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High Level Synthesis (HLS) is one of the most emerging fields of research that is helping the

industries to reduce the time-to-market constraint. With the advancement of the HLS, till

now approximately 100 companies have adopted this for IP(Intellectual Property) design.

The higher we go in abstraction level, the lesser time it takes to design and verify an IP or

a design. It will take tremendous amount of time in comparison to HLS, to implement an

IP in verilog or VHDL. This thesis focuses on improving the Quality of Result of HLS by an

automation flow with added security(Obfuscation) to the IP.

If it’s Hardware Description Language (HDL), the input type does not have any impact in

the Quality of Result, because the architecture are being defined in the low level HDL coding.

In HLS, as we are coding in higher abstraction, the architecture are being defined by the

HLS tools. This might vary based on the optimization techniques that the tools follow as a

front end parser, which converts the input to a CDFG (Control Data Flow Graph), which in

turn is the input to HLS. So, different input languages will end up generating non-identical

architecture for the same design, one of them being the best and one of them being the

worst. We need to decide which input language should be considered for a particular design,

which will generate the best QoR.
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One of the issues that also needs to be addressed is SECURITY. The IPs must be made secure

or encrypted to prevent unlawful usages. Usually, consumers buy IPs for a trial or evaluation

purpose for a few days/weeks to verify the efficiency of the IP to their requirements. If the

IPs will be made visible to the consumers in trial phase, they won’t need to end up buying

it, which will be a huge loss for the vendor. To prevent this kind of scenario, we need to

encrypt the IP. This thesis proposed a method “Obfuscation in HLS”, which is the most

easy, inexpensive and efficient way to encrypt an IP. However, the QoR(Quality of Result)

of HLS is greatly impacted with Obfuscation.

This thesis, proposes a unique conversion tool which converts the input language to Sys-

temC from ANSI-C to save time, resources and will also automatically generate which input

language to choose for the best QoR while adopting HLS.
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CHAPTER 1

INTRODUCTION

VLSI (Very Large Scale Integration) is a process of integrating hundreds of thousands or

millions of transistors to a single chip called IC (Integrated Circuit). In the 1970s when

semiconductor and other communication technologies were developed, VLSI came into the

market. In the early stages, an electronic circuit would consist of a CPU, ROM, RAM and

logic functions, VLSI integrated those all into a single chip. The applications of a VLSI

IC are image and video processing, communication, high-performance computing, which are

rising rapidly. This is as predicted by Intel co-founder Gordon Moore, that the number of

transistors in a chip doubles every year, which in turn modified to 18 months instead of a

year.

1.1 VLSI Design Flow and HLS

Once the specification is ready, the design goes through the whole HLS flows. Figure 1.1

shows a complete typical flow of a VLSI design. One of the problematic and important

stages are HDL coding and RTL verification. HDL coding is being done in verilog or VHDL,

which has the functionality and timing information. It is quite difficult to exploit the design

in HDL. In the early stage of every project, a behavioral model has been generated to verify

that, is it functionally implementable and specifications are correct or not? Then it goes

through a phase of RTL coding. Let’s take a minute here and think, won’t this be great if

we can directly implement the design in HDL language, right after it passes the preliminary

verification phase with just a single click. HLS basically converts a particular software code

of a design to HDL(verilog or VHDL). There are also some tools which generated testbench

for them too. To make life easier and reduce time-to-market, many companies are adopting

HLS.

1



Figure 1.1: Typical VLSI Flow

Now, as HLS is commercially available and being implemented for many designs, we

need to know which input language is better for HLS. Is It tool specific or design specific?

If design specific, is it same input language for all the designs or different design will behave

differently? We will discuss more details about this in the next three chapters. Unlike

software, HDL will have architectural information in the coding, so it won’t make much of

a difference if we use VHDL or Verilog. But in HLS, the behavioral description doesnt have

any information regarding the architecture of the design. So the architecture is different
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for different input languages. In this thesis, we will design a flow which will give us the

information that which input language is better than other for a specific design.

1.2 Thesis Flow

The thesis has been divided into three main chapters. In the second chapter, we will learn

about High Level Synthesis how HLS has impacted the semiconductor industry and will

impact in the future. In the third chapter we will discuss about why we need to protect

BIP(Behavioral IP). And we will discuss about two well-known techniques for IP protection

and compare both of them. In the fourth chapter we will explain in detail about a proposed

flow, which will take input as a ANSI-C code and do some specific processing and at the

end, it will tell us which input language is better than other. In the end, we will discuss the

experimental results of the designs with the flow.
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CHAPTER 2

HIGH LEVEL SYNTHESIS

To fully understand the benefits and potential of High Level synthesis, it is necessary to

put things in the perspective of Hardware Design Flow. Nowadays all the projects start

from a required specification. In most of the cases it is a written document, but very often

an executable/working model has been created. The model will be in ANSI-C/C++ or

SystemC. In this early stage of the design, a very little or no hardware implementation

details are decided. Its primarily for testing and verifying the functionality. Once it is

tested, the architecture will be defined for how this design is going to work. The functionality

determines What the design perform, and the architecture defines How its going to perform

the task. After all the architecture have been defined, the design team write the hardware

codes(Verilog/VHDL) by using the architectural decision.

This is the most difficult task. The important problem is the manual nature of the whole

process. Finding a suitable architecture is not easy, and finding an optimal one is even more

difficult. In this process, the hand-coded Verilog/VHDL design will be tested and validated,

all the bugs will be reported. And a whole lot of time spent to fix those bugs and move

on to find a new bug. There is a good chance that it will be an endless process if it didnt

have to end at some point before the deadlines. Now, if we think about a bigger design, the

applications will be much more complicated, which again increase the probability of having

huge bugs, and much complicated to solve as the design grows. To give an overview: the

device we were using 15-20 years ago, and the same device now, the change is so gigantic it

is self-explanatory how complicated it has become. Everything has changed to become more

sophisticated and complex. Everything is being dramatically changed but the RTL creation

process. It is not out of the blue that verification is the bottleneck of every ASIC project.

As the complexity of designs have gone so far, it also demands faster time-to-market

delivery, which in turn requires even sophisticated methodologies. The assembly language
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was first introduced in the 1950s, till that time binary code was being written to program

a computer. To improve the productivity later, we developed high-level languages and

respective compilers. Then the gate level simulation started in the late 1970s. After around

ten years, cycle based simulation became available. Then Hardware description languages

were adopted widely by multiple simulation tools. Then High Level Synthesis(HLS) came

into the market.

High level synthesis finds the root cause of the bugs because it gives an error-free path

from higher abstraction to RTL. When we work on high-level abstractions, decidedly fewer

details of the architecture is needed. We dont need to worry about the underlying process,

clock, hierarchy, etc., just need to concentrate on the behavior of the design. Example: Once

the design engineer decides behavior and constraints, High level synthesis takes care of the

allocation, scheduling, and binding. So radically the verification burden is reduced. [11]

describes a formal flow of HLS.

2.1 Steps in High Level Synthesis

The HLS tool takes the behavioral description, constraint file and a technology library file

as inputs. Figure 2.1 shows the steps of HLS. The first step is to convert the high-level

language (C/C++/SystemC) to a CDFG(Control Data Flow Graph).

In this step basically, it checks for syntax and parses it. Then it optimizes the internal file,

mostly dead code elimination, removes redundant operations. This step is critical because a

poor optimizer may lead to adding an extra overhead in area or delay. A small example is

given below:

Void example(c)

{A = c - c;}

In the above line, the value of A is always 0 irrespective of the value of c. If the optimizer

does not optimize the above expression, it will tend to add two more registers(for storing

5



Figure 2.1: Essential steps in HLS

c) and one extra adder. What if this small function is called many times, each time it

will require unnecessary delay and area, which is extremely redundant and not a feasible

optimizer. The Control Data Flow Graph(CDFG), will be taken as input to three main HLS

steps, i.e., Allocation, Scheduling, Binding.

2.1.1 Allocation

This step takes the input from the optimizer(foo.IFF), it defines the maximum number of

functional units needed for the application/design. In this step, a constraint file has been

generated which would contain the functional unit details as number and type of the units

required for the design. Frequently, to adopt the maximum level of parallelism, the HLS

tool will use the maximum number of functional units. Then the user has the flexibility to

modify the number of functional units that the synthesizer can instantiate, but this can only

be done after the allocation process. Below is an example which will explain in detail:

6



(a)

(b)

Figure 2.2: Number of Functional Unit used for the snippet. (a) ANSI-C code (b) Functional
unit allocated because of maximum operator count and minimum operator count.

The example C-code in figure 2.2a, makes use of multiple additions and multiplication

operations. 2.2b shows what is the maximum number of adders and multipliers are required.

It basically maps every operation to a single functional unit to use the highest level of

parallelism. In this above scenario, It would need eight 32-bit signed adders(data type is

int which is 32 bit long) and two 32-bit signed multipliers. But in 2.2b it also says, in the

second table, what is the minimum number of functional units are required to execute the

above code in hardware. This gives us two scenarios, in the first case it will end up making

a larger circuit but with better performance due to less latency. In the second case, the

area has been reduced as we are trying to use a minimum number of functional units, but it

comes with a cost of performance. To be exact, the clock cycle will go from 1 to 6, and the

resource will go from 1 to 5. In some FPGA targets, this won’t be the best design, because

of clock period constraint and also due to the cost of the multiplexers will it require to share

the functional units.
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2.1.2 Scheduling

Scheduling follows the allocation step. Usually, the behavioral description language is written

in an HDL(Hardware Description Language) like Verilog, VHDL. Since there are numbers of

languages can be treated as input language, so a canonical representation is necessary. The

most common canonical representation is a CDFG(Control Data Flow Graph). Two main

parts of CDFG are essential to describe an RTL(Register Transfer Level). I.e., FSM(Finite

State Machine) and Datapath. The datapath consists the necessary FU(Functional Units)

and storage, where the FSM includes the number of states, transition of states and actions

need to be taken care in each transition. This scheduling process basically follows the CDFG.

Let X is the total number of operations that need to be scheduled, which are obtained

from the HDL code. Let Yj ⊆ X is an operation which depends on Zj ⊆ X, Zj needs

to finish its operation before Yj begins. In HLS there are multiple this kind of scenarios

which will come into the picture. There is a module in HLS which contains operations like

Adder, multipliers, etc., which also has information about the area, delay, and power. Many

scheduling algorithms have been purposed in the past. Most of them are heuristics as it

has been shown that resource constraint scheduling is an NPhard problem [12, 2, 3].The

algorithms which can take care of scheduling can be divided into two categories, i.e., heuristic

and deductive. Heuristic depends on experience and histories like resource constraint, time

constraint, resource-time constraint, and un-constraint. Deductive is accurate unlike based

on history, such as linear programming which generates the most optimal solution but it

takes a humongous amount of time so that deductive is not feasible for all type applications.

However, there are algorithms which generate results very close to the optimal solution in less

amount of time. To name a few: ASAP(As Soon As Possible), ALAP(As Late As Possible),

FDS(Forced Direct Scheduling) are a time constraint, and LS(List Scheduling) is resource

constraint. Let’s have a brief overview of each.
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Figure 2.3: As-Soon-As-Possible flow example

2.1.2.1 ASAP

As-Soon-As-Possible [12] is the most common type of scheduling algorithm. It doesnt con-

sider the resource constraint. It first finds out the maximum number of control steps, then

tries to schedule each operation at a time into the earliest control step. The scheduling

is again subject to successful completion of predecessor operation, i.e., the operation will

only be scheduled, if and only if all the above operations, on which the current operation is

dependent on, have been executed already. ASAP will be successful if all the operations can

be scheduled in the given control steps.

Lets consider an example: Out1 = ((ab)/(cd))-a-((ef)/b) and Out2 = (g-b)+f and the

maximum nuber of control steps, S = 4. Figure 2.3 explains ASAP scheduling.

Algorithm:

Do:

If x has no immediate predecessor(operation which computes from primary input)

9



Figure 2.4: As-Soon-As-Possible resource requirement

Control step(x) = 1(earliest control step)

Else control step(x)= Max(control step(Y1, Y2, Y3))+ 1, yi= immediate predecessors of x.

End if the control step of the latest operation M −− > Success

As we can see, o1,o2,o6,o8 are completely independent operations, i.e., they directly

depend on input values. So these operations will go to control step-1. However, O3, O7, and

O9 inputs are the direct output of O1, O2, O6 and O8. So based on the ASAP algorithm:

i.e. control step(O3) = maximum(control step(O1), control step(O2)) + 1 = 1 + 1 = 2

As we can see, O1, O2, O6, O8 are completely independent operations, i.e., they directly

depend on input values. So these operations will go to control step-1. However, O3, O7, and

O9 inputs are the direct output of O1, O2, O6 and O8. So based on the ASAP algorithm:

i.e. control step(O3) = maximum(control step(O1), control step(O2))+1 = 1 + 1 = 2

Based on the above explanation the control step of o4 is step-3 and o5 is step-4. This

operation can be done in four steps, making it successful. As discussed earlier, this does

not consider resource constraint, followed the scheduling the resource requirement would be

determined. Figure 2.4 is the resource requirement for each step.

2.1.2.2 ALAP

As-Late-As-Possible [12] scheduling is pretty much similar to ASAP, instead of assigning the

resources sooner it will assign it to the latest possible time step. First of all, the number
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Figure 2.5: As-Late-As-Possible flow example

of control steps will be decided. Then the ALAP will put the latest operation in the latest

time slot. An operation will be scheduled if and only if the successors are scheduled in later

time slots. If all the operations can be scheduled(moving backward) in the given time slots,

then the scheduling will be successful.

Algorithm:

Do:

If x has no immediate successor(Final operation to generate output)

Control step(x) = M(Latest control step)

Else control step(x) = control step(y) 1: y = immediate successor of x.

End if all the operations are completed within step1 −− > Success

Lets consider the same example as ASAP: Out1 = ((ab)/(cd))-a-((ef)/b) and Out2 =

(g-b)+f and the maximum number of control steps, S = 4. Figure 2.5 is the example of

ALAP scheduling.
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Figure 2.6: As-Late-As-Possible resource requirement

In ALAP algorithm as we see, O5 and O9 dont have any other successor, that means they

directly generate the output. So these two operations can be in the control step 4(the latest

one). The immediate predecessor on O5 is O4 and O7. So as per the algorithm discussed

above, the control step(O4 and O7) = M(4) 1 = 3, the same applies to O8 too. Like this

the control step of O3, O6, and O1, O2 is step2 and step1 respectively.

As all the operations are finished within step1, this is considered as successful scheduling

in ALAP. Figure 2.6 is the resource requirement table for the above operation.

As we see, the multiplier, divider, and subtractor in step-2, 3 and 4 are NIL because the

those can be reused from step-one, two and three respectively.

2.1.2.3 Limitations to ASAP and ALAP

As we say in ASAP three multipliers, two dividers, one adder, and one subtractor are needed.

And in ALAP two multiplier, one divider, two subtractors, and one adder are required. So

in ASAP we saved one multiplier and one divider, but have to bear the penalty of one more

subtracter. We can make it better if we can combine both ASAP and ALAP. Figure 2.7 is

the combination of ASAP and ALAP, which is an example of the optimal solution. Now

we can conclude that ASAP, and ALAP is heuristic solutions which wont always give the

optimal solutions.
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Figure 2.7: FDS flow example

2.1.2.4 FDS

Forced-Direct-Scheduling [4, 5] takes advantage of both ASAP and ALAP, where resources

get uniformly distributed across the time constraint schedule. Advantages of ADS is higher

functional unit utilization and minimizes the number of units used. FDS first finds the

scheduling driven by ASAP and ALAP. However, if the schedules of both ASAL and ALAP

are same, I.e., same control step is assigned by both ASAP and ALAP then FDS doesnt

consider this. Because there is no flexibility to change the current scheduling.

But in another hand, FDS will find the flexibility range of such operation whose ASAP

and ALAP does not match, i.e., control step assigned by ASAP to control step assigned

by ALAP. Now the operation will be scheduled in each of the flexibility range so that the

resource count will be minimum. To accomplish this, operations of each type are considered

one by one. For a given type of operation, we find out the number of operators required by

analyzing all the combinations of placing the operators in individual places. Once, one type

of operation is done, we move further to another type. Figure 2.7 is the example of FDS.
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2.1.2.5 LS

All scheduling algorithms we discussed till now are the time constant, in terms of, number

of control steps, which is heuristic based. Now we will review another algorithm, called

List Scheduling [6] which is again heuristic based, but it will be resource constraint, unlike

ASAP, ALAP and FDS.

FDS tries to put a maximum number of operations into one control step, subject to

resource constraint and data dependency. In the first step, it creates a ready list to keep

track of the data-ready operations. I.e., the operations which are ready to be scheduled,

or all the predecessors have already been scheduled. As long as there are operations in the

ready list which meet the resource constraint, are moved from in-ready to current control

step. If there is a case where multiple resources need to be scheduled in the same time

slot, the choice is taken as per priority function. The functional unit having less flexibility,

meaning the actual range, FU can be scheduled(ASAPi - ALAPi, smaller mobility), will be

given higher priority as it has less place to go. Because delaying them will unnecessarily

increase the time length.

This comes to an end of the Scheduling. Now we will discuss the third most crucial step

of HLS, i.e., Binding.

2.1.3 Binding

Binding is the last step of HLS, where each operation is mapped to a functional unit and

each variable to a register. After scheduling, each operation has to bind to at least one

available resource. As the number of resources is limited, the binding algorithm has to be

optimal in order to bind multiple operators together to a single available resource. The basic

condition is, the maximum number of the same type of operators can be bind together in a

single time slot, if and only if the available number of resources for the particular type of

operation is equal or more than the total number of operators. The area and latency are the
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Figure 2.8: Binding Example

two important parameters we need to take care in any VLSI circuits. Figure 2.8 shows an

example of binding.

In a resource dominant circuit, the area is Total area of resources bound in a given

operation; latency is the time between start and end time of sink and source respectively.

But in a non-resource dominant circuit, the area is determined by a logic circuit, registers,

wiring and control and latency are determined by wiring and logic design. But there is a

way to optimize is to provide a detailed architecture at the time of allocation. Below are

some popular binding algorithms:

• Clique Partitioning

• Left edge algorithm

• Iterative algorithm

Let’s consider the same example we followed in the scheduling(ASAP) process. Let’s

assume the number of ALU(adder, subtracter) available is one, and the number of multi-

plier/divider available is two. Figure 2.9 shows the binding of resources.
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Figure 2.9: Binding of the equation explained above

As seen in figure 2.9, operations O2, O6, O7 are in three different time slots and can be

bound to one available resource(multiplier/divider) MD-1. Similarly, O1 and O3 can be

bound to second multiplier/divider. Alternatively, O7 can be added to the group O1 and O3

too. O8, O9, O4, and O5 can be bound to the one available ALU.

This brings us to conclude the three important steps of HLS. This step can either be

sequentially or simultaneously performed. But it becomes a lot complicated when executed

parallelly. The basic solution is to follow a timing constraint approach for a resource con-

straint problem and to follow a resource constraint approach for a timing constraint problem.

Figure 2.10 explains the three steps in a single overview.

2.2 Advantages of HLS

The code can be easily converted to hardware from software in high-level synthesis. There

are many compilers available which can compile C code to generate RTL. Then the RTL
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Figure 2.10: Allocation, Scheduling and Binding in HLS

can be synthesized by any FPGA vendor tools, in-order to implement in gate arrays. But,

simply compiling software code for FPGA is seldom sufficient. It is often the case where

the algorithm needs to be modified until we get the optimized one. However, rather than

performing this step manually, HLS takes care of all this and the restructuring can be

performed at a higher level.

HLS tool analyzes the structure of the algorithm and creates the control path. In contrast

with this, the implementation of RTL when done manually requires explicit design of both

control and data path. For a complex design, the effort to make control path is as much as

designing the data path. The environments which has co-processor meaning both hardware

and software in FPGA and CPU respectively, HLS equips it to work efficiently for both

hardware and software. This also makes it easier to rapidly swap between hardware and

software.

Nowadays, synthesis tools can utilize parallelism in the main three ways:

• Data dependencies can be analyzed by examining the data flow. From this pipelined

can be achieved.
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• Also, by analyzing the looping conditions in which there are limited data dependencies,

can be made in a pipelined architecture, where the next iteration can be started before

the previous iteration ends.

• By unrolling loops. Multiple parallel blocks are built to make the iterations parallelized.

It is not a surprise that verification is the biggest challenge in any hardware design. HLS

makes it quite easy by doing the verification at a higher level. However, in the end, the RTL

needs to be verified to check the final algorithm results before it gets into the implementation

phase. In some HLS tool, it generate RTL testbenches from high-level verification code.

2.3 Disadvantages of HLS

Unfortunately, HLS is not as easy as it sounds. Every aspect of the design is in software.

We have decidedly less or no access to get in touch with the hardware. With all the tools,

the algorithms have to be written in a specific way in order to equip the synthesis tool to

utilize parallelism and optimize it. But most of the times we code design in a software style,

as a software design thinking, which leads to a very inefficient and poor performance circuit.

The main factoris is that FPGA is a hardware-based design, not software. The algorithm

design and execution is pretty stable in software, but the analyzation in hardware is quite

complicated.

The major difficulty is pointer based algorithms, HLS seems to not able to work very

well for pointers. Pointers pose two main challenges when implementing in an FPGA. First,

FPGA has its own distributed memory with an address assigned, but its too small and

independent block. Second, often the variables are stored in registers. Another devil is

recursion, recursion based software design is very inefficient for HLS. FPGA implements

each function as a hardware block, and stores the local variables in a register which is

mutual in each invocation. So recursive algorithm uses its identical block instead. It ends
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up adding a lot of extra overheads. At last, the RTL generated by HLS tools are not quite

readable and very complicated to modify the code, which makes it challenging to do any

minute changes in RTL.

2.4 Commercial HLS tools

There are many numbers of HLS tools are in the market. CWB is one of the lead in the run.

Table 2.1 are some of the tool names:

Table 2.1: Commercial HLS tools with companies names

Tool Names Company Input Lan-
guage

Vivado HLS Xilinx Inc. C, C++, Sys-
temC

CatapaultC Mentor Graph-
ics

C++, SystemC

Stratus Cadence Inc. C, C++, Sy-
atemC

CyberWorkBench
(CWB)

NEC Corp. C(BDL), Sys-
temC

Synopsys Synphony C
compiler

C, SystemC

Intel HLS com-
piler

Altera C, C++

CWB is the tool that has been used for the thesis work, which seems to work excellent.

2.5 CWB : CyberWorkBench

CyberWorkBench is an HLS tool. It also generates testbenches for DUTs(Design Under

Test), makes it work for verification as well. It accepts SystemC and BDL(extension to C)

as input language.BDL is an extension to C language Hardware C. It is ANSI-C based.

Some of the features are described in table 2.2.
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Table 2.2: Features in CWB

Feature Syntax Description
Variable type (Physi-
cal type)

ter/reg/var/mem /re-
set/clock

Type declarations
used to represent
hardware (registers,
memory, etc.)

Bit width (Start bit: bit width)
(Start bit .. end bit)

Arbitrary bit specifi-
cation

IO type in/out/inout Input/output type
declaration

External module spec outside/shared Specification of exter-
nal module for mem-
ory /registers/ter/var

Process declaration Process Specification of the
execution start func-
tion

Data transfer type ::= Assignment operator
for describing hard-
ware structure

Operators ::(Concatenation op-
erator) &>, | >, >,
& >, | >, > (Reduc-
tion operator)

An operator that con-
catenates (links) two
variables. An oper-
ator that reduces the
bit width of a variable
to one bit

Timing Description $ (Cycle boundary) Specification of a
clock cycle

Control Statement wait/watch dmux
/mux/allstates

Special control state-
ment used for hard-
ware operations

Special Constant HiZ Special constant for
hardware
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2.6 Summary

This chapter discussed the benefits of HLS and the primary steps associated with it. Widespread

use of HLS has triggered many vendors to make BIPs using HLS, not for virtual prototyping

but also for real-time designs.
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CHAPTER 3

OBFUSCATION

Presently, globalization of IC design creates severe issues and concerns about reliability and

trustworthiness. Keeping the time-to-market in consideration, it is impossible to design the

whole SoC by in-house tools and IPs. Therefore, companies usually purchase the IPs from

3rd party organizations. Like Apple is buying Intel processors for MacBook. In order to

meet the time-to-market constraint, 3rd party IPs (3PIPs) have been used frequently.

Furthermore, companies now adopting HLS to reduce the time-to-market constraint even

more. One of the biggest challenge faced by the BIP providers that are affecting the expansion

of their business is illegal use of the same IPs. A study conducted by [13], that the BIP

providers face appx. $4 billion loss each year because of IP contravention.

Often, BIPs come with a price range just like iTunes, i.e., the BIP consumers must pay

for the amount of disclosures of the IP. However, the consumer also can buy the whole BIP.

Usually, the second type is 10-100X costlier than the first one. If the consumer purchases

the complete source code, then the service by the provider is no longer needed because the

consumer has the BIP with full visibility. Another issue that needs to be discussed is, when

a consumer interested in buying a BIP, often they buy a trial version to analyze and examine

that the performance meets their expectation or not. During this process, the IP cannot be

made accessible and visible to the consumers else the consumer need not end up buying the

BIP.

To address the above issue, BIP providers need to protect the IP before selling it. Later

this chapter, we will discuss about two types of IP protection technique in detail.

3.1 Motivational Example

Figure 3.2 shows how the level of obfuscation affects the performance of the designed circuit

when two different parsers of the same HLS tool has been used. The results are shown below,
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Figure 3.1: Typical HLS flow overview.

taken from S2Cbench [7] benchmark suite. Because CWB supports ANSI-C and SystemC,

so the benchmark suite has been converted to C, in order to show the comparison. As shown

in the figure 3.2 below the area is increasing monotonically with the increase in obfuscation

level, in case of ANSI-C. However, the area remains almost unchanged in case of SystemC

parser, because the SystemC parser is a third party professional parser unlike ANSI-C parser,

which is a CWB in-house parser. Figure 3.1 shows the the traditional flow of HLS, and it

clearly defines that the HLS depends on the front-end parser.

This clearly shows that the different parsers with different level of compiler optimizations

lead to different synthesis results. Now we need to rely on the input language of the designs.

The same design in BDL and SystemC behave differently with and without obfuscation(IP

Protection) because of the parser inefficiency. It is, therefore essential to generate a process,

which will do the processing and analysis of a design with two input languages (ANSI-C,

SystemC) and provide which one is best for the particular design. Now we will briefly discuss

different techniques to protect the BIP.
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Figure 3.2: Area degradation of different benchmarks with the increase in level of obfuscation
[7, 8]

3.2 CWB Encryption

BIPs are called CyberWares by CWB. In CWB we can use pragmas to protect a BIP. pragma

is a unique line which is specific to CWB and can be used to define a different implementation

of the same code. Like, if a user is using a for loop and wants to exploit loop unrolling then

below is the example with a pragma.

Without pragma: With Pragma:
For(i=0;i<=6;i++) /* Cyber unroll times = all */
{Some operation...} For(i=0;i<=6;i++)

{Some operation...}

The pragma in the above code is giving instruction to CWB to unroll the loop to a specific

number of times or all. The same way CWB can encrypt the source code to protect it from

misuses. Figure 3.3 is an example of encryption.

The code in between the pragma start and end will be encoded, and the output is random

numbers. But for each encryption, it needs a key and a developer Id. The technique is unique

to CWB. The consumer needs to contact CWB to get the encryption utility (command line

windows or Linux). The sole purpose of the developer id is to guarantee that the key is

unique. The encryption tool is a command line tool, and CWB cannot decrypt the encrypted

BIP. The BIP developer will contact CWB department to get the encryption key and the
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Figure 3.3: Encryption Example in CWB using pragma

developer id. The input to the encryption tool is the source code(foo.c), the Developer id

(given by CWB to the developer) and the individual user key (provided to individual users).

The output is the encrypted source code(foo.c.encrypt) and license file(cwb ip license.dat).

Below is a snippet of an example.

The above process works very efficiently. However, there is a major limitation, which

creates second thought about it. The whole encryption is CWB specific. The pragmas are

only recognizable to CWB, which makes it less efficient. Therefore, we need to adopt some

sort of protecting technique, which is more generic and does not depend on any HLS tool.

To handle this issue, Obfuscation is the most reliable and inexpensive way of protecting the

BIPs.

3.3 Obfuscation

Obfuscation can be described as an intentional act of preserving the functionality of a product

to protect the intellectual property by making it human non-readable. Formally:

Definition: Let X is an obfuscator which can transfer a program Y into an obfuscated

version X(Y) while still preserving the functionality Y as Z.
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{Y} = F{X(Y)} = Z

Now its incomprehensible to reverse engineer and recover Y from X(Y). Software obfus-

cation is entirely different than hardware obfuscation. In software, the goal is to change the

structure of the code, which makes it very difficult to reverse engineer and understand by

attackers. Obfuscation is the most popular alternative to encryption as it doesnt require any

inverse function or encryption key.

In hardware obfuscation, the goal is to protect the functionality by modifying the mi-

croarchitecture of the design, such that it cant be reverse engineered. The classification of

hardware obfuscation technique is at different levels, i.e., RTL, Gate level, Layout as stated

in [106(paper)]. It doesnt include behavioral description because at this stage the micro-

architecture has not been defined and obfuscation in behavioral level is almost similar to

software obfuscation. Below shows an example of obfuscated BIP snippet of the average of

eight numbers using commercially available obfuscation tool [9]. As seen in Figure 3.4 the

obfuscation version is exceptionally complicated to reverse engineer.

3.3.1 Typical Obfuscation Process

In this section, we will discuss the obfuscation process that has been used by obfuscation

tools like [9].

3.3.1.1 Mangling Mathematical Expressions and Integers

The more we mangle the expression, the more the system is protected and harder for the at-

tacker to understand the design. As we see in figure 3.3, the integer 8 in the last but one line

has been modified to 0x235-492-0x41 and the expression sum =sum + buffer[i]; changed to

k795f772c7c = k795f772c7c + z7929401884 [0x3ADF-0x2FED-2801+ zddd43c876a]+ 0xEFCD52364-

0x2341; where k795f772c7c, z7929401884 and zddd43c876a defines sum, buffer and i respec-

tively. The sum of 0x3ADF-0x2FED-2801 is zero. Though two lines look different, the

functionality remains the same, and the mangled version is quite difficult to understand.
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Figure 3.4: Behavioral IP obfuscation example

3.3.1.2 Stripping the Space

Writing code is an art. Frequently, software or hardware program has been written in a

legitimate way to make it understandable for the reader to understand and modify in future

if there is any need for that. Trimming the extra white spaces will cause the attacker to face

a hard time decoding the design.

3.3.1.3 Replacing Identifiers and Signals

This step is one of the necessary and essential phases of most of the obfuscation tools.

• Combinations of characters from a user-specified set: replace all the identifiers with a

combination of I and l(capital i and small L) or O and 0.
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• Using mixcase: ANSYS and SystemC are case sensitive, randomly choosing some let-

ters of some words and randomly making it mix type helps.

• Prefixing symbol: prefixing all or selected identifiers with a specified or random text.

• Replacing numeric constants with expressions: e.g. replacing 232 with (0x14b6+2119-

0x1c15)

• Joining all lines in the code

• Md5 sum with user-specified ”salt”: sample replacement is zd7b6a02ec5. The salt,

number of characters from hexified version of md5 sum and a prefix (”z” in the sample

above) are the options of this mangler;

• Comments of code can be removed completely, which again will make it more difficult

for the hacker to understand the design.

Obfuscation tools usually mix all these types up and make it difficult to understand. The

above techniques work extremely well with the compilers (e.g., gcc and g++) as these are

based on sturdy compilers which are being developed for decades. So the binary code of

with and without obfuscation is similar.

As discussed in the motivational example section, the parser of the different EDA tools

could lead to different results with obfuscation. Although, the functionality will be protected,

but the parser will end up adding some extra area and delay overhead because HLS parsers

are not as good as the software parsers.

3.4 The Reason Behind the Overhead

The output of the parser will generate similar functionality design. Now its the responsibility

of compiler to optimize the code and generate the same as of non-obfuscated design. For
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example the line in the 3.4 ”sum =sum + buffer[i];” has been obfuscated to ”k795f772c7c

= k795f772c7c + z7929401884 [0x3ADF0x2FED-2801+ zddd43c876a]+ 0xEFCD-52364-

0x2341;”. The highlighted part is a dead code added by obfuscation, meaning the final

value of the expression is zero and doesnt affect anything if we remove that. If the compiler

can not optimize the circuit by removing the dead code, unnecessarily extra circuitry will

be added after synthesis. For this example, the synthesizer may generate some extra adders

too to incorporate with the output of the un-optimized expression which, in turn, will lead

to extra area and delay.
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CHAPTER 4

PROPOSED BDL-SYSTEMC FLOW

As of 2010, 30 companies had adopted HLS for IP design [10]. The number has crossed 100

by 2018. As the value and viability of High-Level Synthesis have been established, now the

most significant decision to determine is which Input language is best for HLS. It will be

limited to C and SystemC as CWB only accepts C and SystemC as input language. Is it

always SystemC is better as stated in [10], or it depends on the design...? The answer is

quite tough because it depends on many factors that companies take into consideration while

adopting the new flow like the parser, which converts the input language to an internal file

and how the synthesizer has been implemented. The capacity of HLS has gone so far than

the productivity of an engineer designing 10X complex logic in a single click. Reducing the

Time-to-market for delivering the product with most complex SoC is now a huge challenge.

4.1 Designed Parser Flow

To come up with a solution, which input language is better for HLS, we first need to know

how does the flow work.

A general HLS flow takes the input as C(foo.c) or SystemC(foo.sc, foo.h) then it goes

through a parser which converts it to a data flow graph which is called CDFG(Control Data

Flow Graph) for behavioral description. There are many parsers exist, ex. Lang1, lang2,

langN. These tools convert behavioral description to CDFG. The output of these parsers are

not similar even though the input DUT(Design Under Test) is same. As CDFG goes as an

input to the synthesizer; it behaves differently because the input to the synthesizer differs

from each other. Because of this parser output mismatch, the synthesizer gives different

QoR(Quality of Results) for the same application.

The proposed flow in the thesis will give a better prediction for a particular application

which input language will be better, again we need to trade-off between area and delay and
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find out the input language and then go-ahead with our design. First of all, it is a redundant

effort to design an application in different languages. Lets say we have a requirement of a

particular design and it is not yet known which input language will be better. To address

the above issue, a parser has been designed which takes ANSI-C as input and output is a

header file and foo.sc. The parser is the first step of the whole flow.

4.1.1 Description of BDL-SystemC Flow

There are mainly three steps in the parser.

• It takes the BDL code then divide it into multiple parts and then starts analyzing it

step by step.

• It first creates a header file for the SystemC. – foo.h

– It creates a Module.

– Define reset, clock and main function.

– It creates a Module.

– Define reset, clock and main function.

– It defines the input and output variable with bit lengths Ex: sc in ¡sc uint¡8¿¿ in;

in is the input to the design with, which is 8 bit in length. Type: Unsigned Integer

– Then it calls the clock thread function(Refer to chapter-2 for details).

– Then it defines if there are any other subfunctions which are being called by the

clock thread function.

– It also takes care, if there is any global variable which needs to be defined and

assigned with a value.

– Then it creates a constructor of the Module.
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– It creates a Thread, as the benchmarks contain complicated designs and multicycle

algorithms, CTHREAD has been chosen.

– It assigns the sensitivity edge and reset signal for the design.

– At last, it put a destructor of the Module.

• It creates the SystemC file. – foo.sc

– Includes the header files

– Declares the variables which are global in C.

– Then It first creates a thread of the module and parses the corresponding C code

with SystemC formatting.

Ex: In C the input will be read with a = sign.

C: temp = Inp

SystemC: temp = Inp.read

– Then It creates a while loop for the whole thread and wait until it finishes, then

repeat itself.

– Then it parses other functions, keeping arguments and return types preserved.

Above are the necessary steps of the parser flow. This first step basically saves us time

by not writing the whole SystemC code.

4.2 BDL/SystemC to CDFG Parser

In the second step, The BDL and the systemC code passes through a yet another parser

which takes the BDL/SystemC code as input and converts it to CDFG(foo.IFF) format. The

systemC and BDL will be converted to a binary file(CDFG) format which in turn will be

needed for synthesis. This IFF file is company specific and only understandable to in-house

synthesizers. It is basically a binary file which is entirely non-human readable.
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4.3 Synthesizing Flow

The third step is the synthesis step: There are a couple of synthesis modes that can be

specified.

It takes a couple of files as input.

• CDFG(foo.IFF)

It takes input the binary format of the CDFG, then based on the data it generates

QoR.

• b) Functional Unit Constraint file (LMT)

This file specifies the information and constraints regarding functional units used in

the synthesis.

• Memory Constraint file (MLMT)

This file specifies the information and constraints regarding memory used in synthesis.

• Port Constraint file (PLMT)

This file specifies the information and constraints related to input-output ports of a

module that is used in synthesis.

• Port Relation file (PREL)

This file specifies the correspondence between I/O ports of the module that are used

in the synthesis and I/O variables allocated to these ports.

• Basic Library file(BLIB)

BLIB file contains the circuit (delay and area) information of the constant table; de-

coder enabled multiplexer bit operation, multiplexer, decoder, and register.

• Functional Unit Library file(FLIB)

This file specifies the functional unit information that is used in synthesis. Functional
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unit library file has two types of format for basic functional unit and arithmetic macro

functional unit

• Functional Unit Count file(FCNT)

This file specifies the constraint for all functional units used in synthesis.

Once all the above files are ready, we can start the behavioral synthesis process. It takes

clock frequency, the CDFG, number of specific FUs and the information regarding the FUs

i.e. area, delay etc. Below is an example of synthesis command specific to CWB.

Ex: Synthesis tool command -c1000(# of clock cycles it should run) foo.IFF -If1 foo.FLIB
-Lfc foo.FCNT

The output of bdltran is foo E.IFF, foo C.IFF and synthesis analysis files. Foo C/E.IFF file

goes as input to veriloggen.

4.4 HDL Generation Flow

The fourth step is the generation of HDL file. In this step the input is foo E.IFF, which

is a binary file containing combined information of library delay, area based on the design

with synthesis results and analysis. The output is foo.v/foo.vhdl, which is ready to be

implemented in an FPGA/ASIC design.

Above are the four significant steps of the whole flow. As per the milestone, the thesis

aims to decide which input language is best for a particular design.

4.5 Proposed Flow

As we have noticed early in the chapter, we need to have a design automation which will

gives us a detail view of which input language is better for a particular design. Figure 4.1

flow, saves a lot of time, by not writing the code of the same design in SystemC. As stated,

the parser converts the BDL to SystemC.
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4.5.1 Flow Diagram

Figure 4.1: Proposed flow(to know which input language is better)

4.5.2 Description of the Flow

Step by step description of the flow given in figure 4.1

• A BDL input is passed through the designed parser, which will take C as input and

give SystemC as output with the header file.

• Now both the designs will be passed with CWB as below:

35



– bdlpars or scparse for BDL or SystemC respectively.

– Output foo.IFF, as input to synthesizer, to get the HDL format file, which will

be needed to generate verilog/VHDL code.

– HDL format file (foo E.IFF) goes as an input to HDL generator(veriloggen) and

output is foo.v.

– This synthesis also gives a QoR(Quality of result)

• Once the above step is done successfully, the QoR of both language designs will go to

an analyzer, which will analyze the result and give us the details. In the Analyzer step

we basically get the QoR of all the input languages, by considering the requirement,

we can make an optimized design.

4.5.3 Experimental Results

Table 4.1: QoR(area and critical path delay) output of C and SystemC

Benchmark
ANSI-C SystemC

AREA Delay-ns Area Delay-ns
FIR 2119 3.06 2167 3.06
SOBEL 966 2.01 1014 2.01
ADPCM 732 6.01 3890 13.11
AES 109824 8.39 110592 8.39
AVE8 710 1.34 758 1.34

As stated in the results 4.1, the output is not the same in C and systemC, and it has

a significant variation in this benchmarks, which are small designs, it will have a massive

impact in larger designs, which will in-tern impact the efficiency. However, by following the

below flow we can get the efficiency of the both BDL and SystemC, then we can decide which

one to take into consideration. It will save much time because the parser will directly give

the SystemC files as output. Below is the flow chart which describes the proposed flow.
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4.5.4 Limitation to the Proposed Flow

So far we can get a good design with the best efficiency using HLS. However, what we

did not consider, is protecting the IP. As an Industry, Nobody wants to sell an IP without

protection, as discussed in chapter-3. One of them: Often companies make a contract to

use a BIP(Behavioral IP) for a trial purpose, to evaluate the quality(delay, area, etc.). This

BIPs cannot be made accessible and visible during the evaluation period as the consumer

will not need to end up buying it. Also because of some other data protection reasons, we

need to protect the IP. As we discussed in chapter-3, Obfuscation is the easiest and most

inexpensive way to protect the BIPs.

4.6 Modified Flow with Obfuscation

When obfuscating, a same functional input file has been generated, which is almost impossi-

ble to understand to human-eyes and extremely hard to reverse engineer. As we have seen [8],

it literally removes comments, renames intermediate variables and adds unnecessary steps

to make it human non-readable format. All commercial HSL tools often use dedicated in-

house parsers which are heavily dependent on input languages. Different parsers have parsed

different input languages into an Internal Format File(foo.IFF). This IFF file is unique and

only understandable to different in-house synthesizers. The preliminary step is responsible

for traditional technology independent compiler optimizations, e.g., dead-code elimination,

common sub-expression elimination and constant propagation. The synthesizer then read

the IFF file and carry out HLS steps(resource allocation, scheduling, and binding) then it,

in turn, generates either Verilog or VDHL. This HDL generation flow is quite popular and

the biggest secret of every company. Being able to take the CDFG(binary format) as input

makes it most efficient, by which it can take any number of input languages by just adding

a front-end parser. The main downside is, the EDA companies who are not expert in this

37



fields made in-house parsers, which leads to inefficient design. This is extremely important

in case of obfuscation as this step tries to insert multiple redundant operations to make it as

less human-readable as possible, which in turn leads to impact the area, delay, and latency.

This work defines the impact due to obfuscation and how to get a better design without

changing the input language, basically without using any extra efforts and resources.

4.6.1 Modified Flow Diagram

Figure 4.2: Modified flow diagram with obfuscation
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4.6.2 Description of the Flow

This flow 4.2 is an addition to the flow that has been described earlier in this chapter which

is without obfuscation. Before the parser parses the input(BDL) language and generates the

systemC version, then the HLS flow starts. However, In this modified flow, the input(BDL)

will be parsed to get the SystemC version. Then both BDL and SystemC codes will be

obfuscated to get the Non-human-readable version of the design; then the HLS flow starts

which will first parse the obfuscated code to get the foo.IFF, then it passes through the

synthesis process and at last it goes to the HDL generation flow. In the end, The QoR will

be generated, by seeing the QoR, one can quickly decide which input language is better for

the design.

4.6.3 Impact of Obfuscation

The Obfuscation process in the flow is a combination of a couple of sub-processes. Stunix

C/C++ tool has been used for obfuscation as a preliminary flow. Then a couple of manual

redundancies have been inserted in order to consider the worst case scenario. As there are

many numbers of obfuscation tools available in the market and every obfuscator behaves

differently, so to reciprocate the effect of worst-case scenario manual obfuscation has also

been added with the output of the stunix too. An example has been given below to make it

more clear.

As we see in table 4.2, The first row shows the raw C code. Second row shows how stunix

obfuscates the variables. And the last row shows how the final obfuscated code will look

like. Some front-end parsers are unable to optimize this redundant behaviour which leads

to unintended area overhead.
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Table 4.2: Effect of obfuscation of the input

Original Input line: for(i=0,i¡=12,i++)
{op = x+3;}

Stunnix Ofuscator
output:

for(0x98AA=0, 0x98AA <=12, 0x98AA++)
{0x13B4 = 0x00B3+0x0011;}

Final op after manual
obfuscation:

for(0x98AA=0,0x98AA<=0x10AA-0x10A2,
0x98AA++)
{0x13B4 = 0x00B3+0x0011;}

4.6.4 Experimental Results

As the results stated in 4.3, the QoR of the obfuscated and non-obfuscated version of BDL

and SystemC are entirely different.

Table 4.3: Area and Delay results with and without obfuscation

Benchmark
ANSI-C SystemC Obf. ANSI-C Obf. SystemC

AREA Delay-ns Area Delay-ns AREA Delay-ns Area Delay-ns
FIR 2119 3.0634 3205 3.7809 2167 3.0634 2167 3.7194
SOBEL 966 2.009 1354 3.0165 1014 2.009 1014 2.2009
ADPCM 732 6.01 759 5.35 3890 13.1105 3890 13.1105
AES 109824 8.39 110592 8.49 110592 8.39 110592 8.23
AVE8 710 1.335 1532 2.542 758 1.335 738 0.9675

The area and critical path delay, which are the most sensitive data in a Hardware design,

are majorly impacted by obfuscation. As we stated earlier, the obfuscation usually adds

overhead area or delay. However, if we take a closer look into AES, the obfuscated SystemC

critical path delay(8.23ns) is lesser than non-obfuscated SystemC critical path delay(8.39ns).

It proves that the HLS process heavily depends on the input parser(bdlpars,scpars). Because

of the different binary output(CDFG-foo.IFF) of the parsers, the input to synthesizer differs

from one another.
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4.6.4.1 Experimental Setup

Figure 4.3: Experimental Setup of the Proposed flow

Figure 4.3 shows how the experimental results have been set up and below shows the

tools, benchmarks and constraints, which have been used as a part of the research.

• Benchmark: FIR, SOBEL, ADPCM, AES, AVE8 from S2CBench suite.(Converted to

ANSI-C to show the comparison)

• C2SC C to SystemC conversion tool(has been designed as a part of the thesis)

• HLS: CWB(Operating Freq.: 20MHz)

• QoR analyzer: input: different QoRs, output as extraction of area and delay of input

QoRs (has been designed as a part of the thesis)

The first column of table 4.4 shows how the input language impacts the design. There

are designs in which the impact is very less like FIR, SOBEL, AES. But as we see ADPCM

performance is humongous. It has a tremendous impact on the design. 4.4 is the graph which

shows how the area of the design distributed in different benchmarks for C and SystemC.
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Table 4.4: Percentage change in area of C and SystemC with and without obfuscation

Benchmark C / SystemC
% Change

C / Obf C
% Change

SC / Obf SC
% Chnange

Obf C/Obf SC
% Change

FIR 2.27 51.25 0.00 47.90
SOBEL 4.97 40.17 0.00 33.53
ADPCM 431.42 3.69 0.00 -80.49
AES 0.70 0.70 0.00 0.00
AVE8 6.76 115.77 -2.64 107.59

Figure 4.4: The percentage change of area from C to SystemC of benchmarks

Figure 4.4 describes the percentage change in the area of SystemC from BDL. As we see

the area of ADPCM is 431 percent higher if the input language is SystemC. But for the

other design, the area is very less impacted, i.e., 0 to 6% change. Except for ADPCM, other

designs are somewhat acceptable for some applications. Let’s assume a single SOBEL filter

has been used in a design 100 times sequentially; then the area will increase by 50%. So

from the above discussion and graph, we can conclude that BDL is better than SystemC

for the above benchmarks. However, the IPs cant be sold like this without any protection.

As discussed in Obfuscation chapter, Obfuscation is the only effective and inexpensive way
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to protect the IP. Below, we will discuss how the obfuscation will impact the designs. The

percentage change has been calculated by below formula.

Now we will discus about the change in area of C to Obfuscated C. Figure 4.5 describes

the percentage change of area from Obfuscated BDL to normal BDL. As we see, it varies from

design to design. For FIR and SOBEL the change in the area is 40% - 50%. For ADPCM

and AES the change is quite less, however, for AVE8 the difference is more than double. This

proves that the design is heavily dependent on the input parser, which creates the CDFG and

the synthesizer. Meaning, either the bdlparse not able to optimize the redundant behavior

and the synthesizer not able to optimize the redundancy created by the parser.

Figure 4.5: The percentage change of area from C to Obfuscated C of benchmarks

Same goes for the SystemC too. As we see in the figure 4.6, the percentage change is

quite stable than BDL, except AVE8 which is preety small. The BDL parser which has been
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Figure 4.6: The percentage change of area from SystemC to Obfuscated SystemC of bench-
marks

used for CWB is an in-house made parser, so the performance penalty huge. However, the

SystemC parser is a third party professional parser, so it is much more stable than C parser.

Now the question comes about the synthesizer. Even though the parser couldn’t eliminate

the deadcode(which will be there in CDFG binary file), the synthesizer should be able to

optimize the CDFG and provide a more efficient design. Unfortunately, the synthesizer fails

in case for C parser. The reasons behind the area overhead in the obfuscated SystemC of

ave8 have been discussed below.

For AVE8: sum= buffer[0]; ————————–1

In the above equation, simply the first bit of the buffer is assigned to the variable sum. If

we add a redundant behavior like below:

sum= buffer[0]+0x32D5-0x2EF5-992; ——————-2

where 0x32D5-0x2EF5-992 = 0

So the functionality of the equation 1 and 2 are same, just a redundant behavior has

been added to obfuscate the IP. Figure 4.7 shows the CDFG flow for AVE8 with and without

change of the above equation.
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Figure 4.7: Penalty due to obfuscation

As we can observe from the figure 4.7, just a single line change with the same function-

ality leads to an increased area. Surprisingly, the obfuscated line gives better area. After

adding the redundancy, the parser can optimize the redundant operation but in case of no

redundancy the parser/synthesizer not able to perform as expected. It ends up adding an

extra 12-bit adder, which leads to an increase in the area by 20units.
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Below is an example which shows how the QoR affects the HLS. Below is the observation:

sum = sum + data[i] * coeff[i] ; —- without redundancy —- 1

sum = sum + ((data[i]+0x32D5-0x2EF5-992) * (coeff[i]+0x32D5-0x2EF5-992)) +0x32D5-

0x2EF5-992; —— with redundancy —— 2

**0x32D5-0x2EF5-992 = 0

After adding the redundancy in equation 2, the area is increased by 42%, which is non-

avoidable. However, if we add a bracket in the redundancy in the equation, there is no

penalty in the area. Below is the example:

sum=sum+((data[i]+ (0x32D5-0x2EF5-992) )*(coeff[i]+ (0x32D5-0x2EF5-992)

)) +0x32D5-0x2EF5-992 ;

Looking at the above results, its crystal clear that the design performance and efficiency

heavily depend on the parser. So its necessary to decide which input language should be

considered for HLS. And its pretty random based on the design. Below are the comparison

and percentage change of the Obfuscated C and Obfuscated SystemC.

Now we will discus which input language to choose. Figure 4.8 shows the percentage

change of QoR(area) of obfuscated C to obfuscated SystemC.

The figure 4.8 is pretty much self-explanatory. For FIR, SOBEL, and AVE8 BDL has

appx. 4%, 34% and 108% extra overhead in area than SystemC. For these three designs,

SystemC will be a wise choice. For AES its exactly same, so it doesnt matter which language

has been chosen as input. But, for ADPCM, BDL will give 80% less in the area, which is

humongous. For ADPCM, BDL will be a wise option to consider as an input language.

4.7 Automation of the Flow

The whole flow, which includes with and without obfuscation, BDL-SystemC parser, and

HLS have been automated using a python script. The steps of the script described below.

• It invokes the parser to convert the BDL to SystemC.
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Figure 4.8: The percentage change of area from obfuscated C to Obfuscated SystemC of
benchmarks

• Then both the BDL and SystemC passes through a phase of obfuscation which is

being done by Stunix obfuscator, followed by manual obfuscation to show the worst

case scenario.

• Then it passes through various stages of High-Level Synthesis. At last, it gives the

output as foo.v.

• Then the analyzer considers the QoR and then generates a combination of output

results, as shown below.

• Then by examining the results, we can decide which input language to consider for a

particular design.

Figure 4.9a and 4.9b shows the QOR with and without obfuscation respectively. As stated

earlier in this chapter, that obfuscation has higher impact in C input. After observing above

output of the conversion tool, one can easily decide which input language to choose for the

particular design
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(a)

(b)

Figure 4.9: Output of the modified proposed flow with and without obfuscation. (a) With
Obfuscation (b) Without obfuscation

4.8 Summery

As explained in this chapter, knowing which input language is better, will lead to an efficient

design. This chapter we got to know a new flow which will examine the QoR of the input

languages and give us the detailed area and critical path delay of the designs, by seeing those

we can come to a conclusion, which input language to use for the particular design.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we have proposed a new flow to know which input language is better for

a particular design. There is very less performance penalty for this additional flow. But

at the end, we will be able to reduce the resource utilization for the selection process of

choosing the input language and more importantly the efficiency of the design. To convey in

brief, the C code will be taken as an input to the conversion tool(C2SC), then it starts the

processing(HLS) of the C code. Once the HLS of C is done, it converts the C to SystemC

and does the same processing again. And at the end, it will describe the detailed area and

critical path delay of the design. By looking at it, one can easily and quickly decide which

input language to consider for the design.

5.2 Future Work

Another parser can be created as an extension to this thesis, which will convert SystemC to

C. In that way the input language wont be constant to C. Then the input language can be

written in any language(C/SystemC), having more flexibility. Another one is, to test this

with many benchmarks to study the effect of obfuscation even more.
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