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ESSAYS ON ASSORTMENT PLANNING AND INVENTORY MANAGEMENT FOR

SUBSTITUTABLE PRODUCTS

Ying Cao, PhD
The University of Texas at Dallas, 2018

Supervising Professor: Dorothée Honhon, Chair

This dissertation consists of three essays which study assortment planning and inventory

management of substitutable products motivated by different practical problems.

Chapter 2 considers the assortment planning problem for a retailer who faces customers that

buy multiple differentiated products (n-pack) on a store visit. We develop two choice models:

the probabilistic choice rule which captures the heterogeneous consumer population choice

pattern and maximum choice rule which captures the homogeneous consumer population

choice pattern. We find that, under probabilistic choice rule, the optimal assortment is such

that it includes a certain number of the most and least popular products. In contrast, under

maximum choice rule, the optimal assortment does not have a fixed structure except that it is

guaranteed to include the most popular product. We develop an algorithm under maximum

choice rule which is shown to have good performance. In addition, we derive the structure

of optimal assortment under both choice rules when a retailer ignores key features of n-pack

choice model including choice premium and basket shopping behavior. We also conduct a

numerical study where we show that ignoring these key features can lead to significant profit

loss for a retailer.

Chapter 3 explores the assortment planning for a firm who faces a two-sided market. That

is, the firm receives revenues from two distinct user groups: the customers, who pay for the
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products it sells and the advertisers who pay to advertise their brand to the customers. We

obtain structural properties of the optimal assortment. We also consider the case where the

firm is allowed to offer multiple products with the same attractiveness profile and price. In

this case, we obtain conditions under which the optimal assortment is made out of distinct

products. In addition, we show that ignoring the revenue from the customers or the adver-

tisers, or focusing only on one segment when making product assortment decisions can lead

to a significant revenue loss; specifically, we derive the theoretical bound on revenue loss in

these situations.

Chapter 4 studies the decision making of an inventory manager who needs to decide order

quantities of multiple substitutable products in his store. As such, the decision maker typ-

ically checks the sales history of the products. When there is stock-out, the sales history

provides inaccurate information because the lost sales are unobservable and the sales from

substitution are indistinguishable from first-choice sales, which we refer to as the “double-

censoring effect”. To study the impact of substitution rate and information amount on

decision maker’s performance, we design an experiment where subjects need to decide in-

ventory levels for 2 substitutable products in consecutive 30 periods. The experimental data

shows that subjects underestimate the demand for high demand product and overestimate

the demand for low demand product. Moreover, the bias is worse when there is substitu-

tion in fully censored information treatment. Also, when subjects are provided with less

information, they tend to order larger quantity in early periods in order to learn demand.
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CHAPTER 1

INTRODUCTION

This dissertation studies assortment planning and inventory management of substitutable

products motivated by different practical problems.

In Chapter 2, I study the assortment planning problem for a retailer who faces customers

who buy multiple differentiated products on a given store visit, which Fox et al. (2017) refer

to as buying an“n-pack” of substitutable products. Based on the n-pack selection model, we

develop a choice model which we use to calculate product demands given a set assortment. In

particular, we consider two different choice rules (the maximum choice rule and probabilistic

choice rule) which respectively capture two different consumer choice patterns that arise in

practice. We study structural properties of the optimal assortment and explore how the

retailer’s assortment decision and total profits are impacted when the retailer ignores a key

feature of the n-pack choice model, called the“choice premium” which captures the utility

that consumers derive from variety in their shopping basket and allows them to hedge against

future preference uncertainty. The major results of our study can be summarized as follows.

First, we find that, under probabilistic choice rule, the optimal assortment has the following

structure: it includes a certain number of the most and least popular products (which we

refer to as a “popular-unpopular set”). In contrast, under maximum choice rule, one can

only guarantee that the optimal assortment includes the most popular product. These results

on the structure of the optimal assortment differ from the well-known “popular set” result

from van Ryzin and Mahajan (1999) who show that, when consumer buys at most one unit

and their choice is captured by the Multinomial Logit (MNL) model, it is optimal to offer a

number of the most popular products (i.e., a “popular set”). Under maximum choice rule,

we propose a heuristic method for selecting an assortment and show numerically that it has

good performance. Further, we investigate the impact of ignoring the choice premium which

drives consumer choice. We find that when the retailer ignores the choice premium, the
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optimal assortment under probabilistic rule is still a popular-unpopular set, but it can be

different from the optimal assortment of the problem when choice premium is considered;

while under maximum choice rule, it is always optimal to offer only the most popular product

when choice premium is ignored. Finally, we show numerically that ignoring the consumer

multi-item purchasing behavior can lead to significant profit losses for the retailer.

In Chapter 3, I consider a firm who must decide on the assortment of products to offer

when facing a two-sided market. As such, the firm receives revenues from two distinct user

groups: the customers, who pay for the products it sells and the advertisers who pay to

advertise their brand to the customers. The customers come from different segments which

differ in their preferences for the products. We contribute to the literature on assortment

planning by adding the second market dimension to the product selection problem with

multiple customer segments. The main results of our study are as follows. First, we show

that the assortment problem for a two- sided market with multiple customer segments is

complex in that there is no simple structure to the optimal assortment. In particular, we

show that a revenue-ordered solution, adapted to the two-sided revenue stream nature of our

problem, is not necessarily optimal for the problem in its most general form; however, we

provide conditions under which the optimal assortment has a simple ranking-based structure.

Further, we show that focusing only on one group of users, that is treating the problem as

a one-sided rather than two-sided market, can lead to a significant loss in revenue, and we

obtain the theoretical bound for these heuristics. We also investigate a special case wherein

the possible products to offer either appeal to all customer segments equally or are tailored

to the tastes of one of them.

Chapter 4 is an experimental study on a retailer’s inventory management of two substi-

tutable products. Corsten and Gruen (2003) pointed out: “A retailer that needs to reorder

a product will typically examine the sales history of that product. When the item has been

out of stock, the sales history data provide inaccurate information to the buyer on what is

2



the necessary purchase quantity to meet actual demand. If the out-of-stock has not been

detected, then the buying decision will most likely be too low to meet the normal customer

demand plus those who delayed purchase until the retailer received additional stock. Alter-

natively, if the buyer is aware of the OOS situation, then tendency may be to over order,

because the buyer is unable to determine the permanent loss of customers caused by the OOS

through brand substitution or to the store due to store switching.” For categories with sub-

stitutable products, stock-outs lead to a double-censoring effect: lost sales are unobservable

and the sales from substitution are indistinguishable from first-choice sales. We design an

experiment that includes three treatments and provide subjects with different amount of

information regarding demand and sales. In all three treatments, subjects play in the role of

a store manager who must make order quantity decisions for two products over 30 consecu-

tive periods in a Newsvendor setting. The two products are substitutable products from the

same category and one of them has a lower average demand than the other. The nalysis of

the experiment data show that: (1) Subjects have difficulty learning demand. Specifically,

they underestimate the demand for high demand product and overestimate the demand for

low demand product. (2) When there is substitution, the bias is worse in fully censored

information treatment. (3) In fully censored information treatment, subjects tend to order

larger quantity than in partially censored information treatment in order to learn demand.

(4) In signal treatment, subjects’s order quantities for both products are larger than fully

censored information treatment and partially censored information treatment.
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CHAPTER 2

ASSORTMENT PLANNING FOR n-PACK PURCHASING CONSUMERS

2.1 Introduction

Consumers often purchase multiple items from the same product category on a given shop-

ping trip. Dubé (2004) study some of the top revenue-generating categories in the dry

grocery department in U.S. food stores (specifically carbonated soft drinks, ready-to-eat ce-

reals, canned soups and cookies) and find that more than 20% of shopping trips include

multiple products being purchased in the same category. Further, 61% of shopping trips for

carbonated soft drinks result in the purchase of multiple kinds of products, that is, different

flavors with possibly more than one item from each kind. According to Harlam and Lodish

(1995), the corresponding number is 74% for yogurt, and is 78% for canned soup. This

multi-item purchase behavior can be explained by a desire to avoid multiple trips to the

store as well as a taste for variety (Simonson (1990)).

Once at home, consumers consume the products they have purchased over time. At

each consumption occasion, their decision of which product to consume is constrained by

their available inventory of the product which depends on their initial shopping decision

and past consumption decisions. Fox et al. (2017) propose a novel dynamic programming-

based consumer choice model which captures the shopping and consumption incentives of

consumers. While at the store, consumers select n products for future consumption, referred

to as an n-pack. The composition of a consumer’s chosen n-pack is a function of the expected

utility values of the possible product alternatives assuming a forward-looking behavior: the

consumer optimizes which product to consume at each consumption occasion, taking into

account both his immediate utility and future expected utility. Under some mild assumptions

on choice behavior, Fox et al. (2017) show that the overall expected value of an n-pack can

be expressed in closed form and includes a choice premium, which is the additional expected

utility from having the freedom to consume products in any given order.
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When making product assortment decisions retailers must take this multi-item shopping

behavior into account. Yet, most research on assortment planning has focused until now on

models which assume single-unit purchases by all incoming consumers1. In this paper, we

revisit the assortment planning problem for a single product category when retailer faces

multi-item purchasing, so called “n-pack” consumers. Our model uses the expected value

derivations from Fox et al. (2017) as inputs into a demand function to calculate the retailer’s

expected profit from each possible assortment. We consider two possible choice rules: con-

sumers either purchase the maximum value n-pack with probability one (maximum choice

rule) or they probabilistically choose between each possible n-pack using an attraction-based

formula akin to the Multinomial Logit (MNL) model purchase probability equation (proba-

bilistic choice rule).

In our base setting we assume that n, i.e., the size of the pack purchased, is identical

for all consumers in the population. The set of potential products to offer in the product

category is finite and alternatives differ based on a nominal utility (or popularity) parameter

which is common to the consumer population. As in ? we assume a fixed selling price for all

products and concave inventory costs, which imply that the retailer benefits from economies

of scale, thereby preferring to offer fewer products in larger quantities, compared to more

variety in smaller quantities. Our model simplifies to the problem considered in ? when the

size of the pack is set equal to 1, that is, when all consumers buy a unique product and their

choice is captured by the MNL model.

We summarize our results as follows, First, we find that, under probabilistic choice rule,

the optimal assortment has the following structure: it includes a certain number of the most

and least popular products (we say the optimal assortment is a “popular-eccentric set”). In

contrast, under maximum choice rule, one can only guarantee that the optimal assortment

1One notable exception of the work by (Cachon and Kök (2007)) who consider the basket shopping
behavior across product categories.
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includes the most popular product. These results on the structure of the optimal assortment

differ from the well known “popular set” result from ? who show that, when consumer buys

at most one unit and their choice is captured by the MNL model, it is optimal to offer a subset

of the most popular products. Under maximum choice rule, we propose a heuristic method

for selecting an assortment and show numerically that it reaches optimality in 88.54% of the

problem instances we considered. Further, we show numerically that ignoring the consumer

multi-item purchasing behavior can lead to significant profit losses for the retailer - up

to 100%. Finally we investigate the impact of ignoring the choice premium which drives

consumer choices and find that the retailer may loose up to 100% in profit.

Our paper contributes to the literature in assortment planning in three ways. First,

to the best of our knowledge, we provide a first look at the problem of discrete product

selection when consumers buy multiple items from the same product category. We do so

using a novel model of consumer choice which is well grounded in the theory of shopping and

consumption, namely n-pack consumer choice model from Fox et al. (2017). We augment

this model by considering two possible choice rules to calculate individual product demand.

Second, we highlight a new possible structure for the optimal assortment in a given product

category, namely the popular-eccentric sets and prove their optimality when consumer choose

probabilistically between all possible n-packs. Finally we highlight the need for retailers to

incorporate consumers’ multi-item shopping behavior and the choice premium they receive

when buying more than one unit on each shopping trip.

The rest of this chapter is organized as follows. In §2.2 we review the related literatures.

In §2.3 we formulate our model and discuss some of its special cases. We present our

analytical results in §2.4. In §2.5 we discuss the impact of choice premium on optimal

assortment and profit. In §2.6 we conduct a numerical study. Unless otherwise stated, all

proofs are in the Appendix A.
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2.2 Literature Review

This paper is mainly correlated with 3 streams of literatures as discussed below: (1) Multi

item purchasing decisions for consumers; (2) Assortment planning; (3) Bundling.

Consumers’ multi-product shopping behaviors have been studied by a large number of

scholars. Simonson (1990) was one of the earliest studies on shopping decisions in presence

of preference uncertainty. They showed through three experiments that consumers system-

atically seek more variety when simultaneously choosing a collection of products for future

consumption(s) compared to choosing each product sequentially at the time of consumption.

This variety-seeking phenomenon and relevant results have also been generated in a series of

research after that (Simonson and Winer (1992), Read and Loewenstein (1995), Read et al.

(1999)). In addition to the variety-seeking behavior, Salisbury and Feinberg (2008) pointed

out that the diversification in consumers’ choice may involve a rational response to some

preference uncertainty, for example the brand attractiveness uncertainty. Another related

stream of papers study the consumption behavior and its impact on consumers’ purchasing

decisions. Bown et al. (2003) found through an experimental study that people tend to

preserve options from variety for the future consumption, even though this may lead to less

desirable outcomes. Guo (2010) developed a structural econometric model for consumers’

choice of n-packs and estimated his model on scanner panel data for yogurt purchases where

the consumption data was obtained using simulation. Guo showed that allowing for state

dependence and consumption flexibility due to preference uncertainty fits the scanner panel

data better than nested models, and that consumers make consistent multi-item purchase

overtime. Fox et al. (2017) used dynamic programming to determine the optimal consump-

tion policy and the maximum expected value of consuming any n substitutable products

selected while shopping (an n-pack). They proposed a canonical model and a generalized

model, the later one involves outside option so that an alternative need not be consumed on

each consumption occasion.
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Planning and management of retail assortment (product variety) have enjoyed substantial

research attention from several different angles. The majority of the papers that study

assortment decisions assume that each consumer buys at most one product at a store visit.

A growing body of work explores relevant operational concerns such as inventory (Aydin

and Ryan (2000), Gaur and Honhon (2006), Maddah and Bish (2007), Smith and Agrawal

(2000), van Ryzin and Mahajan (1999)), delivery leadtime (Alptekinog? lu and Corbett

2010), substitution upon stockout (Honhon et al. (2010)), and modularity in product design

(Hopp and Xu (2005)). Another line of research tackles strategic and competitive aspects

such as entry deterrence (Bayus and Putsis (1999)), competitive implications of consumer

search (Cachon et al. (2008)), basket-shopping behavior (Cachon and Kök (2007)), brand

preference (Kök and Xu (2011)), product satiation (Caro and Martnez-de-Albniz (2012)),

and mass customization (Alptekinoǧlu and Corbett (2008)). There are few papers which

study assortment based on multi-item purchasing customers. One of these is Cachon and

Kök (2007) which studies basket shopping behavior across product categories. In this paper,

it is assumed that the customer purchase at most one item from each product category

considered. This is different from our paper since we study the assortment planning for one

product category where customers come to buy multiple item from the category.

2.3 Model

We consider a retailer who selects products to offer in a given product category. Let M =

{1, ...,M} denote the set of possible product alternatives to offer and let S ⊆ M be the

assortment chosen by the retailer. All product alternatives in the category are sold at a

price p and purchased from a supplier at a cost c. Let Dj(S) denote the expected demand

for product j given assortment S and let ~D(S) = (D1(S), ..., DM(S)) denote the vector of

expected demand values. We assume that the retailer incurs inventory holding costs which

are captured by a concave function of expected demand as modeled by ?. Specifically, we
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assume that total expected inventory costs are equal to σ
∑

j∈S [Dj(S)]η where σ ≥ 0 and

η ∈ (0, 1]. The retailer’s expected profit is denoted by Π(S) = π( ~D(S)). The retailer’s

problem is:

max
S⊆{1,...,M}

Π(S) = π( ~D(S)) =
∑
j∈S

(p− c)Dj(S)− σ
∑
j∈S

[Dj(S)]η (2.1)

It is easy to verify that total expected profit is convex in Dj(S) for j ∈ S and increasing

in Dj(S) for Dj(S) ≥ D =
(
p−c
ση

)1/(η−1)

. For most practical problems, we have p − c > σ

which implies that D is a very small quantity; in what follows, we assume that the demand

for each product is always greater or equal than D so that the retailer’s profit is convex

increasing in the demand for each product included in the assortment.

Note that, when η = 1, total expected inventory costs increase linearly with total demand∑
j∈S Dj(S) so that the retailer’s problem amounts to a market share maximization problem.

In contrast, when η < 1, the retailer experiences economies of scale in inventory costs due to a

pooling effect: for example, an expected demand value of 100 for a single product alternative

costs less in inventory costs than two expected demand values of 50 for two distinct product

alternatives. The retailer therefore has an incentive to capture demand with as few products

as possible in her assortment.

Consumers may buy more than one product from the product category; as in Fox et al.

(2017) we refer to the basket of products purchased by a consumer as an n-pack where n

is the total number of units which are purchased. We assume that all consumers in the

population buy the same size basket but that the composition of the n-pack differs from

consumer to consumer; an n-pack may contain multiple different product alternatives with

one or more units of each kind. Let λ denote the size of the consumer population.

We use the consumer choice model developed by Fox et al. (2017). Specifically, let Uj

denote the utility parameter from consuming product alternative j for j ∈M. Without loss

of generality we assume that the product alternatives are ordered such that U1 ≥ U2 ≥ ... ≥
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UM . The actual utility that consumer i receives from product alternative j is given by Uj+εij

where the random error terms εij are independent and assumed to have a standard Gumbel

distribution with cumulative distribution function F (x) = exp(−e−x/µ−γ), where γ is Euler’s

constant (approximately equal to 0.5772). This distribution has a mean equal to zero so that

the expected utility from product alternative j is equal to Uj. An n-pack is represented by a

(M × 1) vector ~k = (k1, ..., kM) where kj denotes the number of units of product alternative

j, so that kj ∈ {0, 1, ..., n} and k1 + ... + kM = n. Let V (k1, ..., kM) measure the expected

utility or value received by the consumer from consuming the n-pack over a period of time

consisting of n staggered consumption occasions. As shown in Fox et al. (2017), this value

is calculated assuming the consumer is forward-looking in his consumption decisions. This

means that he uses dynamic programming to optimize which product to consume at each

consumption occasion, taking into account both his immediate utility and future expected

utility. Fox et al. (2017) show that V can be calculated as follows:

V (k1, ..., kM) = ln

((
M∑
j=1

kj

)
!

)
− ln ((k1)!(k2!)...(kM)!) + k1U1 + ...+ kMUM (2.2)

As argued by Fox et al. (2017), the first term in this expression reflects “the additional

expected utility of having the freedom to consume products in whatever order one chooses”

which they refer to as a choice premium. For a given n, the term ln
((∑M

j=1 kj

)
!
)

= ln(n!)

is a constant effect associated with the pack size and the term ln(k1! . . . kM !) reflects the

impact of variety and inventory on consumers’ utility from consuming the n-pack. When n

is fixed, the choice premium is minimized (and equal to zero) when it contains n units of

the same product alternative and is maximized when the quantities are evenly distributed

between the available products (as much as possible given the integrality constraints).

If they buy from the retailer, consumers may only buy products which are offered in

the her assortment, therefore, given an assortment S, the ~k vectors must satisfy kj = 0 for

j /∈ S. Let Kn(S) denote the set of all n-packs which satisfy this condition given n and S,
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i.e., Kn(S) = {~k : kj = 0 for j /∈ S and k1 + ...+ kM = n}. The number of possible n-packs

given n and S is equal to
((|S|

n

))
=
(|S|+n−1

n

)
= (|S|+n−1)!

n!(|S|−1)!
, where |S| denotes the size of set S.

We assume that consumers face an outside option with attractiveness V0, which represents

the consumers’ expected utility from not buying from the retailer’s assortment. Let P n(~k, S)

denote the probability of an n-pack consumer picking the n-pack ~k given assortment S.

Maximum choice rule Under the maximum choice rule, each n-pack consumer picks

(with probability 1) the n-pack which yields for him the highest expected utility, provided

the expected utility it gives him which is higher than that of the outside option. Let ~k∗n(S) =

(k∗n1 (S), . . . , k∗nM (S)) be the n-pack which generates maximum expected value among all the

n-pack’s in Kn(S), that is ~k∗n(S) = arg max
~k∈Kn(S)

V (~k). In the rest of this paper, we will call

~k∗n(S) the maximum-value n-pack. We have:

P n(~k, S) =

 1 for ~k = ~k∗n(S).

0 otw.

Under the maximum choice rule, the demand for product j ∈ S simplifies to:

Dj(S) = λ1(V (~k∗n(S)) ≥ V0)k∗nj (S) (2.3)

where 1(E) is the indicator function for event E.

Probabilistic choice rule Under the probabilistic choice rule, we assume that each con-

sumer chooses a specific n-pack with a probability equal to the ratio of its value to the value

of al possible n-packs and the outside option. Specifically, the probability of choosing n-pack

~̂k = (k̂1, ..., k̂M) is P n(~̂k, S) which is given by

P n(~̂k, S) =


V (~̂k)∑

~k∈Kn(S)
V (~k)+V0

for ~k ∈ Kn(S).

0 otw.

(2.4)
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Accordingly, each consumer chooses the outside option with probability V0∑
~k∈Kn(S)

V (~k)+V0
.

This choice rule is inspired by the attraction models such as the classic Multinomial Logit

(MNL) model.

We summarize our notation in Table 2.1.

Table 2.1. Notation Table

Notation Definition Notation Definition
M set of possible products M number of possible products
n pack size S assortment
λ population size p selling price
c purchasing cost σ inventory cost multiplier
η inventory cost power Uj utility of product j
γ Euler’s constant V0 utility of outside option
~k n-pack vector ~k∗n(S) maximum-value n-pack
V value of n-pack V ∗n value from the maximum-value n-pack

Kn(S) set of possible n-packs Pn(~k, S) purchase probability for n-pack ~k

Dj(S) demand for product j given S ~D(S) demand vector

Π(S) profit function for assortment S π( ~D(S)) profit function for demand vector ~D(S)

The following example illustrates the differences between the two choice rules.

Example 2.3.1. Let M = 3, V0 = 3, U1 = 2, U2 = 1.2 and U3 = 1, σ = 1, η = 0.8, p−c = 10

and λ = 100. Suppose the retailer chooses S = {1, 2}. Table 2.2 presents the possible n-

packs and their corresponding value for n = 1, 2 and 3. Interestingly, when n = 3, n-pack

(2,1,0) provides greater value than 3-pack (3, 0, 0) thanks to the choice premium: consumers

receive extra utility from consuming different product alternatives, even if it means buying

a unit of product with a lower utility, i.e., product 2 instead of product 1. Table 2.3 shows

the demand for each product, total demand and retailer’s profit under the two choice rules

when n = 1, n = 2 and n = 3.

Under probabilistic choice rule, we see that all the products in the assortment always

have positive expected demand. In contrast, under maximum choice rule, a product offered

in the assortment can receive zero demand and total expected demand for the assortment
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Table 2.2. Value of n-packs (maximum-value n-packs in bold characters)

~k V (~k)

n = 1
(1,0,0) 2
(0,1,0) 1.2

n = 2
(2,0,0) 4
(1,1,0) 3.90
(0,2,0) 2.4

n = 3

(3,0,0) 6
(2,1,0) 6.30
(1,2,0) 5.50
(0,3,0) 3.6

Table 2.3. Consumer choice under the probabilistic and maximum choice rules

Probabilistic Choice Rule Maximum Choice Rule

Demand Vector
Total Retailer

Demand Vector
Total Retailer

Demand Profit Demand Profit
n = 1 (32.26, 19.35, 0) 51.61 489.32 (0, 0, 0) 0 0
n = 2 (89.47, 65.40, 0) 154.86 1483.88 (200, 0, 0) 200 1930.69
n = 3 (147.95, 115.16, 0) 23.11 2532.07 (200, 100, 0) 300.00 2890.88

can be zero when the maximum-value n-pack does not provide more value than the outside

option (as is the case when n = 1).

2.3.1 Model discussion

In this section we discuss our main modeling assumptions.

The two choice rules we consider should be viewed as two theoretical extremes on the

likely spectrum of consumer behavior. Under the probabilistic choice rule, all possible n-

pack vectors in Kn(S) get a positive probability of being purchased, with higher value n-

packs receiving a higher probability of purchase. This case captures heterogeneity in the

consumer population and can also explain why in practice the same consumer may purchase

different sets of products when faced with the same assortment on successive store visits. In

contrast, under the maximum choice rule, only the maximum-value n-pack can be purchased
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by consumers so that product demand is deterministic with all consumers making the same

choice from the offered assortment.

In our base model, we have assumed that all consumers buy the same size pack. This

simplification of reality allows us to focus on the impact of consumers’ shopping basket

behavior on a retailer’s profits. The chosen n-pack varies with the retailer’s assortment in a

non-trivial way as illustrated with Example 3.4 above: consumers do not necessarily purchase

n units of product with the highest utility. This makes the assortment decision a challenging

one to solve, even when n is fixed. Note that, while we assume consumer homogeneity in

pack size, our model captures consumer heterogeneity in choice under the probabilistic rule

as argued above.

Finally note that we have assumed that the pack size is exogenous to our model and

independent of the chosen assortment. In practice, consumers may be led to buy more units

of the product by some promotion or an enticing product display. Ultimately the decision

of how many products to purchase depends on a consumer’s budget, consumption habits,

household size, store visit frequency, etc. We abstract from these interesting aspects of the

problem in our model so as to focus our attention on the connection between assortment

planning and shopping basket size.

2.4 Results

We divide our results into three sections. In §2.4.1 we develop properties of the choice

model, more specifically, we provide structural insights on the maximum-value n-pack and

corresponding maximum value given a fixed assortment offered by the retailer. In §2.4.2,

we study properties of the product demand functions given a fixed assortment and given a

consumer choice rule. Finally, in §2.4.3 we consider the assortment optimization problem

and provide structural results on the optimal set of products to offer under the probabilistic

and maximum choice rules.
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2.4.1 Properties of the choice model

In this subsection we present properties of the n-pack choice model as developed by Fox

et al. (2017). We focus on the dimensions which are relevant for our analysis and refer the

reader to Fox et al. (2017) for more details about the model and its derivation.

Our first result is regarding the structure of the maximum-value n-pack vector.

Lemma 1. The maximum-value n-pack ~k∗n(S) is such that k∗i ≥ k∗j for i, j ∈ S with Ui ≥ Uj

for all n.

Given that we have assumed products are ordered such that U1 ≥ U2 ≥ ... ≥ UM , this

result implies that the maximum-value n-pack is a vector with non-increasing numbers if one

ignores the zero values for products which are not included in S. Note that a similar result

was noted by Fox et al. (2017) for the special case of S = {1, ...,M} (see their Theorem

4(ii)).

Let ~ej be a vector of size M where all components are equal to zero except the j-th

component which is equal to 1. Theorem 4 in Fox et al. (2017) establishes that finding the

optimal ~k∗n can be done using a greedy procedure as follows:

Algorithm 1 Greedy Algorithm for n-Pack Product Selection

• for j = 1, we have ~k∗1 = (1, 0, ...0).

• for j = 2→ n, ~k∗j = ~k∗j−1+~ej such that j = arg max
i=1,...,M

V (~k∗j−1+~ei) = arg max
i=1,...,M

{Ui−

ln(k∗j−1
i + 1)}.

Our next result is regarding the change in the maximum-value n-pack when a product is

added to the assortment or when a low-utility product in the assortment is replaced with a

high-utility product. In either case, the quantity purchased of the existing products decreases

or stays the same.
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Lemma 2. Consider assortment S ⊆M. (i) Given i /∈ S, we have k∗nl (S∪{i}) ≤ k∗nl (S) for

all l ∈ S. (ii) Given j ∈ S and i /∈ S such that Ui ≥ Uj, we have k∗ni (S \ {j} ∪ {i}) ≥ k∗nj (S)

and k∗nl (S \ {j} ∪ {i}) ≤ k∗nl (S) for all l ∈ S, l 6= j.

To illustrate Lemma 2 (ii), suppose that S = {1, 3}. What the result says is that, if

product 3 is replaced with product 2 which is more popular, customers buying the maximum-

value n-pack will buy at least more units of product 2 than they were previously buying of

product 3 and cannot buy more units of product 1. In particular, if they buy the same

quantity of product 2 as they were buying of product 3, then the quantity of product 1 they

buy will remain the same.

Let V ∗n(S) = V (~k∗n) be the value from the maximum-value n-pack, which we refer to

as the n-pack maximum value. In Proposition 1 we show that V ∗n(S) increases as (i) n gets

larger, (ii) products are added to the assortment, and (iii) a lower-utility alternative in the

assortment is replaced with a higher-utility alternative.

Proposition 1. Consider assortment S ⊆ M. (i) V ∗n(S) is strictly increasing in n. (ii)

Given Ŝ ⊂ S, we have V ∗n(Ŝ) ≤ V ∗n(S). (iii) Given j ∈ S and i /∈ S such that Ui ≥ Uj, we

have V ∗n(S) ≤ V ∗n(S\{j} ∪ {i}).

From Proposition 1 (ii), it follows that all consumers derive the most value when the

retailer chooses to offer all potential product alternatives, that is, when S = M. However,

since the retailer experiences economies of scale in the cost of offering products alternatives,

she may choose a smaller assortment which yields a higher profit, as shown in §2.4.3.

2.4.2 Properties of the demand functions

We now explore properties of the expected demand for individual products and of the to-

tal expected demand under the maximum and probabilistic choice rules. Unless otherwise

stated, our results below apply to both choice rules.
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Our first result analyzes the impact on total demand when a product is added to the

assortment or when a lower utility product in the assortment is replaced with a higher utility

product. In either case, total expected demand increases. Also we show that total expected

demand is a nondecreasing function of the utility of each product in the assortment.

Lemma 3. Consider S ⊂M. (i) Given i /∈ S, we have
∑

l∈S Dl(S) ≤
∑

l∈S∪{i}Dl(S ∪ {i}).

(ii) Given j ∈ S and i /∈ S such that Ui ≥ Uj,
∑

l∈S\{j}∪{i}Dl(S \ {j} ∪ {i}) ≥
∑

l∈S Dl(S).

(iii) Under probabilistic choice rule,
∑

l∈S Dl(S) is nondecreasing and concave in Uj for all

j ∈ S (iv) Under maximum choice rule, for all j ∈ S there exists a threshold U j such that∑
l∈S Dl(S) = 0 for Uj < U j and nλ otherwise.

Note that, under maximum choice rule, there are only two extreme situations: either all

consumers make a purchase or no one does. Specifically, the total expected demand is equal

to zero if the maximum value n-pack does not bring a value which is greater than that of

the outside option; otherwise the total expected demand is equal to nλ, which is the pack

size multiplied by the market size. In contrast, under probabilistic choice rule, it is never

possible to capture the entire market as there is a positive probability that consumers will

choose the outside option (provided its utility V0 is positive).

Next we explore properties of the expected demand for each product offered in the as-

sortment. First we show that products with a large expected utility receive a larger expected

demand.

Lemma 4. Given assortment S ⊆M and i, j ∈ S, if Ui ≥ Uj, then we have Di(S) ≥ Dj(S).

A well-known property of random utility choice models (RUM) is what we refer to as the

“new product demand stealing” property: for a fixed market size, when a product is added

to an assortment, the demand for existing products in the assortment cannot increase (see

for example van Ryzin and Mahajan (1999), Gallego et al. (2014), Feng et al. (2017) and
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Jagabathula and Rusmevichientong (2016))2. We show that this property does not always

hold in our setting when customers buy multiple units of the products on the same purchase

occasion.

Example 2.4.1. Let M = 2, U1 = 0.6, U2 = 0, V0 = 2, λ = 100 and n = 3. If the retailer

offers only product 1, then the maximum-value n-pack is (3, 0) with value V ∗ = 1.8. When

she offers both products, the maximum-value n-pack is (2, 1) which gives value V ∗ = 2.3. The

purchasing probability and demands for assortment {1} and {1, 2} are respectively shown in

Table 2.4 and Table 2.5.

Table 2.4. Purchase probabilities of n-packs in Example 2.4.1

Assortment n-packs Value
Purchase probability of n-packs

Maximum rule Probabilistic rule
{1} (3,0) 1.80 0 0.44

{1, 2}

(3,0) 1.80 0 0.22
(2,1) 2.30 1 0.28
(1,2) 1.70 0 0.21
(0,3) 0 0 0

Table 2.5. Products demands in Example 2.4.1

Assortment
Demand vector

Maximum rule Probabilistic rule
{1} (0,0) (142.11,0)
{1, 2} (200,100) (150,73.05)

Under maximum choice rule, offering only product 1 leads to zero demand since the

utility of the outside option is greater than the maximum value. However, offering both

products lead to a demand vector of (200, 100) since the maximum value is higher than that

2One exception is Wang (2017) which shows the “new product demand stealing” property does not hold
for MNL model when assuming that the market size is affected by the assortment planning and pricing
strategy and the market expansion effect is sufficiently strong.
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of the outside option. Hence we see that adding product 2 increases the demand for product

1 from zero to 200.

Under probabilistic choice rule, offering only product 1 gives a demand of 142.11. With

both products offered, the vector of product demand is (150.00, 73.05). In other words adding

product 2 increases the demand for product 1 from 141.11 to 150.00.

Hence we see that, unlike with RUM models, adding a new product to the assortment may

increase demand for the existing products in our model. Under maximum rule, this happens

when adding the new product increases the maximum value V ∗ from consuming an n-pack

past the utility of the outside option. Under the probabilistic choice rule, the demand for

existing products may increase because adding the new product creates new possible n-packs

which combine the new product with the existing ones. It is noteworthy that new product

demand stealing property of RUM models does not hold in our setting under probabilistic

choice rule given that it mimics the MNL model (which is a RUM model) by assigning n-pack

purchasing probability proportionally to their value (as previously discussed the MNL model

is a special case of our model with probabilistic choice rule obtained when n = 1). Further,

note that the new product in Example 2.4.1 (Product 2) has zero expected utility. This is

another notable difference between our model and the MNL model: under both maximum

rule and probabilistic rule, a zero-expected utility product can receive a positive demand

and its addition to the assortment generally affects the demand for existing products. In

contrast, in the MNL model, zero-expected-utility products always have zero demand and

adding them to the assortment does not impact the demand for existing products. Under

the probabilistic rule, this is due to the fact that the added product expands the list of

possible n-packs to choose from. All these n-packs (except for the one which includes only

the new product with zero expected utility) get a positive purchase probability which results

in a positive demand for the zero-expected-utility product and impacts the demand for the

existing products. And under the maximum choice rule, this happens if it is beneficial to
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purchase some zero-expected-utility product in the n-pack in order to gain higher value from

the choice premium.

Our next lemma establishes that the new product demand stealing property holds under

maximum choice rule if the existing assortment already captures the entire market. Specifi-

cally, adding a new product or replacing a lower-utility product with a higher-utility product

weakly decreases the expected demand for existing products.

Lemma 5. Consider assortment S ⊂ M such that
∑

l∈S Dl(S) = λn. Under maximum

choice rule, (i) given i /∈ S, Dl(S ∪ {i}) ≤ Dl(S) for all l ∈ S (ii) given j ∈ S and i /∈ S such

that Ui ≥ Uj, Dl(S \ {j} ∪ {i}) ≤ Dl(S) for all l ∈ S, l 6= j.

2.4.3 Assortment optimization

In this section we present properties of the optimal assortment under maximum and proba-

bilistic choice rules. The first set of results apply to both choice rules then we present more

advanced results which are specific to each rule.

In the previous section we saw that adding a new product and replacing a product with

a more popular product alternative always increases total demand (Lemmas 3 and 22). It

does not, however necessarily increase total profits for the retailer as profit depends on the

breakdown of demand between the products due to the concave inventory costs. As a result,

the optimal assortment may not have a simple structure.

We say that assortment S ⊆ M is a popular assortment if it contains a certain

number of the products with the highest popularity value, i.e., if it is of the type {1, · · · , j}

for j ∈ {1, ...,M} (such sets are also considered in ?,Cachon et al. (2005) and Bernstein et al.

(2011)). Let P denote the set of popular assortments, that is P = {{1, ..., j}, j = 1, ...,M}.

But first we consider the case where the retailer’s objective is to maximize total demand,

a.k.a. total market share, i.e.,
∑M

j=1 Dj(S). Note that this case is equivalent to setting η = 1
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in (2.1), since, in that case, Π(S) = (p− c− σ)
∑

j∈S Dj(S), that is, total profit is linear in

total demand.

Proposition 2. Suppose the retailer wishes to maximize total market share. Under the

absence of constraint on the size of the assortment, it is optimal to offer every possible

product alternative, i.e., S∗ = {1, . . . ,M}. If the size of the assortment is constrained to be

at most m ∈ {1, . . . ,M}, that is |S| ≤ m, then the optimal assortment is the popular set

{1, ...,m}.

Proof. The first part of the result follows directly from Lemma 3 as adding extra product

alternatives always increases total market share, hence S∗ = {1, . . . ,M} must be optimal.

The second part follows from Lemma 3 because the total demand can be increased by

replacing a lower-utility product with a higher-utility product.

In contrast, when the retailer has strictly concave inventory costs, that is η < 1, the

optimal assortment usually has a different structure. In particular, it may be optimal not to

offer all possible products and the optimal assortment may not be a popular set, as examples

2.4.2 and 2.4.3 in the following two sub-sections illustrate.

Our next result is to show that it is always optimal to offer the most popular product,

i.e., product 1, in the optimal assortment.

Proposition 3. If the product category is profitable, there always exists an optimal assort-

ment S∗ which includes the most popular product, {1} ⊆ S∗.

We prove the result by showing that, if the assortment does not include the most popular

product, replacing its highest utility product with product 1 increases total expected demand

and reduce inventory costs as demand gets distributed between the products in a more uneven

fashion. Note, however, that adding product 1 to an existing assortment may not always

increase the retailer’s profit as it may increase inventory costs despite an increase in total

expected demand.
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Assortment optimization under the probabilistic choice rule

In order to establish the structure of the optimal assortment we first provide a result on the

retailer’s incremental profit from adding a new product to the assortment. Let Π(S ∪ {i})

be the profit of the retailer obtained by adding product i ∈M \ S to assortment S.

Lemma 6. Under the probabilistic choice rule, Π(S∪{i}) is quasiconvex in Ui for all n ∈ N+.

Note that Lemma 6 is similar to Lemma 1 from van Ryzin and Mahajan (1999).

We present the following definition which is based on the terminology used by Alptekinoğlu

and Grasas (2014) in the context of assortment planning with consumer returns.

Definition 1. We say that assortment S ⊆ M is a popular-eccentric assortment if it

contains a certain number of the products with the highest utilities and a certain number of

the products with the lowest utilities. Let E denote the set of popular-eccentric assortments,

that is E = {S : S = {1, . . . , h,M − r, . . . ,M − 1,M} where 0 ≤ h ≤M, − 1 ≤ r ≤M − h}.

Note that, when r = −1, S = {1, ..., h} which is a popular assortment; in other words,

popular assortments are special cases of popular-eccentric assortments by our definitions.

We say a set is a strict popular-eccentric assortment if it is popular-eccentric but not

popular. For example, if M = 4, {1, 2} is a popular assortment and therefore also a popular-

eccentric assortment; {1, 4} and {3, 4} are strict popular-eccentric assortments and {1, 3} is

neither.

Proposition 4. Under the probabilistic choice rule, there always exists an optimal assort-

ment S∗ which is a popular-eccentric set. If n = 1, there exists an optimal assortment which

is a popular set.

Practically speaking, Proposition 4 speeds up the search for the optimal assortment as

one only needs to consider popular-eccentric sets of which there are M2+M+2
2

. Compared to

the total of 2M assortments, this leads to very significant time savings when M is large.
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In the special case where all consumers buy at most one unit of product, that is, when

n = 1, our model is mathematically equivalent to the MNL model for which ? prove the

optimality of popular sets. The reason why the optimal assortment may not be an popular

set when consumers buy packs of size larger than 1 is because adding a product with zero

expected utility may impact the demand for existing products as we discussed in the previous

section. As a result the retailer’s profit may increase when a zero-expected utility product

is added to the assortment, i.e. we may have Π(S ∪ {i}) ≥ Π(S) even if Ui = 0. Given

that the profit function is quasiconvex in the expected utility of a newly added product, it

is therefore possible that the highest increase in expected profit is obtained when adding the

product with the lowest expected utility. In contrast, in the MNL model, we always have

Π(S∪{i}) = Π(S) if Ui = 0 so either it is optimal to not add any product to the assortment,

or it is optimal to add the product with the expected utility.

Other papers have identified settings wherein popular sets fail to be optimal: Alptekinoğlu

and Grasas (2014) show that there can exists a popular-eccentric set which is optimal when

retailer considers customer returns. Wang and Sahin (2017) numerically show that the

optimal assortment can consist of only the least popular products when consumers have a

search cost and make choices according to a two-stage consider-then-choose policy. ? also

provide an numerical example where the optimal assortment includes several most popular

and least popular products when the cardinality of the assortment is constrained.

We now provide an example where the optimal assortment under probabilistic choice rule

is a popular-eccentric set but not a popular set.

Example 2.4.2. Let M = 3, n = 8, λ = 100, p − c = 5, σ = 4.5, η = 0.9, U =

(3, 0.6, 0.1), V0 = 2. The optimal assortment under the probabilistic choice rule S∗ = {1, 3},

which is a popular-eccentric set but not a popular set. Table 2.6 compares total demand

and profits for three of the possible assortments.
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Table 2.6. Comparison of assortments under probabilistic choice rule.

assortment Product demand Total demand Total profits
S Prod 1 Prod 2 Prod 3
{1} 738.46 0 0 738.46 1975.56
{1, 2} 487.90 301.76 0 789.66 1998.85
{1, 3} 521.41 0 266.88 788.29 1999.48

Comparing assortments {1, 2} and {1, 3}, we see that {1, 2} yields a higher total demand

but lower profits. This is because, due to the concave inventory costs, profits is generally

higher when the demand for products is more “uneven”. When product 3 is added to an

assortment with only product 1, it “steals” less of the demand from product 1 than product 2

would, resulting a more uneven expected demand vector and therefore higher total expected

profits.

Proposition 5. Under the probabilistic choice rule, if the size of the assortment is con-

strained to be equal to m ∈ {1, . . . ,M}, that is |S| = m, then there exists an optimal

assortment which is a popular-eccentric set.

Proof. This result follows directly from Lemma 6.

Assortment optimization under the maximum choice rule

We start by showing with an example that the optimal assortment under maximum choice

rule may not be an popular-eccentric set.

Example 2.4.3. Let M = 4, n = 4, λ = 10, p − c = 10, σ = 9, η = 0.5, U =

(1.6, 1.5, 1, 0.7), V0 = 7. The optimal assortment under the maximum choice rule S∗ = {1, 3},

which is not a popular-eccentric set. Table 2.7 compares total demand and profits for four

of the possible assortments.

Offering only product 1 leads to zero profits as the best 4-pack does not provide more

expected utility than the outside option. When the assortment is {1, 2}, the expected-utility-

maximizing 4-pack contains 2 units of each product so that consumer demand is evenly split
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Table 2.7. Comparison of assortments under maximum choice rule in Example 2.4.3.

Assortment ~k∗4(S) V ∗4(S)
Product demand Total Total

S Prod 1 Prod 2 Prod 3 Prod 4 demand profits
{1} (4, 0, 0, 0) 6.4 0 0 0 0 0 0
{1, 2} (2, 2, 0, 0) 7.99 20 20 0 0 40 319.50
{1, 3} (3, 0, 1, 0) 7.19 30 0 10 0 40 322.24
{1, 4} (3, 0, 0, 1) 6.89 0 0 0 0 0 0

between the two products and equal to 40 in total. In contrast, when the assortment is

{1, 3}, the expected-utility-maximizing 4-packs contains 3 units of product 1 and one unit of

product 3, so that the total demand of 40 consumers now divides into 30 for product 1 and 10

for product 2. This uneven split leads to higher profit because of the concave inventory cost.

Finally assortment {1, 4} also leads to zero profits because the best 4-pack, which includes

3 units of product 1 and one unit of product 4, does not provide more expected utility than

the outside option.

So in general the optimal assortment under maximum choice rule does not have any

specific structure other than the fact that it must include the most popular product by

Proposition 3 and that the variety is not larger than n.

Lemma 7. Under the maximum choice rule, there exists an optimal assortment which has

a variety equal to or less than n, i.e. |S∗| ≤ n.

Proof. Let S ⊆M be an assortment such that |S| > n. Let S ′ be such that for all l ∈ S ′ we

have k∗nl (S) ≥ 1. Thus we have: S ′ ⊂ S, |S ′| ≤ n and ~k∗n(S) = ~k∗n(S ′). Further we have

Dl(S
′) = λ1(V (k∗n(S ′) ≥ V0))k∗nl (S ′) = λ1(V (k∗n(S) ≥ V0))k∗nl (S) = Dl(S) for all l ∈ S ′,

and Dl(S) = 0 for all l ∈ S \ S ′, which implies Π(S ′) = Π(S). Therefore, for all assortment

S which has a variety larger than n, there always exists an assortment with variety less than

n and generating same expected profit as S.
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The following result provides a sufficient condition for the optimal assortment under

maximum choice rule to be composed only of the most popular product. When this condition

is satisfied, all consumers buy the product so that the entire market is captured with only

one product.

Proposition 6. If nU1 > V0 then offering only product 1 is optimal i.e., S∗ = {1} under

the maximum choice rule.

2.5 The Importance of the Choice Premium

As argued by Fox et al. (2017), an important driver of consumer choice is the so-called choice

premium in (2.2) which comes from buying distinct product alternatives in an n-pack. As

Fox et al. (2017) point out: “The logarithmic terms ln(n!)− ln ((k1)!(k2)! . . . (kM)!) together

reflects the additional expected utility of having the freedom to consume products in whatever

order one chooses [...] The term ln(n!) captures the effect of an n-pack’s size while the term

− ln ((k1)!(k2)! . . . (kM)!) captures the effects of both variety and inventory.” In this section

we study what happens when the retailer ignores this choice premium, that is, assumes that

consumer choice is only driven by the utility parameters of the products. Mathematically,

the retailer assumes that the expected utility received by the consumer from consuming the

n-pack ~k = (k1, . . . , kM) is given by V I which is equal to:

V I(k1, ..., kM) = k1U1 + ...+ kMUM (2.5)

Compared to (2.2), the first term, i.e., the choice premium ln
((∑M

j=1 kj

)
!
)
−ln ((k1)!(k2)! . . . (kM)!),

is missing.

In the absence of choice premium, having distinct products in an n-pack does not bring

additional value to the consumer compared to having only one kind, thus the expected utility

of an n-pack consumer is maximized from the pack which includes n units of the highest

utility product alternative in S, as stated formally in the Lemma 8:
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Lemma 8. In the absence of choice premium, the maximum-value n-pack ~k∗n(S) for all

n ∈ N+ and S ⊆M is such that k∗nlmax
= n for lmax = arg maxi∈S Ui and k∗nl = 0 for l 6= lmax.

Further, V ∗n(S) = nUlmax .

2.5.1 Ignoring the choice premium under maximum choice rule

Using Lemma 8, we show that, in the absence of choice premium, any assortment which

includes a product that provides more utility than the outside option when consumed in a

pure n-pack is optimal under maximum choice rule.

Proposition 7. In the absence of choice premium, under maximum choice rule, any S such

that there exists j ∈ S with nUj ≥ V0 is optimal. If nU1 < V0, then offering nothing is

optimal.

Proof. Under maximum choice rule, either all consumers buy an n-pack or none of them

do. As a result the total demand for a given assortment is either nλ ≡ D or 0. Consider

assortment S such that there exists j ∈ S with nUj ≥ V0. Let lmax = argmax
l∈S

Ul. According

to Lemma 8, the total demand for assortment S is
∑

l∈S Dl = Dlmax(S) = λn1(nUlmax ≥

V0) = nλ. Then we have ~D(S) = (0, . . . , D, . . . , 0) � ~D(S ′) for all S ′ ⊆M. Therefore, from

Lemma 23, S must achieve maximum profit.

On the other hand, if nUl ≤ V0 for all l ∈ M, then the total demand
∑

l∈S Dl(S) =

Dlmax(S) = λn1(nUlmax ≥ V0) = 0 for all S ⊆ M by Lemma 8, which implies it is optimal

to offer nothing.

In particular, when nU1 ≥ V0, offering only the most popular product, i.e., S = {1},

achieves maximum expected profit for the retailer.

The following result shows that ignoring the choice premium when consumers choose

according to the maximum choice rule can lead to a 100% optimality gap, calculated as

OG =
Π(S∗)−Π(S∗I )

Π(S∗)
when Π(S∗) > 0, where S∗ and S∗I denote an optimal assortment with
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and without choice premium respectively, and the profit Π is calculated assuming maximum

choice rule with choice premium.

Proposition 8. Under maximum choice rule, the optimality gap from ignoring the choice

premium is 0 if nU1 ≥ V0, otherwise it is either 0 or 1.

Proof. By Proposition 6, we know that, if nU1 ≥ V0 then S∗ = {1} is optimal with choice

premium. By Proposition 7 it is also optimal without choice premium. Hence, in this case,

OG = 0. On the other hand, if nU1 < V0, then offering {1} leads to zero profit because the

expected utility of the n-pack (n, 0, ..., 0) is less than that of the outside option. Yet, due

to the choice premium, it is possible that V ∗n(S∗) ≥ V0 > nU1. In this case, the optimal

expected profit with choice premium is positive, leading to a 100% optimality gap; otherwise

the optimal expected profit is zero and so is the optimality gap.

Below is an example where the optimality gap from ignoring the choice premium under

the maximum choice rule is equal to 100%.

Example 2.5.1. Let λ = 10, n = 3, p − c = 10, σ = 8, η = 0.5, M = 2, U = (1.5, 1)

and V0 = 5. Table 2.8 compares the expected profit from each possible assortment when the

retailer considers and ignores the choice premium.

Table 2.8. Maximum-value 3-Pack and Expected Profit (V0 = 5)

Considering Choice Premium Ignoring Choice Premium
Maximum-value 3-Pack Value Profit Maximum-value 3-Pack Value Profit

{1} (3,0) 4.5 0 (3,0) 4.5 0
{2} (0,3) 3 0 (0,3) 3 0
{1, 2} (2,1) 5.1 238.92 (3,0) 4.5 0

Because we have nU1 = 4.5 < V0 = 5, the retailer who ignores choice premium decides

not to offer any product as she believes that no customer can get more expected value than

with the outside option. However, if the retailer considers choice premium, she realizes that
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consumers will buy the (2, 1) 3-pack from assortment {1, 2} because, thanks to the choice

premium, it has a value of 5.1 greater than that of outside option. As a result, the optimality

gap which results from ignoring the choice premium is 100%.

In other words, under maximum choice rule, it is possible that ignoring the choice pre-

mium means underestimating consumers’ expected utility and concluding that it is impossi-

ble to make money when in fact the product category is profitable if one considers the choice

premium.

2.5.2 Ignoring the choice premium under probabilistic choice rule

Under the probabilistic choice rule, we are able to show that the optimal assortment for a

retailer who ignores the consumers’ choice premium is a popular-eccentric assortment, as is

the case with choice premium (as shown in Proposition 4).

Proposition 9. In the absence of choice premium, under the probabilistic choice rule, there

exists an optimal assortment which is a popular-eccentric assortment and includes product

1.

Proposition 9 implies that under probabilistic rule the optimal assortment without choice

premium has the same structure as the optimal assortment with choice premium. However,

the following example shows that optimal assortment in the with or without choice premium

may not be the same.

Example 2.5.2. Let λ = 10, n = 8, p− c = 20, σ = 19, η = 0.9, M = 3 and U = (1.5, 1, 0).

Table 2.9 lists the optimal assortments for V0 ∈ {1.5, 1.7, 8.9}. As is shown, it is optimal

to offer assortment {1, 2} across all the three values of V0 when the retailer considers the

choice premium. However the optimal assortment varies with V0 when the choice premium

is ignored: the retailer chooses to offer a smaller assortment (i.e., {1}) when V0 = 1.5 and
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a larger size assortment (i.e., {1, 2, 3}) when V0 = 8.9. Interestingly, when V0 = 1.7, the

(unique) optimal assortments in the two cases have the same size but consist of different

products: the one when choice premium ignored is the popular-eccentric assortment {1, 3}.

Table 2.9. Optimal Assortment Comparison under Probabilistic Choice Rule in Example
2.5.2

Optimal assortment
V0 Considering Choice Premium Ignoring Choice Premium
1.5 {1, 2} {1}
1.7 {1, 2} {1, 3}
8.9 {1, 2} {1, 2, 3}

Example 2.5.2 shows that the optimal assortment when the retailer ignores the choice

premium can be either smaller, the same, or larger than the optimal assortment when she

considers it.

In our numerical study below we study the optimality gap from ignoring the choice

premium under both maximum and probabilistic choice rules.

2.6 Numerical Analysis

The purpose of our numerical study is fourfold. First we study properties of the optimal

assortments under both choice rules as a function of the parameters of our model. Second,

we propose simple heuristics for the assortment planning problem and investigate their per-

formance, as measured by their optimality gap and computational speed. Third, we measure

the value of the consumer choice premium. Fourth, we measure the value of recognizing that

consumers buy multiple items at the same time.

2.6.1 Properties of the optimal assortment

To analyze how the optimal assortment varies with the parameters of our model, we conduct

a numerical study using 54000 numerical instances which were obtained by varying the
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model parameters as follows: λ ∈ {8, 10, 12}, n ∈ {1, 3, 5, 7, 9}, p − c ∈ {10, 20}, η ∈

{0.5.0.75, 0.95, 1.25, 1.5}, σ = β(p − c), where β ∈ {0.3, 0.5, 0.7, 0.9}. In this numerical

study, we fix M = 6 and generate 60 utility vectors such that U1 + . . . + U6 = A
B

, where

A = 12, B ∈ {1, 10, 100}. The idea of using integer A and B to create utility vectors is

to vary the distances between utility values and the magnitude of utility levels. Let Ai be

a breakdown of 12 (the value of A) between the 6 products. We consider the following 6

different breakdowns:

A1 = (11.5, 0.2, 0.15, 0.1, 0.05, 0)

A2 = (11.05, 0.37, 0.26, 0.17, 0.1, 0.05)

A3 = (9.5, 0.9, 0.7, 0.5, 0.3, 0.1)

A4 = (8, 2, 0.9, 0.65, 0.35, 0.1)

A5 = (6, 3, 2, 0.6, 0.3, 0.1)

A6 = (2.25, 2.15, 2.05, 1.95, 1.85, 1.75)

For example, when i=3, j=2, the utility vector is (0.95, 0.09, 0.07, 0.05, 0.03, 0.01). As i

increases, the distances between product utilities generally become smaller. For each utility

vector such that U1 + . . . + U6 = Ai

Bj
, a series of the utility of outside option is generated as

α A
Bj

where α ∈ {0.25, 0.5, 0.75, 1, 1.25}.

While we found the optimal assortment to be unique in all the numerical instances we

considered under probabilistic choice rule, it is possible that more than one assortments

achieve the maximum expected total profit value under maximum choice rule. Among these,

some assortments may include products which receive zero demand, which can be removed

to obtain an optimal assortment with smaller variety.

In our analysis we report on the optimal assortment type and optimal variety for each

problem instance. The optimal assortment type is either (i) a popular assortment (ii) a strict
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popular-eccentric assortment (i.e., a popular-eccentric set which is not a popular set) or (iii)

a non-popular-eccentric assortment.3 The optimal assortment variety for a given problem

instance is the cardinality of the smallest optimal assortment of its type.

Table 2.10 summarizes the average optimal variety for different pack size values n under

the probabilistic and maximum choice rule. Considering that when n = 1, the optimal

assortment under both choice rules have extra structure, we compare the average pack sizes

for all the cases where n > 1. We can see that, under probabilistic rule, when consumers’

desired pack size n > 1, the average optimal variety decreases as n increases. When customers

want to purchase bigger size n-pack, there is a larger number of n-packs available to buy,

which weakens the attraction of the outside option. Therefore, with large n, it is more

likely for the retailer to achieve optimality by offering a small number of products in the

assortment. However, the optimal variety does not show strict monotonicity in n under the

maximum choice rule in this numerical study.

Table 2.10. Average Optimal Variety under Different Pack Size

n Probabilistic Choice Rule Maximum Choice Rule
1 3.82 1.00
3 4.67 1.61
5 4.18 2.05
7 3.81 2.18
9 3.51 2.04

Table 2.11 shows how average optimal variety changes with the utility vector. We can

see that the average size of optimal assortment gets larger as the utility values of candidate

products get closer under both choice rules. This is because when there are a few very

3When there are multiple optimal assortments of different types for a given problem instance, we classify
it using the most restrictive type, that is, if there exists an optimal popular assortment, we will classify
the instance as type (i). If there exists a popular-eccentric optimal assortment but no popular optimal
assortment, we classify the instance as type (ii). Instances classified as type (iii) must be so that there does
not exist an optimal assortment which is a popular-eccentric set.
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popular products, it is more likely to achieve optimal profit by including smaller number of

products in assortment. Under probabilistic choice rule, the optimal variety decreases in the

magnitude of product utilities.

We also reports the average optimal variety as a function of other parameters in Table

2.12. We observe that, as the outside option becomes more attractive, the average opti-

mal variety under probabilistic choice rule increases, and the average optimal variety under

maximum choice rule roughly has an upward trend although it does not exhibit strict mono-

tonicity. This positive relationship is due to the fact that the retailer needs to offer larger

variety in his assortment in capture enough consumer demand when the outside option is

more attractive. It is also shown that the the average optimal variety decreases as the

inventory multiplier increases under both choice rules.

Table 2.11. Average Optimal Variety under Product Utility Parameter Values

A Prob. Max. B Prob. Max.
A1 3.67 1.57 1 4.50 1.17
A2 3.79 1.57 10 4.12 2.06
A3 3.92 1.66 100 3.39 2.00
A4 4.00 1.85
A5 4.09 1.96
A6 4.52 2.86

Table 2.12. Average Optimal Variety under Other Parameter Values

λ Prob. Max. α Prob. Max. σ
p−c Prob. Max. η Prob. Max.

8 4.01 1.93 0.25 3.38 1.54 0.3 4.90 2.20 0.5 3.25 1.50
10 4.00 1.83 0.5 3.82 1.49 0.5 4.35 1.99 0.75 3.24 1.50
12 4.01 1.78 0.75 4.10 1.75 0.7 3.47 1.50 0.95 4.02 1.50

1 4.28 2.77 0.9 2.75 1.50 1.25 5.96 3.94
1.25 4.43 2.75 1.5 5.89 3.61

In Tables 2.13 to 2.17 we report our results regarding the optimal assortment types as a

function of the type of utility vector and other parameters. Remember that, we showed in
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Section §2.4.3 that the optimal assortment under the probabilistic choice rule is a popular-

eccentric assortment (i.e., either popular or strictly popular-eccentric) but the optimal as-

sortment under maximum choice rule can be of any type.

Table 2.13. Structure of the Optimal Assortment under Different Utility Types

A
Probabilistic Choice Rule Maximum Choice Rule
Popular strictly

Popular-
eccentric

Other Popular strictly
Popular-
eccentric

Non
popular-
eccentric

Other

A1 72.67% 0.87% 26.47% 51.40% 0.00% 1.49% 47.11%
A2 73.29% 0.67% 26.04% 50.69% 0.80% 1.49% 47.02%
A3 75.07% 0.09% 24.84% 51.22% 0.80% 1.16% 46.82%
A4 75.67% 0.00% 24.33% 43.40% 1.60% 0.89% 54.11%
A5 76.60% 0.00% 23.40% 39.67% 1.60% 1.09% 57.64%
A6 78.87% 0.00% 21.13% 34.09% 0.00% 0.00% 65.91%

Note: The percentage values in column named ”Other” refer to the instances where it is optimal to offer
nothing.

Table 2.14. Structure of the Optimal Assortment under Different B Values

B
Probabilistic Choice Rule Maximum Choice Rule
Popular strictly

Popular-
eccentric

Other Popular strictly
Popular-
eccentric

Non
popular-
eccentric

Other

1 74.46% 0.81% 24.73% 29.30% 0.00% 0.14% 70.56%
10 75.71% 0.00% 24.29% 43.07% 2.40% 2.91% 51.62%
100 75.91% 0.00% 24.09% 62.87% 0.00% 0.00% 37.13%

Note: The percentage values in column named ”Other” refer to the instances where it is optimal to offer
nothing.

From Table 2.13, we see that for most problem instances, there exists an optimal as-

sortment which is a popular assortment. Under probabilistic rule, most of the exceptions

occur under the utility vector type 1 and 2, where the utility of the most popular product

is significantly higher than that of the other ones. And Table 2.17 shows that most of the

popular-eccentric optimal assortments under probabilistic rule appear when η is close to 1

(and less than 1). Combining the analysis of Table 2.13 and 2.17, we find that the existence
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Table 2.15. Structure of the Optimal Assortment under Different α Values

α
Probabilistic Choice Rule Maximum Choice Rule
Popular strictly

Popular-
eccentric

Other Popular strictly
Popular-
eccentric

Non
popular-
eccentric

Other

0.25 74.31% 0.48% 25.20% 65.13% 0.00% 1.83% 34.87%
0.5 74.83% 0.37% 24.80% 60.07% 0.67% 1.59% 39.93%
0.75 75.39% 0.20% 24.41% 50.46% 0.67% 1.67% 49.54%

1 75.70% 0.19% 24.11% 28.50% 2.67% 0.00% 71.50%
1.25 76.56% 0.11% 23.33% 21.22% 0.00% 0.00% 78.78%

Note: The percentage values in column named ”Other” refer to the instances where it is optimal to offer
nothing.

Table 2.16. Structure of the Optimal Assortment under Different ratio σ
p−c

σ
p−c

Probabilistic Choice Rule Maximum Choice Rule
Popular strictly

Popular-
eccentric

Other Popular strictly
Popular-
eccentric

Non
popular-
eccentric

Other

0.3 93.29% 0.07% 6.64% 54.84% 0.80% 2.46% 41.90%
0.5 82.04% 0.13% 17.82% 47.07% 0.80% 1.35% 50.79%
0.7 65.10% 0.41% 34.49% 39.20% 0.80% 0.13% 59.87%
0.9 61.01% 0.46% 38.53% 39.20% 0.80% 0.13% 59.87%

Note: The percentage values in column named ”Other” refer to the instances where it is optimal to offer
nothing.

of dominant products and large η are more likely to result in popular eccentric optimal as-

sortment through generating significant impact from inventory cost. When there exists a

few dominant products and when η is big, a popular eccentric assortment leads to similar

sales profit as a popular assortment because most sales profit is brought by the very popular

product(s) for both type of assortments, but the inventory cost of the popular eccentric

assortment can be relatively much lower due to the pooling effect. We use Example 2.6.1 to

illustrate this.

Example 2.6.1. Let λ = 10, n = 5, p− c = 20, σ = 19, η = 0.9, M = 3, and V0 = 0.8. We

consider two different utility vectors. With a equally distanced utility vector U = (1.5, 1, 0),

the optimal assortment is popular assortment {1, 2} with profit 301.85. And with a utility
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Table 2.17. Structure of the Optimal Assortment under Different η Value

η
Probabilistic Choice Rule Maximum Choice Rule
Popular strictly

Popular-
eccentric

Other Popular strictly
Popular-
eccentric

Non
popular-
eccentric

Other

0.5 100.00% 0.00% 0.00% 65.33% 1.33% 0.22% 33.11%
0.75 99.76% 0.24% 0.00% 65.33% 1.33% 0.22% 33.11%
0.95 98.89% 1.11% 0.00% 65.33% 1.33% 0.22% 33.11%
1.25 54.63% 0.00% 45.37% 24.39% 0.00% 3.69% 71.93%
1.5 23.52% 0.00% 76.48% 5.00% 0.00% 0.74% 94.26%

Note: The percentage values in column named ”Other” refer to the instances where it is optimal to offer
nothing.

vector that contains a dominant product U = (1.5, 0.1, 0), the optimal assortment is popular-

eccentric assortment {1, 3} with profit 300.7. The demand and profit for assortment {1, 2}

and {1, 3} under the two utility vectors are shown in Table 2.18. As is shown, when U =

(1.5, 1, 0.5), the difference between sales profit for popular assortment {1, 2} and popular-

eccentric assortment {1, 3} is big: 974.21 − 961.93 = 12.28. Although the inventory cost of

popular-eccentric assortment {1, 3} is lower than that for assortment {1, 2} (with difference

672.35 − 661.23 = 11.13), it is not significant enough to make up the gap in sales profit.

While when U = {1.5, 0.1, 0}, the sales profit for popular assortment {1, 2} is only a little

higher than popular-eccentric assortment {1, 3} (with difference 963.66−961.93 = 1.73), the

difference in inventory cost (which equals 663.09 − 661.23 = 1.86) becomes relatively more

significant such that the total profit of {1, 3} exceeds the total profit for {1, 2}.

Table 2.18. Optimal assortment type comparison in Example 2.6.1

U Assortment D1 D2 D3
Total Sales Profit Inventory Cost Total

Demand (p− c)
∑
l∈S Dl σ

∑
l∈S(Dl)

η Profit

(1.5, 1, 0)
{1, 2}∗ 26.24 22.47 – 48.71 974.21 672.36 301.85
{1, 3} 32.38 – 15.72 48.10 961.93 661.23 300.70

(1.5, 0.1, 0)
{1, 2} 31.51 16.68 – 48.18 963.66 663.09 300.58
{1, 3}∗ 32.38 – 15.72 48.10 961.93 661.23 300.70
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2.6.2 Heuristics performance

Given our result that the optimal assortment under probabilistic choice rule is a popular-

eccentric assortment which includes the most popular product, one needs to compare M2−M+4
2

such assortments to identify the optimal one(s). In contrast, under maximum choice rule,

there are 2M−1 possible assortments to consider since the only established property is that

the optimal assortment must include the most popular product.

In this section, we study the performance of heuristics under both choice rules. Table

2.19 shows the set of heuristics we consider along with their complexity.

Table 2.19. Heuristics

Notation Name Description Complexity
1Only Most Popular only S = {1} O(1)

All Offer all S = {1, ...,M} O(1)
Best Pop Best popular assortment S = arg maxS′∈P Π(S′) O(M)

Greedy Pop Ecc Greedy Popular-Eccentric See Algorithm 2 O(M)
Greedy Greedy Greedy Algorithm(*) O(M2)

Best Pop Ecc Best popular-eccentric assortment S = arg maxS′∈E Π(S′) O(M2)
Pop Max Popular-Maxiumum See Algorithm 3 O(M2)

(*) in each iteration the product which increases profit by the most is added, until all products have been added. The chosen
assortment is the one with the highest profit.

Heuristics 1Only, All, Best Pop, Greedy and Best Pop Ecc are fully explained in Table

2.19. Heuristic (Greedy Pop Ecc) consists in adding products in a greedy fashion in each

iteration but choosing only between the most and least popular products not yet included

so that the chosen assortment is guaranteed to be a Popular-Eccentric assortment. It is

implemented using Algorithm 2 below.

Algorithm 2 Greedy Popular-Eccentric

1: Let S1 = {1}. Set k = 1.
2: While k < M , let i+ be such that Ui+ = maxj /∈Sk

Uj and i− be such that Ui− = minj /∈Sk
Uj.

If Π(S ∪ {i+}}) ≥ Π(S ∪ {i−}}) then Sk+1 := S ∪ {i+}, otherwise S := S ∪ {i−}. Set
k := k + 1.

3: The chosen assortment is S = arg max {Π(Sk); k = 1, ...,M} .
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Lemma 9. Under probabilistic choice rule, the Greedy Popular-Eccentric heuristic (Algo-

rithm 1) is equivalent to the Greedy heuristic.

Proof. Let S1, . . . , SM be the assortments obtained from M iterations of the Greedy Popular-

Eccentric heuristic, and S ′1, . . . , S
′
M be the assortments obtained from M iterations of the

Greedy heuristic.

Let i+k be such that Ui+k
= max

l∈M\Sk−1

Ul, and Ui−k
= min

l∈M\Sk−1

Ul. From the definitions of

the two heuristics, we have Sk = max
l∈{i+k ,i

−
k }

Π(Sk−1 ∪ {l}), and S ′k = max
l∈M\S′k−1

Π(S ′k−1 ∪ {l}) for

k = 2, . . . ,M .

We prove that Sk = S ′k, k = 1, . . . ,M by induction. After the first iteration, we have S1 =

S ′1 = {1}. Suppose Sk = S ′k for some k, then according to Lemma 6, arg max
l∈{i+k+1,i

−
k+1}

Π(Sk ∪

{l}) = arg max
l∈M\S′k

Π(S ′k ∪ {l}) which implies Sk+1 = S ′k+1 and proves the result.

We also propose the Popular-Maxiumum (Pop Max) heuristic, presented in Algorithm 3,

which works as follows: we add products to the assortment in decreasing order of popularity

as long as doing so does not generate a maximum-value n-pack that is more attractive than

the outside option. If it does, we instead add the least popular product which would make

all consumers buy an n-pack. This heuristic is tailored to the assortment problem under

maximum choice rule. The idea is to obtain an assortment which captures the whole market

with demands allocated among the products in an unbalanced fashion so as to lower the

inventory cost.

Algorithm 3 Popular-Maximum

1: Let S = {1}. If V ∗n(S) ≥ V0, Stop. Otherwise set k = 2 and go to Step 2.
2: If V ∗n(S ∪ {k}) < V0, set S := S ∪ {k}, k = k + 1 then repeat Step 2. Otherwise, let
j = max {l : V ∗n(S ∪ {l}) ≥ V0} and set S := S ∪ {j}, Stop.

We use all seven heuristics under maximum choice rule. Under probabilistic choice rule,

the Best Pop Ecc heuristic is optimal by Proposition 4. Also we prove in Lemma 9 in the Ap-

pendix that the Greedy Popular-Eccentric and Greedy heuristics are equivalent. Therefore,
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we only consider the first four heuristics listed in Table 2.19 as they have lower complexity

than an enumerative search for the optimal assortment.

To evaluate the performance of the heuristics, we use the same numerical study described

in previous section. For each numerical instance, we compute the optimality gap of each

heuristic as the percentage difference between the optimal expected profit and the expected

profit obtained with the assortment chosen by the heuristic. For each heuristic, we report

(i) the average computational time in seconds (CPU), (ii) the percentage of instances where

the optimal expected profit was obtained (%Opt), (iii)the average optimality gap (Avg OG),

(iv)the standard deviation of optimality gap (Std OG) and (v) the maximum optimality gap

(Max OG). All problem instances were solved on a 2.3 GHz Intel Core i5 Macbook running

Matlab R2017a.

We show the mean and standard deviation of computational time (in 10−4 seconds) for

the heuristics under different n values in Tables 2.20 and 2.21

Table 2.20. Computational Time under Probabilistic Rule for Different n (×10−4 seconds)

n Enumeration 1Only All Best Pop Greedy Pop Ecc
1 17.08 (6.39) 0.03 (0.03) 0.02 (0.02) 3.95 (1.89) 7.37 (3.33)
3 33.68 (10.42) 0.03 (0.01) 0.01 (0.01) 7.93 (1.40) 15.40 (2.23)
5 60.64 (5.41) 0.03 (0.00) 0.01 (0.00) 19.56 (1.29) 38.62 (1.93)
7 130.46 (17.00) 0.04 (0.01) 0.02 (0.01) 53.36 (6.52) 105.00 (13.62)
9 308.66 (47.60) 0.04 (0.03) 0.02 (0.01) 140.14 (25.2) 278.07 (39.17)

All n 103.33 (106.32) 0.04 (0.02) 0.02 (0.01) 41.85 (50.55 ) 82.67 (99.55)

Table 2.22 presents our results under probabilistic choice rule. The Best Popular and

Greedy Popular-Eccentric algorithms achieve optimality under probabilistic choice rule in

most of the instances in our numerical study.

Table 2.23 presents our results regarding the performance of the heuristics under max-

imum choice rule. The algorithm Best Popular, Greedy Popular-Eccentric, Greedy, Best

Popular Eccentric and Popular-Maximum achieve optimality in most of the cases in our

39



Table 2.21. Computational Time under Maximum Rule for Different n (×10−4 seconds)

n Enumeration 1Only All Best Pop
1 49.56 (22.32) 0.03 (0.05) 0.02 (0.01) 3.80 (2.06)
3 66.92 (8.79) 0.03 (0.01) 0.02 (0.01) 7.78 (1.07)
5 117.49 (5.43) 0.03 (0.01) 0.01 (0.00) 19.45 (1.28)
7 234.83 (26.13) 0.04 (0.01) 0.02 (0.01) 52.92 (9.48)
9 498.86 (76.75) 0.04 (0.02) 0.02 (0.03) 139.99 (24.98)

All n 209.54 (172.46) 0.03 (0.02) 0.02 (0.01) 49.38 (53.08)
n Greedy Pop Ecc Greedy Pop Ecc Greedy Best Pop Ecc
1 7.19 (2.85) 23.17 (6.44) 10.59 (5.13) 0.75 (0.51)
3 15.12 (1.83) 30.84 (2.89) 20.92 (2.27) 8.65 (11.63)
5 38.41 (2.11) 51.01 (2.63) 50.93 (4.00) 14.41 (22.17)
7 104.71 (16.83) 98.25 (11.08) 122.72 (13.74) 18.59 (26.96)
9 278.83 (43.11) 215.90 (31.42) 301.36 (47.11) 26.71 (46.37)

All n 98.00 (105.12) 90.58 (73.77) 111.41 (111.50) 15.12 (29.08)

Table 2.22. The Performance of Heuristics under Probabilistic Choice Rule

Heuristic %Opt Avg OG Std OG Max OG
1Only 6.99% 48.51% 28.82% 100%

All 31.86% 4.50% 8.46% 100%
Best Pop 99.72% 2.36× 10−7 5.48× 10−6 0.03%

Greedy Pop Ecc 99.76% 1.36× 10−7 3.34× 10−6 0.02%

numerical study, but they all can result in a profit loss up to 100%. Also, Popular-Maximum

achieves less optimality than the other four algorithms mentioned above, but is faster than

the other four heuristics as is shown in Table 2.21.

Table 2.23. The Performance of Heuristics under Maximum Choice Rule

Heuristic %Opt Avg OG Std OG Max OG
1Only 56.97% 42.06% 48.85% 100%

All 40.11% 6.06% 10.35% 100%
Best Pop 96.12% 0.96% 8.80% 100%

Greedy Pop Ecc 96.98% 0.95% 8.80% 100%
Greedy 97.26% 0.95% 8.80% 100%

Best Pop Ecc 97.83% 0.94% 8.80% 100%
Pop Max 3 88.54% 7.82% 24.80% 100%
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2.6.3 The Value of the Choice Premium

As discussed in §2.5 the expected value of an n-pack includes a term referred to as the choice

premium which measure the benefits consumers receive from consuming a variety of different

products over time. In this section we numerically estimate the optimality gap which results

from the retailer ignoring this term, that is, assuming that consumer choice is solely driven

by the nominal utilities of the products. We refer to this gap as the value of the choice

premium. Formally, we calculate OG =
Π(S∗)−Π(S∗I )

Π(S∗)
where S∗ and S∗I denote an optimal

assortment with and without choice premium respectively, and the profit Π is calculated

assuming maximum choice rule with choice premium. We report the average (Avg OG),

standard deviation (Std OG) and maximum value (Max OG) of this optimality gap as well

as the percentage of instances where ignoring the choice premium did not cause any profit

loss (%Opt).

We use the same numerical instances as in the previous section to evaluate this value and

present our results in Table 2.24.

Table 2.24. The Value of the Choice Premium

Choice Rule %Opt Avg OG Std OG Max OG
Probabilistic 61.13% 1.86% 10.35% 100%
Maximum 56.97% 42.06% 48.85% 100%

Under both choice rules, the maximum optimality gap is as high as 100%, which implies

that, by ignoring choice premium, the retailer may think the product category is not prof-

itable while in fact it is. Under probabilistic choice rule, the retailer can miss optimality

in 38.87% of the instances if he ignores choice premium. Under the maximum choice rule,

the retailer achieve optimality in only 56.97% of the examples, and the average profit loss is

42.06%.

Next we analyze how the value of choice premium varies with the parameters of the

assortment problem under the probabilistic choice rule. As is discussed in §??, the relative
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Table 2.25. Value of Choice Premium under Different Magnitude for Utility

B
Probabilistic Choice Rule Maximum Choice Rule

%Opt Avg OG Std OG Max OG %Opt Avg OG Std OG Max OG
1 90.76% 0.60% 7.66% 100% 94.72% 5.02% 21.60% 100%
10 55.28% 1.53% 10.75% 100% 55.37% 43.26% 48.82% 100%
100 37.59% 3.45% 11.95% 100% 40.51% 58.48% 48.73% 100%

value of choice premium to the direct value from consumption is expected to have significant

impact on the optimal assortment when the retailer ignores choice premium. In Table 2.25,

we report how the impact of choice premium changes in B. As is seen, the retailer loose

much more profit from ignoring choice premium when B is large, that is when the relative

value of choice premium is big comparing to the direct utility from consumption.

Table 2.26 exhibits the average optimality gap as a function of other model parameters

under probabilistic choice rule. It is easy to show that when n = 1, ignoring choice premium

does not have any impact on optimal assortment and profit because the choice premium

value to consumer is zero in single-item shopping. Thus, we only consider the instances

where consumers want to buy multiple items (i.e. n > 1) in Table 2.26. We find that, when

product utility values are close to each others, the impact of choice premium is big. This

happens because a few more or a few less products than the optimal assortment can lead to

big loss in total profit due to the fact that the products in optimal assortment contribute

almost equally to total demand and total profit. Also, average optimality gap increases in

the utility of outside option.

2.6.4 The value of Considering the Consumers’ Basket Shopping Behavior

The novelty of the n-pack choice model is that it captures the basket shopping behavior of

customers, that is, it recognizes the fact that not only do customers often purchase more

than one products from the same category on a unique shopping trip, they often buy multiple

kinds of products within the category.
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Table 2.26. Average Optimality Gap under Absence of Choice Premium (Probabilistic Choice
Rule, n > 1)

A Avg OG n Avg OG λ Avg OG α Avg OG σ
p−c Avg OG η Avg OG

A1 3.35% 3 3.11% 8 2.99% 0.25 2.01% 0.3 1.77% 0.5 1.23%
A2 3.49% 5 2.19% 10 1.78% 0.5 2.45% 0.5 3.14% 0.75 1.47%
A3 2.70% 7 2.40% 12 2.43% 0.75 2.50% 0.7 2.81% 0.95 1.03%
A4 1.99% 9 1.88% 1 2.54% 0.9 2.02% 1.25 5.37%
A5 1.54% 1.25 2.55% 1.5 15.28%
A6 1.41%

In the situation where retailer ignores the basket shopping behavior of consumers, he may

understand the consumers’ purchasing behavior in different ways. In this section, we explore

the impact of basket shopping of consumers by comparing the optimal assortment and profit

obtained in the following three ways. (i) The retailer assumes each consumer wants to buy

at most one product, i.e., a 1-pack. From van Ryzin and Mahajan (1999), we know that the

optimal assortment under the probabilistic rule is a popular assortment in this case. Under

the maximum choice rule, it is optimal to offer only the most popular product if the utility

of the product is not less than the utility of outside option. (ii) The retailer assumes each

customers buys n units of the same product. (iii) The retailer assumes each consumer, rather

than buying n products (an n-pack) all at once, visits the store n times and buys at most

one product on each visit. It is easy to verify that under the optimal assortment under the

probabilistic choice rule in case (ii) and (iii) are also popular assortment, but the optimal

assortment obtained in the three scenarios above can be different. In addition, the optimal

assortment under maximum choice rule in case (ii) and (iii) are to offer the most popular

product if the product category is profitable. However, the total demand and optimal profit

under maximum choice rule for all the three scenarios can be different.

We show a summary of the impact of ignoring basket shopping behavior in Table 2.27. As

we can see, if the retailer assumes each consumer from the population only buys one item, the

gap from optimality under probabilistic choice rule is not very large. However, if he assumes
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that each consumer buys n units of same products or that each consumer comes n times to

buy one product on every shopping trip, the optimality gap can be big. Specifically, when

retailer thinks that consumers comes to store before each of the n consumption scenarios

to buy only one product, he misses optimality in 77.20% of the examples, and the average

gap from optimal profit is as high as 37.30%. Also, under both choice rules, the maximum

optimality gap can be 100%, which implies that the retailer can think of the product category

to be unprofitable when ignoring basket shopping behaviors when actually the category is

profitable.

Table 2.27. The Impact of the Basket Shopping

Choice Rule %Opt Avg OG Std OG Max OG
(i)

Probabilistic
99.72% 2.37 ×10−7 5.48 ×10−6 0.03%

(ii) 61.95% 8.84% 27.96% 100%
(iii) 22.71% 37.30% 29.04% 100%
(i)

Maximum
56.97% 42.06% 48.85% 100%

(ii) 56.16% 43.45% 49.44% 100%
(iii) 56.16% 43.45% 49.44% 100%

In addition, we show how the impact of basket shopping behavior varies with the model

parameters under probabilistic choice rule in Table 2.28 to 2.30. It is obvious that when

n = 1, the basket shopping behavior does not have any impact on their choice and retailer’s

assortment, thus in Table 2.28 to 2.30 we only analyze the instances where n > 1. In (i), the

suboptimality appears only when B = 1, while in (ii) and (iii) the average gap from optimal

profit increases in B. In (iii) average gap is large when the outside option is more attractive,

while in (i) and (ii) the impact from basket shopping is note quite sensitive to the outside

option. Also, in (ii) and (iii) the average optimality gap decreases in the power of inventory

cost η when η < 1.
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Table 2.28. Average Optimality Gap When Ignoring Basket Shopping Behavior (Method
(i), Probabilistic Choice Rule, n > 1)

A Avg OG B Avg OG n Avg OG λ Avg OG
A1 9.36 ×10−7 1 9.25 ×10−7 3 8.91 ×10−8 8 3.02 ×10−7

A2 8.07 ×10−7 10 0 5 5.11 ×10−8 10 3.18 ×10−7

A3 1.05 ×10−7 100 0 7 3.51 ×10−7 12 3.00 ×10−7

A4 0 9 7.85 ×10−7

A5 0
A6 0
α Avg OG σ

p−c Avg OG η Avg OG

0.25 4.16 ×10−7 0.3 1.18 ×10−8 0.5 0
0.5 5.71 ×10−7 0.5 2.19 ×10−8 0.75 1.84 ×10−7

0.75 9.74 ×10−8 0.7 4.43 ×10−7 0.95 9.35 ×10−7

1 2.48 ×10−7 0.9 9.93 ×10−7 1.25 0
1.25 2.01 ×10−7 1.5 0

Table 2.29. Average Optimality Gap When Ignoring Basket Shopping Behavior (Method
(ii), Probabilistic Choice Rule, n > 1)

A Avg OG B Avg OG n Avg OG λ Avg OG α Avg OG σ
p−c Avg OG η Avg OG

A1 10.98% 1 11.14% 3 12.19% 8 12.45% 0.25 11.22% 0.3 16.42% 0.5 0.66%
A2 11.21% 10 11.50% 5 13.45% 10 11.10% 0.5 11.40% 0.5 20.62% 0.75 0.43%
A3 11.41% 100 11.68% 7 9.84% 12 10.72% 0.75 11.34% 0.7 2.57% 0.95 0.06%
A4 11.35% 9 10.08% 1 11.41% 0.9 0.78% 1.25 50.28%
A5 11.47% 1.25 11.84% 1.5 99.66%
A6 12.21% ‘

Table 2.30. Average Optimality Gap When Ignoring Basket Shopping Behavior (Method
(iii), Probabilistic Choice Rule, n > 1)

A Avg OG B Avg OG n Avg OG λ Avg OG α Avg OG σ
p−c Avg OG η Avg OG

A1 46.27% 1 46.44% 3 46.31% 8 49.51% 0.25 30.65% 0.3 52.30% 0.5 41.31%
A2 47.04% 10 48.09% 5 49.45% 10 47.95% 0.5 42.20% 0.5 53.48% 0.75 40.74%
A3 48.71% 100 50.22% 7 49.33% 12 47.25% 0.75 50.26% 0.7 42.11% 0.95 39.94%
A4 49.20% 9 48.03% 1 56.59% 0.9 41.48% 1.25 79.24%
A5 49.13% 1.25 61.48% 1.5 95.39%
A6 49.18%
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CHAPTER 3

ASSORTMENT PLANNING FOR A TWO-SIDED MARKET

3.1 Introduction

Many of today’s successful businesses involve two distinct groups of users and as such, are

referred to as facing a two-sided market. For example, the video game industry brings

together players who buy the games and video game developers who design them. Credit

cards link consumers who use them to pay for their purchases and the merchants who provide

this payment option in their store. Typically there is a useful synergy, called the network

effect, between the two groups of users in a two-sided market as the value of the product or

service grows with the size of the two user groups. For example, as more people play with

a video game console, more developers are interested in designing games for it, which in

turns, leads to more demand from players. The provider of the product or service in a two-

sided market typically receives revenues from both groups of users: credit card companies

receive interest payments from consumers and swipe fees from merchants. Websites such as

Care.com receive subscription payments from individuals looking for a care provider (e.g.,

nanny or babysitter) and from the individuals who are looking to be hired.

Numerous studies have shown the importance of the pricing dimension in a two-sided

market (Rochet and Tirole (2006), Hagiu (2006), Weyl (2010) and Hagiu and Wright (2014)).

In some settings it may be optimal to subsidize one group of users, and possibly even give

them free access to the product or service, while collecting revenues only from the second

group of users. For example, search engine developers provide free access to their website to

web-users and collect revenues solely from advertisers.

In some contexts the company offers a portfolio of products or services to its two-sided

market: for example, a television network, such as Viacom, owns and operates a large number

of television channels which are watched by viewers and on which advertisers promote their
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brands. The television network collects advertising revenues from advertisers and possibly

subscription fees from viewers, based on the type of channel (regular network, cable or

premium cable channel). Viewers typically watch only one channel at a time, hence, at any

given moment in time, they make a choice from the channel portfolio. Advertisers typically

are looking to reach viewers only from specific demographics, such as “women with disposable

income aged 18 to 35” (the key demographic for reality television). Offering the right set of

channels is key to the success of a television network as the right product offering will bring

viewers from the advertisers’ key demographics, which in turns will bring more advertising

revenues.

The main contribution of our paper to the literature on two-sided markets is that we

focus on the assortment question, that is, we study how to select the best set of products

or services to offer in order to maximize revenues from both groups of users. At the same

time, we contribute to the literature on assortment planning by adding the second market

dimension to the product selection problem with multiple customer segments.

The assortment problem for a two-sided market with multiple customer segments is

complex in that there is no simple structure to the optimal assortment. In particular,

we show that a revenue-ordered solution, adapted to the two-sided revenue stream of our

problem, is not necessarily optimal for the problem in its most general form; however we

provide conditions under which the optimal assortment has a simple ranking-based structure.

Further, we show that focusing only on one group of users, that is treating the problem as

a one-sided rather than two-sided market, can lead to a significant loss in revenue.

We also investigate a special case wherein the possible products to offer either appeal to

all customer segments equally or are tailored to the tastes of one of them. This question is

inspired by the television network example mentioned above and the realization that there

exist mainly two types of television channels: the ones which appeal to a general audience,

such as the main network channels (NBC, ABC, CBS) and those which are dedicated to a
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specific demographic, such as many of the cable and premium channels (Cartoon Network,

MTV, the Golf channel, etc.). We provide conditions under which it is optimal to diversify

the product offering, that is, offer a portfolio of products each dedicated to a specific customer

segment and conditions under which it is better to offer a homogenous product offering, that

is, offer products which appeal to all customer segments.

The rest of this chapter is organized as follows. In §3.3 we formulate our model and

discuss some of its special cases. In §3.4, we give an numerical example to illustrate some

properties of the optimal assortment. Our results are presented in §3.5. Unless otherwise

stated, all proofs are in the Appendix B.

3.2 Literature Review

Our paper is related to two main streams of research: the literature on assortment planning

in operations management journals and the literature on two-sided markets, mostly in mar-

keting journals. In this section we provide a brief review of the most relevant papers in each

area.

Because we use an attraction-type model for modeling customer choice, our paper is most

related to the papers in the assortment planning literature which consider similar models

such as the multinomial logit (MNL) model. Therefore we focus our survey on such paper

(for studies on assortment planning using other customer choice models, we refer the reader

to Honhon et al. (2010), Honhon et al. (2012), Farias et al. (2012) and Farias et al. (2013)).

In their seminal paper, van Ryzin and Mahajan (1999) consider the joint assortment and

inventory decisions of a retailer offering differentiated products at the same price in a single-

period setting. They show that the optimal assortment contains a certain number of the most

popular products. Li (2007) extends their work to products with different profit margins

and shows that the optimal assortment contains a certain number of the most profitable

products.
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Talluri and Van Ryzin (2004) study a single-leg airline seat allocation problem where

customers make a choice according to the MNL model. They show that if the parameters of

the MNL model are deterministic and known, then the optimal assortment is revenue-ordered,

that is, it includes a certain number of the products with the highest revenue. Gallego et al.

(2011) show that this problem can be formulated and solved as a linear program with linear

number of variables and constraints. Rusmevichientong and Topaloglu (2012) propose a

robust formulation of the same problem where the true parameters of the MNL model are

assumed to be unknown and show that revenue-ordered assortments are still optimal.

Our paper is also related to the work on assortment planning problem with cardinality

constraints, that is, when the size of the assortment is limited. Rusmevichientong et al.

(2010) extend the work of Talluri and Talluri and Van Ryzin (2004) to include a cardinality

constraint on the offered assortment and show that although revenue-ordered assortments are

no longer optimal, the optimal assortment can be computed efficiently. Farias et al. (2010)

propose a pairwise exchange algorithm for assortment planning with cardinality constraint

and show that the algorithm can find an optimal solution when the parameters of MNL

model are known in advance. Davis et al. (2013) optimize the assortment subject to a set of

totally unimodular constraints and apply this to the assortment planning problem under the

MNL choice model with various bounds on the cardinality of the assortment. Gallego and

Topaloǧlu (2014) study assortment optimization problems where customers make choices

according to the nested logit model and there are constraints on the offered variants in each

nest. They show that the optimal assortment under cardinality constraints can be found

efficiently by solving a linear program.

We develop our model in the context of multiple customer segments and customers of

different segments make choices according to different MNL models. This is the so called

mixture of logit model which can avoid the independence of irrelevant alternatives property of

traditional MNL model. Bront et al (2009) consider the assortment problem with multiple
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customer segments and random model parameters which is referred to as the mixture of

logit model. They show that the problem NP-hard and propose a mixed integer program

formulation of the problem as well as a greedy heuristic. Rusmevichientong et al. (2014)

study the same problem and prove that the problem is NP-complete even when there are

only 2 customer segments. They show that revenue-ordered optimal assortments are not

optimal in general but provide two special cases in which they are. Méndez-Déaz et al.

(2010) propose a branch-and-cut algorithm for the assortment problem under a mixture

of multinomial logit models which is shown to perform well in the presence of cardinality

constraints.

The theory of two-sided market is quite recent and sparse (Chao and Derdenger (2013)).

While the definition of a two-sided market remains controversial (Geyl 2010), most of the

definitions have some commonalities: they require the existence of two or more distinct user

groups, where at least one of them is interested in interacting with another group. These

interactions are enabled through the two-sided (or multi-sided) platform. The first definition

of two-sided market is proposed by Evans (2002) which stresses the cross-network exter-

nalities between one or more groups. Rochet and Tirole (2006) propose another definition

of two-sided market from the perspective of the price structure’s impact on the volume of

transactions on the platform. For other general studies on two-sided market, we refer the

reader to Rochet and Tirole (2003), Caillaud and Jullien (2003), Rysman (2004), Armstrong

(2006), Hagiu (2006), Kaiser and Wright (2006), Evans and Schmalensee (2005), and Weyl

(2010)

Rochet and Tirole (2008), Amelio and Jullien (2012), Choi (2010) and Chao and Der-

denger (2013) study bundling in the context of two-sided market. Hagiu and Wright (2014)

consider the intermediary’s choice between functioning as a marketplace or as a reseller where

the marketplace serves as a two-sided platform that enables commercial trade between buy-

ers and sellers. To the best of our knowledge, there has not been any research that explores

the assortment planning in a two-sided market.
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3.3 Model

We consider a firm facing a two-sided market which receives revenues from its two user

groups: its customers who purchase its products and the advertisers who pay to promote

their brand to the firm’s customers. The firm can choose products to offer from a set of N

distinct product profiles. The firm’s customers come from K different customer segments and

each segment has its own preferences for the product profiles which are represented by an

attraction model. Specifically, let ukj denote the attractiveness of product profile j = 1, . . . , N

for customers from segment k = 1, . . . , K and let uj = (u1
j , . . . , u

K
j ) denote the attractiveness

vector of product profile j. Also let uk0 denote the attractiveness of the no-purchase option

for segment k and let u0 = (u1
0, . . . , u

K
0 ) be the attractiveness vector of the no-purchase

option.

Let λ denote the total market size and αk denote the proportion of customers from

segment k, such that
∑K

k=1 αk = 1.

The firm earns a revenue pj per purchase of a product from profile j by a customer as

well as a revenue of δk from the advertisers (collectively) per customer of segment k who

buys one of its products.

When choosing its assortment of products, the firm is allowed to ‘repeat’ each product

profile up to a certain number of times. Products which have the same profile are sold at the

same price pj and generate the same attractiveness to customers; in practice they may still

be somewhat differentiated but the differences are such that they do not impact customer

preferences. For example, a television network may include two different kids channels in

their portfolio. Let rj denote the maximum number of repetitions of product profile j which

are allowed in the assortment. The firm may face a cardinality constraint on size of the

chosen assortment; let n ≤ +∞ denote the maximum number of products which can be

offered. Let x = (x1, ..., xN) be the vector which counts the number of repetitions of each
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product profile in the chosen assortment. For j = 1, ..., N , we have xj ∈ {0, 1, ..., rj} and∑N
j=1 xj ≤ n.

In our base setting, which we refer to as the two-sided market product selection problem

P , the firm chooses the assortment in order to maximize its total revenue (from sales and

from advertising), denoted by Π. This problem can be written as follows:

(P) max
x∈NN

Π(x) =
N∑
j=1

pj

K∑
k=1

λαk
xju

k
j∑N

i=1 xiu
k
i + uk0

+
K∑
k=1

δkλαk
∑N

j=1 xju
k
j∑N

i=1 xiu
k
i + uk0

=
N∑
j=1

K∑
k=1

(pj + δk)λαk
xju

k
j∑N

i=1 xiu
k
i + uk0

s.t. xj ≤ rj, j = 1, ..., N
N∑
j=1

xj ≤ n

In the first expression for Π, the first term corresponds to the sales revenue (from cus-

tomers buying the products) and the second term is the advertising revenue (from advertis-

ers). Let x∗ denote the optimal assortment. In what follows we refer to a case of rj ≥ n

for j = 1, ..., N as a problem with unlimited repetitions and to the special case of rj = 1 for

j = 1, ..., N as a problem with no repetitions.

3.3.1 Special cases

In this section we present special cases of the two-sided market product selection problem.

When δk = 0 for k = 1, ..., K, the firm does not receive any revenue from the advertisers,

only sales revenue from the customers. We refer to this problem as the one-sided market

product selection problem Po. This problem is in fact the classic assortment planning problem

with multiple customer segments, also referred to as the assortment planning problem with

a mixture-of-logits choice model, which is studied in Rusmevichientong et al. (2014). It can
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be formulated as follows:

(Po) max
x∈NN

Πo(x) = λ
N∑
j=1

pj

K∑
k=1

αk
xju

k
j∑N

i=1 xiu
k
i + uk0

s.t. xj ≤ rj, j = 1, ..., N
N∑
j=1

xj ≤ n

Let x∗o denote the optimal assortment for problem Po.

Alternatively when pj = 0 for all j ∈ {1, . . . , N}, the firm’s revenues come solely from

the advertisers. In this case, we have:

(Pf ) max
x∈NN

Πf (x) =
K∑
k=1

δkλαk
∑N

j=1 xju
k
j∑N

i=1 xiu
k
i + uk0

s.t. xj ≤ rj, j = 1, ..., N
N∑
j=1

xj ≤ n

In this special case, the firm does not ignore the customers but chooses to fully subsidize

their consumption of the product. We refer to this case as the free product selection problem

Pf and let x∗f denote the corresponding optimal assortment.

We also define the single-customer segment product selection Problem Psk as the special

case where only segment k is considered, i.e., such that αk = 1 and αl = 0 for l 6= k. This

problem can be formulated as:

(Psk) max
x∈NN

Πk(x) =
N∑
j=1

(pj + δk)λαk
xju

k
j∑N

i=1 xiu
k
i + uk0

s.t. xj ≤ rj, j = 1, ..., N
N∑
j=1

xj ≤ n

Let x∗sk denote the optimal assortment for problem Psk . When there is no cardinality con-

straint, i.e, when n ≥
∑N

j=1 rj, this problem reduces to the classical assortment planning
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problem under the MNL model with a homogenous customer population, which is studied

by Li (2007) and Talluri and Van Ryzin (2004).

Finally we also consider the special case where N = 1, that is there is only one product

profile available to the firm. We refer to this case as the unique product profile problem. The

firm’s only decision variable is the number of repetitions of this product in the assortment.

Letting x ≡ x1 and r ≡ r1, the problem can be formulated as:

(Pu) max
x∈{1,...,min{r,n}}

Π(x) =
K∑
k=1

λαk(p+ δk)
xuk

xuk + uk0

3.4 Illustrative Example

In this section, we use a numerical example to illustrate some key properties of the optimal

solution.

Example 3.4.1. Consider a problem with N = 3 product profiles with selling prices

(p1, p2, p3) = (23, 98, 93). There are two customer segments, i.e., K = 2, with attractiveness

vectors u1 = (18, 48), u2 = (28, 10), u3 = (45, 3) and u0 = (81, 88). Advertising revenues per

customer from each segment are equal to (δ1, δ2) = (44, 12). The total market size λ = 343

and the proportion of customers from segment 1 is α1 = 0.54 so that the proportion of

customers from segment 2 is α2 = 0.46.

Suppose the firm imposes a maximum size of n = 2 for the assortment and unlimited

repetitions of each product profile are allowed, i.e. r1 = r2 = r3 ≥ 2. Table 3.1 shows

the total revenue of all possible assortments with cardinality less or equal to 2, breaking it

down between revenue from product sales and from advertising and specifying the number

of customers from each segment who buy a product. For example assortment x = (1, 1, 0)

corresponds to offering one product from profile 1 and one product from profile 2, while

x = (2, 0, 0) corresponds to offering two repetitions of profile 1.
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Table 3.1. Revenue allocation in Example 3.4

x
Total revenue Revenue Revenue Sales from Sales from

(Π) from sales from advertising Segment 1 Segment 2
(1, 0, 0) 4205 2056 2149 2254 19512
(0, 1, 0) 8522 6237 2285 6748 1773
(0, 0, 1) 9599 6629 2970 9052 547
(2, 0, 0) 6699 3205 3494 3814 2885
(1, 1, 0) 10557 6856 3702 7549 3008
(1, 0, 1) 11737 7481 4257 9470 2267
(0, 2, 0) 13957 10278 3679 10738 3219
(0, 1, 1) 14396 10293 4103 12182 2214
(0, 0, 2) 14398 9993 3346 13339 1059

From Table 3.1, we see that different assortments correspond to very different split of

total revenue between sales and advertising. For example, when the assortment is (1, 0, 0)

49% of the revenue comes from sales, while when the assortment is (0, 1, 0), 73% of the

revenue comes from advertising.

In this example, the optimal assortment is (0, 0, 1), that is, it is best to ‘repeat’ product

profile 3 twice. Based on the breakdown of profit between sales and advertising revenue,

we see that, while other assortments generate higher sales revenues (e.g., (0, 2, 0)) or higher

advertising revenues (e.g., x = (1, 0, 1)) the optimal assortment provides the highest total

revenues because product 3, which has a relatively high selling price, is also very popular

with the most lucrative customer segment 1 from the point of view of advertising.

Next we compare the total revenue obtained with each possible assortment across the

different special cases we consider.

As we already saw from Table 3.1, assortment {1, 2} maximizes total revenue for the

two-sided market product selection problem P , that is, when revenues from both customers

and advertisers are considered. If instead we ignore revenues from advertisers, the optimal

assortment for problem Po is {1, 1}, that is, it is optimal to offer two repetitions of product

1 because it has the highest price. When the products are free and revenues come solely

from advertisers it is optimal for problem Po to offer {3, 3}, because it is very attractive
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Table 3.2. Comparison of revenues across problems in Example 3.4

S
Two-sided market One-sided market Free product Single-segment (1) Single-segment (2)

(P) (Po) (Pf ) (Ps1) (Ps2)
{1} 4205.4 2056.2 2149.2 2253.6 1951.8
{2} 8521.7 6237.2 2284.5 6748.3 1773.4
{3} 9598.7 6629.1 2969.6 9051.8 546.9
{1, 1} 6699.1 3205.2 3493.9 3813.8 2885.3
{1, 2} 10557 6855.5 3701.5 7548.6 3008.4
{1, 3} 11737 7480.5 4256.5 9469.7 2267.3
{2, 2} 13957 10278 3679 10738 3219
{2, 3} 14396 10293 4103 12182 2214
{3, 3} 14398 9993.2 3345.8 13339 1059

to customers from the more profitable segment 2. Finally note that the solutions to the

single-segment problems differ from that of the two-sided market problem: {1, 1} and {2, 2}

are optimal when there are only customers from segments 1 and 2 respectively.

In Table 3.3 we calculate the revenue loss (in percentage) which would be incurred by the

firm if instead of solving the two-sided market problem, it used one of the other problems to

determine the chosen assortment. Row 1 reports the chosen assortment, Row 2 reports the

total revenues obtained from this assortment in a two-sided market and Row 3 calculates

the corresponding percentage revenue loss.

Table 3.3. Revenue loss from using incorrect model
P Po Pf Ps1 Ps2

Optimal {3, 3} {2, 3} {1, 3} {3, 3} {2, 2}
Assortment
Revenue 14398 14396 11737 14398 13957
Percent revenue loss 0% 0.01% 18.48% 0% 3.06%

From Table 3.3 we see that ignoring the revenues from one user group can lead to a

significant revenues loss, especially if one ignores the revenues from sales. We also see that it

is important to consider both customer segments as focusing only on one of them also leads

to a significant revenue loss.
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Now we extend Example 3.4 by increasing the maximum size of chosen assortment to

n = 3 and setting r1 = r2 = r3 = 3 (i.e., unlimited repetitions). The revenue for all possible

assortments of cardinality 3 in all five problems is shown in Table 3.4.

Table 3.4. Comparison of revenues across problems for cardinality = 3

S
Two-sided One-sided Free product Single-segment (1) Single-segment (2)
market (P) market (Po) (Pf ) (Ps1) (Ps2)

{1, 1, 1} 8390 3958 4433 4958 3432
{1, 1, 2} 11783 7154 4629 8150 3633
{1, 2, 2} 11783 7154 4629 8150 3633
{1, 2, 3} 15487 10404 5083 12205 3282
{1, 1, 3} 12900 7826 5074 9795 3105
{1, 3, 3} 15820 10447 5373 13250 2570
{2, 2, 2} 17792 13166 4626 13374 4418
{2, 2, 3} 17930 13019 4911 14350 3580
{2, 3, 3} 17787 12669 5118 15159 2628
{3, 3, 3} 17380 12116 5264 15841 1539

We can see from Tables 3.2 and 3.4 that the optimal for the two-sided market problem

P with n = 3 is {1, 2, 2}, that is it is optimal to repeat product profile 2 twice and product

profile once.

Let us further extend Example 3.4 by allowing up to 5 products in the chosen assortment

and up to five repetitions of each product profile, that is,N = {1(1), . . . , 1(5), . . . , 3(1), . . . , 3(5)}.

Table 3.5 shows how the optimal assortment for each problem varies with the cardinality

constraint.

We see from Table 3.5 that the optimal assortment for Problems Psk is such that it

contains only one distinct product profile but this is not the case for problems P and Po.

We also see that, for all problems, the optimal assortment always contains as many products

as allowed. These results are formally proven in Section 3.5.1. The optimal assortment for

problem Pf also contains only one distinct product file in this example, but we will show in

Section 3.5.1 that this does not hold in general.
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Table 3.5. Optimal assortment and revenue with different cardinality constraint in Example
1 under unlimited repetitions

n
Two-sided market One-sided market Free product Single-segment Single-segment

(P) (Po) (Pf ) (Ps1) (Ps2)
1 (0, 0, 1) 9599 (0, 0, 1) 9599 (0, 0, 1) 9599 (0, 0, 1) 9599 (1, 0, 0) 4205
2 (0, 0, 2) 14398 (0, 1, 1) 14396 (0, 0, 2) 14398 (0, 0, 2) 14398 (0, 2, 0) 13957
3 (0, 2, 1) 17930 (0, 3, 0) 17792 (1, 0, 2) 15820 (0, 0, 3) 17380 (0,3,0) 17792
4 (0, 4, 0) 18952 (0, 4, 0) 18952 (1, 0, 3) 18436 (0, 0, 4) 19470 (0, 4, 0) 18952
5 (0, 5, 0) 21020 (0, 5, 0) 21020 (2, 0, 3) 18873 (0, 0, 5) 21052 (0, 5, 0) 21020

Note: Under each of the five problems, the first column indicates the optimal assortment, and
the second column indicates the revenue of the optimal assortment in the context of the two-sided
market product selection problem.

Next we study the optimal assortment in Example 3.4 when repetitions are not allowed,

that is N = {1, 2, 3}, and we allow up to 3 products in the chosen assortment, that is,

n = 1, 2, 3.

The optimal assortment and the corresponding total revenue in the context of two-sided

market problem are shown in Table 3.6.

Table 3.6. Optimal assortment and revenue when no receptions are allowed

n
Two-sided market One-sided market Free product Single-segment Single-segment

(P) (Po) (Pf ) (Ps1) (Ps2)
1 (0, 0, 1) 9599 (0, 0, 1) 9599 (0, 0, 1) 9599 (0, 0, 1) 9599 (1, 0, 0) 4205
2 (0, 1, 1) 14396 (0, 1, 1) 14396 (1, 0, 1) 11737 (0, 1, 1) 14396 (1, 1, 0) 10557
3 (1, 1, 1) 15487 (1, 1, 1) 15487 (1, 1, 1) 15487 (1, 1, 1) 15487 (1,1,1) 15487

We find from Table 3.6 that for the two-sided market problem, the optimal assortment

with n = 3 is {1, 2}, that is, it is optimal to offer only two products even though the maximum

size of the chosen assortment is 3. The same holds for the one-sided market problem and

the single-segment problem Ps1 . By comparing Table 3.6 with Table 3.5, we see that for

the optimal solution with or without repetitions may differ for a particular problem given

a fixed cardinality n. For example, when n = 3, the optimal assortment for the two-sided

market problem with unlimited repetitions is {1, 2, 2}, while the optimal assortment with no

repetitions is {1, 2}.
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3.5 Results

3.5.1 Structural Properties

In this section, we state some structural properties of the two-sided market problem and its

special cases, namely the one-sided market problem, the free product selection problem, the

single-customer segment problem and the unique product profile problem.

Structural Properties of the Two-sided Market Problem

Proposition 10. If an assortment contains only one distinct product profile (possibly with

a number of repetitions), adding any number of repetitions of that product profile, when

allowed, always increases the total revenue in the Two-sided market problem P . Formally,

for product profile j ∈ {1, . . . , N}, Π(lej) ≥ Π(mej) for all m and l such that 0 ≤ m ≤ l ≤

min{n, rj}.

Proposition 10 and Corollary 1 establishes that repeating the product from a single-profile

assortment always increases revenue. Proposition 11 shows that the result no longer hold if

the initial assortment contains more than one product profile.

Proposition 11. If an assortment contains more than one distinct product profiles, then

adding a repetition of a product which is already in the assortment does not always improve

the total revenue in the Two-sided market problem P .

Proof. Using the parameters from Example 3.4 with n = 4, we find that:

Π((1, 2, 0)) = 14860

Π((2, 2, 0)) = 14560

Therefore, the total revenue of the two-sided market problem decreases in this case as we

add a repetition of product profile 1 to assortment {1, 2, 2}.
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The intuition behind these last results is as follows. We notice that adding a product

to an assortment always increases the sales from all segments because the attraction of no-

purchase option in each of the segments is weakened. If the assortment contains only one

product profile, then adding an repetition of this product results in that the newly captured

customers in segment k ∈ {1, . . . , K} brings in revenue at the same rate (which equals

(pj + δk)) as the old customers. Thus the revenue from both sales and advertising increase

for all segments. In contrast, when there is more than one distinct product profiles in the

assortment, the extra advertising revenues from adding the repetitions of a product could

come at the expense of the sales revenues on more lucrative products. If the decrease in

revenue from sales exceeds the increase in revenue from advertising, then the total revenue

goes down.

Lemma 10. For the two-sided market problem P , adding a product with higher price than

the highest price among the products already in an assortment always improve the total

revenue, that is Π(x + ei) ≥ Π(x) where pi ≥ max
j:xj>0

{pj}.

Our next set of results concerns the size of the optimal assortment. In what follows,

let x(n)∗ := arg max
x∈NN ,

∑N
j=1 xj=n

Π(x) be the optimal assortment with cardinality n when infinite

repetitions of each product profile are allowed.

Lemma 11. For the two-sided market problem P with unlimited repetitions and finite

cardinality constraint, Π(x(l)∗) ≥ Π(x(m)∗) for 1 ≤ m ≤ l ≤ n.

Proof. From Lemma 10 one can always increase the profit of assortment x by adding another

repetition of the product with the highest price. Hence, there always exists a product i

such that Π(x(n)∗ + ei) ≥ Π(x(n)∗), which implies Π(x(n+1)∗) ≥ Π(x(n)∗ + ei) ≥ Π(x(n)∗),

n = 1, . . . , n. Then it follows that Π(x(l)∗) ≥ Π(x(m)∗) for 1 ≤ m ≤ l ≤ n.

Lemma 12. For the two-sided market problem P with no repetitions and finite cardinality

constraint, Π(x(l)∗) ≥ Π(x(m)∗) does not always hold for 1 ≤ m ≤ l ≤ n.
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Proof. Consider an example with 3 products and 2 customer segments, where (p1, p2, p3) =

(15, 10, 3), u1 = (3, 1), u2 = (1, 5), u3 = (2, 10) and u0 = (1, 10). Advertising revenues per

customer from each segment are equal to (δ1, δ2) = (1, 10). The total market size λ = 400,

which divides equally between the two segments, i.e., α1 = α2 = 1
2
. When repetition is not

allowed, we have

Π(x(2)∗) = Π((1, 1, 0)) = 3922.5

Π(x(3)∗) = Π((1, 1, 1)) = 3875.8

in which case Π(x(3)∗) ≤ Π(x(2)∗).

From Lemma 11 we see that, under unlimited repetitions, increasing the size of the

assortment and optimally choosing the products, always leads to an increase in revenues.

Lemma 12 shows that this result is no longer true when repetitions are not allowed.

We use Lemma 11 to establish that the optimal assortment always has full cardinality

under unlimited repetitions, as stated in Proposition 12.

Proposition 12. For the two-sided market problem P , the optimal assortment under unlim-

ited repetition and finite cardinality constraint always has cardinality n. That is, if rj ≥ n

for j = 1, ..., N and n ≤ +∞, then
∑N

j=1 x
∗
j = n.

Proof. According to Lemma 11, Π(x(n)∗) ≥ Π(x(m)∗) for 1 ≤ m < n, therefore,
∑N

j=1 x
∗
j =

n.

We have seen from Table 3.5 in Example 3.4 that the optimal assortment of problems

P may sometimes take the form of repetition of single product but not always. We present

this result in Proposition 13 and we will skip the proof.

Proposition 13. For the two-sided market problem P under unlimited repetitions and finite

cardinality constraint, the optimal assortments may include more than one different product

profile.
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Lemma 13. For the two-sided market problem P with unlimited repetitions and finite

cardinality constraints, adding product in greedy method does not always generate optimal

solution.

Proof. We can see from Example 3.4,

x∗(2) = (0, 0, 2)

x∗o(2) = (0, 1, 2)

x∗(3) = (0, 2, 1)

x∗o(3) = (0, 3, 0)

Therefore S∗(2) * S∗(3), S∗o(2) * S∗o(3), so greedy method does not give optimal solution in

this case.

Structural Properties of Other Problems

We have seem from Proposition 10 that in the two-sided market problem, if the assortment

contains only one district product file, keep adding that product to the assortment always

improve the revenue associated with the assortment. The same result holds in the context of

the one-sided market problem , the free product selection problem and the single-customer

segment product selection problem as stated in Corollary 1.

Corollary 1. If an assortment contains only one distinct product profile (possibly with

a number of repetitions), adding any number of repetitions of that product profile, when

allowed, always increases the total revenue in the the one-sided market problem Po, the free

product selection problem Pf and the single-customer segment product selection problem Psk .
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Formally, for product profile j ∈ {1, . . . , N}, we have:

Πo(lej) ≥ Πo(mej)

Πf (lej) ≥ Πf (mej)

Πs
k(le

j) ≥ Πs
k(mej)

for all m and l such that 0 ≤ m ≤ l ≤ min{n, rj}, k = {1, . . . , K}.

Proof. The results follow directly from Proposition 10 since problems Po, Pf and Psk are

special cases of problem P .

Lemma 14 establishes the same result as in Proposition 11 for problems Po, Pf and Psk .

Lemma 14. If an assortment contains more than one distinct product profile, then adding

a repetition of a product which is already in the assortment does not always improve the

total revenue in the one-sided market problem Po, the free product selection problem Pf and

the single-customer segment product selection problem Psk , k = 1, . . . , K.

Corollary 2. For the one-sided market problem Po and the single-segment problem Psk ,

adding a product with higher price than the highest price among the products already in an

assortment always improve the total revenue, that is Πo(x + ei) ≥ Πo(x) and Πs
k(x + ei) ≥

Πs
k(x) hold for all x ∈ NN (or feasible x?) where pi ≥ max

j:xj>0
{pj}.

Proof. The results follow directly from Lemma 10 because problems Po and Psk are special

cases of problem P .

Corollary 3. For the one-sided market problem Po, the free product selection problem Pf

and the single-customer segment product selection problem Psk , k = 1, . . . , K with unlimited

63



repetitions and finite cardinality constraint, define

x(n)∗o = argmax
x∈NN ,

∑N
j=1 xj=n

{Πo(x)}

x(n)∗f = argmax
x∈NN ,

∑N
j=1 xj=n

{Πf (x)}

x(n)∗sk = argmax
x∈NN ,

∑N
j=1 xj=n

{Πs
k(x)}

Then, for 1 ≤ m ≤ l ≤ n, we always have:

Π(x∗o(l)) ≥ Π(x∗o(m))

Π(x∗f(l)) ≥ Π(x∗f(m))

Π(x∗sk(l)) ≥ Π(x∗sk(m))

Proof. The results follow directly from Lemma 11 since problems Po, Pf and Psk are special

cases of problem P .

Corollary 4. For the one-sided market problem Po, the free product selection problem Pf

and the single-customer segment product selection problem Psk , k = 1, . . . , K with unlim-

ited repetitions and finite cardinality constraint, then the optimal assortments always have

cardinality n.

Proof. The results follow directly from Proposition 12 since problems Po, Pf and Psk are

special cases of problem P .

When repetitions of products are not allowed, the optimal assortments takes full cardi-

nality only in the free product selection problem Pf . We discuss this in Proposition 14.

Proposition 14. For the free product selection problem Pf with finite cardinality constraint

where n ≤ N , if repetitions of products are not allowed, then the optimal assortment always

have cardinality n, that is x∗f is such that
∑N

j=1 x
∗f
j = n.
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We can see that the optimal assortment of the free product selection problem Pf always

takes full cardinality regardless of whether repetitions are allowed. As we have mentioned,

an assortment with higher cardinality always captures a larger number of customers than

an assortment with lower cardinality. Since revenue comes solely from advertising in this

case, increase in total sales leads to more revenue. Observe the special structure of the free

product selection problem, we are able to show a result under no cardinality constraint which

is stated in Lemma 15.

Lemma 15. For the free product selection problem Pf , if n ≥
∑N

j=1 rj, then the optimal

assortment x∗f = (r1, . . . , rN).

Intuition for Lemma 15 is that, although the products in the assortment compete with

each others on capturing customers, this does not hurt the total revenue because there is

no sales revenue in this problem. The whole revenue comes from advertising, the revenue

rate of which is the same within each customer segment, and thus always increases as the

number of customers in each segment grows. ALSO: Keep adding products will weaken the

attraction of no purchase option and thus capture more customer in all segments.

As we have seen in Example 3.4, under unlimited repetitions, the optimal assortment of

the single customer segment problems takes the form of repeating a product n times, now

we formally present this result in Proposition 15.

Proposition 15. For the single segment problem Psk under unlimited repetitions and finite

cardinality constraint, the optimal assortment is x∗sk = nej for some j ∈ {1, ..., N}.

We have also seen from Table 3.5 in Example 3.4 that the optimal assortment of problems

P , Po and Pf may sometimes take the form of repetition of single product but not always.

We present this result in Proposition 16 and we will skip the proof.

Proposition 16. For the one-sided market problem Po and the free product selection prob-

lem Pf under unlimited repetitions and finite cardinality constraint, the optimal assortments

may include more than one different product profile.
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From Proposition 15, we know that the optimal assortment for the single customer seg-

ment problem Pks under unlimited repetitions and cardinality constraint always includes n

repetitions of the same product profile. However, this product profile may not be the same

for n and n+ 1 as shown in Example 3.4. We state this result in Lemma 16.

Lemma 16. For the single segment problem Psk under unlimited repetitions and finite car-

dinality constraint, the optimal assortment for certain k could be repetitions of different

products under different n.

But under some special conditions, for problem Psk with certain k, the repetitions of a

product could dominate the repetitions of another product across all number of repetitions

(the conditions is shown in Lemma 17). And this enables us to find a special case where the

optimal assortments of problem Psk under unlimited receptions and certain k are repetitions

of the same product across all possible values of n. We present this result in Lemma 18.

Lemma 17. Assume i and j to be two distinct product files in {1, . . . , N}. If pi ≥ pj and

Πk(e
i) ≥ Πk(

mathbfej), then Πk(mei) ≥ Πk(mej) for 1 ≤ m ≤ min{r(i), r(j), n}.

Proof.

Πk(mei)− Πk(mej)

=
m(pi + δk)uki
muki + uk0

−
m(pj + δk)ukj
mukj + uk0

=
m(pi + δk)uki (mu

k
j + uk0)−m(pj + δk)ukj (mu

k
i + uk0)

(muki + uk0)(mukj + uk0)

=
m2
{
uki u

k
j (pi − pj)−

uk0
m

[
(pj + δk)ukj − (pi + δk)uki )

]}
(muki + uk0)(mukj + uk0)

Given that pi ≥ pj and Πk(e
i) ≥ Πk(e

j), we will prove Πk(mei) ≥ Πk(mej) by showing that

uki u
k
j (pi − pj)−

uk0
m

[
(pj + δk)ukj − (pi + δk)uki )

]
≥ 0
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Note that

Πk(e
i) ≥ Πk(e

j)

⇔ (pi + δk)uki
uki + uk0

≥
(pj + δk)ukj
ukj + uk0

⇔ (pi + δk)uki (u
k
j + uk0) ≥ (pj + δk)ukj (u

k
i + uk0)

⇔ uki u
k
j (pi − pj) ≥ uk0

[
(pj + δk)ukj − (pi + δk)uki

]
Since pi ≥ pj, we have uki u

k
j (pi − pj) ≥ 0. If (pj + δk)ukj − (pi + δk)uki ≤ 0:

uki u
k
j (pi − pj) ≥ 0 ≥ uk0

m

[
(pj + δk)ukj − (pi + δk)uki )

]
⇔ uki u

k
j (pi − pj)−

uk0
m

[
(pj + δk)ukj − (pi + δk)uki )

]
≥ 0

If (pj + δk)ukj − (pi + δk)uki > 0:

uki u
k
j (pi − pj) ≥ (pj + δk)ukj − (pi + δk)uki ) ≥

uk0
m

[
(pj + δk)ukj − (pi + δk)uki )

]
⇔ uki u

k
j (pi − pj)−

uk0
m

[
(pj + δk)ukj − (pi + δk)uki )

]
≥ 0

Therefore, Πk({i(1), . . . , i(m)}) ≥ Πk({j(1), . . . , j(m)}).

Lemma 18. For the single segment problem Psk under unlimited repetitions, if there exists

product i ∈ {1, . . . , N} such that pi = max
j∈{1,...,N}

{pj} and Πs
k(e

i) = max
j∈{1,...,N}

Πs
k(e

j), then

the optimal assortments under different cardinality constraints are repetitions of the same

product i. That is x∗sk = en for all n ≤ ∞.

Proof. The result in this lemma follows directly from Lemma 17 and Proposition 15.

Lemma 16 indicates that for the single segment problem Psk under unlimited repetitions

and finite cardinality constraints, optimal assortment can not be obtained through greedy

method. And this is also true for problems Po and Pf as we can see from Table 3.5 in

Example 3.4. We show this result in Lemma 19.
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Lemma 19. For the one-sided market problem Po and the free product selection problem

Pf with unlimited repetitions and finite cardinality constraints, adding product in greedy

method does not always generate optimal solution.

Proof. We can see from Example 3.4,

x∗(2) = {0, 0, 2}

x∗o(2) = {0, 1, 2}

x∗(3) = {0, 2, 1}

x∗o(3) = {0, 3, 0}

Therefore S∗(2) * S∗(3), S∗o(2) * S∗o(3), so greedy method does not give optimal solution in

this case. P f part: Need to find a numerical example here.

Proposition 17. For assortment x = (x1, . . . , xN), if
∑N

j=1 pjxj∑N
j=1 xj

≥ max
k∈{1,...,K}

δk, then the

revenue generated by this assortment from sales is higher than from advertising: Πo(x) ≥

Πf (x).

Proof. Let δm = max
k∈{1,...,K}

{δk}.
∑N

j=1 pjxj∑N
j=1 xj

≥ δm ⇒
∑N

j=1 pjxj ≥
∑N

j=1 δmxj, then for an

arbitrary assortment x = (x1, . . . , xN), we have:

Πo(x)− Πf (x)

=
K∑
k=1

λαk
∑N

j=1 pjxju
k
j∑N

j=1 xju
k
j + uk0

−
K∑
k=1

λαk
∑N

j=1 δ
kxju

k
j∑N

j=1 xju
k
j + uk0

= λ
K∑
k=1

λαk
∑N

j=1(pj − δk)xjukj∑N
j=1 xju

k
j + uk0

≥ λ
K∑
k=1

λαk
∑N

j=1(pj − δm)xju
k
j∑N

j=1 xju
k
j + uk0

= λ
K∑
k=1

λαk
(
∑N

j=1 pjxj −
∑N

j=1 xjδm)ukj∑N
j=1 xju

k
j + uk0

≥ 0
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Corollary 5. If min
j∈{1,...,N}

{pj} ≥ max
k∈{1,...,K}

δk, then Πo(x) ≥ Πf (x) for all x ≤ r.

Proof. If min
j∈{1,...,N}

{pj} ≥ max
k∈{1,...,K}

δk, then
∑N

j=1 pjxj ≥
∑N

j=1 δmxj. Then according to

Proposition 17, we have Πo(x) ≥ Πf (x).

3.5.2 Optimality of Revenue-Ordered Assortment

For a one-sided market problem (i.e., no advertisers), Li(2007) and Talluri and van Ryzin(2004)

consider the assortment planning model with one customer segment and no cardinality con-

straint (i.e., n = +∞) and prove the optimality of revenue-ordered assortments, i.e., they

show that it is optimal to offer a certain number of the products with the highest revenues.

Rusmevichientong et al. (2014) extend their setting to multiple customer segments and show

that, in general, revenue-ordered assortments are no longer optimal. However, they establish

that the optimality is preserved under some specially structured cases.

In our setting, revenues come from two distinct user groups, i.e., customers who pay pj

for product j and advertisers who pay δk per customer of segment k who buys a product.

Hence, there does not exist an obvious definition for revenue-ordered assortments in a two-

sided market setting. Ordering assortments based on pj would amount to ignoring the impact

of advertisers.

Despite these considerations, we are able to obtain a set of conditions under which the

optimal assortment has a simple ranking-based structure.

Theorem 2. Suppose the N products are such that uk1 ≤ uk2 ≤ . . . ,≤ ukN and (p1 + δk)uk1 ≥

(p2 + δk)uk2 ≥ . . . ≥ (pN + δk)ukN for k = 1, ..., K. In this case the optimal assortment for

n = +∞ is x∗ = (r1, r2, . . . , r̂i, 0, . . . , 0) for some i ∈ {1, ..., N} where r̂i ≤ ri.
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3.5.3 Offering Standard vs Specialized Products

In this section we study a special case of the two-sided market problem with two customer

segments and three product profiles, i.e. K = 2 and N = 3 Product 1 (2) is a specialized

product in that it appeals only to the customers from segment 1 (2). In contrast, product

3 is a standard product in that it appeals equally to customers from segments 1 and 2.

Specifically, we have u1 = (uD, 0), u2 = (0, uD) and u3 = (uG, uG), where uD, uG ≥ 0. Also

we have u1
0 = u2

0 = u0, p1 = p2 = p3 = p and α1 = α2 = 1
2
. Without loss of generality

we assume that δ1 ≥ δ2. We study the optimal assortment with size n ∈ {1, 2} and allow

unlimited repetitions.

First we consider the problem with n = 1. The expected revenue from the three possible

assortments is:

Π({1}) = (p+ δ1)
1

2
λ

uD
uD + u0

Π({2}) = (p+ δ2)
1

2
λ

uD
uD + u0

Π({3}) = (2p+ δ1 + δ2)
1

2
λ

uG
uG + u0

Since δ1 ≥ δ2, we have Π({1}) ≥ Π({2}). Hence the optimal assortment is either {1} and

{3}. Offering only product 1 means receiving revenues only from customers from segment

1, while offering only product 3 means collecting revenues from customers of both segments.

It is easy to see that {3} is optimal if uG ≥ uD since in that case, offering product 3 leads to

more sales (and therefore more advertising revenues) from customers of segment 1, as well

as a positive revenue from customers of segment 2. When uD > uG the tradeoff is between

more sales from the more lucrative segment 1 (when offering {1}) or collecting sales to both

segments including from the less profitable segment 2. Formally, the optimal assortment is

{1} if and only if
uD

uD+u0
uG

uG+u0

≥ 2p+δ1+δ2

p+δ1
.

Figure 3.5.3 represents the region of optimality for assortment {1} and {3} as a function

of uG and uD. In the area above the line, {3} is optimal.
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{3} 

{1} 

uD	



uG	



u0 (uD −uG )
uG (uD +u0 )

=
p+δ2

p+δ1

Figure 3.1. Optimality regions for n = 1 with p = 1, u0 = 5, δ1 = 10 and δ2 = 3

Next let us consider the problem with n = 2. Because we have assumed that δ1 ≥ δ2,

it is easy to see that Π({1, 1}) ≥ Π({2, 2}) and Π({1, 3}) ≥ Π({2, 3}). Also we always have

Π({1, 1}) ≥ Π({1}), Π({2, 2}) ≥ Π({2}) and Π({3, 3}) ≥ Π({3}). Hence, we only need to

consider the following four assortments:

Π({1, 1}) = (p+ δ1)
1

2
λ

2uD
2uD + u0

Π({1, 3}) = (p+ δ1)
1

2
λ

uD + uG
uD + uG + u0

+ (p+ δ2)
1

2
λ

uG
uG + u0

Π({1, 2}) = (2p+ δ1 + δ2)
1

2
λ

uD
uD + u0

Π({3, 3}) = (2p+ δ1 + δ2)
1

2
λ

2uG
2uG + u0

The optimality conditions for the four assortments are shown in Table 3.7 and the opti-

mality regions are represented in Figure 3.2.

Table 3.7. Optimal solution for n = 2
Optimal assortment Condition

{1, 1} u0(uD−uG)(uG+u0)
uG(2uD+u0)(uD+uG+u0)

≥ p+δ2

p+δ1 ,
u0

2uD+u0
≥ p+δ2

p+δ1 ,
u0(uD−uG)
uG(2uD+u0)

≥ p+δ2

p+δ1

{1, 3} uG(2uD+u0)(uD+uG+u0)
u0(uD−uG)(uG+u0)

≥ p+δ1

p+δ2 ,
uG(uG+u0)

uD(uD+uG+u0)
≥ p+δ2

p+δ1 ,
uD(uG+u0)

uG(uD+uG+u0)
≥ p+δ2

p+δ1

{1, 2} 2uD+u0

u0
≥ p+δ1

p+δ2 ,
uD(uD+uG+u0)
uG(uG+u0)

≥ p+δ1

p+δ2 , uD ≥ 2uG

{3, 3} uG(2uD+u0)
u0(uD−uG) ≥

p+δ1

p+δ2 ,
uG(uD+uG+u0)
uD(uG+u0)

≥ p+δ1

p+δ2 , 2uG ≥ uD
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S*={3,3}	



S*={1,1}	



S*={1,3}	


S*={1,2}	



uG	



uD	

(2−γ )u 0
2(γ −1)

Figure 3.2. Optimality regions for n = 2 with p = 1, u0 = 5, δ1 = 10 and δ2 = 3

It is interesting to compare the revenue earned by the firm when offering two standard

products which appeal to both segments equally, i.e., S = {3, 3} or having one product

dedicated to each segment, i.e., S = {1, 2}. As it turns out, offering two specialized products

dominates if and only if uD ≥ 2uG, that is, the attractiveness of the dedicated products to

their respective segment must be at least twice that of the standard product.

Next we compare the optimal assortments with n = 1 to n = 2. If we superimpose the

optimality regions from Figures 3.5.3 and 3.2, we obtain Figure 3.3.

{3,3} 

{1,1} 

{1,3} 
{1,2} 

uG	



uD	



{3} 

{1} 

Figure 3.3. Optimality regions for n = 1 and n = 2
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From Figure 3.3, we see that there exist values of (uD, uG) such that the optimal as-

sortment of size 1 is {3} and the optimal assortment of size 2 is {1, 2}, which implies that

the firm would have to redesign its assortment, that is, getting rid of product 3 and adding

products 1 and 2 when increasing the size of its offering. In other words, this example shows

that adding products in greedy fashion to the assortment over time may be suboptimal.

3.6 Bounds

In this section we obtain bounds on the performance of heuristics for the two-sided market

problem. First we show that the one-sided market and free-product market solutions can be

arbitrarily bad when used in the setting of the two-sided market, which shows that the loss

for ignoring one side of the market can be very large.

In the previous example, we see that when one solution led to a 100% optimality gap, the

other was optimal. Next we investigate whether it is possible for both solutions to be subop-

timal in the two-sided market problem. To do so, we compare Π(x∗) to max{Π(x∗o),Π(x∗f )}

where x∗o = maxx Πo(x) and x∗f = maxx Πf (x). Note that for every x we have Π(x) =

Πo(x) + Πf (x). We first obtain a general bound on the percentage optimality gap measured

as: Gof ≡ Π(x∗)−max{Π(x∗o),Π(x∗f )}
Π(x∗)

.

Theorem 3. Under unlimited repetitions, Gof = 0 if (N+n−1)!
(n)!(N−1)!

≤ 2 and Gof ≤ 1
2

otherwise.

Further, this bound is tight.

Proof. According to Proposition 3 and Corollary 4, the number of products in the optimal

assortment under unlimited repetitions equals n for the two-sided market problem P , the one-

sided market problem Po and the free-product market problem Pf . Therefore the number

of assortments which can be optimal is equal to
(
N+n−1

n

)
= (N+n−1)!

(n)!(N−1)!
, which corresponds to

the number of ways to choose n products from a set of N options with unlimited repetitions

allowed.
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If (N+n−1)!
(n)!(N−1)!

≤ 2, there are at most two possible assortments to consider, therefore either

x∗o or x∗f is optimal; hence we must have max{Π(x∗o),Π(x∗f )} = Π(x∗), which implies that

the optimality gap is zero. Now assume that (N+n−1)!
(n)!(N−1)!

≥ 3. First we show that Gof never ex-

ceeds 1
2
. We have Π(x∗) = Πo(x∗)+Πf (x∗) ≤ Πo(x∗o)+Πf (x∗f ) ≤ 2 max{Πo(x∗o),Πf (x∗f )}.

Therefore Gof ≤ 1
2
.

Finally we show with an example that the bound is tight. Consider an example with

K = 1, N = 3 and n = 1, which implies that (N+n−1)!
(n)!(N−1)!

= 3. Let us fix λ, δ and u0. Given

a, ε ≥ 0, we set the other parameters are follows:

u1 =
au0

λδ − a

u2 =
(a− ε)u0

λδ(a− ε)
u3 =

εu0

λδ − ε

p1 =
ε(u1 + u0)

λu1

p2 =
(a− ε)(u2 + u0)

λu2

p3 =
a(u3 + u0)

λu3

With the above set of parameters, we can verify that the profit for all possible assortments

are the values shown in table 3.8:

Table 3.8. Profit for all Possible Assortments (Proof for Theorem 3)
Assortment Πo Πf Π

(1, 0, 0) ε a a+ ε
(0, 1, 0) a− ε a− ε 2a− 2ε
(0, 0, 1) a ε a+ ε

Assuming ε < a
3
, then x∗o = (0, 0, 1),x∗f = (1, 0, 0) and x∗ = (0, 1, 0). The optimality

gap is (2a−2ε)−(a+ε)
(2a−2ε)

= a−3ε
2a−2ε

. This value tends to 1/2 as ε→ 0.
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Next we investigate the optimality gap which may result from considering only one cus-

tomer segment.

As the previous example illustrates, it is possible that none of the solutions to the one-

segment problem is optimal in the two-sided market problem. Next we provide a bound

on the performance of the best one-segment problem solution. Formally, we compare Π(x∗)

to maxk=1,...,K Π(x∗Sk) where x∗Sk = maxx ΠSk(x). Note that for every x we have Π(x) =∑K
k=1 ΠSk(x). We first obtain a general bound on the percentage optimality gap measured

as: Gs ≡
Π(x∗)− max

k∈{1,...,K}
Π(x∗Sk )

Π(x∗)
.

Theorem 4. Under unlimited repetitions, if either of the following two conditions hold: (1)

N ≥ K and (2) N ≤ n+ 1, we have Gs ≤ min{N,K}−1
min{N,K} and this bound is tight.

Proof. We show the result for the following two cases.

Case 1: min{N,K} = N . Since we have considered the case K ≥ N ≥ n + 1 in (b), we

consider only the case K ≥ n ≥ N here. Suppose Gs > N−1
N

, then

Π(x∗) =
N∑
j=1

K∑
k=1

λαk(pj + δk)
x∗ju

k
j∑N

j=1 x
∗
ju

k
j + uk0

> N max
k∈{1,...,K}

{Π(x∗Sk)}

≥
N∑
j=1

Π(nej) =
N∑
j=1

K∑
k=1

λαk(pj + δk)
nukj

nukj + uk0

Since N ≤ n, we have x∗j ≤ n for j = 1, . . . , N . Thus there is contradiction in the inequality

above because
x∗ju

k
j∑N

j=1 x
∗
ju

k
j +uk0

≤ x∗ju
k
j

x∗ju
k
j +uk0

≤ nukj
nukj +uk0

for all j ∈ {1, . . . , N} and k ∈ {1, . . . , K}.

Therefore Gs ≤ N−1
N

.
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Now we show that the bound N−1
N

is tight. Given λ, αk, δk, uk0, k = 1, . . . , K and a, ε, ξ ≥

0, we set the other parameters as follows:

p1 =
(N − 1)(a− ξ)a

λα1 [(N − 1)a− nξ]
− δ1

pj =
(n− 1)(a− ε)a

λαj [(n− 1)a− nε]
− δj j = 2, . . . , N

ujj =
auj0

n [λαj(pj + δj)− a]
j = 1, . . . , N

uk1 = 0 k = 2, . . . , N

uk1 =
εuk0

n [λαk(p1 + δk)− ε]
k = N + 1, . . . , K

ukj = 0 j = 2, . . . , N and k = 1, . . . , K where k 6= j

With the above set of parameters, we can verify that the profits for all possible assort-

ments are the values shown in Table 3.9:

Table 3.9. Profits for all Possible Assortments (Proof for Thorem 4: Case 1)
Assortment Π1 Π2 · · · ΠN ΠN+1 ΠN+2 · · · ΠK Π

ne1 a 0 · · · 0 ε ε · · · ε a+ (K −N)ε
ne2 0 a · · · 0 0 0 · · · 0 a

...
...

...
. . .

...
...

...
...

...
...

neN 0 0 · · · a 0 0 · · · 0 a∑N
j=1 e

j+
a− ξ a− ε · · · a− ε b b · · · b

Na+ (N − 1)ε+

(n−N)e1 ξ + (K −N)b

The values b in the table can be calculated because all parameters are set up. Since

the exact value of b is not needed in our proof, we omit the calculation but only use the

fact that 0 ≤ b ≤ ε which is a result from Proposision 10. Obviously, we have x∗Sk = nek

for k = 1, . . . , N , x∗Sk = ne1 for k = N + 1, . . . , K, and arg max
k∈{1,...,K}

{Π(x∗Sk)} = ne1.

Note that for any assortment x with cardinality n, we have Πk(x) ≤ a for k = 1, . . . , N ,

and ΠSk(x) ≤ ε for k = N + 1, . . . , K. Assuming (K − 2N + 1)ε − ξ ≤ (N − 1)a ⇒
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Na+ (N − 1)ε+ ξ + (K −N)b ≥ a+ (K −N)ε, then we have

Π(x∗) ≥ Π(
N∑
j=1

ej + (n−N)e1) = Na+ (N − 1)ε+ ξ + (K −N)b

and

Π(x∗) ≤
K∑
k=1

Πk(x
∗Sk) = Na+ (K −N)ε

As ε, ξ → 0, we have:

lim
ε→0

Na+ (N − 1)ε+ ξ + (K −N)b− max
k∈{1,...,K}

{Π(x∗Sk)}

Na+ (N − 1)ε+ ξ + (K −N)b

= lim
ε→0

Na+ (N − 1)ε+ ξ + (K −N)b− [a+ (K −N)ε]

Na+ (N − 1)ε+ ξ + (K −N)b

=
N − 1

N

lim
ε→0

Na+ (K −N)ε− max
k∈{1,...,K}

{Π(x∗Sk)}

Na+ (K −N)ε

= lim
ε→0

Na+ (K −N)ε− [a+ (K −N)ε]

Na+ (K −N)ε

=
N − 1

N

Therefore, lim
ε→0

Π(x∗)− max
k∈{1,...,K}

{Π(x∗Sk )}

Π(x∗)
= N−1

N

Case 2: min{N,K} = K. Suppose, Gs > K−1
K

, then

Π(x∗) =
K∑
k=1

Πk(x
∗) > K max

k∈{1,...,K}
{Π(x∗Sk)} ≥

K∑
k=1

Π(x∗Sk) =
K∑
k=1

Πk(x
∗Sk) +

K∑
k=1

K∑
l 6=k

Πl(x
∗Sk)

which is contradiction because Πk(x
∗) ≤ Πk(x

∗Sk) for k = 1, . . . , K. Therefore Gs ≤ K−1
K

.
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Now we show that the bound K−1
K

is tight. Consider an example where 2K ≥ N ≥ n ≥ K.

Given λ, αk, δk, uk0, k = 1, . . . , K and a, ε ≥ 0, we set the other parameters as follows:

pj =
(n− 2)(a− ξ)a

λαj [(n− 2)a− nξ]
− δj j = 1, . . . , n−K

pj =
(n− 1)(a− ε)a

λαj [(n− 1)a− nε]
− δj j = n−K + 1, . . . , K

pj = a j = K + 1, . . . , N

ujj =
auj0

n [λα1(pj + δj)− a]
j = 1, . . . , K

ujK+j =
εuj0

n [λα1(pj + δj)− ε]
j = 1, . . . , N −K

ukj = 0 j = 1, . . . , K and k 6= j

ukK+j = 0 j = 1, . . . , N −K and k 6= j

With the above set of parameters, we can verify that we have:

Table 3.10. Profits for all Possible Assortments (Proof for Thorem 4: Case 2)

Assortment Π1 Π2 · · · ΠN−K · · · Πn−K Πn−K+1 . . . ΠK Π

ne1 a 0 · · · 0 · · · 0 0 · · · 0 a
ne2 0 a · · · 0 · · · 0 0 · · · 0 a

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
neK 0 0 · · · 0 · · · 0 0 · · · a a
neK+1 ε 0 · · · 0 · · · 0 0 · · · 0 ε
neK+2 0 ε · · · 0 · · · 0 0 · · · 0 ε

...
...

...
. . .

... · · ·
...

...
...

...
neN 0 0 · · · ε · · · 0 0 · · · 0 ε∑K
j=1 e

j+
a− ξ a− ξ · · · a− ξ · · · a− ξ a− ε . . . a− ε Ka− (n−K)ξ∑n−K

j=1 ej −(2K − n)ε

Assume that (ε, ξ) ∈ {(y, z) : y ≤ a, (2K − n)ε + (n −K)ξ ≤ (K − 1)a}, then we have

x∗Sk = nek for k = 1, . . . , K. And we note that for any assortment x with cardinality n,
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ΠSk(x) ≤ a for k = 1, . . . , K. Therefore

Π(x∗) ≥ Π(
K∑
j=1

ej +
n−K∑
j=1

ej) = Ka− (n−K)ξ − (2K − n)ε

and

Π(x∗) ≤
K∑
k=1

Πk(x
∗Sk) = Ka

As ε, ξ → 0, we have:

lim
ε→0

Ka− (n−K)ξ − (2K − n)ε− max
k∈{1,...,K}

{Π(x∗Sk)}

Ka− (n−K)ξ − (2K − n)ε

= lim
ε→0

Ka− (n−K)ξ − (2K − n)ε− a
Ka− (n−K)ξ − (2K − n)ε

=
K − 1

K

lim
ε→0

Ka− max
k∈{1,...,K}

{Π(x∗Sk)}

Ka

= lim
ε→0

Ka− a
Ka

=
K − 1

K

Therefore, lim
ε→0

Π(x∗)− max
k∈{1,...,K}

{Π(x∗Sk )}

Π(x∗)
= K−1

K
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CHAPTER 4

A BEHAVIORAL ANALYSIS OF INVENTORY MANAGEMENT FOR

SUBSTITUTABLE PRODUCTS

4.1 Introduction

Supply chain managers often need to decide the inventory levels for multiple items. For

example, each Walmart store has over 10,000 stock-keeping units (SKUs), and the number

of inventory decisions a Walmart store manager has to make on a daily basis is astounding

(Boyer and Verma (2009)). In fast-fashion retailing, the store manager also need to make

frequent inventory decisions for a large number of products. For example, a store manager

of Zara need to decide the stock level for 11,000 articles in a given season on average (Caro

and Gallien (2010)).

An supply chain manager who needs to decide order quantities of the products in his

store typically checks the sales history of the products. However, the sales of products that

are stocked out provide inaccurate information because the full demand is not observable

in that situation. In particular, for categories with substitutable products, stock-outs lead

to a double-censoring effect: lost sales are unobservable and the sales from substitution are

indistinguishable from first-choice sales. The double-censoring effect can lead to a behavioral

trap which we refer to as the Vicious Cycle of Substitution, as is shown in Figure 4.1. We

explain the vicious cycle by assuming a simple scenario, i.e. an inventory manager needs

to decide the inventory levels for 2 substitutable products, Product A and Product B, in a

product category. If product B is out of stock in a selling period, some of the customers who

come to buy B may substitute to A, which results in a large sales of A in that period. By

looking at the sales data, the inventory manager may think a lot of consumers want to buy

A and as a result choose to stock more of A than its true demand while less B than its true

demand in the next period. Then in the next period, there are more customers who want B
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but find it not available. And the inventory manager will probably find a even larger sales

of A for this period, which reinforces his belief in large demand of A while small demand of

B. The evolution of this bias will lead to much larger stock level of A than its true demand

and much smaller stock level of B than its true demand, which results in decreasing service

level overtime.

Inventory decisions for substitutable products using subjective estimates is challenging

(Bansal and Moritz (2015)). First, assessing the frequency with which the product substi-

tution flexibility will be used in future period(s) is difficult for decision makers, many of

whom resort to ad-hoc analysis or heuristics even in simpler contexts. For example, in the

single product newsvendor problem, Schweitzer and Cachon (2000) showed that subjects

made suboptimal capacity decisions under uncertain demand, and exhibited systematic bi-

ases in ordering behavior. When compared to the single product newsvendor problem, the

determination of optimal inventory levels for multiple substitutable products is much more

complex and difficult to implement. The additional complexity is due to the potential substi-

tution interactions that must be considered while determining the optimal inventory levels.

Typically, the demand of each product is met first using its own available capacity. Any

surplus inventory is used for substitution to other products and any unmet demand is met

by substitution from other products. Accurately anticipating contingent demand and sup-

ply scenarios, their frequency of occurrence, and then incorporating such information into

capacity acquisition decisions is a challenging task.

In this paper, we design an experiment to study the impact of substitution on subjects’

performance in a newsvendor setting where subjects need to decide inventory levels for two

substitutable products.

The rest of this paper is as follows. In §4.2 we review the relevant papers. In §4.3 and

§4.4 we propose hypothesis and explain the experimental design. In the last section of this

chapter we discuss the experimental resutls.
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Figure 4.1. The Vicious Cycle of Substitution

4.2 Literature Review

The literatures that are related to this study are discussed below.

The newsvendor problem is a building block for many study on supply chain management

and inventory management (Porteus (1990)). In the newsvendor problem, a decision maker

must decide the stock level of a perishable product to maximize expected profit for a single

selling period. Since the demand for the product is unknown, the decision maker need to

evaluate the tradeoff between overordering and underordering. Empirical and experimental

study have shown that human individuals make order quantities that systematically deviates

from the normative inventory level. Schweitzer and Cachon (2000), were the first work to

demonstrate this. In particular, it shows subjects’ decisions exhibit pull-to-center effect,

where the average order quantities lies in between the mean of the demand distribution
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and the exptected porfit-maximizing quantity. A large number of studies since then have

illustrated the robustness of the pull-to-center result, including Bolton and Katok (2008),

Bostian et al. (2008), Benzion et al. (2008), Su (2008), Katok and Wu (2009), Lurie and

Swaminathan (2009), Ho et al. (2010), Kremer et al. (2010), Bolton et al. (2012) and Chen

et al. (2013).

Most experimental study on newsvendor problem have been focusing on on single newsven-

dor decision. However, in practice, an inventory manager often need to decide stock level for

more than one products. There are a few experimental studies on newsvendor problem which

involves more than one newsvendor. Ho et al. (2010) studies newsvendor decisions in multi-

ple locations where they assumes all stores have same price, cost and demand distribution.

Ho et al. (2010) validates the ”pull-to-center” bias and found that the biases are shown to

eliminate the risk-pooling benefit when the demands across store locations are strongly cor-

related. In contrast, Chen and Li (2016) investigates how people make decisions dealing with

2 unrelated products. One of their main conclusions is that individuals who need to make

two newsvendor decisions simultaneously perform worse than making a single newsvendor

decision, which is driven by lower levels of learning and stronger demand chasing behavior.

Bansal and Moritz (2015) studies how decision makers perform in a 2-product newsvendor

setting, but they focus on investigating the behavioral aspects of estimation of the value of

substitution. They found that subjects systematically overestimated the monetary value of

product substitution and also overestimated sales from substitution.

4.3 Research Hypothesis

To study the bias on demand for substitutable products, we adopt a two-product newsvendor

inventory management context in which we assume unidirectional substitution.

A retailer sells two substitutable products 1 and 2, where product 1 has smaller average

demand than product 2. The demand for product 1 and 2, denoted D1, D2 are random
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variables mean µ1, µ2 and standard deviation σ1, σ2. Demand distribution for product i has

probability density function fi(·) with support [0, Di], i = 1, 2. We assume the demand for

the 2 type of products are independent.The selling price for either product is p, and the cost

of acquiring a unit of either product is c. The retailer must decide the inventory of product 1

and product 2 in quantities q1, q2 at the beggining of the selling period, i.e. before customers

come to the store. After the demand for the 2 products are realized, the retailer first uses the

available inventory for each product to meet the first choices, and then performs substitution

if there is inventory left.

4.3.1 Analytical Model

In this study, we assume the customers only substitute from product 2 to product 1, with

substitution rate α. Specifically, α is the fraction of customers who prefer product 2 but are

willing to purchase product 1 in the event that product 2 stocks-out. Let Si be the sales

quantity of product i, i = 1, 2. The the retailer’s expected payoff is given by: Total sales for

each product are given by:

E[π(q1, q2)] = E [pS1 + pS2 − cq1 − cq2]

= p (E[S1] + E[S1])− c (q1 + q2)

where

S1 = min{D1 + α(D2 − q2)+, q1}

S2 = min{D2, q2},

TO ADD: nominal inventory levels for 2-product newsvendor problem.

4.3.2 Research Hypotheses

In the experiments, we set selling price for both products to be 10 and cost for both products

to be 5. This makes the the 2 products have same profit margin, thus it is not beneficial for

84



the decision maker to deviate from their guess of the true demand for either product. And

the 2 products both have critical fractile value that equals 0.5. Further, we chose uniform

distribution as the demand distribution for both products under which the mean of demand

equals the median of demand. All together, in the last period, it is optimal for the decision

maker to make order quantities that equal the mean of the effective demand distribution for

either product. In addition, we find through numerical analysis that the profit for decision

maker is more sensitive to order quantities under uniform demand distributions compared

to bell-shaped distributions (for example, beta distribution). This is another reason for us

to choose uniform distribution which possibly gives subjects more incentives for demand

learning. These setting are for the purpose to motivate subjects to learn the true demand

for each product and for us to explore the impact of substitution on subjects’ biases in

decision making while minimizing pull-to-center effect.

Starting with Schweitzer and Cachon (2000), numerous experimental studies have docu-

mented that newsvendor decisions tend to be biased towards the mean demand. Su (2008)

explained the phenomenon by the use of the quantal response model. Bolton and Katok

(2008) showed that newsvendor performance improves slowly over time with experiences.

Inventory decisions for multiple substitutable products are more complicated than single

product decision. Given this complexity, we expect the performance of decision makers to

be worse. Our basic premise is that subjects are more prone to systematic decision biases

on the 2 products. And because the demand distribution for the 2 products are unknown

to subjects, the direction of bias on the 2 products should be opposite. Further, in partially

censored information treatment and signal treatment where subjects are given either more

information or signal, we expect their demand learning process to be different with the fully

censored information treatment. Specifically, in fully censored information treatment where

least information is given, subjects are most ”blind” to substitution information and we

expect their bias to be worse when substitution exists. We formalize these premise in the

following hypotheses.
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Hypothesis 1. Subjects’ order quantities are biased when facing 2 products with substitu-

tion.

Hypothesis 2. The direction of the bias is for subjects to over-estimate demand for the

low-demand product and to under-estimate demand for the high-demand product.

Hypothesis 3. In fully censored information treatment, subjects’ bias is worse when there

is substitution.

Hypothesis 4. Subjects will order higher quantities in early periods under full censored

information than under partially censored information in order to facilitate learning

the distribution of demand.

Hypothesis 5. When subjects are provided with stock out alarm, the total order quantity

for both products are higher.

4.4 Experimental Design

To test the hypotheses, we developed a computer-based decision-making experiment imple-

mented in SoPHIE labs.

In the experiments, subjects play the role of an inventory manager who must decide the

order quantities for two types products carried in his store for consecutive 30 periods. We use

the newsvendor setting with no inventory carry-over and no salvage value. Before starting

the experiment, subjects were provided with written instructions followed by a quiz which

tests subjects’ understanding of the instructions. In the instruction, we told subjects that

the number of customers who prefer product 1 is drawn from an unknown distribution with

support [0, 500], and the same for product 2. Subjects were also told that some customers

may substitute to the other product when the product they prefer is out of stock, but were

not informed of the exact demand distribution and substitution rate. Subjects were required

to achieve 100% correctness for the quiz questions in order to start the experiment.
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In all the experiments, subjects were shown the average sales of product 1 and 2 of the

past periods and a history table which summarize each period from the past. Our experiment

consisted of a 3 × 3 between-subjects design. In the first dimension of our experiment, we

vary the substitution rate. The two products are unidirectional substitutable, where the

substitution rate from high demand product to low demand product are respectively 0, 0.5, 1

in the 3 settings. In the second dimension of our experiment, we vary the information shown

in the history table. In the fully-censored information (FC) treatment, subjects were shown

the sales quantity for each product and the total profit in each period. In partially-censored

(PC) information treatment, in addition to the information from BL treatment, subjects

can also see the breakdown of sales for both products: sales from first choice and sales from

substitution. The third treatment, stockout-alarm (SOA) treatment, is a signal treatment

where subjects were given the same history table as FC treatment except that when there

is stockout, the according sales quantity was put in red color between exclamation marks as

a warning.

In the experiments, we introduced customer drop-out to motivate subjects to learn the

true demand for the two products. In the instruction, subjects were told that if a customer

did not get to buy the product he prefered, he may not come back to the store and the

demand for that product could as a result shrink in future periods. In all treatments, the

drop-out rate for both products is 2% which is not known to subjects. The reason to have

a low drop-out rate is to avoid too much demand shrink which could impact the demand

learning for subjects. A summary of the expreimental design and number of number of

subjects are exhibited in Table 4.1.

After completing all periods of the game, subjects were asked to write down their guess of

the true demand for each of the two products. This question allows subjects to earn a bonus

based on how close their guess is to the mean of the demand distribution. Subjects also

participated in a post experiment survey which contains question about their risk aversion

level and the strategy for their order quantity decision making.
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Table 4.1. Experimental Decision and Number of Participating Subjects
Treatment

Substitution rate
Fully censored Partially censored Signal

(FC) (PC) (SOA)
α = 0 19 20 16
α = 0.5 24 13 19
α = 1 15 18 21
Total 58 51 56

Figure 4.2. The Experiment for Fully Censored Information Treatment

All sessions were conducted at Amazon Mechanical Turk (MTurk) through the SOPHIE-

MTurk integration. Figure 4.2, 4.3 and 4.4 respectively show the experiment screen in Sophie

for fully censored information treatment, partially censored information treatment and signal

treatment.

4.5 Results

In this section we present the results from analysis of the experimental data.
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Figure 4.3. The Experiment for Partially Censored Information Treatment

Figure 4.4. The Experiment for Signal Treatment
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4.5.1 Existence and Direction of Bias

Given that the critical fractile of both products are 0.5, at the last period (i.e period 30),

the subjects are supposed to put order quantities that are very close to their guess of the

the average true demand. In the analysis below, unless otherwise indicated, we measure

the bias as the deviation from the mean of actual demand distribution in the last period.

As is introduced in previous section, in our setting, there is a drop rate that equals to

2%. As such, the demand distribution for either product is not consistent throughout the

experiment, which actually happens in practice. We use the following example to illustrate

how the demand distribution change is captured when we take lost demand into account.

Example 4.5.1. The original demand distributions are Unif(0, 100) for product 1 , and

Unif(0, 500) for product 2. Drop-out rate is 2% for both products. Substitution rate from

product 2 to product 1 is 0.5. The seeds for product 1 and 2 at period 1 is (0.7, 0.6), then the

realized demands for the 2 products are (70, 300). Suppose the subjects put order quantities

(200, 200) in period 1, then the sales quantities are (120, 200). In the sales of product 1,

70 are from first choice, and 50 are from substitution. Since the order quantity for product

2 is less than the true demand, 100 of the customers who prefer product 2 find it out of

stock. Among these 100 customers, 50 of them are willing to substitute to product 1 if it

is available, and 2 of them will never come back to the store in future periods. So at the

beggining of period 2, the total lost demand for product 2 is 2. Suppose the seeds for product

2 in period 2 is 0.5, then the true demand for product 2 in period 2 is (500− 2)× 0.5 = 249.

Table 4.2 reports the average deviation of order quantity from the mean of actual demand

distribution in the last period (period 30). As is shown, subjects’ average bias for high

demand product is negative in all the three treatments, and the bias is significantly smaller

than 0 in fully censored and partially censored treatments. For low demand product, the

bias is significantly bigger than zero in all the three treatments. This validates Hypothesis 1
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Table 4.2. Deviation from Actual Average Demand in Period 30
Treatment

Bias
Fully censored Partially censored Signal

(FC) (PC) (SOA)

High demand product
−55.23∗∗∗ −78.29∗∗∗ -6.5

[11.53] [10.50] [17.05]

Low demand product
36.61∗∗∗ 21.17∗∗∗ 70.09∗∗∗

[7.70] [6.85] [14.43]

Total bias
91.84∗∗∗ 99.46∗∗∗ 76.59∗∗∗

[12.67] [10.60] [13.64]

Note. Standard deviation in brackets. t-test versus actual average demand.
∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

and 2. Specifically, given the results that subjects overestimates the demand for low demand

product and underestimates the demand for high demand product, we measure the total

bias on the 2 products as below:

total bias = bias of low demand product − bias of high demand product

Tables 4.2 shows that subjects are significantly biased on the 2 products in all three treat-

ments. Table 4.3 exhibits the deviation of subjects’ guess of average demand from the mean

of actual demand distribution at the end of the experiment. The overestimation of low de-

mand product and underestimation of high demand product are significant in most of the

treatments. The underestimation of high demand product and overestimation of low demand

product can be explained by the double-censoring effect as mentioned earlier. Since subjects

do not know the exact demand distribution

4.5.2 Impact of Substitution on Demand Bias

In this section we analyze the impact of substitution on bias.

Table 4.4 and 4.5 shows the bias of high demand product and low demand product

for each treatment under different substitution rate. We can see from Table 4.4 subjects
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Table 4.3. Deviation of Average Demand Prediction from Actual Average Demand
Treatment

Bias
Fully censored Partially censored Signal

(FC) (PC) (SOA)

High demand product
−82.55∗∗∗ −101.87∗∗∗ −66.27∗∗∗

[9.40] [8.53] [10.57]

Low demand product
12.14∗∗∗ 7.54 22.41∗∗

[4.19] [6.60] [9.51]

Total bias
94.69∗∗∗ 109.41∗∗∗ 88.68∗∗∗

[8.90] [6.18] [7.74]

Note. Standard deviation in brackets. t-test versus actual average demand.
∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

over estimates the demand for high demand product under all 3 substitution levels under

fully censored information treatment and partially censored information treatment. Under

fully censored information treatment where there is least information shown to subjects,

the bias for high demand product is worse when there is substitution, i.e. when α > 0.

In contrast, under partially censored information treatment where the breakdown between

sales is presented to subjects, the bias for high demand product is worst when there is

no substitution. This suggests that when the sales of substitution is shown to subjects

while in fact the 2 products are not substitutable, the subjects can get hurt from too much

information. From Table 4.5 we can see that the overestimation of low demand product

under fully censored information is also worse when there is substitution. Under partially

censored information treatment, the bias for low demand product is -0.5, which implies that

the subjects learns well from the sales details and almost not biased when substitution rate is

0. While when there is substitution, even when offering sales breakdown between first choice

and substitution, the subjects have much larger bias for the low demand product. Table 4.6

reports the total bias under different substituton rate. When the total bias is measured as

the bias for low demand product minus the bias for high demand product, the total bias is

worse under all three treatments when there is subsitution.
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Table 4.4. Deviation from Actual Average Demand in Period 30 (High Demand Product)
Treatment

Substitution rate
Fully censored Partially censored Signal

(FC) (PC) (SOA)

α = 0
-22.37 −84.35∗∗∗ 45.09
[21.43] [21.94] [29.77]

α = 0.5
−82.75∗∗∗ −82.73∗∗∗ -20.58

[17.28] [13.73] [26.24]

α = 1
−49.17∗∗ −65.67∗∗∗ -33.07
[19.38] [20.26] [30.32]

Note. Standard deviation in brackets. t-test versus actual average demand.
∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 4.5. Deviation from Actual Average Demand in Period 30 (Low Demand Product)
Treatment

Substitution rate
Fully censored Partially censored Signal

(FC) (PC) (SOA)

α = 0
1.26 -0.5 82.72∗∗

[4.66] [9.01] [36.91]

α = 0.5
47.48∗∗∗ 22.33∗∗ 49.74∗∗∗

[12.04] [9.83] [9.20]

α = 1
62.53∗∗∗ 43.49∗∗∗ 78.89∗∗∗

[18.41] [15.63] [25.51]

Note. Standard deviation in brackets. t-test versus actual average demand.
∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 4.6. Total Deviation from the Sum of Actual Average Demand in Period 30
Treatment

Substitution rate
Fully censored Partially censored Signal

(FC) (PC) (SOA)

α = 0
23.63 83.83∗∗∗ 37.63∗

[20.76] [25.44] [27.65]

α = 0.5
130.23∗∗∗ 105.06∗∗∗ 70.32∗∗∗

[17.89] [10.05] [20.73]

α = 1
111.70∗∗∗ 109.36∗∗∗ 111.95∗∗∗

[19.53] [19.49] [21.35]

Note. Standard deviation in brackets. t-test versus actual average demand.
∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table 4.7. t-Test for Deviation in Period 30: Impact of Substitution

Treatment Product
Substitution rate

Difference
(α = 0) (α > 0)

FC
High demand -22.37 -70.46 48.09 t = 1.91, p− value = 0.0322
Low demand 1.26 52.99 -51.72 t = −4.65, p− value = 0.0000
Total bias 23.63 123.45 -99.82 t = −4.05, p− value = 0.0001

PC
High demand -84.33 -75.42 -8.91 t = −0.36, p− value = 0.3361
Low demand -0.5 31.49 -31.99 t = −2.54, p− value = 0.0070
Total bias 83.83 106.90 -23.08 t = −0.84, p− value = 0.2031

SOA
High demand 45.09 -27.14 72.23 t = 2.01, p− value = 0.0264
Low demand 82.72 65.04 17.68 t = −0.45, p− value = 0.3297
Total bias 37.63 92.18 -54.55 t = −1.73, p− value = 0.0477

Note. Two-sample t-test.

Further, we show the two sample t-test for bias with substitution and bias without

substitution. Under fully censored information treatment, the bias for both high demand

product and low demand product are significantly worse when there is substitution compared

to when there is not substitution. Under partially censored information treatment, the bias

for low demand product is significantly worse when there is substitution.

4.5.3 Order Quantity

Table 4.8 shows the average order quantities of all 30 periods. The order quantities are

overall higher under signal treatment. Compared to signal treatment, the stock out in the

other two treatments are not stressed. In case of a stock out subjects will understand they

could have sold more of that product but they may not inflate these sales value enough.

Table 4.9 reports the average order quantity in the first 5 periods. Under fully censored

information treatment, when subjects are provided with less information than partially cen-

sored information treatment, subject’s average order quantities for both products are higher

than partially censored information treatment. Further, the difference for high demand

product is significant.

Figure 4.5 shows the average order quantity of high demand product and low demand

product though the 30 periods for each of the 3 treatments. We see the average order
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Table 4.8. Average Order Quantities for Low Demand Product and Hight Demand Product
Treatment

Substitution rate
Fully censored Partially censored Signal

(FC) (PC) (SOA)
α = 0 (60.21, 161.57) (48.58, 124.52) (132.26, 233.35)
α = 0.5 (95.87, 141.39) (85.20, 133.96) (94.04, 173.61)
α = 1 (100.18, 145.24) (94.04, 119.77) (120.96, 171.16)
All α (85.65, 148.75) (75.95, 126.80) (115.05, 189.76)

Note. Note. The first number parenthesis is the average demand for low demand product, and the second
number is the average demand for high demand product.

Table 4.9. t-Test for Average Order Quantity in the First 5 Periods: Fully-Censored Treat-
ment vs. Partially-Censored Treatment

Product
Treatment

Difference
FC PC

High demand product 162.79 148.99 13.79 t = 1.55, p− value = 0.0611
Low demand product 111.36 104.26 7.10 t = 1.05, p− value = 0.1477
Total order quantity 274.15 253.25 20.90 t = 1.57, p− value = 0.0528

Note. Two-sample t-test.

quantity of high demand product under all the 3 treatments increase sharply at the early

periods while the average order quantity of low demand product under all the 3 treatments

show an obvious drop, which implies that the subjects start to realize the 2 products have

different average demand at very early periods. In addition, the average order quantity for

high demand product under signal treatment is all way closer to the average demand than

fully censored information treatment and partially censored information treatment. While

for low demand product, the average order quantity under partially censored information

treatment is closer to average demand than the other two treatments.

4.5.4 Impact of treatment

In this section we compare subjects performance under different treatment.Table 4.10 ex-

hibits the comparison between fully censored information treatment and partially censored
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Figure 4.5. Average Order Quantity

information treatment. When subjects are provided with the details of sales, i.e. the. break-

down between first choice and substitution, the bias for high demand product is significantly

worse but the bias for low demand product is significantly better. The average total bias

value on the 2 products is larger in partially censored information treatment than in fully

censored information treatment.

Table 4.11 compares fully censored information treatment and signal treatment. In signal

treatment, the underestimation of high demand product is better while the overestimation

of low demand product is worse, and the total bias on the two products is better. The data

in Table 4.12 implies that the total bias on the two products is significantly better in signal

treatment than in partially censored information treatment.
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Table 4.10. t-Test for Deviation in Period 30: Fully-Censored Treatment vs. Partially-
Censored Treatment

Bias
Treatment

Difference
FC PC

High demand product -55.23 -78.29 23.05 t = 1.48, p− value = 0.0709
Low demand product 36.61 21.17 15.44 t = 1.50, p− value = 0.0683
Total bias 91.84 99.46 -7.62 t = −0.46, p− value = 0.3228

Note. Two-sample t-test.

Table 4.11. t-Test for Deviation in Period 30: Fully-Censored Treatment vs. Signal Treat-
ment

Bias
Treatment

Difference
FC SOA

High demand product -55.23 -6.5 -48.73 t = −2.37, p− value = 0.0099
Low demand product 36.61 70.09 -33.48 t = −2.05, p− value = 0.0218
Total bias 91.84 76.59 15.25 t = 0.82, p− value = 0.2072

Note. Two-sample t-test.

Table 4.12. t-Test for Deviation in Period 30: Partially-Censored Treatment vs. Signal
Treatment

Bias
Treatment

Difference
PC SOA

High demand product -78.29 -6.5 -71.79 t = −3.59, p− value = 0.0003
Low demand product 21.17 70.09 -48.92 t = −3.07, p− value = 0.0015
Total bias 99.46 76.59 22.87 t = 1.32, p− value = 0.0942

Note. Two-sample t-test.

Figure 4.6 shows the average total bias under all the three treatments. Same as §??,

the total bias is measured by bias of high demand product minus the bias of low demand

product, where bias for each product is the difference between order quantity and mean of

true demand. As is shown, the total bias under all the three treatments has an obvious

drop in the first 6 periods. The total bias under signal treatment is smaller than the other

2 treatments in most of the periods. And the total bias when subjects are provided the

breakdown in sales between first choice and substitution, the total bias is higher than when

they are not offered this information in most of the periods.
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Figure 4.6. Total Bias
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CHAPTER 5

CONCLUSION

5.1 Conclusion of Chapter 2

In Chapter 2, we study the assortment planning problem for a single product category when

retailer faces multi-item purchasing, so called “n-pack” consumers as introduced by Fox et

al (2017). With some mild assumptions on consumer behavior, Fox et al (2017) develop a

choice model to obtain the expected value from consuming an n-pack, which we use as an

input into our demand function for given assortment. We study the structure of the optimal

assortment under two choice rules: consumers either purchase the maximum value n-pack

with probability one (maximum choice rule) or they probabilistically choose between each

possible n-pack using an attraction-based formula akin to the Multinomial Logit (MNL)

model purchase probability equation (probabilistic choice rule). In addition, we explore how

the retailer’s assortment decision and total profits are impacted when the retailer ignores a

key feature of the n-pack choice model, called “choice premium”. Specifically, this choice

premium captures the utility that consumers derive from variety in their shopping basket

which allows them to hedge against future preference uncertainty. Moreover, we investigate

the impact on the retailer?s optimal assortment and profits when he ignores the multi-item

shopping behavior of consumers, i.e. when he assumes all consumers buys at most one unit

from the product category on a store visit.

We find the structure of optimal assortment under the two choice rules. Under proba-

bilistic choice rule, the optimal assortment is a “popular-eccentric set”. In contrast, under

maximum choice rule, one can only guarantee that the optimal assortment includes the most

popular product. Under maximum choice rule, we propose a heuristic method for selecting

an assortment and show numerically that it reaches high optimality. We also show that

the optimal assortment under the probabilistic rule is a popular-eccentric set but can be
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different from the optimal assortment when considering choice premium. And the optimal

assortment under maximum choice rule when choice premium is ignored contains only the

most popular product. The numerical study shows that ignoring key features of consumer

choices including choice premium and basket shopping can lead to significant profit loss.

5.2 Conclusion of Chapter 3

In this paper we analyze the assortment planning problem of a firm facing a two-sided market

which receives revenues per product sold from its customers and revenues from promotion

campaigns by some advertisers. Customers come from different segments which differ in

their preferences for the products. The firm is allowed to offer multiple products with the

same attractiveness profile and price, that is, the firm is allowed to repeat products in the

chosen assortment. We show that the optimal assortment does not generally have a simple

structure. When unlimited repetitions are allowed, we show that it may still be optimal to

offer distinct product profiles in the assortment when there are multiple customer segments.

In contrast, the optimal assortment contains only one product profile if there is only one

customer segment. For a special case with 3 product profiles and 2 customer segments,

we provide conditions under which the firm would choose to offer standard products which

appeal to all segments as opposed to a dedicated products for each segment. We show that in

general, the optimal assortment is not revenue-ordered, that is, it does not include a certain

number of the products with the highest revenue. However, we provide conditions under it

has a simple ranking-based structure. We also consider special cases wherein the firm ignores

the revenue received from the advertisers (one-sided market) or the revenue received from

the customers (free product). We show that the optimal solution to these problems can lead

to a significant revenue loss in the two-sided market problem, therefore it is important for

the firm to consider both streams of revenues when making assortment decisions.
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In our future research we plan to further analyze the structure of the optimal assortment

in the two-sided market problem and its special cases. In particular we are interested in

seeing when a greedy heuristic is optimal. We also plan to propose a number of heuristic

policies for choosing an assortment and study their performance numerically.

In our model we have assumed that the product selling prices are fixed. This assumption

allows us to focus on the assortment dimension, which, to our knowledge has not been studied

previously in the context of a two-sided market. Studying the interaction between pricing

and assortment is a interesting direction for future research. We have also assumed that

the firm must choose from a discrete set of possible product profiles, which have pre-set

attractiveness levels to the different customer segments. In our future research we plan on

studying the product design problem in which the firm is directly choosing the attractiveness

levels of its products under some cost constraints.

5.3 Conclusion of Chapter 4

A retailer who needs to decide order quantities of the products in his store typically checks the

sales history of the products. However, the sales of products that are stocked out provide

inaccurate information because the full demand is not observable in that situation. In

particular, for categories with substitutable products, stock-outs lead to a double-censoring

effect: lost sales are unobservable and the sales from substitution are indistinguishable from

first-choice sales.

We design an experiment to study the impact of substitution on subjects? performance

in a newsvendor setting where subjects need to decide inventory levels for two substitutable

products. Our experiment consisted of a 3 × 3 between-subjects design. In the first di-

mension of our experiment, we vary the substitution rate. In the second dimension of our

experiment, we vary the information shown in the history table. In the fully-censored in-

formation (FC) treatment, subjects were shown the sales quantity for each product and the
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total profit in each period. In partially-censored (PC) information treatment, in addition to

the information from BL treatment, subjects can also see the breakdown of sales for both

products: sales from first choice and sales from substitution. The third treatment, stockout-

alarm (SOA) treatment, is a signal treatment where subjects were given an alarm whenever

stock out happened. The analysis of experiment data show that when deciding inventory

levels for 2 substitutable products, subjects underestimate the demand for high demand

product and overestimate the demand for low demand product. Moreover, the bias is worse

when there is substitution in fully censored information treatment. Comparison between

treatments shows that in fully censored information treatment where subjects are provided

with less information compared to partially censored information treatment, subjects tend to

order larger quantity in early periods in order to learn demand. Also, when given alarm on

stock out, subjects’s order quantities for both products are larger than the other treatments.
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APPENDIX A

PROOFS FOR CHAPTER 2

Lemma 20. We have V (k1, ..., kM) ≤ V (k1, ..., kj + 1, ..., kM) for all j = 1, ...,M .

Proof. From (2.2), we have V (k1, . . . , kj + 1, . . . , kM)− V (k1, ..., kM) = ln
(

(n+1)!
k1!...(kj+1)!...kn!

)
−

ln
(

n!
k1!...kj !...kn!

)
+Uj+γ = ln n+1

kj+1
+Uj+γ which is non-negative since Uj ≥ 0 and kj ≤ n.

Lemma 21. For a given S ⊆M, consider n-packs ~k = (k1, . . . , kM) and ~k′ = (k′1, ..., k
′
M) ∈

Kn(S). If for i, j ∈ S with i < j (so that Ui ≥ Uj), we have ki = k′j ≥ kj = k′i and k′l = kl

for all l 6= i, j then V (~k) ≥ V (~k′).

Proof.

V (~k)− V (~k′) = ln

(
n!

k1! . . . kM !

)
+ k1U1 + . . .+ kiUi + . . .+ kjUj + . . .+ kMUM − nγ

− ln

(
n!

k1! . . . kM !

)
+ k1U1 + . . .+ kjUi + . . .+ kiUj + . . .+ kMUM − nγ

= (ki − kj)(Ui − Uj)

≥ 0

where the inequality follows from the fact that i < j implies Ui ≥ Uj.

Corollary 6. For a given assortment S ⊆M, k∗nj (S) is non-decreasing in n for all j ∈ S.

Proof. This result directly follows from the fact that the greedy procedure stated in Algo-

rithm 1 is optimal.

Proof of Lemma 1. This result directly follows from 21.
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Proof of Proposition 1. Part (i): for any j ∈ S:

V ∗n+1(S) = V (~k∗n+1) ≥ V (k∗n1 , . . . , k∗nj + 1, . . . , k∗nM ) ≥ V (~k∗n) = V ∗n(S).

where the second inequality comes from Lemma 20.

Part (ii): we have

V ∗n(Ŝ) = V (~k∗n(Ŝ)) = max
(k1,...,kM ):

∑
i:i∈Ŝ ki=n

ki=0,i/∈Ŝ

V (k1, ..., kM)

≤ max
(k1,...,kM ):

∑
i:i∈S ki=n

ki=0,i/∈S

V (k1, ..., kM) = V (~k∗n(S)) = V ∗n(S).

Part (iii):

V ∗n(S) = V (~k∗n(S)) = ln

(
n!

(k∗n1 (S))! · · · (k∗nj (S))! · · · (k∗nM (S))!

)
+k∗n1 (S)U1 + · · ·+ k∗nj (S)Uj + · · ·+ k∗nM (S)UM + nγ

≤ ln

(
n!

(k∗n1 (S))! · · · (k∗nj (S))! · · · (k∗nM (S))!

)
+k∗n1 (S)U1 + · · ·+ k∗nj (S)Ui + · · ·+ k∗nM (S)UM + nγ

≤ V ∗n(S ′)

Proof of Lemma 2. (i) The proof is by induction on n. Let S = {l1, ..., lm}, such

that Ul1 ≥ Ul2 ≥ ... ≥ Ulm . First we show the result holds for n = 1. From Corollary 1,

the maximum-value 1-pack with assortment S is such that k∗1l1 (S) = 1 and k∗1lr (S) = 0 for

r = 2, . . . ,m. There are two cases: (i) Ui < Ul1 or (ii) Ui ≥ Ul1 . In Case (i), the maximum-

value n-pack with S ′ is such that k∗1l1 (S ′) = 1, k∗1i (S ′) = 0 and k∗1lr (S ′) = 0 for r = 2, . . . ,m.

In Case (ii), it is such that k∗1i (S ′) = 1 and k∗1lr (S ′) = 0 for r = 1, . . . ,m. In both cases, we

have k∗1lr (S ′) ≤ k∗1lr (S) for r = 1, . . . ,m.

Next we show that if the result holds for n it also holds for n+1. From Algorithm 1, there

exists j ∈ S ′ such that k∗n+1
j (S ′) = k∗nj (S ′) + 1 and k∗n+1

x (S) = k∗nx (S ′) for x = 1, ...,M and
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x 6= j and it is such that Uj−ln(k∗nj (S ′)+1) ≥ Ux−ln(k∗nx (S ′)+1) for x = 1, ...,M and x 6= j.

From the induction hypothesis there are two cases: (i) j is such that k∗nj (S ′) < k∗nj (S) or (ii)

j is such that k∗nj (S ′) = k∗nj (S). In Case (i), we have k∗n+1
j (S ′) ≤ k∗nj (S ′) + 1 ≤ k∗nj (S) ≤

k∗n+1
j (S) so the result holds for n + 1. In Case (ii), we show that k∗n+1

j (S) = k∗nj (S) + 1

which would then imply that k∗n+1
l (S ′) ≤ k∗n+1

l (S) for all l ∈ S.

Suppose not, then let t be such that k∗n+1
lt

(S) = k∗nlt (S) + 1 and k∗n+1
x (S) = k∗nx (S) for

x = 1, ...,M and x 6= lt. This implies that Ult − ln(k∗nlt (S) + 1) > Uj − ln(k∗nj (S) + 1) =

Uj − ln(k∗nj (S ′) + 1) ≥ Ult − ln(k∗nlt (S ′) + 1) where the first and third inequality come from

Algorithm 1 for assortments S and S ′ respectively and the second one is from the definition

of Case (ii). However, from the induction hypothesis, we know that k∗nlt (S) ≥ k∗nlt (S ′), which

implies that Ult − ln(k∗nlt (S) + 1) ≤ Ult − ln(k∗nlt (S ′) + 1). Hence we have a contradiction.

(ii) The proof for this part is similar to the proof for part (i) and therefore omitted.
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Proof of Lemma 3. (i) First we show that
∑

l∈S Dl(S) ≤
∑

l∈S∪{i}Dl(S ∪ {i}). Under

the probabilistic decision rule, we have

∑
l∈S

Dl(S) =
∑
l∈S

λ

 ∑
~k∈Kn(S)

kl
V (~k)∑

~k∈Kn(S) V (~k) + V0


= λ

∑
l∈S

 ∑
~k∈Kn(S)

kl
V (~k)∑

~k∈Kn(S) V (~k) + V0


= λ

 ∑
~k∈Kn(S)

V (~k)∑
~k∈Kn(S) V (~k) + V0

(∑
l∈S

kl

)
= λn

( ∑
~k∈Kn(S) V (~k)∑

~k∈Kn(S) V (~k) + V0

)

< λn

 ∑
~k∈Kn(S) V (~k) +

∑
~k∈Kn(S∪{i})

ki>0

V (~k)∑
~k∈Kn(S) V (~k) +

∑
~k∈Kn(S∪{i})

ki>0

V (~k) + V0


= λn

( ∑
~k∈Kn(S∪{i}) V (~k)∑

~k∈Kn(S∪{i}) V (~k) + V0

)
=

∑
l∈S∪{i}

Dl(S ∪ {i})

Under the maximum choice rule, we have

∑
l∈S

Dl(S) =
∑
l∈S

λk∗nl (S)1(V (~k∗n(S)) ≥ V0)

= λ
∑
l∈S

k∗nl (S)1(V (~k∗n(S)) ≥ V0)

= λn1(V (~k∗n(S)) ≥ V0)

≤ λn1(V (~k∗n(S ∪ {i})) ≥ V0)

=
∑

l∈S∪{i}

Dl(S ∪ {i})

where the inequality follows from V (~k∗n(S ∪ {i})) ≥ V (~k∗n(S)) by Proposition 1.
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(ii) Second, we show that
∑

l∈S Dl(S) ≤
∑

l∈S\{j}∪{i}Dl(S\{j}∪{i}). Denote assortment

S ′ = S \ {j} ∪ {i}. Under the probabilistic decision rule, we have

∑
l∈S

Dl(S) =
∑
l∈S

λ

 ∑
~k∈Kn(S)

kl
V (~k)∑

~k∈Kn(S) V (~k) + V0


= λ

∑
~k∈Kn(S)

V (~k)∑
~k∈Kn(S) V (~k) + V0

(∑
l∈S

kl

)

= λn

( ∑
~k∈Kn(S) V (~k)∑

~k∈Kn(S) V (~k) + V0

)

= λn


∑

~k∈Kn(S)
kj=0

V (~k) +
∑

~k∈Kn(S)
kj>0

V (~k)∑
~k∈Kn(S)

kj=0

V (~k) +
∑

~k∈Kn(S)
kj>0

V (~k) + V0


≤ λn


∑

~k∈Kn(S)
kj=0

V (~k) +
∑

~k∈Kn(S′)
ki>0

V (~k)∑
~k∈Kn(S)

kj=0

V (~k) +
∑

~k∈Kn(S′)
ki>0

V (~k) + V0


= λn

 ∑
~k∈Kn(S′)

ki=0

V (~k) +
∑

~k∈Kn(S′)
ki>0

V (~k)∑
~k∈Kn(S′)

ki=0

V (~k) +
∑

~k∈Kn(S′)
ki>0

V (~k) + V0


= λn

( ∑
~k∈Kn(S′) V (~k)∑

~k∈Kn(S′) V (~k) + V0

)
=

∑
l∈S′

Dl(S
′)

Under the maximum choice rule, we have

∑
l∈S

Dl(S) =
∑
l∈S

λk∗nl (S)1(V (~k∗n(S)) ≥ V0)

= λn1(V (~k∗n(S)) ≥ V0)

≤ λn1(V (~k∗n(S ′)) ≥ V0)

=
∑
l∈S′

Dl(S
′)

where, in both cases, the inequality follows from V (~k∗n(S ′)) ≥ V (~k∗n(S)) by Proposition 1.
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(iii) Next we prove that the total demand
∑

l∈S Dl(S) is nondecreasing and concave in Uj

for all j ∈ S under probabilistic choice rule. Let An =
∑

~k∈Kn(S) V (~k). Then total demand

under the probabilistic choice rule can be written as:

∑
l∈S

Dl(S) = λn

( ∑
~k∈Kn(S) V (~k)∑

~k∈Kn(S) V (~k) + V0

)
= λn

(
An

An + V0

)

For n ∈ N+ and for all j ∈ S, An is positive and linear increasing in Uj, therefore we have

∂An

∂Uj
≥ 0 and ∂2An

∂(Uj)2
= 0. Thus:

∂
[∑

l∈S Dl(S)
]

∂Uj
= λn

∂An

∂Uj
V0

[An + V0]2
≥ 0

∂2
[∑

l∈S Dl(S)
]

∂(Uj)2
= λn

−2
(
∂An

∂Uj

)2

V0

[An + V0]3
≤ 0

which shows that
∑

l∈S Dl(S) is increasing and concave in Uj for all j ∈ S.

(iv) Finally we prove the the last part of the result. We have
∑

l∈S Dl(S) = λn1(V ∗n(S) ≥

V0). By Proposition 1 (iii), we know that V ∗n(S) is increasing in Uj for all j ∈ S. This means

for each j ∈ S there exists a value U j such that total demand is zero for Uj < U j and equal

to λn forUj ≥ U j.
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Proof of Lemma 4 . Under the probabilistic decision rule,

Di(S)−Dj(S)

= λ

 ∑
~k∈Kn(S)

ki
V (~k)∑

~k∈Kn(S) V (~k) + V0


− λ

 ∑
~k∈Kn(S)

kj
V (~k)∑

~k∈Kn(S) V (~k) + V0


= λ

n∑
qi=0

n−qi∑
qj=0

qi

∑
~k∈Kn(S)

ki=qi,kj=qj

V (~k)∑
~k∈Kn(S) V (~k) + V0

− λ
n∑

qi=0

n−qi∑
qj=0

qj

∑
~k∈Kn(S)

ki=qi,kj=qj

V (~k)∑
~k∈Kn(S) V (~k) + V0

= λ
n∑

qi=0

n−qi∑
qj=0

(qi − qj)

∑
~k∈Kn(S)

ki=qi,kj=qj

V (~k)∑
~k∈Kn(S) V (~k) + V0

= λ
n∑

qi−qj=−n

(qi − qj)

∑
~k∈Kn(S)

ki=qi,kj=qj

V (~k)∑
~k∈Kn(S) V (~k) + V0

= λ
n∑

q=−n

q

∑
~k∈Kn(S)
ki−kj=q

V (~k)∑
~k∈Kn(S) V (~k) + V0

= λ
n∑
q=1

q


∑

~k∈Kn(S)
ki−kj=q

V (~k)∑
~k∈Kn(S) V (~k) + V0

−

∑
~k∈Kn(S)
ki−kj=−q

V (~k)∑
~k∈Kn(S) V (~k) + V0


≥ 0

The last inequality holds because according to Lemma 21, for all i = 1, . . . , n:∑
~k∈Kn(S)
ki−kj=q

V (~k)−
∑

~k∈Kn(S)
ki−kj=−q

V (~k)

=
∑

~k,~k′∈Kn(S)
kl=k

′
l∀l 6=i,j

ki−kj=k′j−k′i=q

[
V (~k)− V (~k′)

]

≥ 0
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Under the maximum choice rule,

Di(S)−Dj(S) = λ(k∗ni (S)− k∗nj (S))1(V (~k∗n(S)) ≥ V0) ≥ 0

where the inequality comes from Corollary 1.

Proof of Lemma 5. First we prove result (i).For l ∈ S, we have

Dl(S) = λk∗nl (S)1(V ∗n(S) ≥ V0)

= λk∗nl (S)

≥ λk∗nl (S ∪ {i})

= λk∗nl (S ∪ {i})1(V ∗n(S ∪ {i}) ≥ V0) = Dl(S ∪ {i})

where the second equality is because
∑

l∈S Dl(S) = λn implies that V ∗n(S) ≥ V0, the

inequality follows from Lemma 2 (ii) and the second to last equality is because by Proposition

1 (ii), V ∗n(S∪{i}) ≥ V ∗n(S) which implies that V ∗n(S∪{i}) ≥ V0. Result (ii) follows directly

from Lemma 2 (ii).

Lemma 22. Consider S ⊆ M and S ′ = S\{j} ∪ {i} such that Ui ≥ Uj, we have Di(S
′) ≥

Dj(S).

Proof. Under the maximum choice rule, we have

Dj(S) = λ1(V ∗n(S) ≥ V0)k∗nj (S)

≤ λ1(V ∗n(S ′) ≥ V0)k∗nj (S)

≤ λ1(V ∗n(S ′) ≥ V0)k∗ni (S ′) = Di(S
′)

where the first inequality follows from Proposition 1 (iii) as V ∗n(S) ≤ V ∗n(S ′) and the second

inequality follows from Lemma 2 (ii) as k∗ni (S ′) ≥ k∗nj (S).
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Under the probabilistic choice rule, we have

Dj(S) = λ

 ∑
~k∈Kn(S)

V (~k)∑
~k∈Kn(S) V (~k) + V0

kj


≤ λ

 ∑
~k∈Kn(S′)

V (~k)∑
~k∈Kn(S′) V (~k) + V0

ki


= Di(S

′)

where the inequality follows from the fact that
∑

~k∈Kn(S′)
ki=t

V (~k) ≥
∑

~k∈Kn(S)
kj=t

V (~k) for all t =

1, . . . , n by Lemma 21.

Definition 5. We say vector ~x = (x1, ..., xM) weakly majorizes vector ~y = (y1, ..., yM),

denoted by ~x �W ~y, if
∑j

i=1 x[i] ≥
∑j

i=1 y[i] for j = 1, ...,M , where x[i] denotes the i-th

highest component of vector ~x.

Note that an important property of the weak majorization order is that if ~x �W ~y and

~x′ �W ~y′ then ~x+ ~x′ �W ~y + ~y′.

Lemma 23. If ~D(S) �W ~D(S ′) then Π(S) ≥ Π(S ′).

Proof. Marshall et al. (2011) use a stronger definition of majorization as follows: they say

vector ~x = (x1, ..., xM) majorizes vector ~y = (y1, ..., yM), denoted by ~x �M ~y, if
∑M

i=1 xi =∑M
i=1 y

′
i and

∑j
i=1 x[i] ≥

∑j
i=1 y

′
[i] for j = 1, ...,M − 1. Further, they prove the following

result: if a function g(·) is convex and ~x �M ~y then
∑M

j=1 g(xi) ≥
∑M

j=1 g(yi) (also see

Lemma 2 in ?).

Let ∆ =
∑M

l=1Dl(S)−
∑M

l=1Dl(S
′), δ1 = min

{
D[1](S)−D[1](S

′),∆
}

and

δj = min
{∑j

l=1D[l](S)−
∑j

l=1D[l](S
′)−

∑j−1
l=1 δl,∆−

∑j−1
l=1 δl

}
for j = 2, . . . ,M . We con-

struct a demand vector ~̂D = (D̂1, . . . , D̂M) such that D̂j = D[j](S)−δj ≥ 0 for j = 1, . . . ,M .

It is easy to verify that ~̂D �M ~D(S ′). Setting g(xi) = (p− c)xi−σ(xi)
η in (2.1), it is easy to
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show that g(xi) is convex in xi for i = 1, . . . ,M , therefore π( ~̂D) =
∑M

j=1 g(D̂j) ≥ π( ~D(S ′)) =∑M
j=1 g(Dj(S

′)). Finally, from our assumption that the profit function π( ~D) is increasing in

Dj for all j = 1, . . . ,M , we have Π(S) = π( ~D(S)) ≥ π( ~̂D) ≥ π( ~D(S ′)) = Π(S ′).

Proof of Proposition 3 Let S∗ = {l1, ..., lm} such that Ul1 ≥ Ul2 ≥ ... ≥ Ulm . Suppose

(contradiction) that 1 /∈ S∗. Consider alternative assortment S ′ = S∗ \ {l1}∪ {1}. We prove

that ~D(S ′) �W ~D(S∗).

First we show the result under maximum choice rule. From Lemma 4 we have that

Dl1(S
∗) ≥ Dl2(S

∗) ≥ ... ≥ Dlm(S∗) and D1(S ′) ≥ Dl2(S
′) ≥ ... ≥ Dlm(S ′) therefore, to prove

that ~D(S ′) �W ~D(S∗), we show that
∑r

j=1Dlj(S) ≤ D1(S ′) +
∑r

j=2Dlj(S
′) for r = 1, ...,m.

Using (2.3), for r = 1, ...,m,

r∑
j=1

Dlj(S
∗) = λ1(V ∗n(S∗) ≥ V0)

r∑
j=1

k∗nlj (S∗)

≤ λ1(V ∗n(S ′) ≥ V0)
r∑
j=1

k∗nlj (S∗)

≤ λ1(V ∗n(S ′) ≥ V0)

(
k∗n1 (S ′) +

r∑
j=2

k∗nlj (S ′)

)

= D1(S ′) +
r∑
j=2

Dlj(S
′)

where the first inequality is from Proposition 1 (iii) as we have that V ∗n(S ′) ≥ V ∗n(S∗).

And the second inequality is from Lemma 2 (ii): because we have k∗n1 (S ′) ≥ k∗nl1 (S∗) and

k∗nlj (S ′) ≤ k∗nlj (S∗) for j = 2, . . . ,m, we must have
∑r

j=1 k
∗n
lj

(S∗) ≤ k∗n1 (S ′) +
∑r

j=2 k
∗n
lj

(S) for

r = 1, ...,m. This proves that ~D(S ′) �W ~D(S∗), from which we get the result using Lemma

23.
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Under probabilistic rule, by Lemma 22 we have D1(S ′) ≥ Dl1(S
∗). And for r = 2, . . . ,m

we have:

D1(S ′) +
r∑
j=2

Dj(S
′) = λ

∑
~k∈Kn(S′)(k1 +

∑r
j=2 kj)V (~k)∑

~k∈Kn(S′) V (~k) + V0

= λ

∑
~k∈Kn(S′)

k1=0

(
∑r

j=2 kj)V (~k) +
∑

~k∈Kn(S′)
k1>0

(k1 +
∑r

j=2 kj)V (~k)∑
~k∈Kn(S′)

k1=0

V (~k) +
∑

~k∈Kn(S′)
k1>0

V (~k) + V0

= λ

∑
~k∈Kn(S∗)

kl1
=0

(
∑r

j=2 kj)V (~k) +
∑

~k∈Kn(S′)
k1>0

(k1 +
∑r

j=2 kj)V (~k)∑
~k∈Kn(S∗)

kl1
=0

V (~k) +
∑

~k∈Kn(S′)
k1>0

V (~k) + V0

≥ λ

∑
~k∈Kn(S∗)

kl1
=0

(
∑r

j=2 kj)V (~k) +
∑

~k∈Kn(S∗)
kl1

>0

(kl1 +
∑r

j=2 kj)V (~k)∑
~k∈Kn(S∗)

kl1
=0

V (~k) +
∑

~k∈Kn(S∗)
kl1

>0

V (~k) + V0

= λ

∑
~k∈Kn(S∗)(kl1 +

∑r
j=2 kj)V (~k)∑

~k∈Kn(S∗) V (~k) + V0

=
r∑
j=1

Dj(S
∗)

where the inequality follows from the fact that V (~k) ≥ V (~k′) for all ~k and ~k′ such that

k1 = k′l1 , klj = k′lj for j = 2, . . . ,m, and kl = k′l = 0 for l /∈ S∗ ∪ S ′ by Lemma 21. So we

have ~D(S ′) �W ~D(S∗), from which we get the result using Lemma 23.

Proof of Lemma 6. When adding a product indexed i to an assortment S, the total

profit is:

Π(S ∪ {i}) = (p− c)
∑

l∈S∪{i}

Dl(S ∪ {i})− σ
∑

l∈S∪{i}

[Dl(S ∪ {i})]η

= (p− c)
∑

j∈S∪{i}

λ

 ∑
~k∈Kn(S∪{i})

kj
V (~k)∑

~k∈Kn(S∪{i}) V (~k) + V0


−σ

∑
j∈S∪{i}

λ
 ∑
~k∈Kn(S∪{i})

kj
V (~k)∑

~k∈Kn(S∪{i}) V (~k) + V0

η
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For j ∈ S ∪ {i}, define

Aj(Ui) =
∑

~k∈Kn(S∪{i})

kjV (~k) =
∑

~k∈Kn(S∪{i})

kj

[
ln

(
n!

k1!...kM !

)
+

M∑
l=1

klUl + nγ

]

B(Ui) =
∑

~k∈Kn(S∪{i})

V (~k) + V0 =
∑

~k∈Kn(S∪{i})

[
ln

(
n!

k1!...kM !

)
+

M∑
l=1

klUl + nγ

]
+ V0

It is easy to verify that B(Ui) and Aj(Ui), j ∈ S ∪ {i}, are linear functions in Ui. Further,

we have:

Π(S ∪ {i}) = (p− c)λ
∑

j∈S∪{i}

Aj(Ui)

B(Ui)
− σλη

∑
j∈S∪{i}

[
Aj(Ui)

B(Ui)

]η
=

(p− c)λ
∑

j∈S∪{i}Aj(Ui)− σλη
∑

j∈S∪{i} [Aj(Ui)]
η [B(Ui)]

1−η

B(Ui)
(A.1)

Define g(Ui) = (p − c)λ
∑

j∈S∪{i}Aj(Ui) − σλη
∑

j∈S∪{i} [Aj(Ui)]
η [B(Ui)]

1−η so that Π(S ∪

{i}) = g(Ui)
B(Ui)

. According to [Greenberg and Pierskalla (1971)], Π(S ∪ {i}) is quasiconvex in

Ui if the following two conditions hold: (i) B(Ui) is linear in Ui and B(Ui) ≥ 0 for all Ui ≥ 0;

(ii) g(Ui) is convex in Ui. Condition (i) holds as V (~k) is linear in Ui. We will prove g(Ui) is

convex in Ui by showing that g′′(Ui) ≥ 0. We have:

g′(Ui) = (p− c)λ
∑

j∈S∪{i}

∂Aj(Ui)

∂Ui

−σλη
 ∑
j∈S∪{i}

η [Aj(Ui)]
η−1 ∂Aj(Ui)

∂Ui

 [B(Ui)]
1−η

−σ(1− η)λη

 ∑
j∈S∪{i}

[Aj(Ui)]
η

 [B(Ui)]
−η ∂B(Ui)

∂Ui
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And we have:

g′′(Ui) = ση(1− η)λη

 ∑
j∈S∪{i}

(Aj(Ui))
η−2

(
∂Aj(Ui)

∂Ui

)2
 [B(Ui)]

1−η

−2ση(1− η)λη

 ∑
j∈S∪{i}

[Aj(Ui)]
η−1 ∂Aj(Ui)

∂Ui

 [B(Ui)]
−η ∂B(Ui)

∂Ui

+ση(1− η)λη

 ∑
j∈S∪{i}

(Aj(Ui))
η

 [B(Ui)]
−η−1

[
∂B(Ui)

∂Ui

]2

= ση(1− η)λη [B(Ui)]
−η−1

∑
j∈S∪{i}

[Aj(Ui)]
η ·[(

∂Aj(Ui)

∂Ui

B(Ui)

Aj(Ui)

)2

+

(
∂B(Ui)

∂Ui

)2

− 2

(
∂Aj(Ui)

∂Ui

B(Ui)

Aj(Ui)

)(
∂B(Ui)

∂Ui

)]

= ση(1− η)λη [B(Ui)]
−η−1

∑
j∈S∪{i}

[Aj(Ui)]
η

[
∂Aj(Ui)

∂Ui

B(Ui)

Aj(Ui)
− ∂B(Ui)

∂Ui

]2

≥ 0

So we have g′′(Ui) ≥ 0, which implies that g(Ui) is convex in Ui. Thus Π(S ∪ i) = g(Ui)
f(Ui)

is quasiconvex in Ui.

Proof of Proposition 4. Suppose S∗ is not a popular-eccentric set, then there exist

products j ∈ S∗ and i, l ∈ M \ S∗ such that Ul < Uj < Ui. From Lemma 6, we must

have either Π((S∗ \ {j}) ∪ {l}) > Π(S∗) or Π((S∗ \ {j}) ∪ {i}) > Π(S∗) or both, which

contradicts that S∗ is optimal. Therefore, S∗ is popular-eccentric set. When n = 1, Dj(S) =

λ
(

Uj∑
l∈S Ul+V0

)
. In comparison the MNL model would predict a demand for product j equal

to Dj(S) = λ
(

eUj∑
l∈S e

Ul+eV0

)
. ? prove the optimality of popular sets under the MNL model.

Given that the exponential function preserves the attractiveness order, their result continues

to hold in our setting for the special case of 1-packs.

Proof of Proposition 6. An upper bound on total demand (which is valid under both

choice rules) is equal D = λn, which is achieved when all consumers make a purchase. Let

S∗ = {1}, then k∗n = (n, 0, ..., 0) and V ∗n(S∗) = nU1 > V0 . As a result D(S∗) = (nλ, 0, ..., 0)
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and total demand
∑

i∈S Di(S
∗) = D1(S∗) = nλ = D. Now consider any other vector S.

We must have ~D(S∗) �W ~D(S) = (D1, ..., DM) and therefore from Lemma 23, we have

Π(S∗) = π(D(S∗)) ≥ π(D(S)) = Π(S).

Proof of Proposition 4. Suppose S∗ is not a popular-eccentric set, then there exist

products j ∈ S∗ and i, l ∈ M \ S∗ such that Ul < Uj < Ui. From Lemma 6, we must have

either Π((S∗ \{j})∪{l}) > Π(S∗) or Π((S∗ \{j})∪{i}) > Π(S∗) or both, which contradicts

that S∗ is optimal. Therefore, S∗ is popular-eccentric assortment.

Proof of Lemma 8. When there is no choice premium, the value of any n-pack ~k(S)

is:

V (~k(S)) =
∑
l∈S

(kl)Ul + nγ

≤ n(Ulmax + γ) = V (~k∗n(S))

Proof of Proposition 9. It is easy to show that Lemma 6 continues to hold in the

absence of choice premium so the proof is identical to that of Proposition 4.
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APPENDIX B

PROOFS FOR CHAPTER 3

Proof of Proposition 10: For m and l such that 0 ≤ m ≤ l ≤ min{n, rj}:

Π(lej) =
K∑
k=1

λαk(pj + δk)
lukj

lukj + uk0

≥
K∑
k=1

λαk(pj + δk)
mukj

mukj + uk0

= Π(mej)

The inequality above follows from the fact that x
x+z
≥ y

y+z
for all x ≥ y.

Proof of Lemma 10: Consider an assortment with repetition vector x. Let i be the

product profile such that such that pi ≥ max
j:xj≥1

{pj}. Let ei denote a vector of length N where

the i-th element is equal to 1 and all others are equal to zero.

Π(x + ei)− Π(x)

=
K∑
k=1

λαk
∑N

j 6=i(pj + δk)xju
k
j + (pi + δk)(xi + 1)uki∑N

j 6=i xju
k
j + (xi + 1)uki + uk0

−
K∑
k=1

λαk
∑N

j 6=i(pj + δk)xju
k
j + (pi + δk)xiu

k
i∑N

j 6=i xju
k
j + xiuki + uk0

=
K∑
k=1

λαk
(pi + δk)uki u

k
0 + (pi + δk)uki

(∑N
j 6=i xju

k
j

)
−
∑N

j 6=i(pj + δk)xju
k
ju

k
i

(
∑N

j 6=i xju
k
j + (xi + 1)uki + uk0)(

∑N
j 6=i xju

k
j + xiuki + uk0)

where for k = 1, . . . , K

(pi + δk)uki

(
N∑
j 6=i

xju
k
j

)
−

N∑
j 6=i

(pj + δk)xju
k
ju

k
i

= uki

[
N∑
j 6=i

(pi + δk)xju
k
j −

N∑
j 6=i

(pj + δk)xju
k
j

]

= uki

N∑
j 6=i

(pi − pj)xjukj

≥ 0
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The last inequality holds because pi ≥ pj for all j such that xj ≥ 1. Therefore, Π(x + ei) ≥

Π(x).

Proof of Proposition 14: Let x∗f be the optimal assortment for the free-product

problem under no repetition. Suppose
∑N

j=1 x
∗f
j = n < n, consider a product î ∈ {i : x∗fJ =

0}, we have

Πf (x∗f + eî)− Πf (x∗f ) =
K∑
k=1

δkλαk
∑N

j=1 x
∗f
j u

k
j + uk

î∑N
j=1 x

∗f
j u

k
j + uk

î
+ uk0

−
K∑
k=1

δkλαk
∑N

j=1 x
∗f
j u

k
j∑N

j=1 x
∗f
j u

k
j + uk0

=
K∑
k=1

δkλαk

( ∑N
j=1 x

∗f
j u

k
j + uk

î∑N
j=1 x

∗f
j u

k
j + uk

î
+ uk0

−
∑N

j=1 x
∗f
j u

k
j∑N

j=1 x
∗f
j u

k
j + uk0

)

where for k = 1, . . . , K, we have

∑N
j=1 x

∗f
j u

k
j + uk

î∑N
j=1 x

∗f
j u

k
j + uk

î
+ uk0

−
∑N

j=1 x
∗f
j u

k
j∑N

j=1 x
∗f
j u

k
j + uk0

≥ 0

Therefore, Πf (x∗f + e(̂i)) ≥ Πf (x∗f ), which contradicts that x∗f is optimal.

Proof of Proposition 15: Consider the single-segment problem PSk , k ∈ {1, . . . , K},

we assume that nej = argmax
i∈{1,...,N}

{Πs
k(nei)}. Suppose x∗sk 6= nej, then there exists product

i 6= j such that Πs
k((n− 1)ej + ei) > Πs

k(nej). Then,

Πs
k((n− 1)ej + ei) > Πs

k(nej)

⇔ λαk
(n− 1)(pj + δk)ukj + (pi + δk)uki

(n− 1)ukj + uki + uk0
> λαk

n(pj + δk)ukj
nukj + uk0

⇔
[
(n− 1)(pj + δk)ukj + (pi + δk)uki

] (
nukj + uk0

)
>
[
n(pj + δk)ukj

] [
(n− 1)ukj + uki + uk0

]
⇔ nuki u

k
j (pi − pj) + uk0

[
(pi + δk)uki − (pj + δk)ukj

]
> 0 (B.1)
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But we know that

Πs
k(nej) ≥ {Πs

k(nei)

⇔ λαk
n(pj + δk)ukj
nukj + uk0

≥ λαk
n(pi + δk)uki
nuki + uk0

⇔
[
n(pj + δk)ukj

] (
nuki + uk0

)
≥
[
n(pi + δk)uki

] (
nukj + uk0

)
⇔ nuki u

k
j (pj − pi) + uk0

[
(pj + δk)ukj − (pi + δk)uki

]
≥ 0

⇔ nuki u
k
j (pi − pj) + uk0

[
(pi + δk)uki − (pj + δk)ukj

]
≤ 0

which contradicts inequality (B.1). Therefore x∗sk = nxj.

Proof of Lemma 15: Suppose x∗f 6= (r1, . . . , rN), then x∗fj ≤ rj for j = 1, . . . , N and∑N
j=1 x

∗f
j <

∑N
j=1 rj. Then we have:

Πf (x∗f )− Πf ((r1, . . . , rN))

=
K∑
k=1

δkλαk
∑N

j=1 x
∗f
j u

k
j∑N

j=1 x
∗f
j u

k
j + uk0

−
K∑
k=1

δkλαk
∑N

j=1 rju
k
j∑N

j=1 rju
k
j + uk0

=
K∑
k=1

δkλαk

( ∑N
j=1 x

∗f
j u

k
j∑N

j=1 x
∗f
j u

k
j + uk0

−
∑N

j=1 rju
k
j∑N

j=1 rju
k
j + uk0

)
< 0

which is contradiction. The last inequality above follows from the fact that
∑N

j=1 x
∗f
j u

k
j ≤∑N

j=1 rju
k
j . Therefore x∗f = {r1, . . . , rN}.

Proof of Theorem 2: Consider the product selection problem with only customer

segment k and a fixed cardinality, that is:

max
S⊆N ;
|S|=l

Πk(S) =
∑
j∈S

(pj + δk)λαk
ukj∑

i∈S u
k
i + uk0

(B.2)

We claim that the solution to this problem for all k ∈ {1, ..., K} is a set S(l) for some

l ∈ {1, ..., N}. Suppose (contradiction) that this is not the case, i.e., assume that there
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exists a product m < n such that m /∈ S∗ and n ∈ S∗. Let T = S∗\{n}. We have:

Πk (T ∪ {m}) =
∑
j∈T

(pj + δk)λαk
ukj∑

i∈T u
k
i + ukm + uk0

+ (pm + δk)λαk
ukm∑

i∈T u
k
i + ukm + uk0

= λαk
∑

j∈T (pj + δk)ukj + (pm + δk)ukm∑
i∈T u

k
i + ukm + uk0

≥ λαk
∑

j∈T (pj + δk)ukj + (pn + δk)ukn∑
i∈T u

k
i + ukn + uk0

= Πk (S∗)

where the inequality comes from the two conditions on the product ordering. This proves

the claim.

Since for every customer segment k, the solution to (B.2) is S(l) then the solution to the

product selection problem with K customer segment and a cardinality constraint of |S| = l

is also S(l). Finally, the result follows from the fact that the solution to the unconstrained

problem can be obtained by considering all possible values of l ∈ {1, ..., N}.
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Alptekinoǧlu, A. and Corbett, C.J., 2010. Leadtime-variety tradeoff in product differentia-
tion. Manufacturing & Service Operations Management, 12(4), 569-582.
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