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CELL NUCLEI SEGMENTATION
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Supervising Professor: Yan Cao, Chair

Pathological examination usually involves manual inspection of hematoxylin and eosin (H&E)-
stained images, which is labor-intensive, prone to significant variations, and lacking repro-
ducibility. One of the fundamental tasks to automate this process is to find all the cell nuclei
in the H&E-stained images for further analysis. We attempt this problem using deep learning
techniques. First, we introduce a semantic pixel-wise segmentation technique using dilated
convolutions. We show that dilated convolutions are superior in extracting information from
textured images. H&E-stained images are highly textured, which makes dilated convolutions
an ideal technique to apply. Our dilated convolutional network (DCN) is constructed based
on SegNet, a deep convolutional encoder-decoder architecture. Dilated convolution layers
with increased dilation factors are used in the encoder to preserve image resolution. Dilated
convolution layers with decreased dilation factors are used in the decoder to reduce gridding
artifacts. Our DCN network was tested on synthetic data sets and a publicly available data
set of H&E-stained images. We achieve better segmentation results than state-of-the-art.
To further separate the instance of each cell nuclei, we adapt our DCN with a single shot
multibox detector (SSD) and achieve promising results. Our methods are computationally

efficient and can be run on a personal laptop computer. This work is the first step to-
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wards using mathematical models to generate diagnostic inferences and providing clinically

actionable knowledge to physicians and patients.
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CHAPTER 1

INTRODUCTION [

When diagnosing and treating patients with cancer, the cellular distribution of tumors is of
great interest. Such an analysis can be accomplished using hematoxylin and eosin (H&E)-
stained images [7] of cellular tissue extracted via biopsy. Currently, the pathological exam-
ination has been performed manually by visual inspection of these images. However, this
process is labor-intensive, prone to large variations, and lacking reproducibility in the diag-
nosis of a tumor. As a result, it is desired to design automated processes to study different
aspects of cellular distribution. In particular, image segmentation (classifying each pixel as
cell nuclei or background) is a crucial first step in enabling the visual study of the disease.

We aim to develop an automatic workflow to detect cell nuclei in cancerous tumors por-
trayed in digital renderings of the H&E-stained images. Our goal is to create a binary
label for a given H&E-stained image, describing which pixels are part of cell nuclei (denoted
“object” pixels) and which are not (denoted “background” pixels). Convolutional Neural
Network (CNN) [30], 28] [51] has been recently demonstrated to be particularly effective in
image recognition and classification. Advanced CNN methods such as the Fully Convo-
lutional Neural Network (FCN) [35], U-Net [48] and SegNet [I], which are trained from
end-to-end and pixel-to-pixel, have been very successful in semantic segmentation. At the
same time, there are also developments on efficient implementations of traditional variational
image segmentation models [33, 21].

Both global image context and spatial accuracy are crucial in cell nuclei segmentation. In
CNNs, multi-scale contextual information is acquired by successive pooling, and subsampling

layers which reduce the image resolution until a global prediction is obtained [28| 51]. To

IThis chapter includes verbatim excerpts from
K C Khatri,R.; Caseria, B.; Lou, Y.; Xiao, G. AND Cao, Y. “Automatic Extraction of Cell Nuclei Using
Dilated Convolutional Network”, Inverse PROBLEMS AND Imaging, Vol. 15, No. 1, 27-40, 2021.



recover the lost resolution, repeated deconvolutions or unpooling are usually performed to
obtain the full-resolution dense prediction [42), 35l 48] I]. Dilated Convolutions [60, 4] is
a promising technique to obtain large context information without the loss of resolution.
We design a dilated convolutional neural network for cell nuclei segmentation based on the
architecture of SegNet. To further separate the instance of each cell nuclei, we adapt our
DCN with a single shot multibox detector (SSD) to detect each individual cell nucleus.

Our contributions are as follows. First, we study the pros and cons of dilated convolu-
tions and suggest using them in applications to improve performance. We also propose a
method to implement dilated convolutions with dilation factor 2" through efficient conven-
tional convolutions. Second, we design a dilated convolutional neural network DCN for cell
nuclei segmentation, achieving better results than state-of-the-art. Third, based on DCN
and the SSD framework, We also create a neural network DCNSSD for individual cell de-
tection. Lastly, the proposed workflow is efficient enough to run on a personal laptop. This
work is the first step towards using mathematical models to generate diagnostic inferences
and providing clinically actionable knowledge to physicians and patients.

The rest of the thesis is organized as follows. We review the convolutional neural network
in Chapter [2] We then review semantic segmentation and detail the proposed approach in
Chapter [3] Data preparation and preprocessing such as color normalization, data augmen-
tation is discussed in Chapter 4l The experiments on synthetic data and real H&E-stained
images are conducted in Chapter Instance segmentation of cell nuclei is discussed in

Chapter [6] Finally, conclusions are given in Chapter [7]



CHAPTER 2

CONVOLUTIONAL NEURAL NETWORK
2.1 Convolution Operation

A convolutional neural network or CNN is a special kind of neural network that involves

the convolution operation in at least one layer. CNN can be applied to many types of data,

such as image data [30], 28, 51 [55] and time-series data [13]. CNN has been significantly

helpful in many application which involves huge input data such as any computer vision

task, mainly because of its sparse interaction between the layers, parameter sharing, and

equivariant representation properties[10].

A convolution [54] [10] is defined as follows:
+00

(2 % w)(t) = / 2(a)w(t — a)da, (2.1)

where x is the input signal and w is the filter. A 2-dimensional discrete convolution can be

defined as following;:

y(m,n) =xxw(m,n) ZZm —i,n — jlw(i,j), (2.2)

i=1 j=1

where y(m, n) is the output of the convolution, z(m,n) is the input, w(i, j) is the filter with
size M x N. A slightly different equation than convolution known as cross-correlation is

defined as:

y(m,n) =z *xw(m,n) ZZx(m+i,n+j)w(i,j). (2.3)

=1 j=1

In the convolution operation, we flip the rows and columns of the kernels, multiply the
input signal with the kernel element-wise and then sum it up to get the value. In contrast,
cross-correlation computation is more straightforward as we don’t need to flip the rows and

columns of the kernel. In deep learning, people use the term convolution for cross-correlation.



Assume we have an input image = and a kernel w of size k x k. To do convolution,
we place k X k windows over the image starting from the top left corner, do element-wise
multiplication at overlapped pixels and sum the total. This will gives the output at the
center pixel of the overlapped area. We slide the window first on the right and later slide it
down. The window has to overlap the region of the input image. Hence the output image
will be smaller than the input image if there is no padding of the input image. The example

on Figure [2.1] shows one convolution operation:

0[1]0

0111 T 1

0] 1]0 T
101110*101
11011
110l 1]0[1]0

Figure 2.1: Convolution of an input image of size 6 x 6 with a filter of size 3 x 3 with stride
one and no padding results in the matrix of size 4 x 4 on the right.

In general, for an input image of size m x n convolving with kernel of size £ x k has an

ouput dimension :

(m—k+1)x(n—k+1) (2.4)

2.1.1 Filter

The output of the convolution is also called the feature map. The 3 x 3 matrix in 2.1} is a
kernel, also known as filter. Filters in convolution operation extract the features from the
input image, such as edges, patterns, etc. They can also be used for smoothing, sharpening,

enhancing, or blurring an input image. Let us have a look at some examples of the filters:

e Vertical edge detector:



10 | 10 | 10
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Figure 2.2: Example of vertical edge detection. The big matrix on the left shows the input
image, the small matrix on the left shows the filter for vertical edge detection. The matrix
on the right shows the output edge detection.

e Horizontal edge detector:

Figure 2.3: Example of horizontal edge detection. The big matrix on the left shows the
input image, the small matrix on the left shows the filter for horizontal edge detection. The
matrix on the right shows the output edge detection.

2.1.2 Strides and Padding

Strides and padding are the hyperparameters. Padding means adding extra pixels around
the input image. In the convolution example above, a 6 x 6 input image convolving with a
3 x 3 filter results in a 4 x 4 image. While doing so, we lose the spatial dimension of the
image. In addition, the filter overlaps with the border pixel only once, whereas it overlaps

the middle pixels multiple times. So it may not quite nicely extract the features from the



border though there may be lots of information in the border. To avoid such drawbacks, we
have to add extra pixels around the image, known as padding.

If we have an input image dimension of m x n and a kernel of size k£ X k and the padding
is p (adding p pixels around the border of an image) then the size of the input image will

become (m + 2p) x (n + 2p). Eventually, the output size will be :
(m+2p—k+1)x(n+2p—k+1) (2.5)

For the output size to be equal to the input size, we must have:

k—1
m+2p—k+1:m:>p:T. (2.6)

For the example above with an input image of size 6 x 6 and a kernel of size 3 x 3, to make
the output image the same size as the input image, we need p = k—;l = % =1 1i.e. 1 pixel
padding around the boarder of the input image. Note that the padding parameter p = 0
means no padding. There are two usual strategies for the padding, one is valid padding
which means no padding and another is "same” padding in which output size should be
same as input.
Figure shows an example of padding with one unit of zeros around the image boarder:
Strides is another hyperparameter in convolution operation which decides the shift amount
of the sliding filter. If the filter shifts one pixel at a time during the convolution operation,
then the stride is 1 unit. If we choose stride 2 in the 2.1 the output size will be 2 x 2,
compared to a 4 x 4 with stride 1. Stride 2 is often used in pooling operations.

Consider an input image of size m X n, a kernel of size k x k, padding = p and stride =
s, then the output will have the dimension:

Lm+2sp—k+1JX{n+28p—k+lJ (2.7)
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Figure 2.4: An example of padding with one unit of zeros around the image border.

2.1.3 Types of padding

Padding is a useful tool in CNNs, usually to get the output of the same size as the input.

There are various types of padding described below[54]:

e Zero padding
Adding zeros around the edges of the image is called zero paddings. Adding one layer
padding around the image increases the height and width of the image by two. By

default, whenever we say padding, it is zero padding. See Figure for an example.

e Constant padding
Instead of padding by zeros, constant padding is done by padding user defined constant

value.

e Reflection padding
Padding is done by reflecting or mirroring the pixel values directly in the opposite

direction of the edges. See Figure [2.5] for an example.

e Symmetric padding
Symmetric padding looks similar to reflection padding. Rather than reflecting like a

mirror, you first take a copy, and then mirror it. See Figure for an example.
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Figure 2.6: An example of symmetric padding of an image.
2.2 Pooling Layer

The pooling layer downsamples the input image by keeping the only significant pixels of an
image. Thus, it helps to speed up the computation, and feature detection becomes more
robust. The pooling layer has no parameter to learn. Instead, we choose the size of the filter
and the stride. The typical choice of filter size is 2 x 2 with stride 2, which has the effect of

shrinking the representation by a factor of 2.

e Max Pooling
Max pooling[61]140] is done by extracting the maximum pixel value of the corresponding
pooling windows. The following diagram illustrate the max pooling operation in the

4 x 4 input image with 2 x 2 pooling and stride of two. See Figure 2.7 for an example.



Max pooling

\
Id
stride = 2 and k = 2

Figure 2.7: An example of max pooling operation.

e Average Pooling
Average pooling is done by extracting the average pixel values of the corresponding
pooling windows. The following diagram illustrate the average pooling operation in
the 4 x 4 input image with 2 x 2 pooling and stride of two. This operation halved the

input image to 2 x 2. See Figure [2.§] for an example.

Average pooling

Id
stride = 2 and k = 2

Figure 2.8: An example of average pooling operation.

2.3 Convolution in 3D

We discussed the convolution for the 2D matrix. Now let us consider the 3D volume (or 3D
Tensor). The third dimension is the depth of the input volume, or we can call it the number
of channels. RGB image has three channels: red, green, and blue. For the convolution,

the filter must have the same number of the channel as the input. We do the convolution



similar as in 2D convolution in each channel with the corresponding channel in the kernel
and sum them up to get the number. We apply multiple kernels to detect the different
features from an image. While doing so, we keep on stacking the feature maps obtained to
get an output volume. So the output feature map will have the depth equal to the numbers
of filters applied. In general, for an input image of size M x N x C,( C is the number of
channels),and a kernel of size k x k x D with padding =p and stride = s, the output will

have the dimension:

LM+2p_k+1J " LN+2p—k:

+ 1J x number of filters
S

S

Figure shows the convolution operation on input image of size m X n x ¢1,( ¢1 is 3 in this
case) and total four filters are used. We observe that the number of channels of the input
image and the filter is the same, ¢;. The output of convolution with each of these filters
results in a matrix of size m; x ny. Then finally we stacked them up to get the final output

volume of size m; X n; X 4.

Cutput feature after convolution
Kemnels with each filter

_
Input image [ Final output feature
map
I~ Stack all feature
* maps

e

H my X my X FFkernels

moX ey 1%y X
E—
Each kemel is of size Ty * 1y
ki %k x o1

Figure 2.9: 3D convolution operation with multiple filters

10



2.4 Dense Layer

For the classification problem using CNN, the convolutional layers are followed by a dense
layer or fully connected (FC) layer. Each neuron of the FC layer is connected to each neuron
of the previous layer. First, we flatten the output volume obtained from the convolution,
and then we define the FC layer. FC layers are followed by Sigmoid function for the binary
classification and by Softmax for multiclass classification. Notice that for the image segmen-
tation task, we do not need the FC layer. However, it is essential to know about this layer
as we sometimes use a pre-trained network used for classification also for the segmentation
task. The idea is that we remove the FC layer from the net and add an extra layer to get

the output as an image again. More about this will be discussed in later sections.

2.5 Activation Functions:

Deep neural networks are designed to capture complex features from the input data. Activa-
tion functions are able to capture nonlinearity from the data, so it is the backbone of a deep
neural network. A deep network without activation functions is equivalent to just another
shallow network. In CNNs, we apply activation functions to the outcome of convolution op-
eration added with bias term. There are several commonly used activation functions[49] 2].

Some of them are described below:

Sigmoid
The sigmoid function is given by the following equation:

o(x) = . (2.8)

In general artificial neural network (ANN), input for this function is the sum of weighted

inputs and bias. For the CNN, sigmoid is applied to the sum of output of the convolution

11



operation and bias. The output of sigmoid is between 0 and 1, which can be interpreted as
a probability whether certain input belongs to the given class or not. So, it is usually used
in the last layer for the binary classification. We usually avoid using sigmoid in the hidden
layer of neural network, because of the problem of vanishing gradient. The derivative of the
sigmoid function is given by:

—T

e

T ey

=o(z)(1 —o(x)). (2.9)

We can see in Figure that the maximum derivative is attained at x = 0 and the derivative
is approaching towards zero on both sides. So using the sigmoid in the hidden layer results

in the gradient approaching to zero in long chain rule computation.

1,,

‘e
.
.
------

Figure 2.10: Sigmoid and its derivative function.

Hyperbolic Tangent

A slightly different function than the sigmoid is hyperbolic tangent which outcomes values
between -1 and 1. The tan h function and the corresponding derivative function is given by

the following equations:

tanh(z) = % (2.10)
et +e %

12



tanh’(z) = 1 — f(x)? (2.11)

Figure [2.11] show the hyperbolic tangent function and its derivative function.

— tanh(z)

..... tanh'(m)

6 -4 -2 2 41 6
_1 1

Figure 2.11: Hyperbolic tangent and its derivative functions.

Hyperbolic tangent is also affected by the vanishing gradient problem.

Rectified Linear Unit (ReLU)

Another activation function, rectified linear unit (ReLU) [9], is defined by the following

equation.

z ifz >0
f(z) = max(0,x) = (2.12)

0 ifz <0
We observe that the gradient of the ReLLU function is 1 when the input is greater than 0 and

0 otherwise.

) 1 ifxz >0
J(w) = (2.13)
0 ifz <0

So multiplying a chain of gradients of ReLLU in the backpropagation process obtain either 1

or 0. There is no vanishing of the slope. The gradients pass to the very early layer either

13



as they are or become precisely 0 in the process. Therefore, it is a widely used activation

function in the deep neural network. Figure [2.12f show the ReLU function and its derivative

function.
5“\'
— f(2)
4
..... F(2)
3,,
2,,
]_7 ...........................
6 -4 -2 29 4 6

Figure 2.12: Rectified Linear Unit and its derivative functions.

There are some other variants of ReLU. For example, Leaky ReLLU, which is defined as:

x ifx >0
f(z) =max(0.1 xz,z) = (2.14)

01z ifz <0

Figure [2.13| shows the Leaky ReLU function.

6_———2 | 2 4 6

Figure 2.13: Leaky ReLU function.

14



SoftMax

Sofmax activation is defined by the following equation:

T

Zj et

where X = (z1,x9, ..., x;) is a k-dimensional vector and k is the number of classes. Softmax

f(X)i =

fori=1,2,..,k, (2.15)

activation is often used in multiclass classification problems. It gives the probability of that

the input value belongs to certain class.

2.6 ConvNet

Now we have defined all the building blocks to build a convolutional neural network (Con-

vNet). A typical ConvNet is shown in Figure

FCA1 FC2
Conv + activation Pooling M M
Input Image Conv * activation Paoling Conv + activation  pogjing
L) .
ﬁ _b._’ Predigion
™m X m mlxmlxklmzxmth my X s my X my X kg
ms X Mg X K3
mg X mg X kg =

Figure 2.14: A CNN architecture for classification.

Earlier layers of the neural networks extracts basic features of an images such as line and
edges. As networks grows deeper it detects complex features. A typical ConvNet follows
a common pattern of decreasing the spatial dimension by the use of pooling layer while

increasing the depth of the feature map by increasing the number of the filters in each step.

2.7 CNN Training

Figure [2.14] shows the general outlook of CNN for classification. Input images are supplied

through several convolutional, activation, and pooling layers, and finally the output g is
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obtained. We compare the predicted label § with the actual label y and calculate the error.
Sum of the error of all the data gives the total error, sometimes we call it a cost function or
loss function. Our goal is to minimize the loss, so that the predicted value is close to actual
value. We use optimization algorithms to minimize the loss function. Loss function can be
chosen based on the requirements of different models and the types of datasets. Some of the

loss functions are discussed below:

Loss Functions

Let y;, y;, and N denotes the actual value, predicted value, and the number of observations.

Some of the loss functions are discussed below:

e Mean square error (MSE)

Mean squared error is usually used for regression. it is defined as follows:

N
1 2
MSE:NZ(%—%) :

=1

e Mean absolute error (MAE)

Mean absolute error is also usually used for regression. It is defined as follows:

N
1 .
MAE = NZ |y — Uil
=1
Mean absolute error is less sensitive to outliers in data than the mean squared error.

e Cross-entropy loss (CEL)

Cross-entropy loss [I8] for multiclass classification is defined as follows:
1 N c
CEL = N Z Z(yij log pi;)
i=1 j=1
where y;; is the true label, and p;; is the predicted probability for ith observation
belongs to class 7, and c is the number of classes. Note that for each fixed ¢, only one

of the y;; is 1, the rest are zeros.
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e Huber loss (HL)

Huber loss [16] is defined as follows:

SN Zzlil(yz — 4;)? if lyp — 0| <6

N " 2y . A
N it Olys — il = %) if [y — 3l >0

HL =

where 0 is a constant. Huber loss is usually used for regression. It’s less sensitive to

outliers in data than the the mean squared error.

Focal loss

The Focal loss function is able to deal with class imbalance problems. There are
two kinds of imbalances. First one is the class imbalances that is the number of
background and foreground examples have high difference. Another is the imbalances
within multiple foreground values, i.e., the imbalances within the multiple classes.
Tsung-Yi Lin et. al.[32] defined focal loss as following: Consider cross-entropy for

binary classification:

(

—log(p) ify=1
CE(y,p) = (2.16)

—log(1 —p) otherwise
\

Define, p; as:

(

P ify=1
pe =

1 —p otherwise
\

Thus we can rewrite CE(y, p) as:

CE(y,p) = CE(p:) = —log(p:)

A little modification to above equation is

CE(pr) = —azlog(pr) (2.17)

17



where

aQ, ify=1
Oy =

1 —a otherwise
and « € [0, 1]
This is the balanced cross-entropy where o factor is able to manage the imbalances
of the positive/ negative examples. Still, it does not distinguish between easy/hard
samples [32] ( Easy examples are the examples that are correctly classified, and hard
examples are the examples that are misclassified). So we need another modification
in the model by degrading the weight for easy examples and focus on training hard

negatives. Hence the focal loss is defined as follows:

FL(p;) = —au(1 — py)” log(py) (2.18)

2.7.1 Backpropagation

During the training process of the CNN, for each training data, the error is evaluated using
predicted values and the true values. The Sum of error of all input data gives the total cost
of the model. We discuss some of the cost functions in Section [2.7] The objective is to min-
imize the cost by repeatedly updating the networks’ parameters (weights and biases) until
the optimal set of possible parameters is obtained. The training process utilizes a gradient,
the rate at which cost changes with respect to each parameter. We use gradient descent or
some variants of gradient descent for the cost minimization problem. The gradient provides
a direction to move in the error surface by adjusting the parameters iteratively. This strat-
egy is called backpropagation [2], where the error is propagated backward from the output
layer up to the input layer. One of the difficulties of this procedure is that parameters can
be anywhere in the networks. Finding a gradient involves calculations of partial derivatives

with respect to all the parameters. This process sometimes needs a long chain rule, especially
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for the parameters in earlier layers of the networks. As a result, gradients could ultimately

vanish or decay back through the networks, known as the vanishing gradient problem.

2.7.2 Optimizer

e Gradient Descent
The objective is to find the parameters W of the model that minimizes the total loss
function or the cost function L. Gradient descent[2, [41] is an iterative method to find

the minimum value by updating the parameters as follows:

Wt = VVt_l — nVL(Wt_l) (219)

where W is a vector represents all the network parameters, L is the loss function, and
7 is the learning rate or step size, which is a hyperparameter and can be adjusted as we
need. But we need to keep in mind that if the learning rate is too large, the method may
converge very slow or may not even converge and if is too small, the iteration process
becomes very slow. Even with appropriate fixed 7, gradient descent can converge
because near the optimal point slopes becomes smaller. There are different version of
gradient descent. Sometime we call gradient descent, a batch gradient descent also.
The drawback of batch gradient descent is that it can be very slow if we have large

data because it uses all the data in each iteration.

e Stochastic Gradient Descent
We randomly select a single sample in each iteration and the gradient will be calculated

for that specific sample only.

e Mini Batch Gradient Descent

We divide the dataset in mini-batches and apply the gradient descent in each mini
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batches. So this is the combination of batch gradient descent and the stochastic gra-
dient descent. If the size of each mini batches is 1 , then it is the same as stochastic
gradient and also batch gradient descent is the special case of mini batch gradient
descent when the size of mini batch is the total number of training example in the
dataset. Mini batch gradient descent method is often referred as stochastic gradient

descent method nowadays in deep learning.

Stochastic Gradient Descent with Momentum (SGDM)
SGDM [44] is a method which adds the momentum term to the gradient to help
accelerate gradient in the right directions. This often leads to faster converging of the

algorithm. The update rule is as follows:
Wt+1 = Wt — 'l’]VL(Wt) + ﬁ(Wt - Wt—l) (220)

where W is a vector represents all the network parameters, L is the loss function, n
is the learning rate, and 8 is a hyper-parameter in [0,1]. 8 = 0.9 is often used in

applications.

Adaptive Moment Estimation (Adam)

Adam [26] is an extension of the stochastic gradient descent algorithm, which is based

on adaptive estimates of lower-order moments. The update rule is as follows:

Uy

W, = W1 —
! 1 g §t+€
N Ut
UV =

1 -4
N St
St —

1—p4

oL
oW,

2
st = Pasi—1 + (1 — Pa) L‘?alff}

v = B + (1 — Br)
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where W is a vector represents all the network parameters, L is the loss function, 7 is the
learning rate, and [y, 5y are hyper-parameters in [0, 1) which control the exponential

decay rates of the moving averages v;. € is a very small constant for numerical stability.

2.7.3 Regularization

One way to avoid over-fitting the model is to add regularization term in the cost function.

Let f(x;0) be the cost function, then
F(:0) = F77 (2:.0) + A(0) (2.21)

where 74 (z;0) is the cost function of the model, Q() is the regularization function,
which is a function of parameters of the model and A is the regularization parameter. Our
objective is to minimize the function f(x;#). The regularization function 2(6) helps to make
the model less complex by penalizing some parameters. The hyperparameter A controls how
much of an effect the regularization has on the objective function. In general, we want the
regularization term AQ(6) much smaller than the cost function of the model f™d(z; ). If
A is very big, it leads that all parameters close to zero and hence resulting in underfitting
the model. It is the case when we have high bias and low variance. On the other hand if A

is too small or close to zero, it leads to overfitting of the data.
e [, regularization(Ridge regression)
Q) = ||19)12=6"0 (2.22)

Ly regularization|14] is also called the weight decay because of the fact that it causes

the weight decrease in each iteration.

e [, regularization(LASSO)

n

) =3 1o, (2.23)

i=1
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L regularization[57] is also called least absolute shrinkage and selection operator (lasso)
regression. It has the effect of making parameters to zeros and hence the model will

become sparse. Hence L; regularization has the effect of feature selection.

e Dropout
Unlike L; and L regularization which regularize the model by modifying the cost
function, dropout[52] regularizes the model by modifying the network itself. In the

dropout layer we randomly drop neurons from the network in each iteration.

e Data Augmentation
Data augmentation is a regularization technique to create artificial training data. It is
one of the many popular methods to prevent over-fitting the model, and generally, we
get better performance after data augmentation. There are various ways to generate
additional data. For example, we can do a reflection of the image about the x-axis or
y-axis. Similarly, we can do a translation with a small amount or a rotation from a

different angle. We can also do shearing if it is reasonable.

2.7.4 Batch Normalization

Batch normalization[17] is the process of scaling and normalizing the data. For example, for
a given dataset X, we can make the mean and standard deviation being 0 and 1 respectively
by

X —p

Xnormalized — 2.24
— (2.24)

Batch normalization usually leads the optimization algorithm runs much faster and converges

in fewer iterations.
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CHAPTER 3
SEMANTIC SEGMENTATION OF CELL NUCLEI

USING DEEP LEARNING [

3.1 Definition

Semantic segmentation is the task of assigning each pixel in an image to a given class label.
So if we input an image in the network, it outputs an image of the same size with the
intensity of each pixel being the label. If there are two objects of the same category, the
same label will be assigned to them, hence semantic segmentation will not distinguish the two
objects. To distinguish between separate objects of the same class, instance segmentation
models are needed which will be discussed in Chapter 6] Semantic segmentation has been
used in enormous applications, including geosensing for land usage[31, 43], autonomous
driving[3}, [6], facial segmentation for gender, age, and expression estimation[25], and medical
image analysis[11], 20} 23, 506, [36] 59, 58, 22]. Most of the semantic segmentation models have

an encoder-decoder architecture. Figure [3.1|shows the general flow of semantic segmentation

architecture.
Cutput Image
Input Image
Encoder Decoder MxN
MxN=x3 » (Feature extraction > . >
and downsampling) e
pixelwise
classification image

Figure 3.1: High level semantic segmentation architecture

IThis chapter includes verbatim excerpts from
K C Khatri,R.; Caseria, B.; Lou, Y.; Xiao, G. and Cao, Y. “Automatic Extraction of Cell Nuclei Using
Dilated Convolutional Network”, Inverse PROBLEMS AND Imaging, Vol. 15, No. 1, 27-40, 2021.
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3.1.1 Encoder

The encoder for the semantic segmentation can be structured in the same way as for the
classification neural network, where we have a bunch of blocks of convolution layers followed
by the pooling layers, but we do not include the dense (fully connected) layers. Dense layers
are removed because they make it hard to manage different input sizes. So the output of the
encoder is a spatial map instead of classification scores. We call it a heatmap or the feature
map. The obtained heatmap will be the input for the following decoder part. Figure
illustrates the encoder for semantic segmentation network, which is obtained by removing

the fully connected layer from the CNN for classification.

—t——9
Prediction

mxm

my Xy X Ky my X my X ky mg X my X kg

FC1 FC2

B

mxm

my X X kg my X my X kg my x my % ks

Figure 3.2: Encoder network for semantic segmentation

The encoder or the feature extraction part of the network is usually based on the convolu-
tion neural networks for classification. VGG-16[51], ResNet[12], AlexNet[28], MobileNet[15]
are some of the popular architectures for classification. Figure illustrate the architecture

of the popular ConvNet VGG-16:
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14 x 14 x 512

112 x 112 x 128 Convolution and ReLU

2 x 2 Max pooling

224 x 224 % 64

Figure 3.3: VGG-16 architecture for image classification

We can use these architectures as the base of the encoder and of course we can also design

our own encoder architecture.

3.1.2 Decoder

Usually, the spatial dimension of the image getting smaller as it goes deeper and deeper in
the encoder part of the network. The feature map or the output of the encoder network
losses lots of spatial information during the convolution and pooling operations. To get a
pixel-wise classification, we need to modify the network architecture gradually to obtain the
spatial dimension as the original input. This task is done by the decoder part of the network.
The decoder part of the network usually increases the height and the weight of the feature

map gradually by upsampling. There are various ways to upsample the input in a network

layer.

Deconvolution (Transposed Convolution)

We use deconvolution to project the feature maps to a higher dimensional space. By name,

it should mean inverse convolution, which is not precisely correct in the context of semantic
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segmentation, so some people like to use a different name like transposed convolution or
inverse strided convolution.

Suppose a 3 x 3 filter convolves with an input image of 4 x 4 with stride two and padding 1;
the resulting image will be downsampled by a factor of 2. i.e. it will have size of 2 x 2. Now,
if we want to project the 2 x 2 matrix to 4 x 4 dimensional matrix, we will do convolution
with 2 X 2 kernel with stride of % So the output will be upsampled two times. Deconvolution
forward pass is the same as the normal convolution backward pass. This idea is implemented
in the popular semantic segmentation network FCN (Fully Convolutional Network [35]).
There is a reason for calling so-called deconvolution a transposed convolution. Let us consider

the following convolution shown in Figure [3.4

3[2]17]0
0942*18'11_1129
1[0]6]7 Tot1 LL[10
918|6]4]

Figure 3.4: An example of convolution operation.

We can express this operation as matrix multiplication of two matrices, where the 3 x 3
kernel matrix is represented by the matrix on the left and the input matrix is flattened to
get the 16 x 1 matrix in the right as shown in Figure [3.5] The final result is reshaped to get

a desired 2 X 2 matrix.
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ojoyfoy0(1|0f(-1y0{270}170-1101]0

oj0jo0,0j0y140}|-1{012|01170/|-1]0]1 10

[l <]~ o] ][ ] <] <[ o] ] e[ 7]
-

Figure 3.5: An equivalent representation of the convolution in example

For the corresponding transposed convolution in the decoder part, we need a 16 x 4
convolution matrix (transpose of 4 x 16 matrix) and multiply it with the 2 x 2 input matrix
(the output of convolution) which is resized to a 4 x 1 matrix.

Let us reshape the kernel and the input image as shown in Figure [5].

kl k2 k3 k 1 ]ﬁ?g I{Tg 0 k,4 k5 k@ 0 k,‘7 kg kg 0 0 0 0 0

Kernel, K = | ky k’5 ]{76 0 k‘l k’g k’g 0 k‘4 k‘5 kﬁ 0 k‘7 k‘g k’g 0 0 0 0
’ L L 3 0 0 0 0 k,‘l ]{52 k3 0 k,‘4 ]{55 k@ 0 k,‘7 k’g ]{79 0
Lloe 000100 [k [ks[hs| 0 [kyl|ks|[hs|O|he|hs]|hko

i1 | i

Input Image, I =

13 | 1y

Figure 3.6: An example on how to reshape the kernel and input image for transposed con-
volution.

Then the transposed convolution of the input matrix, I with kernel K is given by the

following matrix multiplication:

Output O = K¥ x I
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where K7 is transpose of matrix K, thus is of size 16 x 4 and the resulting matrix will be
of size 16 x 1 which we will rewrite it to get upsampled 4 x 4 matrix. Alternatively, the

transpose convolution can be shown as the following:

ki ki ki .
i1 1.2 —
* kg ka2 kg
121 132
ka1 bz ka3
¥ ¥ T Fia-dig | ket (kg
_ ki iz kis
.1 1"1-_2 i1 1 1,1 1.1 _ kz,ﬂ = i'l,l k2,2 . 1:1,1 k?,ﬁ . 1:1,1
* kay ko kaa
i34 150 e i oy Fsa-d13 | kagz-ta0 | kag-tia
bz k3.2 k3 z
e i o Ryg-tdig | kia-des [ Fas.dip
) ki k12 ki3
11,1 11,2 112 2 f12 _ kg’l Sz kg,g 12 kg,g 12
* by k2o ko s
3 132 12 2 1 kag-t1z | Kag-d1a | kaa-d12
bz ks.a k3 s

Figure 3.7: Transpose Convolution of 2 x 2 input with 3 x 3 filter, 1 stride and no padding
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Mow we overlap all the matrices above into a maitrix
and add the corresponding pixels to get the following
matrix:
K1 k2. 91,1 k13- 81,1 ey
1,1 %11 . . 13- %1
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k20811 k230 1.1
kE‘l . 3-111 + kz,]_ . '5‘]_52 4 .kzsz + 'i]_,z " )
N L N + k11920 + k2. 42,1 + k3.2 'J‘; 1‘2,
oy P . - + Y
1.1 2.2 1.8 t+Fryetas + k1ot it
= k3111 ks 1,1
Foa k2 kas 5 o o 5
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Figure , continued.

29




The transpose convolution with one unit stride and padding is shown in Figure |3.8

ki1 k12 ki3 ‘?
. . L]
1,1 1,2 —
* ka1 k2 k23
2,1 2,2
k31 k32 k33
+
1,1 1,1 11,1 k ik .
. k k k 2,2- 21,1 |R2,3- 211
i s 1,1 1,2 1,3
21,1 1,1 . .
* : = k32.111 k33.111
] . ka1 koo ka3 S B
12,1 12,2 -
i1,1 11 i1,
k31 k32 3,3
+
1,2 1,2 1,2
k11 k2 kg ky.i1 |k d12 (k23 112
K 112 _
i 11,2 i i - . . q
1,1 » * 41,2 k?,l 1,2 k2,2 k2,3 k3,1 Si12 kg,g <112 k3’3 2112
i2,1 i2,2 il,2 k3y1 '1,2 k3y2 i1,2k3,3
+
2,1 2,1 22,1
ki1 k1o ki3
11 1,2 12,1 2,1 2,1 _
* k21 k22 ka3 . .
i g - - - ki d9,1 k13- 921
2,1 12,2 22,1 2,1 22,1
k31 k3o k33 koo i91|ka3- 21

k32.121 [k33. 92,1

Figure 3.8: Transpose Convolution of 2 x 2 input with 3 x 3 filter, stride 2 and 1 zero padding
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F-: 12,2 2,2
k11 k12 k13
’il,l 7:1,2 22,2 22,2 12,2 _
* k21 koo k23
2,1 22,2 2,2 2,2 12,2 ki1.d22 k12922 |k1,3- 12,2
k31 k3,2 k33
ky.d22 |ko2-d22 |k23. 922

k31.422 (k32122 |k33. 92,2

Now we overlap all the matrices above into a matrix

and add the corresponding pixels to get the following

matrix:
oo.i k23.11
2,2+ 1,1 ; ; ;
+ ko112 koo-i12 ka3.i12
. k3. i1, . )
. . . k32.111 ER I k32.i12 k33.112
. ] 1,1 1,2 1,3 + k1,2- 1',2,1 + ki3 i91 a4 kl,z. ’l:z,z ar k1,3. i272
21,1 21,2 _ ARG
* ka1 ka2 ka3 RALIRELY)
19,1 22
k31 ks o k3,3 kos.iz1
k2. 121 oo kyp.i22 ka3.1922
+ k2,1 <122
. k33.121 . .
k3g. i1 o k3p.iz2 k33.i22
+k31.12,2

Figure , continued.

The transpose convolution is usually applied to the output image of the corresponding
convolution and pooling operations (for downsampling) in the encoder part. In order to get
an output with the same size as the original image before the downsampling operation, we

need to choose a kernel of specified size, stride, and padding.
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Scaling

Upsampling can also be done by simple scaling algorithms such as nearest neighbor interpo-
lation and bilinear interpolation [54]. Figure |3.9|shows how we can upsample a 2 x 2 matrix

by factor of two to get the resulting matrix of size 4 x 4 using nearest neighbor interpolation.

b a a b b

v
(2]
©
=%
=%

Figure 3.9: An illustration of upsampling by nearest neighbor interpolation.

Figure illustrates the bilinear interpolation technique to upsample the 2 x 2 input

into a 4 x 4 output,
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Figure 3.10: An illustration of upsampling by bilinear interpolation.

Unpooling

Another popular method for upsampling is the method called unpooling [42]. Unpooling
is the opposite operation of pooling. Pooling is used to downsample the network, while
unpooling is used to upsample it. The position of the pixel in the input image in pooling
layer is remembered. In the corresponding upsampling part, the input pixel will be positioned
to the corresponding position while doing max pooling in encoder and all other position will
be filled by either the neighboring pixel or zeros. Figure 7?7 shows the max pooling and max

unpooling operations.

3.2 Some examples of semantic segmentation networks

In this section, we will discuss some of the popular semantic segmentation architectures:
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4 Max unpooling .
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Figure 3.11: Max pooling and max unpooling operations.
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Fully Convolutional Network (FCN)

Traditional convolutional networks have fully connected layers which make hard to manage
different input sizes. Fully convolutional networks proposed by Long et al. [35] replaced the
fully connected layers with convolutional ones to output spatial maps instead of classification
scores. Then those maps are upsampled using deconvolutions to produce dense predictions.

FCN shows how to train CNNs end-to-end to make dense predictions for semantic segmen-
tation.

2 X upsampled 2 X upsampled

X2

X2

FCN-8s

o] po pool pool4 pool5

x32

pool4 prediction pool3 prediction

Figure 3.12: FCN upsampling techniques as suggested in [35]

The encoder of the FCN is the taken from VGG-16 which is shown in Figure [3.3] Final
three fully connected layers are removed from the VGG-16. So the output of the encoder is

given by the fifth pooling layer. Each pooling layer in the network downsamples the input
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by the factor of 2. So, the final output is downsampled by the factor of 32. The paper [35]
has 3 models of FCN namely FCN-32s, FCN-16s, and FCN-8s. We can see in the figure
[3.12] output of pool5 is upsampled 32 times to get the original spatial dimension image. For
FCN-16s, first pool5 is upsampled by factor of 2, concatenate it with the pool4 output, then
upsampled it 16 times to get the final output. Similarly, for FCN-8s, concatenated result of
2 times upsampled poolb and pool4 prediction is upsampled by factor of 2. After that we
concatenate this with pool3 prediction and then outcome of this is upsampled by factor of
8.

FCN is the first neural network proposed for segmentic segmentation. However, the
architecture of FCN has a large number of trainable parameters in the encoder network,

which makes it hard to train and memory intensive when it comes to testing time.

U-Net

Another popular network for semantic segmentation is U-Net proposed by Olaf Ronneberger
et al [48]. Similar to FCN; the fully connected layers are replaced by the convolutional layers
for upsampling. The architecture of U-Net is symmetric; that is, every downsampling layer
has a corresponding upsampling layer. Moreover, U-Net has another operation called skip
connection, where every corresponding feature map in the encoder is copied and concatenated
to the upsampled feature map in the decoder part. One of the effects of downsampling the
image is that it may lose lots of very detailed, fine-grained spatial information while getting
very high-level contextual details. So, the skip connection allows the neural network to take
the very high resolution, low-level feature information to pass directly to the corresponding
upsampled layer. And so this way, the upsampled layer has both the high-level spatial
information with lower resolution as well as low-level more detailed information. Figure|3.13
illustrate the architecture of U-net. U-net was first proposed specially for biomedical image

segmentation. However, it has been widely used in many other applications.
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Figure 3.13: U-Net architecture. This figure is inspired from the original paper [48].

SegNet

Conv + BN + RelLU

' Maxpooling
' Upsampling

Softmax

Figure 3.14: SegNet architecture. Figure is inspired from the original paper [1]

To overcome the problems caused by deconvolution, Noh et al. [42] proposed a semantic seg-
mentation algorithm (DeconvNet) by learning a deep deconvolution network. Independently,
Badrinarayanan et al. [I] proposed SegNet, a deep convolutional encoder-decoder architec-
ture for semantic pixel-wise segmentation. The SegNet also has the symmetric architecture

of the encoder and its corresponding decoder, followed by a final pixel-wise classification
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layer. A mix of convolutional and pooling layers is used in the encoder network to combine
and summarize the data obtained from the RGB coordinates. A mix of upsampling and
convolutions is performed in the decoder network to map the low-resolution encoder feature
maps to the same resolution feature maps as the input for pixel-wise classification. The max
pooling indices at the corresponding encoder layer are recalled to perform the unpooling
operation for upsampling. We will get sparse feature maps after the upsampling, which
is followed by the convolutions with trainable filters. This upsampling strategy improves
boundary delineation and reduces the number of parameters. The last decoder is connected
to a softmax classifier to obtain a pixel-wise classification map. The softmax output has
the number of channels equal to the number of class labels, and each channel represents
the probabilities that the pixels belong to the corresponding class. The final predicted seg-
mentation map corresponds to the class with maximum probability at each pixel. SegNet is
efficient both in terms of memory and computational time during inference, so it is handy

for practical applications.

3.3 Our Proposed Model: Dilated Convolutional Network (DCN)

Our proposed network architecture is shown in the Figure [3.15]
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Figure 3.15: Dilated ConvNet Architecture
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3.3.1 Dilated(Atros) Convolution:

One of the critical components of our design is the dilated convolutional layers [60]. A
2-dimensional dilated convolution can be defined as following:
M N
y(m,n) =x*xw(m,n) = Z Z z(m+ri,n+r.j)w(i,j) (3.1)

=1 j=1

where y(m, n) is the output of the convolution, z(m,n) is the input, w(z, j) is the filter with
size M x N And r is a dilation factor. r = 1 will give us the usual convolution. For the input
size of m x n, kernel size k, padding p, stride s, and dilation factor r, we have the following

output size:

{m+2p_k_(k_1)(r_1)+1J " {n+2p—k—(k—1)(r—1)

. + 1J (3.2)

S

Figure [3.16| show convolution kernels with different dilation factors.

Figure 3.16: 3 x 3 convolution kernels with different dilation factors 1, 2 and 3 respectively.
Red dots indicate nonzero values

In dilated convolutions, we expand the alignment of the kernel weights by the dilation
factor. The weights are placed more sparse around a pixel by increasing this factor, which
enlarges the kernel size. The receptive field or the region in the input space that con-

tributes to feature extraction can be efficiently expanded while maintaining the resolution
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by monotonously increasing the dilation factors through layers. Therefore the global infor-
mation can be exchanged between layers without the loss of input resolution. When the
dilation factor is greater than 1, the neighboring pixels in the output have non-overlapping
receptive fields. So, the use of dilated convolutions can cause gridding artifacts. We can
remove this by using dilated convolution layers with decreased dilation factors.

For a given image, we propose a semantic pixel-wise segmentation technique using dilated
convolutions. The architecture of our network is based on SegNet, a deep convolutional
encoder-decoder architecture. All the max pooling layers in the SegNet are removed for
the encoder, and dilated convolution layers replace the convolutional layers with increased
dilation factors to preserve image resolution. All max un pooling layers are removed for
the decoder, and dilated convolution layers replace the convolutional layers with decreased
dilation factors to remove gridding artifacts. We choose all dilation factors as 2" to balance
the computation load and the size of the receptive fields. The whole process is like enlarging
the view gradually and then gradually focusing on the point of interest. We remove all max
pooling layers because the networks’ performance with and without max pooling layers are
similar, yet there is more computational work with max pooling layers. In histopathology
images, the percentage of regions occupied by cell nuclei is much less than the background
regions. For the training data set we use, the percentage of cell nuclei regions is 23%.
To balance the classes, we used inverse frequency weighting in the classification layer [19].
Table [3.1 shows the detailed network architecture of a SegNet and our dilated convolutional
network (DCN).

Our DCN has 34 layers; each convolution layer (except the first and last one) has 3 x
3 X 64 x 64 weights and 64 bias values. Each batch normalization layer has 128 learnable
parameters. Hence the total number of learnable parameters is 335,554. The corresponding
SegNet (SegNet with encoding depth 3) has 45 layers, 373,638 learnable parameters. We

consider U-Net with 64 output channels for the first encoder. U-Net has an architecture that
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the number of output channels for each convolutional layer in the encoder is doubled as we
advance. The number of output channels for each convolutional layer in the decoder is halved.
U-Net with encoding depth 3 (U-Net3) has 46 layers, 7,697,410 learnable parameters, U-Net
with encoding depth 4 (U-Net4) has 58 layers, 31,031,810 learnable parameters. Compared
to U-Net, our DCN, which has much less learnable parameters (335,554 vs. 7,697,410 for
U-Net3), is less likely to overfit the data. Another advantage of our DCN is the efficiency
during inference. Our DCN is trained with image patches of fixed size; however, the trained
DCN can be applied to images of any size, making the testing easy and efficient. U-Net has
extra links between further-away layers; hence the testing image must have the same size
as the training images. Our DCN keeps the original size of the input image at each layer;
hence, the memory usage and computational load are higher than SegNet.

The run time of dilated convolution layers in the Matlab deep learning toolbox is much
longer than the run time of the conventional convolution layers. To overcome this drawback,
we design a method to convert dilated convolutions to conventional convolutions. This
method works for all dilated convolutions with a dilation factor of 2. Assume matrix A is
the input matrix, we can reorder the entries of A to get a matrix B, so that in B, all odd rows
of A are before the even rows of A, and all odd columns of A are before the even columns of
A. We call this procedure “matrix splitting” and the reverse operation “matrix merging”.
After matrix splitting, a dilated convolution on A with a dilation factor 2 is equivalent to
a conventional convolution on B. Figure [3.17| shows matrix A and its reordering B. It also
shows a dilated convolution on A and its corresponding convolution on B. The third column
of Table [3.1] shows how to use this observation to implement our DCN to train it efficiently.
However, the testing time is longer; half of the test time is for matrix splitting and merging.
Thus it shows there is room for improvement for implementing dilated convolutions in neural

network models.
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Figure 3.17: A matrix A and its reordering B. It also shows a dilated convolution on A and
its corresponding convolution on B.

3.4 Dealing with Class Imbalance Problem

Since our dataset has images of which most of the pixels are related to the background, the
result will be unreliable if we do training in this situation. We may get high accuracy even
if it classifies most cell nuclei pixels as the background pixel. So we need to think about
what we can do to overcome it. One of the ways is to consider different evaluation metrics
rather than only assessing the global accuracy. Besides, we can add class weight to the loss

function.

e Weighted cross-entropy loss

Consider the binary cross-entropy loss :

N
1
Loss = 5 Z[yz logp; + (1 —y;) log (1 — p;)] (3.3)
i=1

where y; is the binary ground truth label, taking values 0 or 1, p; is the predicted
probability that the ¢th pixel belongs to the positive class or class 1, and N is the total
number of pixels. In this loss function, every pixel has the same weight. Most of the

values for this loss function is contributed by the background pixels or negative class
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pixels as there are much more background pixels than the nuclei pixels, so the accuracy
result based on this loss function may be biased. To overcome this we add weight to
each pixel so that each class contributes to the loss function equally. We impose high
weight for the class with less number of pixels and low weight for the class with more
number of pixels. Here in our case we apply high weight for the positive class and
low weight for the negative class. The weighted binary cross-entropy loss is defined as

follows:

N

1
Weighted Loss = N Z[wlyi log p; + wo(1 — y;) log (1 — p;)], (3.4)
i=1

where

number of pixels in class 0
w, = n , (35)
total number of pixels

number of pixels in class 1
total number of pixels

The weights defined above make both classes contribute the same to the loss function

and hence will be useful in handling the class imbalance problem.

Soft dice loss
Another loss function that works well in the presence of imbalanced data is the soft

dice loss [53], which is defined as follows:

2 Z YtrueYpred

L=1-
Z yt2rue + Z yf)red

where yiye and ypreq is the ground truth and the prediction respectively and the sum
is over all the pixels. The second term in this equation measures the overlap between
the ground truth and the prediction. We want to minimize the loss function. The

higher the loss, the lower the number of overlap in the pixels and vice versa. The
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2 Z YtrueYpred
Z yt2rue+z yz'red

pixel should also be close to 1. Similarly, when the ground truth class is 0, the predicted

fraction demands that when the ground truth pixel is 1, the predicted

class should also be close to 0. Otherwise we will get a small number for this ratio and

hence high loss.

The use of weighted cross-entropy loss results in the best performances in our experiments.
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Table 3.1: Comparison of the network architectures of the SegNet and our Dilated Convo-
lutional network, where “Conv” means “Convolutions” and D is the dilation factor. Third
column shows how to use matrix splitting and merging procedures to implement dilated

convolutions through efficient conventional convolutions.

SegNet

Our DCN

Our DCN
(for efficient training)

128x128x3 Input
(or 64x64 Input)

128x128x3 Input
(or 64x64 Input)

128x128x3 Input
(or 64x64) Input

64 3x3 Conv 64 3x3 Conv, D=1 64 3x3 Conv
Normalization & ReLU | Normalization & ReLU | Normalization & ReLU
ReLLU ReLLU ReLU

64 3x3 Conv 64 3x3 Conv, D=1 64 3x3 Conv

Normalization & ReLU
Max Pooling

Normalization & ReLU

Normalization & ReLU
Matrix Splitting

Normalization & ReLU
Max Unpooling

Normalization & ReLU

64 3x3 Conv 64 3x3 Conv, D=2 64 3x3 Conv

Encoder || Normalization & ReLU | Normalization & ReLU | Normalization & ReLU
64 3x3 Conv 64 3x3 Conv, D=2 64 3x3 Conv
Normalization & ReLU | Normalization & ReLU | Normalization & ReLU
Max Pooling Matrix Splitting
64 3x3 Conv 64 3x3 Conv, D=4 64 3x3 Conv
Batch Normalization Batch Normalization Batch Normalization
ReLU ReLU ReLU
64 3x3 Conv 64 3x3 Conv, D=4 64 3x3 Conv
Batch Normalization Batch Normalization Batch Normalization
ReLU ReLU ReLU
Max Pooling
Max Unpooling
64 3x3 Conv 64 3x3 Conv, D=4 64 3x3 Conv
Normalization & ReLU | Normalization & ReLU | Normalization & ReLU

Matrix Merging

64 3x3 Conv 64 3x3 Conv, D=2 64 3x3 Conv
Normalization & ReLU | Normalization & ReLU | Normalization & ReLU
Max Unpooling Matrix Merging
64 3x3 Conv 64 3x3 Conv, D=1 64 3x3 Conv

Decoder || Normalization & ReLU | Normalization & ReLU | Normalization & ReLU
64 3x3 Conv 64 3x3 Conv, D=1 64 3x3 Conv

Normalization & ReLU

64 3x3 Conv

Normalization & ReLU

2 3x3 Conv 2 1x1 Conv 2 1x1 Conv
Normalization & ReLU

Softmax Softmax Softmax

Pixel Classification

Pixel Classification

Pixel Classification
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CHAPTER 4

DATA PREPARATION AND PREPROCESSING [

4.1 Dataset

4.1.1 Synthetic Data Sets

We generate two data sets of random triangles. Each contains 200 training images and 100
test images of size 64 x 64. Each triangle in the first data set has an uniform foreground and
an uniform background. Each triangle in the second data set has a textured foreground and
a textured background. Figure [4.1] shows some sample training images in the first data set.

Figure shows some sample training images in the second data set.

Figure 4.1: Sample training images in the triangle data set with a uniform foreground and
a uniform background.

IThis chapter includes verbatim excerpts from
K C Khatri,R.; Caseria, B.; Lou, Y.; Xiao, G. and Cao, Y. “Automatic Extraction of Cell Nuclei Using
Dilated Convolutional Network”, Inverse PROBLEMS AND Imaging, Vol. 15, No. 1, 27-40, 2021.
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Figure 4.2: Sample training images in the triangle data set with a textured foreground and
a textured background.

4.1.2 H & E-stained Pathology Image Data Sets

We also test the proposed method on a publicly available dataset of real H & E-stained
pathology images [29]. The dataset consists of pathologically labeled images with annotated
boundaries of each cell. The data set was generated using the H & E-stained tissue sample
images captured at 40x magnification from The Cancer Genomic Atlas (TCGA), one image
per patient. This data set contains six tissue samples of patients from each of the following
types of cancer: lung, breast, kidney, prostate. We tested our methods on those images.
Training data consists of 16 images (four lungs, four prostate, four breast & four kidney
cancer) and test data consists of 8 images, two from each category. For the training purpose,
we have split images into patches of size 128 x 128 x 3. Figure shows several normalized

patches and corresponding manual segmentations from the data set.
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Figure 4.3: Sample normalized image patches and corresponding manual segmentations from
the dataset.

4.2 Color Normalization

One of the challenges of nuclei segmentation is the color variation in histopathology images
due to the difference in H&E reagents, staining process, and sensor response. Reinhard
color normalization [46] is a method of color normalization where the mean and standard
deviation of each channel of the image is matched to that of the target employing a set of
linear transforms in Lab colorspace. First, we convert both the target image and source
image from RGB color space to L*a*b* color space. Then we do the following computation

in each channel to normalize the color:

(5() =s) o

S(l)norm = * O7(l) + T(l)

gs(1)
S(a)norm = (S(a)o_s_( )S(a)) * 07(a) + T(CL) (41)
S(b)norm (S(b)o_s_(b)S(b)) * O'T(b) + W



where S(1)norm, m, osay, orq) and T(l) denotes the normalized source, mean of source,
standard deviation of source, standard deviation of target and mean of target respectively
for the channel [ and so on.

After this process, we revert the image thus obtained again to the RGB colorspace.

All images are color normalized by Reinhard method using the Stain Normalisation Toolbox
for Matlab [24] before training and testing. Figure shows an example of Reinhard color

normalization.

Figure 4.4: Left: Source image, Middle: Target image and Right: Normalized image

4.3 Data Augmentation

One of the challenges in medical image analysis is the availability of training data [27].
Typically we have fewer training data in medical image analysis tasks than in other computer
vision tasks. However, since deep networks usually require lots of data to feed in, there
is a high chance of being overfitted if we train the model using only the low amount of
data available. Data augmentation is a regularization technique that can be used to create
artificial training data. It is one of the many popular methods to prevent overfitting of the
model, and generally, we get better performance after data augmentation [50].

During training, reflections about the x-axis are randomly performed on training data.

In addition, random translations along the x-axis and y-axis (within £10 pixels) are also
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performed. The corresponding transformations should also be applied to the corresponding
training labels when we apply these transformations to the training images. Augmentation
done this way will not increase the total number of training images at each iteration, making

the training process more efficient.
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CHAPTER 5

EXPERIMENTS AND RESULTS]

5.1 DCN training

We implement our method using Matlab deep learning toolbox [37]. Original tissue images
and corresponding labeled ground-truth segmentation masks are partitioned into 128 x 128 x
3 non-overlapping image patches. Each patch is normalized to have a zero mean. The
extracted patches are partitioned randomly into two sets; 80% of the patches are for training,
and 20% are for validation. To train the network, we try both the stochastic gradient
descent with momentum (SGDM) optimizer [44], and the Adam optimization algorithm
[26]. The momentum value used for SGDM is 0.9. A fixed learning rate of 0.001 is used. Lo
regularization with a factor of 0.0005 is used for the weights to the loss function to reduce
overfitting. A Mini-batch of four observations is used at each iteration, and the maximum
number of training epochs is set to 30. The training data and validation data are shuffled
before each training epoch. The model is tested against the validation data after each epoch

during the training. Our method is efficient enough to run on a personal laptop.

5.2 Evaluation Metrics

Let us first define the confusion matrix. The confusion matrix is shown in Figure |5.1

IThis chapter includes verbatim excerpts from
K C Khatri,R.; Caseria, B.; Lou, Y.; Xiao, G. and Cao, Y. “Automatic Extraction of Cell Nuclei Using
Dilated Convolutional Network”, Inverse PROBLEMS AND Imaging, Vol. 15, No. 1, 27-40, 2021.

20



Predicted Value
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TP FN |TP+FN

FP TN |FP+TN

Actual Value
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Total |TP+FFP|FN+ TN M

Figure 5.1: Confusion matrix.

Here TP is the number of true positives, i.e., the number of pixels that are ground truth
pixels among the detected, FP is the number of false positives, i.e., the number of pixels
that are not ground truth pixels among the detected, FN is the number of false negatives,
i.e., the number of ground truth pixels that have not been detected, TN is the number of
true negatives, i.e., the number of ground truth pixels that has been detected.

We used five metrics to quantitatively measure the segmentation results. The measures

are defined as follows:

e GlobalAccuracy: the percentage of correctly classified pixels among all image pixels,

regardless of whether the pixel is a ground truth nuclei pixel or a background pixel.

TP+ TN
TP+ FN+FP+TN'

GlobalAccuracy = (5.1)

e MeanAccuracy: the percentage of correctly identified pixels for each class, averaged

over the two classes in the image, nuclei or background.

1 TP TN
MeanAccuracy = s\ TP EN + FPLTN ) (5.2)
1
= 3 (Sensitivity + Specificity) , (5.3)

o1



where

TP
Sensitivity = m—m s (54)
TN
ificity = —————. .
Specificity FPLTN (5.5)

e MeanloU: Intersection over union (IoU), also known as the Jaccard similarity coeffi-

TP

cient. For each class, loUscore = 75757y

MeanloU is the average IoU score of all

classes in the image.

1 TP TN
MeanloU = = | |
eanlol = 3 (TP+FP+FN+TN+FP+FN) (5.6)

o WeightedloU: Average IoU of all classes in the image, weighted by the number of pixels

in each class.

e MeanBFScore: For each class, BF (Boundary F1) contour matching score is defined by

BF = %. MeanBFScore is the average BF score of each class in the image.

5.3 Experiments

5.3.1 Test on synthetic data sets

We tested our DCN model on two synthetic data sets of random triangles, one with a uniform
foreground and a uniform background. The other was a textured foreground and a textured
background. Our DCN is created according to the architecture shown in Table with the
input size as 64 x 64. All networks are trained using the SGDM optimizer with the same
parameters as described in Section [5.1] except that U-Net3 and U-Net4 are trained with a
smaller learning rate of 0.0001.

Figure [5.2] and Figure [5.3 show the segmentation results on the triangle data sets. Ta-
ble shows the quantitative metrics of the segmentation results. Here we compare the

performance of SegNet, U-Net3, U-Net4, and our DCN. For the triangle data set with a
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Table 5.1: Quantitative metrics of the segmentation results on triangle data sets. Best values
are displayed in bold.

Triangle Global Mean Mean | Weighted | Mean
Dataset | Accuracy | Accuracy IoU IoU BFScore
SegNet | Uniform | 0.9325 0.9508 0.7829 0.8882 0.4172
U-Net3 | Uniform | 0.9694 0.9531 0.8784 0.9438 0.6572
U-Net4 Uniform | 0.9974 0.9953 | 0.9884 | 0.9949 0.9488
Our DCN | Uniform | 0.9952 0.9941 0.9786 0.9906 0.8946
SegNet | Textured | 0.8764 0.9280 0.6818 0.8139 0.3605
U-Net3 | Textured | 0.8119 0.8614 0.5855 0.7359 0.2157
U-Netd | Textured | 0.7250 0.8148 0.4945 0.6391 0.2000
Our DCN | Textured | 0.9658 0.9741 | 0.8728 | 0.9386 0.4638

uniform foreground and uniform background, our method and U-Net4 have similar perfor-
mance. Both methods achieve better results than SegNet and U-Net3. Our method is much
better for the triangle data set with a textured foreground and a textured background than
SegNet and U-Net. The main problem of U-Net in this situation is overfitting. The accuracy
of the training set is very high; however, the performance on the test set is much worse. This

is true partially because U-Net has a lot more learnable parameters than SegNet and our

DCN.

5.3.2 Test on Real H&E-stained Pathology Images

We also test the proposed method on a publicly available dataset of H&E-stained pathology
images [29]. All networks are trained using the Adam optimization algorithm with the same
parameters as described in Section [5.1} Figure [5.4]shows the segmentation results on several
patches along with the ground truth. Compared to SegNet and U-Net, our method produces
better segmentation around the cell boundaries. Table [5.2] shows the quantitative metrics
of the segmentation results. Our method achieves better results than SegNet and U-Net in
general. Table [5.3] shows the training and testing time of SegNet, U-Net3, and our DCN

using the H&E-stained image data set. The tests are performed on a Windows 10 personal
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laptop with 2.8 GHz Intel(R) Core (TM) i7, 16GB RAM, and one GeForce GTX 1050 graph
card. Since U-Net cannot handle input images with different sizes, the testing time of U-Net
includes time to divide test images into patches and stitch image patches to the original
dimensions.

Table 5.2: Quantitative metrics of the segmentation results on the H&E-stained image data
set. Best values are displayed in bold.

Image Global Mean Mean | Weighted | Mean
Set Accuracy | Accuracy | IToU IoU BFScore
SegNet Lung 0.8819 0.8975 0.7324 0.8074 0.9204
U-Net3 Lung 0.8917 0.9013 0.7475 0.8190 0.9266
U-Net4 Lung 0.8929 0.8966 0.7484 0.8193 0.9343
Our DCN | Lung 0.9045 0.9033 | 0.7690 | 0.8355 | 0.9448
SegNet Breast 0.8691 0.8990 0.7002 0.7917 0.8900
U-Net3 Breast 0.8829 0.9051 0.7183 0.8124 0.8743
U-Net4 Breast 0.8775 0.8977 0.7086 0.8057 0.8700
Our DCN | Breast 0.9047 0.9123 | 0.7538 | 0.8415 | 0.9210
SegNet Kidney 0.9122 0.9249 0.7290 0.8634 0.9425
U-Net3 Kidney 0.9133 0.9281 | 0.7259 0.8639 0.9218
U-Net4 Kidney 0.8993 0.9145 0.7013 0.8462 0.9306
Our DCN | Kidney | 0.9329 0.9277 | 0.7725 | 0.8911 | 0.9634
SegNet | Prostate | 0.8956 0.9142 0.7533 0.8271 0.9105
U-Net3 | Prostate | 0.8949 0.9041 0.7496 0.8255 0.9047
U-Net4 | Prostate | 0.8961 0.9032 0.7510 0.8271 0.9090
Our DCN | Prostate | 0.9211 0.9163 | 0.7962 | 0.8632 | 0.9336
SegNet Overall 0.8897 0.9000 0.7383 0.8184 0.9159
U-Net3 Overall 0.8957 0.8976 0.7467 0.8264 0.9069
U-Net4 Overall 0.8914 0.8905 0.7380 0.8201 0.9110
Our DCN | Overall | 0.9158 0.9039 | 0.7815 | 0.8548 | 0.9407

Table 5.3: Comparison of the training and testing time of SegNet, U-Net3 and our DCN.

SegNet U-Net3 Our DCN | Our DCN (efficient)
Training Time | 15 min 14 sec | 18 min 36 sec | 26 min 47 sec 19 min 45 sec
Testing Time 7.6 sec 37.7 sec 10.1 sec 19.9 sec
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Figure 5.2: Test images (1st row) with corresponding segmentations using SegNet (2nd row)
U-Net3 (3rd row), U-Net4 (4th row), and our DCN (5th row).
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Figure 5.3: Test images (1st row) with corresponding segmentations using SegNet (2nd row),
U-Net3 (3rd row), U-Net4 (4th row), and our DCN (5th row).
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Figure 5.4: Test images (1st column) with corresponding segmentations using SegNet (2nd
column), U-Net3 (3rd column), and our DCN (4th column). Ground truth contours are
plotted in red.
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CHAPTER 6

CELL NUCLEI DETECTION AND INSTANCE SEGMENTATION
6.1 Object Detection
Object detection involves two things:
e Object localization.
e Object classification.

Object localization is the task of recognition of one or more objects in an image and finding
their locations by creating a bounding box around each object. Object classification is the

task of classifying the objects detected by bounding boxes.

6.2 Single Shot MultiBox Detector (SSD)

SSD is a one-stage object detection model proposed by Liu et al. [34]. It is faster than two-
stage models such as the Faster R-CNN detector [§, [47] and it outperforms a comparable
Faster R-CNN detector. SSD is also more accurate than other one-stage object detectors
such as YOLO [45].

SSD model also utilizes the CNN architecture for classification as the base network. The
classification layer is removed from CNN, and an auxiliary structure is added to the network
for the object detection part. Figure illustrate an example of the model in [34]. The
network structure of the SSD model consists of three parts: base network, extra feature
layers, and the non-maximum suppression layer. In the example in Figure VGG-16 is
used as a base network. Classification layers were removed from VGG-16. The feature map
“Conv 4-3” from base network VGG-16 is directly fed to the object detection part, and extra

convolutional feature layers are added to the end of the truncated VGG-16 network (“Conv
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Figure 6.1: SSD Model architecture

5-3"). The sizes of these layers are decreased gradually to allow for detection at different

scales.

A set of default bounding boxes (anchor boxes) are associated with each feature map

cell for multiple feature maps to generate possible object locations. The network will output

a classification score and the location offset for each anchor box. The anchor box strategy

allows us to evaluate the object prediction at once, which makes SSD computational efficient.

These boxes pass through a non-max suppression layer, which evaluates the intersection-

over-union (IoU) distance metric with the ground truth box and keeps only the boxes with

maximum JoU.
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6.3 DCNSSD: Our DCN Based SSD

6.3.1 Network Architecture

Our DCN is very successful in semantic segmentation of the cell nuclei in H&E-stained
pathology images. To detect each individual cell nucleus, we designed an SSD model based
on our DCN, named DCNSSD. We implemented our method using Matlab deep learning
toolbox [38]. Figure shows the architecture of our DCNSSD.

6.3.2 Anchor Boxes Proposals

The cell nuclei have different shapes and sizes. To decide an optimal set of anchor boxes,
we estimate the anchor boxes from the training data. To visualize the ground truth box
distribution, we plot the box area vs. aspect ratio of the ground truth bounding boxes in

Figure It helps get an idea about the range of size of the bounding boxes in the data.

Box Area vs. Aspect Ratio
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Figure 6.3: Box area vs aspect ratio of ground truth bounding boxes.
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The number of the anchor boxes is a hyperparameter that we need to choose wisely. From
Figure [6.3| above, it is difficult to determine the clusters manually, so we need to use some
clustering algorithm. We use a k-means clustering algorithm using the IoU distance metric.
Then the boxes of similar aspect ratios and sizes are clustered together. Figure displays
the number of anchors and their corresponding mean IoU score. It clearly shows that the 10

is a reasonable choice because it gives the highest mean IoU.

Number of Anchors vs. Mean loU
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Figure 6.4: Numbers anchors vs mean [oU

We utilize those ten anchor boxes given by the k-means algorithm [39]. These anchor
boxes are placed in a convolutional manner in such a way that the position of each box
relative to its corresponding cell is fixed [34]. For each anchor box, the SSD network looks if
there is an object and predicts the probability of each class, i.e., the confidence score for each
category. Also, for each anchor boxes, it predicts box offsets with ground truth bounding
box.

Our feature layers start from the layer relul0, which has dimension 128 x 128 x 64. We

have to calculate the prediction scores for two classes (cell and background) and four offsets
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relative to the anchor box shape for each of 10 boxes, so a total of (2 + 4) x 10 filters are
applied around each location in the feature map. So total, we yield (24 4) x 10 x 128 x 128
outputs for a 128 x 128 feature map. Among these, 10 x 2 (number of anchors x number of
classes) filters are used to classification part, and 4x number of anchors filters are used in

bounding box regression.

6.3.3 Encode Ground Truth Boxes

After obtaining the anchor boxes, we need to encode the ground truth bounding boxes as
anchor boxes. At each feature map cell, we compare the ten anchor boxes with all the
ground truth bounding boxes and calculate the IoU distance. If the IoU is greater than 0.5,
we consider it a match, and label the corresponding anchor box 1, otherwise, label it as 0.

The location offsets (cx, cy,w, h) are calculated as in [34] as follows:

cx = (cry—cxy)/w, (6.1)
cy = (cyg— cYa)/ha (6.2)
w = log (%) (6.3)

- o

where (cz, cy) is the offsets of the centers and (w, h) is the offsets of the width and height.
Here (cxy, cyy) and (cx,, cy,) represent the centers of the ground truth box and the anchor
box respectively; (wy, hy) and (wg, h,) represent the width and height of the ground truth

box and anchor box respectively.

6.3.4 Loss Function

The total loss L is a weighted sum of the focal loss L, for classification of the anchor boxes

at each pixel and the smooth L; loss L;,. for regression of the location offsets.

L= aLobj + Lloca (65)
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where the balancing parameter a was set to be 2 during the training.
The focal loss Lyy; is defined as in [32] as follows:
TR
Loyi = —% > w1 = pi) log(piy) (6.6)
i=1 j=1

where N is the number of observations, ¢ is the number of classes, y;; are ground truth labels
of the anchor boxes at each pixel, p;; are the corresponding predictions from the network,
and 7 is the focusing parameter. In our case, N equals to the number of pixels 128 x 128
multiply the number of anchor boxes 10, that is, 163840. We have two classes, hence ¢ = 2.
The focusing parameter v was set to be 0.25 during the training.

The smooth L loss Ly, is defined as in [34] as follows:

M
Lipe = Z Z smoothy (1" — g") (6.7)

i€ Pos me{cz,cy,w,h}
0.522 if 2] < 1;

smoothz,(z) = (6.8)
|z| — 0.5 otherwise.

where 7 is the index of anchor box with label 1, M is the number of matched anchor boxes,

[ is the predicted box offsets and ¢ is the encoded ground truth box offsets.

6.3.5 DCNSSD Training and Experimental Results

We trained the model using a stochastic gradient descent with momentum (SGDM) algorithm
[44]. The momentum value used for SGDM is 0.9. The initial learning rate is 0.1 and with a
learning rate drop at every 30 epochs by the factor of 0.8. The maximum number of epochs
for training is set to be 300 epochs and a mini-batch with 16 observations at each iteration
was used. The training data are shuffled before each training epoch. Figure [6.5] shows
some of the cell nuclei detection results of our DCNSSD on the testing data. The results is

promising.
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6.4 Instance Segmentaion

Instance segmentation involves object detection and semantic segmentation. Given an input
image, we want to output all instances of those classes, and for each instance, we want
to segment out the pixels that belong to that instance. Our problem of cell segmentation
consists of segmenting cells and backgrounds. So basically, we have one class to detect. So
instance segmentation problem involves detecting all nuclei objects and at the same time
distinguish each of those cell nuclei. We can combine the results of DCN and DCNSSD to

achieve instance segmentation of the cell nuclei.
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Figure 6.2: The architecture of our DCNSSD.
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Figure 6.5: Some cell nuclei detection results of our DCNNSSD model on testing data. First
column and the third column show the predicted cell nuclei locations on the H&E-stained
input images, second column and the fourth column show the predicted cell locations on the
ground truth mask.
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CHAPTER 7

CONCLUSIONS

In this work, we developed a cell nuclei segmentation method using dilated convolutional
neural network. We showed that dilated convolutional layers with increasing dilation factors
and then followed by dilated convolutional layers with decreasing dilation factors is supe-
rior in extract useful information from textured images, which is ideal for extracting cell
nuclei in H&E-stained pathology images. We also proposed a method to implement dilated
convolutions efficiently.

We first designed a dilated convolutional neural network DCN for semantic segmentation
of cell nuclei in H&E-stained pathology images. Experiments show that the proposed method
achieves a higher level of accuracy than the state-of-the-art. In particular, the proposed
method works better in detecting cell boundaries.

Semantic segmentation doesn’t separate objects of the same class. There are some cell
nuclei which are overlapped or stick together. To detect the instance of each cell nuclei,
we designed a SSD cell nuclei detector DCNSSD using our DCN as the base network. The
preliminary results is promising.

Future work involves adding the semantic segmentation branch in the network to get the
pixel-wise cell nuclei instance segmentation in one shot. Another direction of future work is
to use the segmentation results to analyze the morphological properties of the tumor cells

and predict the progress of cancer.
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