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The deformation potentials for phonon-assisted band-to-band tunneling (BTBT) in silicon and germa-

nium are calculated using a plane-wave density functional theory code. Using hybrid functionals, we

obtain: DTA¼ 4.1� 108 eV/cm, DTO¼ 1.2� 109 eV/cm, and DLO¼ 2.2� 109 eV/cm for BTBT in

silicon and DTA¼ 7.8� 108 eV/cm and DLO¼ 1.3� 109 eV/cm for BTBT in germanium. These val-

ues agree with experimentally measured values and we explain why in diodes, the TA/TO phonon-

assisted BTBT dominates over LO phonon-assisted BTBT despite the larger deformation potential

for the latter. We also explain why LO phonon-assisted BTBT can nevertheless dominate in many

practical applications. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905591]

Tunneling from valence band to conduction band, also

known as Band-to-Band tunneling (BTBT) or Zener tunnel-

ing, has generated great interest in the last decade and is

expected to play an important role in future nanotransistors.

BTBT is both important in metal-oxide field-effect transis-

tors (MOSFETs), the current work-horse of the semiconduc-

tor industry, and in tunnel field-effect transistors (TFETs),1–3

a possible successor of the MOSFET. In MOSFETs, BTBT

is responsible for gate-induced drain leakage (GIDL) and the

reduction of GIDL is a major concern when charge retention

is important.4 In TFETs, BTBT is responsible for the TFET

drive current as well as the parasitic leakage currents limit-

ing the TFET off-current. To be able to understand device

working and to optimize device design, a good model of

BTBT is required.

In the semiclassical picture, BTBT can be modeled as

the non-local generation or recombination of carriers. The

generation rate can be computed from Kane’s model,5–8

which can be written as a function of the electric field ðEÞ

G ¼ AEC expð�B=EÞ (1)

with A, B, and C material-dependent parameters with C¼ 2

for direct semiconductors and C¼ 2.5 for indirect semicon-

ductors. The Kane model parameters can either be obtained

by fitting the Kane model with experimental data or by per-

forming a theoretical calculation. The parameters obtained

from a fitting procedure often have great uncertainty because

it is very difficult to determine the active doping profile up to

nanometer precision.9 This makes theoretical calculations

very valuable.

In direct semiconductors, the electronic bandstructure

completely determines the parameters,8 but in indirect semi-

conductors, the conduction-band minimum and valence-band

maximum occur at different places in the Brillouin zone and

crystal momentum can only be conserved when an additional

scattering process mediates the BTBT. The dominant intrin-

sic BTBT-mediating interaction in indirect semiconductors

is the electron-phonon interaction, and the BTBT-rate will

also be determined by the energy of the phonon mediating

the transition and by the strength of the interaction, measured

by a deformation potential. Unfortunately, apart from crude

estimates,10–12 few attempts have been made to compute the

electron-phonon deformation potentials for BTBT in techno-

logically important materials.13 Recently, however, advances

in computational speed and algorithms have made it possible

to calculate electron-phonon interaction strengths from first

principles.14–16

In this paper, we compute the deformation potentials for

phonon-assisted band-to-band tunneling in silicon and ger-

manium. First, we derive how the deformation potential can

be calculated from the phonon displacement vectors, the

electronic wavefunctions, and the potential energy of the

crystal calculated using density functional theory (DFT).

Next, we use the Vienna ab initio simulation package

(VASP)17 to compute these physical quantities. Finally, we

present the calculated deformation potentials, how the largest

deformation potential not always results in the largest tunnel-

ing probability, and we end with our conclusion.

Comparing to our initial results for graphene and sili-

con presented in Ref. 18, the current manuscript presents (i)

a derivation and a correction of the expression to calculate

the deformation potentials, (ii) the calculation of the defor-

mation potentials in germanium, (iii) the calculation of the

deformation potentials using hybrid functionals, (iv) an

analysis of the impact of symmetry on the tunneling proba-

bility, and (v) reconciliation and comparison with experi-

mental results.9,11

To first order in the ion displacement, the electron-

phonon interaction Hamiltonian is

He�ph ¼
X

jl

@He

@Rjl
� dRjl �

X
jl

@U rð Þ
@Rjl

� dRjl; (2)

where He is the electron Hamiltonian, Rjl is the position of

the ion in unit cell j with l the index labeling each ion in the

unit cell, UðrÞ is the potential energy part of the electron

Hamiltonian, and @UðrÞ=@Rjl is the gradient of the potential

energy with respect to the displacement of ion jl. The ion dis-

placement operator is given by
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dRjl ¼
X

q

d�qle
�
qle

iq�Rjl ½a�q þ a�
†

�q� (3)

with a�q and a�
†

q are the annihilation and creation operators

for a phonon in branch � with wavevector q and a frequency

x�
q, with e�ql is the phonon unit displacement vectors, and

d�ql ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h

2NMlx�
q

s
(4)

is the magnitude of the ion displacement. Finally, Ml is the

mass of ion l and N is the number of unit cells in the lattice.

The matrix element associated with a process in which

an electron starting in band n with wavevector k makes a

transition to band m and wavevector kþ q, while emitting a

phonon is given by

hmkþ qjHe�pha�
†

q jnki

¼
X

jl

d�qle
iq�Rjl e�ql �

ð
X

dr3 w�mkþq rð Þ @UH rð Þ
@R0l

wnk rð Þ
� �

;

(5)

where the wavefunctions wmkðrÞ ¼ umkðrÞeik�r are Bloch

functions and their periodic part umkðrÞ is normalized on the

unit-cell.

The quantity generally used to measure the strength of

the electron-phonon interaction is the deformation potential

DK�
nmkq. This can be related to the electron-phonon matrix

element as

hmkþ qjHe�pha�
† jnki ¼ 1ffiffiffiffi

X
p

X
�

DK�
nmkq

ffiffiffiffiffiffiffiffiffiffiffi
�h

2qx�
q

s
; (6)

where q ¼ Mcell=Xcell is the mass density, Mcell is the

mass of the unit cell, Xcell is the volume of the unit cell,

and X ¼ NXcell is the total volume of the structure.

Combining Eqs. (5) and (6), the deformation potential can

be calculated as

DK�
kqmn ¼

X
l

Mmnkql � e�ql

ffiffiffiffiffiffiffiffiffiffi
Mcell

Ml

r
; (7)

where

Mmnkql ¼
ð

X
dr3 u�mkþq rð Þ @U rð Þ

@Rl
u�nk rð Þeiq� Rl�rð Þ: (8)

To compute the deformation potentials using Eqs. (7)

and (8), the phonon displacement vectors, the gradient of the

potential energy with respect to the ion displacement and the

wavefunctions are required. We obtain all of these quantities

from the charge density in the ground state for silicon and

germanium. The gradient of the potential energy is calcu-

lated as a finite difference between the potential energy cal-

culated assuming the ions slightly displaced from their

equilibrium position in different directions. The ground-state

charge density is found by performing a minimization of the

density functional using the plane-wave DFT computer pack-

age VASP, as mentioned above.

Unless specified, otherwise, we use the Perdew-Burke-

Ernzerhof (PBE) functional for the exchange correlation, we

take an energy cut-off of 600 eV, a 11� 11� 11 Monckhorst-

Pack grid and a convergence threshold of 10�6 eV. When

using the hybrid functionals, we use the HSE06 functional

with a 4� 4� 4 Monckhorst-Pack grid.

The phonon properties of the structure are obtained by

the small-displacement method: The forces acting on the

ions are calculated upon a small displacement of each ion.

The set of forces can be converted into the force constants,

which are required to construct the dynamical matrix. The

eigenvalues of the dynamical matrix are the phonon frequen-

cies, while the eigenvectors are the phonon displacement

vectors. We use the PHONOPY package to generate a set of

3� 3� 3 supercells with displaced atoms, to compute the

force constants, and to diagonalize the dynamical matrix.

The potential energy is obtained as the Hartree part of

the Kohn-Sham Hamiltonian used in VASP. Displacing each

atom from its equilibrium position ðRð0Þl Þ in each direction

a¼ x, y, z in the unit cell to a position R
ð0Þ
l þ da, the gradient

of the potential energy with respect to atom displacement

can be obtained using finite differences

@U rð Þ
@R0l

� �
a
�

UH rð Þj
Rl¼R

0ð Þ
l
þda
� UH rð Þj

Rl¼R
0ð Þ

l
�da

2jdaj
: (9)

We note that, in contrast to the rigid-ion approximation,19–21

the screening of the ion potential by the valence electrons is

automatically accounted for in the DFT-based approach.

For the wavefunctions, we take the Kohn-Sham wave-

functions for the unit cell, where each atom is in its equilib-

rium position. We transform the wavefunctions from

reciprocal to real space by performing an inverse Fourier

transform onto the grid used for the potential energy. We

assume the pseudo-wavefunctions are a good description of

the real wavefunctions for the purpose of calculating the de-

formation potentials.

Calculating the Si bandstructure using VASP, the conduc-

tion band minimum occurs along the D-direction, which is in

accordance with silicon’s well-known indirect bandgap. But as

is expected from DFT, the bandgap is underestimated and the

simulated indirect bandgap is only 0.6 eV, while the experi-

mentally measured bandgap is 1.12 eV. Employing the HSE06

hybrid functional on the other hand, the simulated bandgap is

1.19 eV, which is much closer to the experimental bandgap.

There is a first caveat in our numerical procedure to cal-

culate the deformation potential related to the choice of the

real-space grid r. In Eq. (8), the integration is taken over the

volume of the entire lattice X, but numerically it is satisfac-

tory to integrate over a small volume since the gradient of

the potential energy is screened by the valence electrons and

quickly decays away from the atom that is being moved.

Calculating the matrix element over a single and over multi-

ple unit cells, we find an integration over a single unit cell is

satisfactory provided the coordinates are chosen such that

r ¼ Rl lies at the center of the unit cell.

A second caveat is related to the degeneracy of the initial

electronic states ðmkÞ, the final electronic states ðnkþ qÞ, or

the phonon branches ð�qÞ. In case of degeneracy, the band or

branch index is not sufficient to determine the state uniquely
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and simply writing the deformation between conduction band

and valence band as “D�
cvkq” is ambiguous. For example, the

valence band at C is three-fold degenerate in absence of spin-

orbit coupling and the different wavefunctions rotate like px,

py, and pz orbitals. For the phonons, the TA and the TO pho-

nons are degenerate: if we take the phonon wavevector along

the x-direction, the transverse phonon displacements will lie

in the y–z plane. So depending on which linear combination

of the valence band wavefunctions is taken and the direction

of the phonon displacement vectors, different values for

“D�
cvkq” are obtained. We remove this ambiguity without

spending the effort to symmetrize the different degenerate

wavefunctions and polarization vectors: we define the defor-

mation potential between valence and conduction band D�
cvkq

as the largest deformation potential upon rotation of the wave-

functions and phonon displacement vectors in the subspace of

the degeneracies. Numerically, D�
cvkq can be obtained by con-

structing a tensor out of the deformation potentials of the dif-

ferent degenerate bands and phonon branches and taking the

largest multilinear singular value.22 For our calculations, we

looked at valence band and phonon branch degeneracies and

an ordinary singular value decomposition was satisfactory to

calculate our deformation potentials.

Fig. 1 shows the calculated deformation potential for an

electron starting at the top of the valence band making a tran-

sition to the lowest conduction band. The results shown in

Fig. 1 are a correction of our previous results in Ref. 18

because we had erroneously omitted the phase factor eiq�ðRl�rÞ

in Eq. (8). The deformation potentials relevant for BTBT are

found at 0.85 in the C� X direction, and their calculated val-

ues are DTA ¼ 3:5� 108 eV=cm, DTO ¼ 1:0� 109 eV=cm,

and DLO ¼ 2:3� 109 eV=cm. These values are much larger

than previous theoretical estimates,10 but this is in line

with the recent experimental estimate DTO � 10� 13

� 108 eV=cm from Ref. 9.

Employing the HSE06 hybrid functional to calculate the

wavefunctions, we obtain instead DTA ¼ 4:1� 108 eV=cm,

DTO ¼ 1:2� 109 eV=cm, and DLO ¼ 2:2� 109 eV=cm. The

hybrid functional reduces the LO deformation potential and

increases the TA and the TO phonon interaction strength but the

LO phonon deformation potential remains the largest. To explain

why experimental results in Ref. 11 convincingly show that the

LO-mediated process is much weaker than the processes medi-

ated by the TO phonons, we have to consider that the BTBT

transition probability ðw / D2TÞ depends not only on the defor-

mation potentials (D) but also on the tunnel probability (T).

Along the 100 (D) direction, the Oh Si symmetry group

reduces to C4v and the conduction band has D1 symmetry,

while the upper (heavy) valence band is two-fold degenerate

and has D5 symmetry and the lower (light) valence band has

D02 symmetry.23,24 For the phonons, the LA has D1 symme-

try, the LO has D02 symmetry and the TA and the TO have D5

symmetry. Whether a phonon can enable a transition

between bands is determined by whether the matrix element

transforms as a scalar under the different symmetry opera-

tions, or, in group theory, if the direct product of the symme-

try groups of the phonon and the initial and final electronic

states contains the identity representation (D1 in our case).

As an example, transitions between the D02 valence band and

the conduction band, cannot be mediated by an LA phonon

since D02 � D1 � D1 ¼ D02. Overall, transitions cannot be

mediated by the LA phonon, the LO phonon connects the D02
valence band to the conduction band and the TA/TO pho-

nons connect the D5 valence band to the conduction band.

For tunneling, electrons with light masses will have

reduced wavefunction attenuation in the bandgap and their

tunneling probability will be increased with respect to those

with heavy masses. For the Si conduction band valley, the

longitudinal electron mass is much larger than the transversal

electron mass making tunneling along the transversal direc-

tion favorable. The D02 valence band has its light mass in the

longitudinal direction and will be heavy along the transversal

directions, while the D5 valence bands have their light hole

masses along the transversal directions. From a tunneling

perspective, the transition from the D5 to the conduction

band is favored. So while the deformation potential of the

LO phonon is higher compared to that of the TA and the TO

phonon, its tunneling probability is much smaller making the

BTBT transition probability wLA;TO > wLO.

Spin-orbit interaction and interactions with higher bands

warp the valence bands but the energy scale of these effects

is small compared to the bandgap and these effects will not

enable the LO to significantly couple the valence to the con-

duction band. However, if tunneling occurs along an axis dif-

ferent from the h100i direction such as the h111i direction,

the tunneling probabilities for the LO and the TO/TA will

have similar orders of magnitude and the transition probabil-

ity of the LO will dominate because of its larger deformation

potential. Furthermore, if strain or quantum confinement25

lift the degeneracy between the six silicon conduction band

valleys, the LO phonon can also dominate.

For germanium, the calculated deformation potential

values at the L symmetry point are DTA ¼ 8:1� 108 eV=cm

and DLO ¼ 1:2� 109 eV=cm using the PBE functionals and

DTA ¼ 7:8� 108 eV=cm and DLO ¼ 1:3� 109 eV=cm using

the HSE06 functionals with calculated phonon frequencies

�hxTA ¼ 6 meV and �hxLO ¼ 31 meV. The phonon frequen-

cies are similar to those found experimentally26 but the de-

formation potentials are much larger than our previous crude

estimates DTO;prev ¼ 0:8� 108 eV=cm in Ref. 8.

FIG. 1. Silicon deformation potentials for tunneling from the top of the va-

lence band towards the conduction band calculated from VASP using the PBE

functional. For BTBT, the values are taken at 0.85 in the C-X direction and

measure DTA ¼ 3:5� 108eV=cm; DTO¼1:0�109eV=cm, and DLO¼2:3
�109eV=cm.
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In germanium, the conduction band minimum occurs at

the L-point which has D3d symmetry. The conduction band

has L1 symmetry, the TA, LA, LO, and TO phonons have L3,

L02, L1, and L03 symmetry, respectively, and the valence band

states at C are compatible with a L1 (K1, light along [111])

and a L3 (K3, heavy along [111]) symmetry representation.

The TA and the LO phonon enable BTBT from the L3 and

the L1 valence band, respectively. In the same way, TO pho-

nons dominate over LO phonons in silicon, TA-assisted

BTBT will dominate over LO-assisted BTBT when the field

is perpendicular to the h111i direction despite the larger de-

formation potential for the LO interaction.

In conclusion, using density functional theory, the defor-

mation potentials can be calculated from the phonon displace-

ment vectors, the gradient of the potential with respect to ion

displacement, and the wavefunctions. For silicon BTBT, we

found DTA ¼ 4:1� 108 eV=cm, DTO ¼ 1:2� 109 eV=cm,

and DLO ¼ 2:2� 109 eV=cm using the HSE06 functional,

similar to the deformation potentials we calculated using the

PBE functionals. In previous experimental measurements, the

LO phonon contribution to BTBT was found to be small, we

have shown that this is because the LO phonon couples the D02
valence band to the conduction band, while the TA and the

TO phonon couple the D5 valence band to the conduction

band and the latter is more efficient for tunneling in the h100i
direction. For germanium, DTA ¼ 7:8� 108 eV=cm and

DLO ¼ 1:3� 109 eV=cm and the TA phonon couples the L3

ðK3Þ valence band to the conduction band, while the LO pho-

non couples the L1 ðK1Þ band to the conduction band and the

former will be more efficient when tunneling is perpendicular

to the h111i direction. If tunneling is along a direction signifi-

cantly different from the h100i direction in silicon and a direc-

tion perpendicular to h111i in germanium, or if valley

degeneracy is broken, BTBT assisted by LO phonons will

dominate in silicon and germanium.
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