed on data under the signal-plus-background hypothe-

sis. In the pre-fit distributions the tt̄→WbHc signal (solid red) is normalised to BR(t→ Hc) = 1%

and the tt̄→WbWb background is normalised to the SM prediction, while in the post-fit distribu-

tions both signal and tt̄→WbWb background are normalised using the best-fit BR(t→ Hc). The

small contributions from W/Z+jets, single top, diboson and multijet backgrounds are combined into

a single background source referred to as “Non-tt̄”. The bottom panels display the ratios of data to

either the SM background prediction before the fit (“Bkg”) or the total signal-plus-background pre-

diction after the fit (“Pred”). The hashed area represents the total uncertainty on the background.
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Figure 6. tt̄→WbHc,H → bb̄ search: comparison between the data and prediction for the distri-

bution of theD discriminant used in the (4 j, 4 b) channel (a) before the fit and (b) after the fit, in the

(5 j, ≥4 b) channel (c) before the fit and (d) after the fit, and in the (≥6 j, ≥4 b) channel (e) before

the fit and (f) after the fit. The fit is performed on data under the signal-plus-background hypothe-

sis. In the pre-fit distributions the tt̄→WbHc signal (solid red) is normalised to BR(t→ Hc) = 1%

and the tt̄→WbWb background is normalised to the SM prediction, while in the post-fit distribu-

tions both signal and tt̄→WbWb background are normalised using the best-fit BR(t→ Hc). The

small contributions from W/Z+jets, single top, diboson and multijet backgrounds are combined into

a single background source referred to as “Non-tt̄”. The bottom panels display the ratios of data to

either the SM background prediction before the fit (“Bkg”) or the total signal-plus-background pre-

diction after the fit (“Pred”). The hashed area represents the total uncertainty on the background.
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Figure 7. tt̄ → WbHc,H → bb̄ search: the fitted values of the nuisance parameters for the most

important sources of systematic uncertainty and their impact on the measured signal strength. The

points, which are drawn conforming to the scale of the bottom axis, show the deviation of each of

the fitted nuisance parameters, θ̂, from θ0, which is the nominal value of that nuisance parameter, in

units of the pre-fit standard deviation ∆θ. The error bars show the post-fit uncertainties, σθ, which

are close to 1 if the data do not provide any further constraint on that uncertainty. Conversely,

a value of σθ much smaller than 1 indicates a significant reduction with respect to the original

uncertainty. The nuisance parameters are sorted according to their post-fit effect on µ (hashed blue

area), conforming to the scale of the top axis, with those with the largest impact at the top.

[0.22± 0.26 (stat.)± 0.10 (syst.)]% and BR(t→ Hu) = [0.23± 0.27 (stat.)± 0.10 (syst.)]%

under the assumptions that BR(t → Hu) = 0 and BR(t → Hc) = 0 respectively. The

observed (expected) 95% CL upper limits on the branching ratios from ref. [17] remain

the best estimates, BR(t → Hq) < 0.79% (0.51%). The corresponding limits on the

couplings are |λtqH | < 0.17 (0.14). These limits can be understood as applying to the

sum of the t → Hc and t → Hu decay modes, or only to one of them, if the other

decay mode is assumed to have a branching ratio equal to zero. In the former case,

BR(t→ Hq) ≡ BR(t→ Hc) + BR(t→ Hu) and |λtqH | ≡
√
|λtcH |2 + |λtuH |2.
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9.3 H → W+W−, τ+τ−

The H → WW ∗ and H → ττ decay modes are predicted to have significant branching

ratios, of 21.5% and 6.3% respectively. The resulting signatures for signal events, tt̄ →
WbHq → W±W±W∓bq and tt̄ → WbHq → W±τ±τ∓bq, can be effectively exploited to

suppress backgrounds in the case of multilepton final states.

Recently, the ATLAS Collaboration has published a search for tt̄H production with

H →WW ∗, ττ and ZZ∗ [23] that exploits several multilepton signatures resulting from the

leptonic decays of W and Z bosons and/or the presence of τ leptons. That search considered

five separate event categories depending on the number of reconstructed electrons or muons

and hadronic τ candidates, of which the following three are considered for a reinterpretation

in the context of the tt̄→WbHq search:

• 2`0τhad: two same-charge light leptons (e or µ) with no hadronic τ candidates (τhad)

and ≥4 jets with ≥1 b-tagged jets. This channel is sensitive to the process tt̄ →
WbHq → `±`±qqqb2ν. To further improve the sensitivity, this category is further

subdivided into six subcategories depending on the flavour of the leptons and the

number of jets: (ee, µµ, eµ)×(4 jets, ≥5 jets).

• 3`: three light leptons with either ≥3 jets of which ≥2 are b-tagged, or ≥4 jets of which

≥1 are b-tagged. This channel is sensitive to the process tt̄→WbHq → `±`±`∓qb3ν.

• 2`1τhad: two same-charge light leptons (e or µ), one τhad candidate, and ≥4 jets with

≥1 b-tagged jets. This channel is sensitive to the process tt̄→WbHq → `±`±τ∓qb3ν.

The two other categories considered in the tt̄H search in multilepton final states but not

in this reinterpretation are: 4` (four light leptons with ≥2 jets and ≥1 b-tagged jets) and

1`2τhad (one light lepton and two opposite-charge τhad candidates, with ≥3 jets and ≥1

b-tagged jets), which have very small signal acceptance and/or poor signal-to-background

ratio due to the large number of jets misidentified as τhad candidates. The minimum number

of jets required in the 2`0τhad category is well matched to the number of partons expected

from tt̄ → WbHq → W±W±W∓bq signal events, while the 3` and 2`1τhad categories

effectively require one or two jets beyond leading order. Because of this, and the gain in

branching ratio resulting from only requiring two, as opposed to three, W bosons decaying

leptonically, the 2`0τhad category dominates the sensitivity.

The largest background in the most sensitive category, 2`4j, is tt̄ or single-top pro-

duction with one of the leptons originating from a decay of a heavy-flavour hadron (“non-

prompt lepton”), followed by tt̄W production. Smaller contributions arise from tt̄(Z/γ∗),

tt̄H, and diboson (primarily WZ) production, and dilepton events from tt̄ and Z/γ∗ with

the wrong charge sign measured for one electron. In the remaining categories the non-

prompt lepton background decreases in importance, relative to the prompt-lepton contri-

butions. The prompt contributions are estimated using the simulation, as typically the

relevant processes (e.g., tt̄V , V = W,Z) have not been measured at an accuracy exceeding

that of theoretical predictions. The non-prompt lepton background predictions are com-

puted or validated using data control regions with similar lepton kinematic selections but
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with fewer jets (two or three). Further details are provided in ref. [23]. In the search for

tt̄H, these regions have almost no contamination from signal, but the same is not neces-

sarily true for the tt̄ → WbHq process, which is characterised by a lower jet multiplicity

than the tt̄H process. This could potentially lead to an overestimate of the non-prompt

background in this reinterpretation, particularly in the 2`0τhad categories, where the effect

is more pronounced. The 3` category estimates the non-prompt lepton background in the

signal region by extrapolating, in terms of lepton quality, from a data sideband region that

is sufficiently depleted in signal, using normalisation factors obtained from the simulation.

The non-prompt lepton background estimate for the 2`0τhad categories is validated

using simulation and control regions with two or three jets in which the lower pT (sublead-

ing) lepton satisfies 10 GeV < pT < 30 GeV. Because the number of non-prompt leptons

increases significantly as the lepton pT requirement is lowered, this region is dominated

by the non-prompt contribution for any non-excluded value of BR(t → Hq). To extract

the non-prompt background yields in these regions, binned likelihood fits to the sublead-

ing lepton pT distribution are performed, accounting for non-prompt lepton backgrounds,

sources of prompt leptons (normalised to the SM expectation), and a potential tt̄→WbHq

contribution. The fitted tt̄ → WbHq contribution is in all cases found to be compatible

with zero. The obtained best-fit non-prompt background yields in these low-pT control

regions are used to normalise the simulation and obtain estimates for the background in

the 2`0τhad signal regions. These are found to be compatible with the nominal data-driven

predictions within the stated uncertainties. The nominal predictions of the non-prompt

backgrounds and their associated uncertainties are therefore used without modification in

this reinterpretation.

Figure 8 shows the event yields in each of the categories, which are used as input to the

statistical analysis discussed in section 8. A table summarising the expected and observed

yields can be found in appendix B. The best-fit branching ratio obtained is BR(t→ Hc) =

[0.27 ± 0.18 (stat.) ± 0.21 (syst.)]% assuming that BR(t → Hu) = 0. A similar fit is

performed for the tt̄ → WbHu search, yielding BR(t → Hu) = [0.23 ± 0.18 (stat.) ±
0.21 (syst.)]%, assuming that BR(t → Hc) = 0. The observed (expected) 95% CL upper

limits on the branching ratios are BR(t → Hc) < 0.79% (0.54%) and BR(t → Hu) <

0.78% (0.57%). The corresponding observed (expected) limits on the couplings are |λtcH | <
0.17 (0.14) and |λtuH | < 0.17 (0.14) at 95% CL.

9.4 Combination of searches

The three searches discussed in the sections 9.1–9.3 are combined using the statistical

analysis discussed in section 8. In this combination, the only systematic uncertainties

taken to be fully correlated among the three searches are the tt̄ cross section and the

integrated luminosity for
√
s = 8 TeV data. The dominant uncertainties on the Higgs

boson branching ratios primarily affect the tt̄→WbHq,H → γγ and tt̄→WbHq, H → bb̄

searches. Other uncertainties such as those associated with leptons, jet energy scale and

b-tagging should be partially correlated between the tt̄ → WbHq, H → γγ search and

the other two searches, but the differences in treatment between analyses (different lepton

selection and pT cuts, no uncertainty breakdown for jet energy scale and b-tagging in the
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Figure 8. tt̄ → WbHq,H → WW ∗, ττ search: comparison between the data and background

prediction for the yields in each of the analysis channels considered before the fit to data. The ex-

pected tt̄→ WbHc and tt̄→ WbHu signals (dashed histograms) are shown separately normalised

to BR(t→ Hq) = 1%. The sum of instrumental backgrounds originating from non-prompt leptons

and lepton charge misidentification is denoted by “Non-prompt/q-misid”. The small contribution

from rare processes such as tZ, tt̄WW , triboson, tt̄tt̄ and tH production are combined into a single

background source denoted by “Rare”. The bottom panel displays the ratio of data to the SM back-

ground (“Bkg”) prediction. The hashed area represents the total uncertainty on the background.

tt̄→WbHq, H → γγ search) make it difficult to account for correlations. However, given

that the tt̄ → WbHq, H → γγ search is completely dominated by the data statistics, the

effect of this simplification is negligible. The uncertainties taken as correlated between the

tt̄ → WbHq, H → bb̄ and tt̄ → WbHq, H → WW ∗, ττ searches include those associated

with lepton isolation, the leading b-tagging and jet energy scale uncertainties, and the

reweighting of top quark pT and tt̄ system pT. The rest of the uncertainties are taken to

be uncorrelated among the searches. This correlation scheme closely follows the procedure

adopted in the combination of tt̄H searches by ATLAS [104].

The first set of combined results is obtained for each branching ratio separately,

setting the other branching ratio to zero. The best-fit combined branching ratios are

BR(t→ Hc) = [0.22±0.10 (stat.)±0.10 (syst.)]% and BR(t→ Hu) = [0.16±0.11 (stat.)±
0.12 (syst.)]%. The difference between the central values of BR(t→ Hc) and BR(t→ Hu)

originates from the ability of the H → bb̄ search to probe both decay modes separately. A

comparison of the best-fit branching ratios for the individual searches and their combina-

tion can be found in figure 9 for BR(t → Hc) and figure 10 for BR(t → Hu). Figure 11

shows the CLs versus branching ratio for the combination. The observed (expected) 95%

CL combined upper limits on the branching ratios are BR(t → Hc) < 0.46% (0.25%) and

BR(t→ Hu) < 0.45% (0.29%). The corresponding observed (expected) upper limits on the

couplings are |λtcH | < 0.13 (0.10) and |λtuH | < 0.13 (0.10). A summary of the upper limits

on the branching ratios obtained by the individual searches, as well as their combination,

can be found in figure 12.
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Figure 9. Summary of the best-fit BR(t → Hc) for the individual searches as well as their

combination, assuming that BR(t→ Hu) = 0.
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Figure 10. Summary of the best-fit BR(t → Hu) for the individual searches as well as their

combination, assuming that BR(t→ Hc) = 0.

A similar set of results can be obtained by simultaneously probing both branching

ratios. Although the tt̄ → WbHq, H → γγ and tt̄ → WbHq, H → WW ∗, ττ searches are

basically only sensitive to the sum of the two branching ratios, the tt̄ → WbHq, H → bb̄

search has different sensitivity to each of them, and a simultaneous fit can be performed.

The best-fit branching ratios obtained from the simultaneous fit are BR(t→ Hc) = [0.34±
0.22 (stat.)± 0.15 (syst.)]% and BR(t→ Hu) = [−0.17± 0.25 (stat.)± 0.17 (syst.)]%, with

a correlation coefficient of −0.84, as shown in figure 13. Figure 14(a) shows the 95% CL

upper limits on the branching ratios in the BR(t → Hu) versus BR(t → Hc) plane. The

corresponding upper limits on the couplings in the |λtuH | versus |λtcH | plane can be found

in figure 14(b).
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around the expected CLs values, denoted by ±1σ and ±2σ, respectively. The solid red line at

CLs=0.05 denotes the value below which the hypothesis is excluded at 95% CL.
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Figure 12. 95% CL upper limits on (a) BR(t → Hc) and (b) BR(t → Hu) for the individual

searches as well as their combination, assuming that the other branching ratio is zero. The ob-

served limits (solid lines) are compared to the expected (median) limits under the background-only

hypothesis (dotted lines). The surrounding shaded bands correspond to the 68% and 95% CL in-

tervals around the expected limits, denoted by ±1σ and ±2σ, respectively. Because the asymptotic

approximation is used in the calculation of CLs, the results of the H → γγ search reported in this

figure differ slightly from those published in ref. [17], which remain the most accurate results.
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Figure 13. Best-fit BR(t → Hc) and BR(t → Hu) and the corresponding 68% CL (solid) and

95% CL (dotted) regions for the combination of the searches.
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Figure 14. 95% CL upper limits (a) on the plane of BR(t → Hu) versus BR(t → Hc) and (b)

on the plane of |λtuH | versus |λtcH | for the combination of the searches. The observed limits (solid

lines) are compared to the expected (median) limits under the background-only hypothesis (dotted

lines). The surrounding shaded bands correspond to the 68% and 95% CL intervals around the

expected limits, denoted by ±1σ and ±2σ, respectively.

10 Conclusion

A search for flavour-changing neutral current decays of a top quark to an up-type quark

(q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb̄, is

presented. The analysis searches for top quark pair events in which one top quark decays to

Wb, with the W boson decaying leptonically, and the other top quark decays to Hq. The

search is based on pp collisions at
√
s = 8 TeV recorded in 2012 with the ATLAS detector

at the CERN Large Hadron Collider and uses an integrated luminosity of 20.3 fb−1. Data

are analysed in the lepton-plus-jets final state, characterised by an isolated electron or

muon with moderately high transverse momentum and at least four jets. In this search the

dominant background process is tt̄→WbWb. To separate the signal from the background,

the search exploits the high multiplicity of b-quark jets characteristic of signal events, and
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employs a likelihood discriminant that combines information from invariant mass distri-

butions and the flavour of the jets. No significant excess of events above the background

expectation is found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and

0.61% (0.64%) are derived for the t→ Hc and t→ Hu branching ratios respectively.

Results from other ATLAS searches are also summarised, including a previous search

probing H → γγ decays, and a reinterpretation of a search for tt̄H production in multilep-

ton final states, which exploits the H →WW ∗, ττ decay modes. All searches discussed in

this paper have comparable sensitivity, and thus their combination represents a significant

improvement over the individual results. The observed (expected) 95% CL combined upper

limits on the t→ Hc and t→ Hu branching ratios are 0.46% (0.25%) and 0.45% (0.29%)

respectively. The corresponding observed (expected) upper limits on the |λtcH | and |λtuH |
couplings are 0.13 (0.10) and 0.13 (0.10) respectively. Upper limits in the t → Hc versus

t→ Hu branching ratio plane, as well as best-fit branching ratios, are also reported. These

are the most restrictive direct bounds on tqH (q = u, c) interactions measured so far.
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A Pre-fit and post-fit event yields in the tt̄ → WbHq,H → bb̄ search

Table 3 presents the observed and predicted yields in each of the analysis channels for the

tt̄ → WbHq,H → bb̄ search before the fit to data. Table 4 presents the observed and

predicted yields in each of the analysis channels for the tt̄→ WbHc,H → bb̄ search, after

the fit to the data under the signal-plus-background hypothesis.

4 j, 2 b 4 j, 3 b 4 j, 4 b

tt̄→WbHc 890 ± 100 394 ± 54 41.6 ± 7.2

tt̄→WbHu 851 ± 98 339 ± 49 3.81 ± 0.71

tt̄+light-jets 77400 ± 8100 6170 ± 860 53 ± 12

tt̄+ cc̄ 4900 ± 2600 680 ± 370 21 ± 11

tt̄+ bb̄ 1870 ± 990 680 ± 370 44 ± 23

tt̄V 121 ± 21 15.5 ± 2.9 0.89 ± 0.19

tt̄H 30.5 ± 4.2 12.7 ± 1.9 1.91 ± 0.34

W+jets 4700 ± 1600 217 ± 78 5.4 ± 2.0

Z+jets 1080 ± 450 50 ± 22 0.90 ± 0.50

Single top 4900 ± 1400 340 ± 100 6.8 ± 2.3

Diboson 212 ± 75 11.5 ± 4.1 0.24 ± 0.11

Multijet 1540 ± 550 100 ± 36 3.4 ± 1.2

Total background 96800 ± 9600 8300 ± 1100 138 ± 32

Data 98049 8752 161

5 j, 2 b 5 j, 3 b 5 j, ≥4 b

tt̄→WbHc 483 ± 96 242 ± 50 35.1 ± 7.7

tt̄→WbHu 473 ± 95 217 ± 46 8.4 ± 2.0

tt̄+light-jets 37600 ± 6600 3480 ± 750 61 ± 18

tt̄+ cc̄ 4300 ± 2300 810 ± 460 43 ± 28

tt̄+ bb̄ 1670 ± 860 890 ± 470 115 ± 61

tt̄V 145 ± 24 26.5 ± 4.5 3.10 ± 0.60

tt̄H 40.9 ± 4.8 22.3 ± 2.9 5.96 ± 0.98

W+jets 1850 ± 790 131 ± 57 5.8 ± 2.7

Z+jets 400 ± 200 29 ± 14 1.47 ± 0.76

Single top 1880 ± 740 195 ± 78 8.3 ± 3.1

Diboson 96 ± 41 8.0 ± 3.5 0.40 ± 0.19

Multijet 450 ± 160 68 ± 24 8.3 ± 3.0

Total background 48400 ± 7800 5700 ± 1100 252 ± 75

Data 49699 6199 286

Table 3.
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≥ 6 j, 2 b ≥6 j, 3 b ≥6 j, ≥4 b

tt̄→WbHc 267 ± 68 145 ± 37 31.1 ± 8.3

tt̄→WbHu 259 ± 67 132 ± 34 10.3 ± 2.8

tt̄+light-jets 18800 ± 4800 2000 ± 730 52 ± 40

tt̄+ cc̄ 3700 ± 2000 850 ± 500 79 ± 46

tt̄+ bb̄ 1430 ± 760 970 ± 520 240 ± 130

tt̄V 182 ± 32 44.6 ± 8.1 8.4 ± 1.7

tt̄H 64.2 ± 8.2 39.8 ± 5.4 16.1 ± 2.6

W+jets 880 ± 440 95 ± 47 8.5 ± 4.5

Z+jets 180 ± 100 19 ± 11 1.5 ± 0.9

Single top 840 ± 410 122 ± 62 11.9 ± 6.2

Diboson 50 ± 26 6.0 ± 3.0 0.54 ± 0.29

Multijet 176 ± 62 20.3 ± 7.2 0.93 ± 0.50

Total background 26400 ± 6100 4200 ± 1200 420 ± 160

Data 26185 4701 516

Table 3 (cont’d). tt̄ → WbHq,H → bb̄ search: predicted and observed yields in each of the

analysis channels considered. The prediction is shown before the fit to data. Also shown are

the signal expectations for tt̄ → WbHc and tt̄ → WbHu assuming BR(t → Hc) = 1% and

BR(t→ Hu) = 1% respectively. The tt̄→WbWb background is normalised to the SM prediction.

The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties on

the yields.

4 j, 2 b 4 j, 3 b 4 j, 4 b

tt̄→WbHc 155 ± 11 68.5 ± 5.0 7.23 ± 0.56

tt̄+light-jets 77300 ± 1700 6240 ± 190 56.1 ± 7.3

tt̄+ cc̄ 5600 ± 1500 810 ± 210 23.4 ± 6.0

tt̄+ bb̄ 2420 ± 360 890 ± 130 54.1 ± 7.5

tt̄V 122 ± 19 15.6 ± 2.5 0.90 ± 0.15

tt̄H 30.9 ± 3.6 12.8 ± 1.6 1.92 ± 0.26

W+jets 4900 ± 1100 231 ± 55 5.8 ± 1.5

Z+jets 1040 ± 390 48 ± 18 0.78 ± 0.32

Single top 5100 ± 1000 352 ± 71 7.1 ± 1.5

Diboson 209 ± 72 11.6 ± 4.0 0.22 ± 0.08

Multijet 1120 ± 320 75 ± 22 2.41 ± 0.70

Total 98070 ± 370 8756 ± 98 159.9 ± 7.4

Data 98049 8752 161

Table 4.
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5 j, 2 b 5 j, 3 b 5 j, ≥4 b

tt̄→WbHc 85 ± 10 42.4 ± 5.1 6.17 ± 0.77

tt̄+light-jets 37600 ± 1200 3570 ± 160 66.4 ± 8.1

tt̄+ cc̄ 4700 ± 1200 970 ± 240 59 ± 16

tt̄+ bb̄ 2140 ± 310 1150 ± 160 144 ± 17

tt̄V 145 ± 23 26.6 ± 4.2 3.12 ± 0.50

tt̄H 41.0 ± 4.5 22.4 ± 2.6 5.98 ± 0.74

W+jets 1940 ± 560 140 ± 41 6.0 ± 1.8

Z+jets 380 ± 170 27.6 ± 12.4 1.38 ± 0.63

Single top 2090 ± 630 219 ± 66 10.1 ± 3.1

Diboson 93 ± 39 7.8 ± 3.3 0.37 ± 0.16

Multijet 332 ± 96 46 ± 13 6.2 ± 1.9

Total 49570 ± 250 6223 ± 66 308 ± 11

Data 49699 6199 286

≥6 j, 2 b ≥6 j, 3 b ≥6 j, ≥4 b

tt̄→WbHc 46.1 ± 4.2 25.0 ± 2.3 5.41 ± 0.52

tt̄+light-jets 18590 ± 800 2080 ± 140 54.2 ± 8.4

tt̄+ cc̄ 3820 ± 920 980 ± 240 85 ± 20

tt̄+ bb̄ 1860 ± 270 1260 ± 170 320 ± 35

tt̄V 178 ± 27 43.7 ± 6.8 8.3 ± 1.3

tt̄H 64.0 ± 7.2 39.6 ± 4.5 15.9 ± 1.8

W+jets 680 ± 220 75 ± 24 7.0 ± 2.7

Z+jets 159 ± 78 16.8 ± 8.3 1.48 ± 0.75

Single top 740 ± 270 108 ± 40 10.6 ± 4.0

Diboson 48 ± 23 5.7 ± 2.7 0.51 ± 0.25

Multijet 120 ± 34 13.9 ± 4.0 1.12 ± 0.65

Total 26300 ± 160 4652 ± 62 508 ± 22

Data 26185 4701 516

Table 4 (cont’d). tt̄ → WbHc,H → bb̄ search: predicted and observed yields in each of the

analysis channels considered. The background prediction is shown after the fit to data under

the signal-plus-background hypothesis. The quoted uncertainties are the sum in quadrature of

statistical and systematic uncertainties on the yields, computed taking into account correlations

among nuisance parameters and among processes.
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B Pre-fit event yields in the tt̄ → WbHq,H → WW ∗, ττ search

Table 5 presents the observed and predicted yields in each of the analysis channels for the

tt̄→WbHq,H →WW ∗, ττ search before the fit to data.

ee4j eµ4j µµ4j

tt̄→WbHc 5.4 +0.8
−0.6 15.0 +1.7

−1.4 11.1 +1.1
−1.2

tt̄→WbHu 5.5 ± 0.7 15.9 +1.7
−1.5 9.7 +1.5

−1.0

Non-prompt 3.4 ± 1.7 12 ± 4 6.3 ± 2.6

q mis-id 1.8 ± 0.7 1.4 ± 0.6 —

tt̄W 2.0 ± 0.4 6.2 ± 1.0 4.7 ± 0.9

tt̄(Z/γ∗) 0.75 ± 0.20 1.5 ± 0.3 0.80 ± 0.22

Diboson 0.7 ± 0.4 1.9 ± 1.0 0.53 ± 0.30

tt̄H 0.44 ± 0.06 1.16 ± 0.14 0.74 ± 0.10

Rare 0.25 +0.04
−0.02 0.72 ± 0.05 0.34 +0.04

−0.03

Total background 9.5 ± 2.1 25 ± 5 13.4 ± 2.9

Data 9 26 20

ee≥5j eµ≥5j µµ≥5j

tt̄→WbHc 2.9 ± 0.6 10.2 +2.0
−1.6 6.6 +1.5

−1.3

tt̄→WbHu 2.7 ± 0.8 8.2 +1.6
−1.2 7.2 +1.2

−1.4

Non-prompt 2.3 ± 1.2 6.7 ± 2.4 2.9 ± 1.4

q mis-id 1.1 ± 0.5 0.85 ± 0.35 —

tt̄W 1.4 ± 0.4 4.8 ± 1.2 3.8 ± 0.9

tt̄(Z/γ∗) 0.98 ± 0.26 2.1 ± 0.5 0.95 ± 0.25

Diboson 0.47 ± 0.29 0.38 ± 0.30 0.7 ± 0.4

tt̄H 0.73 ± 0.14 2.1 ± 0.4 1.41 ± 0.28

Rare 0.27 ± 0.02 0.79 +0.05
−0.04 0.38 ± 0.02

Total background 7.2 ± 1.8 17 ± 3 10.0 ± 2.2

Data 10 22 11

Table 5.
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3` 2`1τhad

tt̄→WbHc 6.4 ± 0.9 2.4 ± 0.4

tt̄→WbHu 5.2 +1.0
−0.8 2.1 +0.5

−0.4

Non-prompt 3.2 ± 0.7 0.4 +0.6
−0.4

q mis-id — —

tt̄W 2.3 ± 0.7 0.38 ± 0.12

tt̄(Z/γ∗) 3.9 ± 0.8 0.37 ± 0.08

Diboson 0.86 ± 0.55 0.12 ± 0.11

tt̄H 2.34 ± 0.35 0.47 ± 0.08

Rare 0.92 +0.07
−0.06 0.10 +0.02

−0.01

Total background 13.7 ± 2.3 1.9 ± 0.6

Data 18 1

Table 5 (cont’d). tt̄ → WbHq,H → WW ∗, ττ search: predicted and observed yields in each

of the event categories considered. The prediction is shown before the fit to data. Also shown

are the signal expectations for tt̄ → WbHc and tt̄ → WbHu assuming BR(t → Hc) = 1% and

BR(t→ Hu) = 1% respectively. The quoted uncertainties are the sum in quadrature of statistical

and systematic uncertainties on the yields.
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80 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université
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