

Find more research and scholarship conducted by the Erik Jonsson School of Engineering and Computer Science here. This
document has been made available for free and open access by the Eugene McDermott Library. Contact
libwebhelp@utdallas.edu for further information.

Erik Jonsson School of Engineering and Computer Science

2014-04

A Zig-Zag Approach for Competitive Group Testing

UTD AUTHOR(S): Dingzhu Du

©2014 INFORMS

http://libtreasures.utdallas.edu/xmlui/handle/10735.1/1347
http://www.utdallas.edu/library
mailto:libwebhelp@utdallas.edu
http://www.utdallas.edu/
http://libtreasures.utdallas.edu/xmlui/
http://www.utdallas.edu/
http://libtreasures.utdallas.edu/xmlui/
http://libtreasures.utdallas.edu/xmlui/

1
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Zig-Zag Approach for Competitive Group Testing
Yongxi Cheng, Ding-Zhu Du, Yinfeng Xu

To cite this article:
Yongxi Cheng, Ding-Zhu Du, Yinfeng Xu (2014) A Zig-Zag Approach for Competitive Group Testing. INFORMS Journal on
Computing 26(4):677-689. http://dx.doi.org/10.1287/ijoc.2014.0591

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2014, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ijoc.2014.0591
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS Journal on Computing
Vol. 26, No. 4, Fall 2014, pp. 677–689
ISSN 1091-9856 (print) I ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.2014.0591

© 2014 INFORMS

A Zig-Zag Approach for Competitive Group Testing

Yongxi Cheng
School of Management, Xi’an Jiaotong University, China; and

State Key Lab for Manufacturing Systems Engineering, Xi’an 710049, China, chengyx@mail.xjtu.edu.cn

Ding-Zhu Du
Department of Computer Science, University of Texas at Dallas, Richardson, Texas 75080, dzdu@utdallas.edu

Yinfeng Xu
School of Management, Xi’an Jiaotong University, China; and

State Key Lab for Manufacturing Systems Engineering, Xi’an 710049, China, yfxu@mail.xjtu.edu.cn

In many fault-detection problems, we want to identify defective items from a set of n items using the minimum
number of tests. Group testing is a scenario in which each test is on a subset of items and determines whether

the subset contains at least one defective item. In practice, the number d of defective items is often unknown in
advance. In this paper, we present a new algorithm for the above group testing problem and prove that it has
very good performance guarantee. More specifically, the number of tests used by the new algorithm is bounded
from above by d log(n/d)+ 3d+ O(log2 d). The new algorithm is designed based on a zig-zag approach that has
not been studied before and is intuitive and easy to implement. When 0 <d < p0 n where p0 1 − 4/e2 0.45 . . . ,
which holds for most practical applications, our new algorithm has better performance guarantee than any
previous best result. Computational results show that the new algorithm has very good practical performances.

Keywords : fault detection; group testing; algorithms
History : Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms; received August 2011;

revised August 2012, February 2013; accepted December 2013. Published online in Articles in Advance April
23, 2014.

1. Introduction
Suppose we are given a set S of n items in which
some items are defective and others are good. Our task
is to identify the defective items using a sequence of
tests. Each test is on a subset of items in S and tells
us whether the subset contains at least one defective
item. The subset is said to be contaminated if it contains
at least one defective item; otherwise, the subset is
said to be pure.

This scenario is the group testing problem, which
was first introduced by Dorfman (1943) for efficient
mass blood testing. Because of its basic nature, the
problem later found various applications, including
quality control in industrial product testing (Sobel
and Groll 1959), sequential screening of experimental
variables (Li 1962), searching files in storage systems
(Kautz and Singleton 1964), multiple access commu-
nication (Wolf 1985, Goodrich and Hirschberg 2008)
and data gathering in sensor networks (Hong and
Scaglione 2004), screening of clone libraries (Barillot
et al. 1991, Bruno et al. 1995), blood screening for HIV
tests (Wein and Zenios 1996, Zenios and Wein 1998),
data compression (Hong and Ladner 2002), streaming
algorithms (Cormode and Muthukrishnan 2005), and
testing and diagnosis for digital logic systems (Kahng
and Reda 2006). Recently, Abolnikov and Dukhovny

(2003), Bar-Lev et al. (2007), and Claeys et al. (2010)
studied the scenario where there is a group testing
center and items to be tested arrive at the center at
random time points. For a thorough treatment of this
subject, we refer the reader to the monograph by Du
and Hwang (2000).

Let M(d,n) denote the minimum number of tests
required in the worst case, if the number of defectives
d is known in advance. There are many studies on
the bounds on M(d,n) in the literature. Hwang (1972)
proposed a generalized binary-splitting algorithm that
uses at most !log

l

n
d

n

l + d − 1 tests in the worst case.
As to lower bounds on M(d,n), in general the infor-
mation theoretic lower bound M(d,n) ≥ !log

l

n
d

n

l is
currently best known. The inequality in Equation (1)
implies another lower bound, i.e., the right-hand side
of the inequality, on M(d,n). The inequality is proved
as Lemma 4.1.1 in Du and Hwang (2000, Chap. 4): For
0 <p< 1, if 0 <d < pn, then

log

n

d

≥ d

log
n

d
+ log(e

1 −p)

− 0.5 log d− 0.5 log(1 − p)− 1.567. (1)

In many applications, the assumption that d is
known a priori is not realistic. Probably we only know

677

= =

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
678 INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS

the existence of defectives but nothing else. In such
a situation, we still want an algorithm whose num-
ber of tests used in the worst case will not be too
much more than M(d,n), no matter what the num-
ber of defectives is. Motivated by the study of online
algorithms (Sleator and Tarjan 1985, Manasse et al.
1988), Du and Hwang (1993) proposed a concept of a
competitive ratio to measure the quality of algorithms
for solving the group testing problem with unknown
number of defectives, as the following.

Let A be an algorithm solving the group test-
ing problem when the number d of defectives is
unknown, and let MA(d I n) denote the number of
tests performed by A in the worst case if there are n
items and d of them are defective. Then A is called
a c-competitive algorithm if there exists a constant
a such that for 0 ≤ d < n, MA(d I n) ≤ cM(d,n) + a.
The case d n is excluded in the definition because
M(n,n) 0, and MA(n I n) ≥ n for any Algorithm A.
If c is a constant, a c-competitive Algorithm A is
simply called a competitive algorithm and c is called
the competitive ratio of A. Du and Hwang (1993) pro-
posed a 2.75-competitive algorithm. The competitive
ratio was improved to 2 by Bar-Noy et al. (1994)
and then to 1.65 by Du et al. (1994). Schlaghoff and
Triesch (2005) developed an Algorithm A8 satisfying
MA8

(d I n)≤ (1.5 + 8)M(d,n)+ !0.4/8l + 6 for any 0 <
8 < 0.01 and 0 ≤ d < n and thus improved the com-
petitive ratio to 1.5 + 8 for all positive 8< 0.01.

Du and Park (1994) introduced another notion of
competitiveness. For an Algorithm A solving the
group testing problem with unknown number of
defectives, define

n(d,k) max{n I M(d,n)≤ k},

nA(d I k) max{n I MA(d I n)≤ k}.

Algorithm A is called a strongly c-competitive algo-
rithm if there exists a constant a such that for every
d ≥ 1 and k ≥ 1, n(d,k) ≤ cnA(d I k) + a. If c is a
constant, then a strongly c-competitive algorithm is
also called a strongly competitive algorithm. Du and
Park (1994) proved that every strongly competitive
Algorithm A is also competitive in the original sense,
as defined in Du and Hwang (1993), and satisfies
the following desirable property: limn→o(MA(d I n)/
M(d,n)) 1. Moreover, they proposed an algo-
rithm, which we will refer to as Algorithm DP ,
with MDP(d I n) ≤ d log(n/d) + 4d for 1 ≤ d≤ n. They
showed that Algorithm DP is strongly competitive
and wondered whether new algorithms exist such
that the coefficient 4 for term d in the upper bound
can be further reduced. Schlaghoff and Triesch (2005)
proved that there exists an Algorith B satisfying that
for 1 ≤ d ≤ n, MB(d I n) ≤ !log

l

n
d

n

l + 2d; however, the

Algorithm B implied by their constructive proof is
rather complicated.

If randomized group testing algorithms are consid-
ered, very recent results in Damaschke and Sheikh
Muhammad (2012) show that, asymptotically, one can
achieve nearly d log n tests, even with highly non-
adaptive testing strategies, to correctly solve (with
any prescribed constant success probability) the above
group testing problem with an unknown number of
defectives. However, deterministic testing algorithms
(which do not need to use randomization and can cor-
rectly identify all the defectives with certainty) using
fewer tests in the worst case are still interesting for
further investigation.

The main contributions of this paper, presented
next, are for the combinatorial group testing model. For
the probabilistic group testing model, in which each item
in S is defective with some probability p, for the
case of small defect probability p« 1 and large num-
ber n of items, asymptotically optimal two-stage test-
ing strategies were obtained recently in Mezard and
Toninelli (2011).

In this paper, we present a new deterministic,
strongly competitive Algorithm Z with MZ(d I n) ≤

d log(n/d) + 3d + O(log2 d), for the (combinatorial)
group testing problem with unknown number of
defectives. Algorithm Z is designed based on a zig-
zag approach that has not been studied before. Com-
pared to the result of Schlaghoff and Triesch (2005),
our algorithm is much simpler and, by Equation (1),
has an asymptotically smaller upper bound on the
number of tests performed when d < pn for any con-
stant p < 1 − 4/e2 0.45 Considering that in prac-
tice we usually have d « n, in such cases our new
algorithm has a better performance guarantee. Com-
putational results also indicate that our new algo-
rithm has very good practical performances.

The rest of the paper is organized as follows. We
describe our new Algorithm Z in §2 and present the
analysis of it in §3. In §4, we show results of compu-
tational tests to compare the practical performances
of Algorithm Z and Algorithm DP as proposed in
Du and Park (1994). We conclude our paper in §5.
Throughout the paper, log is of base 2 if no base is
specified.

2. The New Algorithm
In this section, we present a new Algorithm Z for the
group testing problem when the number d of defec-
tive items is unknown. Algorithm Z uses at most
d log(n/d) + 3d + O(log2 d) tests to identify all the
defective items in the worst case. The new algorithm
is intuitive and easy to implement.

First we describe a binary splitting procedure DIG
to identify one defective item (and an unspecified

=

=

=

=

=

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS 679

number of good items) from a contaminated set X.
Procedure DIG has been used in a number of previous
algorithms in the literature.

Procedure DIG
• Input: a contaminated set X.
• Procedure:

—While IXI > 1
1. Select a subset Y of size !IXI/2l from X.

Test Y .
2. If Y is contaminated then assign X Y , else

identify all items in Y as good items and
assign X X− Y .

—Identify the single item in X as defective.

We will use the following folklore lemma about
Procedure DIG for later analysis. The lemma is easy
and we state it without giving a proof.

Lemma 2.1. For a contaminated set X with 2v−1 <
IXI ≤ 2v, where v ≥ 1 is an integer, the total number of
tests performed by procedure DIG on X is v.

The main idea of Algorithm Z is as follows. Each
time we choose a subset to identify a defective item
from it or to determine that the subset is pure. The
size of the current subset depends on the size and
test result of the previous subset. Roughly speaking,
each time the size doubles if the previous subset is
tested to be pure, and the size is reduced by half if
the previous subset is tested to be contaminated. At
the beginning we choose the whole set S as the sub-
set, and the process continues until every item in S is
successfully identified. The following is the detailed
description of Algorithm Z.

Algorithm Z
• Input: a set S of n items in which an unknown

number d≥ 1 of them are defectives.
• Procedure:

1. Initially, set k !log nl.
2. While S is not empty

(a) Select a subset S 1 of S with IS 1 I 2k (if ISI ≤

2k then select the whole S as S 1). Test S 1 .
(b) If S 1 is pure, then identify all items in S 1 as

good items and remove them from S; increase k by 1.
(c) If S 1 is contaminated, then there are the fol-

lowing two possible cases:
—If k > 0, then apply DIG(S 1) to identify

one defective item (and an unspecified number of
good items) in S 1 and remove these items from S;
decrease k by 1.

—If k 0, then identify the single item in
S 1 as defective and remove it from S (note that in this
case k 0 is unchanged).

3. Analysis of Algorithm Z
Though our new algorithm is fairly simple to describe,
it is not an easy task to analyze it. In this section, we

show an upper bound of d log(n/d)+ 3d+ 0.5 log2 d+

1.5 log d + 2 on the number of tests used by Algo-
rithm Z in the worst case. First we introduce some
notations and definitions before presenting the proof.

Algorithm Z uses two types of tests: the first con-
sists of tests performed in step (a), and the second
consists of tests performed in a DIG procedure in
step (c). We use ? to denote the set of all the tests of
the first type (i.e., all the tests performed in step (a)
by Algorithm Z). Let q I?I, and we use T1 ,T2 , . . . , Tq
to denote the tests in ?, in the ordering that they are
performed by Algorithm Z.

Definition 3.1 (Incurred Tests). For a test T ∈ ?,
let S 1 be the subset that test T is applied to in step (a).
Define I(T) to be the set of tests incurred by T as fol-
lows: If the test result of T is pure, then I(T) contains
only one test T ; i.e., I(T) {T }. If the test result of T
is contaminated, then set I(T) contains test T together
with all tests performed in the subsequent DIG pro-
cedure on S 1 in step (c).

By the above definition, the set of all tests per-
formed by Algorithm Z can be written as

�

T∈? I(T),
and the total number of tests used by Algorithm Z is

tZ

T∈?

II(T)I
q

i 1

II(Ti)I. (2)

Next, we define the rank of a test in ? and a zig-zag
pair of two tests in ?; these are key ingredients of our
later analysis.

Definition 3.2 (Rank). During the execution of
Algorithm Z, for a test T in ? (i.e., performed in
step (a)), if the current value of k is v, we say that T
is of rank v.

From Algorithm Z, a test of rank v is applied to a
subset of size at most 2v.

Definition 3.3 (Zig-Zag Pair). We say that two
tests Ti and Tj in ? form a zig-zag pair P (Ti, Tj) if
for some integer v ≥ 1 Ti is of rank v and test result
contaminated, and Tj is of rank v− 1 and test result
pure. Moreover Tj is required to be applied to a subset
of size exactly 2v−1 . We call v the rank of the zig-zag
pair P (Ti, Tj).

Notice that in the definition of a zig-zag pair P
(Ti, Tj), Ti and Tj are not required to be consecutive in
?, and there is no requirement on the ordering of Ti
and Tj ; that is, both i < j and i > j are allowed.

3.1. Partitioning ? Into Three Classes
We partition ? {T1 ,T2 , . . . , Tq}—the set of all the
tests of the first type (i.e., all the tests performed in
step (a))—into three classes: C1 , C2 , and C3 . First we
have the following observation on the ranks of tests
in ?.

= =

=

=

= =

=

=

= =

=

=

=

=
=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
680 INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS

Observation 3.4. For any test T ∈ ?, let r(T) be the
rank of T . Then 0 ≤ r(T)≤ k, where k !log nl.

Proof. First, from Algorithm Z the rank of any test
T ∈ ? is clearly nonnegative. Next we show that the
rank of any test T ∈ ? is at most k !log nl. For the
sake of contradiction, assume that there exists a test
T of rank greater than k performed in step (a). Then,
from Algorithm Z there must exist a test T 1 performed
in step (a) before T , such that T 1 is of rank k and
test result pure; then T 1 must be applied to the whole
current set S (since 2k ≥ n) and identifies S as a pure
set (i.e., all items in S are good) and terminates the
algorithm, which contradicts that test T is performed
after T 1 . D

Next, we define the three classes: C1 , C2 , and C3 .
The first class C1 contains every test in ? that is of
rank 0 and test result contaminated, together with Tq ,
the last test performed in step (a) by Algorithm Z.

By Observation 3.4, for the rank rq of Tq , we have
0 ≤ rq ≤ k. By Algorithm Z, starting from test T1 of
rank k performed in step (a), to have a test Tq of rank
rq performed in step (a) there must exist a sequence of
tests T (k), T (k−1), . . . , T (rq+1) of ranks k,k− 1, . . . , rq + 1
and test results “contaminated” performed in step (a)
(they are not necessarily consecutive tests performed
in step (a)). We choose T (k), T (k−1), . . . , T (rq+1) to be the
first such tests (any such tests will work; we choose
the first such tests to make the presentation more
clear). The second class C2 is formed by the above
sequence of tests T (k), T (k−1), . . . , T (rq+1) (if k rq , then
the second class is empty).

Since the rank of any test in the second class is
higher than rq and the rank of any test in the first
class is at most rq (in fact, is either 0 or rq), we have
that the first two classes, C1 and C2 , are disjoint.

The third class, C3 , is formed by all tests in ? that
are not in the first two classes; i.e., C3 ?\(C1 ∪ C2).

Lemma 3.5. The number of tests in C3 is even. More-
over, tests in C3 can be paired up to form IC3 I/2 zig-zag
pairs, such that each test in C3 appears in exactly one pair.

Proof. From the definition of C1 , after class C1 is
removed from ?, the ranks of any two consecutive
tests in ?\C1 (with their original ordering in ?) dif-
fer by 1. Consider a vertical line segment L (which
is part of the y axis) with lower endpoint y 0 and
upper endpoint y k. We map each test T ∈ ?\C1
to a move between two consecutive integer points in
{y 0, y 1, . . . , y k} of L as follows. Let r(T) be
the rank of T . The mapping depends on the test result
of T . If the test result of T is pure, because T ∈ ?\C1
is not the last test Tq performed in step (a), we have
0 ≤ r(T)≤ k− 1 (since otherwise if r(T)≥ k, then the
test immediately following T performed in step (a)
will be of rank greater than k, contradicting Obser-
vation 3.4); we map T to a move on L from point

y r(T) to point y r(T)+ 1. If the test result of T is
contaminated, then since T r C1 , we have 1 ≤ r(T)≤ k,
and we map T to a move on L from point y r(T)
to point y r(T)− 1. We use (p1 → p2) to denote the
move from point y p1 to point y p2 on L, where
0 ≤ p1 , p2 ≤ k are integers and p2 p1 + 1 or p2 p1 − 1.

By the above mapping, the tests in ?\C1 (with their
original ordering in ?) map to a walk W ∗ , which is a
set consisting of a sequence of moves; each move may
either go upward or go downward on L from point
y k to point y rq . Since k ≥ rq and the walk W ∗

goes within L from y k to y rq (note that the upper
endpoint of L is y k and the lower endpoint of L is
y 0), it follows that for any p ∈ {k, k− 1, . . . , rq + 1}
the number of moves (p→ p− 1) in W ∗ is one more
than the number of moves (p − 1 → p) in W ∗ , and
for any p ∈ {rq, rq − 1, . . . ,1} the number of moves
(p → p − 1) in W ∗ is equal to the number of moves
(p− 1 → p) in W ∗ .

From the definition of C2 , the tests in C2 map to k−

rq moves (k→ k− 1), (k− 1 → k− 2), . . . , (rq + 1 → rq).
We use P ∗ to denote the set of the above k− rq moves
(then P ∗ can be viewed as a simple directed path on
the y axis from point y k to point y rq). Since C3

?\(C1 ∪ C2) (?\C1)\C2 , the above mapping gives
a one-to-one correspondence between the tests in C3

and the moves in W ∗ \P ∗ . From the above analysis,
for any 1 ≤ p≤ k, the number of moves (p→ p− 1) in
W ∗ \P ∗ is equal to the number of moves (p− 1 → p) in
W ∗ \P ∗ . Thus, the total number of moves in W ∗ \P ∗ is
even. The number of tests in C3 , which is equal to the
number of moves in W ∗ \P ∗ , is also even. By the def-
inition of a zig-zag pair (Definition 3.3), for any 1 ≤

p≤ k, two tests mapping to the two moves (p→ p− 1)
and (p− 1 → p) form a zig-zag pair, which establishes
the lemma (see Figure 1). D

3.2. Estimating the Total Number of Tests
Used by Algorithm Z

In §3.1, we have partitioned ? into three disjoint sub-
sets: C1 , C2 , and C3 . Thus, by Equation (2), the total
number of tests used by Algorithm Z is

tZ
T∈?

II(T)I
T∈C1

II(T)I +

T∈C2

II(T)I +

T∈C3

II(T)I. (3)

For formula (3), we first estimate the sum of the first
term and the third term

L

T∈C1 ∪C3
II(T)I; then we incor-

porate the second term
L

T∈C2
II(T)I to reach an upper

bound on tZ.

Definition 3.6 (Identified Items). For a test T ∈ ?,
define D(T) to be the set of items identified by tests
in I(T), and define n(T) ID(T)I.

= =

=

=

=

= = =
= =

= =

= =

=

=

= = =

=

=

=

= ==

=

= = =

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS 681

Figure 1 An Example to Illustrate the Partition of ? Into Three Classes and the Partition of C3 into IC3 I/2 Zig-Zag Pairs
Notes. (a) The circles represent tests performed in step (a) (i.e., tests in ?), in the order that they are performed by Algorithm Z . In this example, we have
q I?I 17. An arrow pointing to the bottom right from a circle (test) T indicates that the test result of T is contaminated, and the rank of the test (performed
in step (a)) immediately following T is decreased by 1; an arrow pointing to the top right from a test T indicates that the test result of T is pure, and the rank of
the test (performed in step (a)) immediately following T is increased by 1. Notice that it is possible that a test T of rank 0 has test result contaminated. In this
case we draw a horizontal arrow from T pointing to the right, indicating that the rank of the test immediately following T in step (a) is also 0. For this example,
C1 {T7 , T8 , T13 , T17 }. (b) Tests in ?\C1 . They map to a walk W ∗ with start point y k (4) and end point y rq (1). The second class C2 {T1 , T2 , T5 }.
(c) Tests in C3 ?\(C1 ∪ C2). In this example, five zig-zag pairs are formed. One possibility for the pairing could be (T4 , T3), (T6 , T9), (T11 , T10), (T12 , T14), and
(T16 , T15), as illustrated. The pairing is not unique; e.g., we can also pair T6 with T14 and pair T12 with T9 , as zig-zag pairs, etc.

From Definitions 3.1 and 3.6, for a test T ∈ ?, D(T)
is the set of items identified by test T together with
the DIG procedure incurred by T in step (c) (if the
test result of T is contaminated, otherwise the DIG
procedure is not called). That is, let S 1 be the sub-
set to which test T is applied in step (a); if the test
result of T is contaminated, then T and its incurred
DIG procedure identify one defective item e ∈ S 1 and
a subset S 11 ⊆ S 1 of good items (note that S 11 can be
empty); thus, D(T) {e}∪ S 11 . If the test result of T is
pure, then I(T) {T }, and T identifies all items in S 1

as good items; thus D(T) S 1 .

Lemma 3.7. For each test T ∈ C1 , II(T)I <2 + log n(T).

Proof. We first consider tests in C1 except Tq , where
Tq is the last test performed in step (a). By the defini-
tion of class C1 , each such test T (T ∈ C1 , and T = Tq)
is of rank 0 and is contaminated, so T is applied
to a subset of size one and identifies the only one
item in the subset as defective; thus, n(T) 1. Test T
incurs only one test (i.e., itself), since a subsequent
DIG procedure is not necessary. Hence, I(T) {T } and
II(T)I 1. Therefore, we have II(T)I < 2 + log n(T).

For test Tq , let S 1 be the subset to which Tq is applied
in step (a). There are the following two possible cases.

Case 1. The test result of Tq is pure. Then all items
in S 1 are identified as good items, so n(T) = IS 1 I ≥ 1.
In this case, a subsequent DIG procedure applied to
S 1 is not required, so I(Tq) {Tq} and II(Tq)I 1. Thus,
II(Tq)I < 2 + log n(Tq) holds.

Case 2. The test result of Tq is contaminated. Since
Tq is the last test performed in step (a), it must be
that S 1 is equal to the current set S, and all items in
S 1 are successfully identified by the DIG procedure
incurred by Tq . Thus, in this case we have n(Tq) IS 1 I.
By Lemma 2.1, the number of tests used by Proce-
dure DIG on subset S 1 is !log IS 1 Il, the total number
of tests incurred by Tq (i.e., test Tq together with all
the tests used by Procedure DIG on S 1) is II(Tq)I =

1 + !log IS 1 Il 1 + !log n(Tq)l < 2 + log n(Tq).
Therefore, in either case we have II(Tq)I < 2 +

log n(Tq), the lemma is established. D
By Lemma 3.5, C3 can be partitioned into IC3 I/2

zig-zag pairs, such that each test in C3 appears in
exactly one pair. We fix one such partition and let ZP
denote the set of IC3 I/2 zig-zag pairs obtained from
this partition.

For any zig-zag pair P (Ti, Tj) in ZP , where
Ti, Tj ∈ C3 , based on Definitions 3.1 and 3.6, let I(P)

= =

= = = = = =

=

= =

= =
=

=

=

=

=

=

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
682 INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS

denote the set of all tests incurred by Ti and Tj ; i.e.,
I(P) I(Ti)∪ I(Tj). Let D(P) denote the set of all items
identified by tests in I(P)—i.e., D(P) D(Ti)∪ D(Tj)
and let n(P) ID(P)I.

From Algorithm Z, for any two different tests
Ti, Tj ∈ ?, clearly, I(Ti) is disjoint to I(Tj), and D(Ti)
is disjoint to D(Tj). Thus, for any zig-zag pair P
(Ti, Tj), we have

II(P)I = II(Ti)∪ I(Tj)I II(Ti)I + II(Tj)I,

n(P) = ID(P)I ID(Ti)∪ D(Tj)I

= ID(Ti)I + ID(Tj)I n(Ti)+ n(Tj),

and the third term in Equation (3) can be written as

T∈C3

II(T)I
P∈ZP

II(P)I.

Lemma 3.8. For each zig-zag pair P (Ti, Tj), II(P)I <
3 + log n(P).

Proof. Let v be the rank of the pair P (Ti, Tj).
By Definition 3.3, Ti has test result contaminated, and
an incurred DIG procedure together with test Ti are
applied to a subset S1 of size at most 2v; Tj has test
result pure and is applied to another subset S2 of size
exactly 2v−1 . Thus, one defective item and an unspec-
ified number of good items from S1 are identified,
and all items in S2 are identified as good items, it fol-
lows that the total number of identified items satisfies
n(P) ≥ 1 + IS2 I = 1 + 2v−1 . In contrast, the total num-
ber of tests incurred by Ti and Tj , II(P)I, is two plus
the number of tests used by DIG(S1). By Lemma 2.1,
DIG(S1) uses at most v tests, hence II(P)I ≤ 2 + v <
3 + log n(P). D

Based on Lemmas 3.7 and 3.8, we have the follow-
ing upper bound on the sum of the first and the third
term in Equation (3).

Lemma 3.9. Let x (0 ≤ x ≤ d) denote the total number
of defective items identified by tests in

�

T∈C1 ∪C3
I(T). If

x 0, then we have
L

T∈C1 ∪C3
II(T)I 1; if 1 ≤ x≤ d, then

we have
L

T∈C1 ∪C3
II(T)I ≤ 1 + 3x+ x log(n/x).

Proof. From the definition of ZP , we have

T∈C1 ∪C3

II(T)I =

T∈C1

II(T)I +

T∈C3

II(T)I

T∈C1

II(T)I +

P∈ZP

II(P)I.

From the definitions of class C1 and zig-zag pairs, for
each test T (except Tq) in C1 , we have I(T) {T } and
test T identifies exactly one defective item. Tests in
I(Tq) identify no defective item if the test result of Tq is
pure and identify one defective item if the test result
is contaminated. For each zig-zag pair P ∈ ZP , tests in
I(P) identify exactly one defective item.

T (k)

T (k – 1)
k

k – 1

T (rq + 1)

rq + 1

Tqrq

Rank

…

…

Figure 2 Tests Performed in step (a) by Algorithm Z when
x 0 Holds, Where x Is the Total Number of Defective
Items Identified by Tests in

�

T∈C1 ∪C3
I(T)

Note. In this case (i.e., when x 0), we have C1 {Tq}, where Tq is the
last test performed in step (a), and the test result of Tq is pure, C2

{T (k), T (k−1), � � � , T (rq+1)}, and C3 is empty.

Thus, if x 0, it must be that C1 only contains one
test Tq , and the test result of Tq is pure. Moreover, ZP
(and so class C3) is empty (see Figure 2). Therefore, if
x 0 we have

T∈C1 ∪C3

II(T)I
T∈C1

II(T)I +

T∈C3

II(T)I II(Tq)I 1,

where the last equality is because the test result of Tq
is pure, so the set of all tests incurred by Tq is sim-
ply I(Tq) {Tq}; hence II(Tq)I = 1. Next we prove the
lemma for 1 ≤ x≤ d. There are the following two pos-
sible cases.
Case 1. The test result of Tq is pure. Then I(Tq) {Tq},

since a subsequent DIG procedure is not called. Hence
II(Tq)I = 1, and tests in I(Tq) identify no defective
item. Thus, in this case the total number of defective
items identified by tests in

�

T∈C1 ∪C3
I(T)—i.e., tests in

(
�

T∈C1
I(T))∪ (

�

P∈ZP I(P))—is (IC1 I − 1)+ IZP I. Hence,
(IC1 I − 1)+ IZP I x.

We have

T∈C1

II(T)I +

P∈ZP

II(P)I

1 +

T∈C1 \{Tq }

II(T)I +

P∈ZP

II(P)I (4)

< 1 +

T∈C1 \{Tq }

(3 + log n(T))+

P∈ZP

(3 + log n(P)) (5)

1 + 3(IC1 I + IZP I − 1)+

T∈C1 \{Tq }

log n(T)

+

P∈ZP

log n(P)

1 + 3x+

T∈C1 \{Tq }

log n(T)+

P∈ZP

log n(P)

≤ 1 + 3x+ (IC1 I + IZP I − 1)

=

= —
=

=

=

=

=

=

= = =
=

=

=

=

=

= = =

=

=

=

= =

=

=

=

=

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS 683

log

L

T∈C1 \{Tq }
n(T)+

L

P∈ZP n(P)

(IC1 I + IZP I − 1)
(6)

1 + 3x+ x log

L

T∈C1 \{Tq }
n(T)+

L

P∈ZP n(P)

x

≤ 1 + 3x+ x log
n

x
, (7)

where Equality (4) holds because II(Tq)I=1; Inequal-
ity (5) holds by Lemmas 3.7 and 3.8; Inequality (6)
holds because log() is concave and IC1 I + IZP I −

1 x, and x ≥ 1 as assumed in the lemma; and
Inequality (7) holds because for any two different
tests Ti, Tj ∈ ?, D(Ti) is disjoint to D(Tj), and since
C1 is disjoint to C3 (i.e., ZP), we have that each
item in S is counted at most once in the summation
L

T∈C1 \{Tq }
n(T) +

L

P∈ZP n(P), and so
L

T∈C1 \{Tq }
n(T) +

L

P∈ZP n(P)≤ n.
Case 2. The test result of Tq is contaminated. Then

tests in I(Tq) identify one defective item. Thus, in
this case the total number of defective items iden-
tified by tests in

�

T∈C1 ∪C3
I(T) is IC1 I + IZP I. Hence

IC1 I + IZP I x. As in Case 1, we have

T∈C1

II(T)I +

P∈ZP

II(P)I

<
T∈C1

(3 + log n(T))+

P∈ZP

(3 + log n(P)) (8)

3(IC1 I + IZP I)+

T∈C1

log n(T)+

P∈ZP

log n(P)

≤ 3(IC1 I + IZP I)+ (IC1 I + IZP I)

log
L

T∈C1
n(T)+

L

P∈ZP n(P)

(IC1 I + IZP I)
(9)

3x+ x log
L

T∈C1
n(T)+

L

P∈ZP n(P)

x

≤ 3x+ x log
n

x
, (10)

where Inequalities (8)–(10) hold for the same reasons
as Inequalities (5)–(7) in Case 1.

By combining the above two cases, the lemma is
proved. D

For the second term
L

T∈C2
II(T)I in Equation (3), we

have the following lemma.

Lemma 3.10. Let x (0 ≤ x≤ d) denote the total number
of defective items identified by tests in

�

T∈C1 ∪C3
I(T). Then

L

T∈C2
II(T)I ≤ ([(2k+ 3)− (d− x)](d− x))/2.

Proof. By the definition of C2 , for each test T ∈ C2 ,
tests in I(T) identify exactly one defective item (and
an unspecified number of good items). Thus, the
total number of defective items identified by tests in
�

T∈C2
I(T) is IC2 I = k− rq , where k = !log nl. Clearly,

Algorithm Z successfully identifies all the d defective

items in S. Since we assume that the total number
of defective items identified by tests in

�

T∈C1 ∪C3
I(T)

is x, and notice that the set of all tests performed
by Algorithm Z is

�

T∈C1 ∪C2 ∪C3
I(T), it follows that the

total number of defective items identified by tests in
�

T∈C2
I(T) is d− x. Therefore, k− rq d− x.

For each test T (j) ∈ C2 of rank j (rq + 1 ≤ j ≤ k), T (j)

and the DIG procedure incurred by T (j) are applied to
a subset of size no more than 2 j . Thus, by Lemma 2.1,
II(T (j))I ≤ j + 1. We have

T∈C2

II(T)I =

k

j rq+1

II(T (j))I

≤

k

j rq+1

(j + 1)

(rq + k+ 3)(k− rq)

2
[(2k+ 3)− (k− rq)](k− rq)

2
[(2k+ 3)− (d− x)](d− x)

2
. D

In addition, the following lemma is needed to prove
a final upper bound on tZ, the total number of tests
used by Algorithm Z.

Lemma 3.11. Let fd(x) 1 + 3d + x log(n/x) +

([(2k− 3)− (d− x)](d− x))/2, where d and n are integers,
0 < d ≤ n, and k = !log nl. Then, fd(x) ≤ d log(n/d)+

3d+ 0.5 log2 d+ 1.5 log d+ 2 for integers x ∈ {1,2, . . . , d}.

Proof. The proof is available in Appendix A. D
Now we are ready to prove the main result in this

paper.

Theorem 3.12. For 1 ≤ d≤ n, MZ(d I n)≤ d log(n/d)+

3d+ 0.5 log2 d+ 1.5 log d+ 2.

Proof. As in Lemmas 3.9 and 3.10, let x (0 ≤ x≤ d)
be the total number of defective items identified by
tests in

�

T∈C1 ∪C3
I(T). We divide the proof into the fol-

lowing two possible cases: (1) 1 ≤ x≤ d and (2) x 0.
Case 1. 1 ≤ x ≤ d. In this case, by Lemmas 3.9

and 3.10,

tZ
T∈C1 ∪C3

II(T)I +

T∈C2

II(T)I

≤ 1 + 3x+ x log
n

x
+

[(2k+ 3)− (d− x)](d− x)

2

1 + 3d+ x log
n

x
+

[(2k− 3)− (d− x)](d− x)

2
.

The last expression in the above derivation is fd(x)
in Lemma 3.11. By Lemma 3.11, for integer 1 ≤

·

=

=

·

=

=

=

=

=

=
=

= =

·

=

=

=

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
684 INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS

x ≤ d we have fd(x) ≤ d log(n/d) + 3d + 0.5 log2 d +

1.5 log d+ 2; thus, for this case the theorem is proved.
Case 2. x 0. In this case, by Lemmas 3.9 and 3.10,

tZ
T∈C1 ∪C3

II(T)I +

T∈C2

II(T)I

≤ 1 +
[(2k+ 3)− d)]d

2
< 1 + d log n− 0.5d2

+ 2.5d,

where the last inequality is because k = !log nl <
log n+ 1. Let

1d d log
n

d
+ 3d+ 0.5 log2 d+ 1.5 log d+ 2

− (1 + d log n− 0.5d2
+ 2.5d)

0.5d2
+ 0.5d+ 0.5 log2 d+ 1.5 log d+ 1 − d log d.

For d≥ 4, we have log d≤ 0.5d, and so

1d ≥ 0.5d2
+ 0.5d+ 0.5 log2 d+ 1.5 log d+ 1 − 0.5d2

0.5d+ 0.5 log2 d+ 1.5 log d+ 1

> 0.

For d 1,2,3, it can be verified directly that 11 2,
12 4, and 13 5.87 Thus, 1d > 0 also holds for
d 1,2,3. Hence, 1d > 0 holds for every integer d≥ 1,
and so the theorem is proved for the case x 0. D

Though some relaxations are used to obtain the
upper bound on MZ(d I n) in Theorem 3.12, we com-
ment that when d is small compared to n (more
accurately, when 8 ≤ d ≤

√
n), the above analysis

for Algorithm Z is almost tight, up to the lower
ordered terms O(log d), as illustrated by the example
described in Appendix B.

4. Computational Tests
We have implemented Algorithm Z and Algorithm DP
(Du and Park 1994) with Matlab. In this section, we
present computational results on the practical per-
formances of these two algorithms and comparisons
between them.

Roughly speaking, Algorithm DP works in the fol-
lowing way. For a subset X of items (initially X is
the input set S of all items), test X. If X is pure,
then identify all items in X as good items; otherwise,
use Procedure DIG to identify and remove one defec-
tive item (and an unspecified number of good items)
from X. Then bisect the current set X (if IXI > 1)
into two subsets, X 1 and X 11 , and repeat the above
process for both. The algorithm stops when all items
in S are successfully identified. The rationale behind
using Procedure DIG to remove one defective item

from X (which is also the key ingredient of the algo-
rithm) is that, if both X and X 1 are contaminated sets
and X 1 ⊂ X, then the test result “X 1 is contaminated”
renders the test result “X is contaminated” redun-
dant; i.e., the test result on X provides no extra infor-
mation, given the test result on X 1 . To resolve this
issue, in Algorithm DP once a contaminated set X
is found, a defective item is identified and removed
from X before bisecting it into two smaller subsets. It
is proved in Du and Park (1994) that the number of
tests used by Algorithm DP is at most d log(n/d)+ 4d,
where n is the number of items in S and d (1 ≤ d ≤ n)
is the number of defective items in S.

Table 1 reports the simulation results of Algo-
rithms Z and DP for n 1,000. For each d ∈

{100, 200, . . . ,1,000}, all the statistics are collected
as the average over 1,000 independent random prob-
lem instances, each of which is uniformly and ran-
domly selected from the set of all the

l

n
d

n

possi-
ble problem instances with parameters n and d.
In Table 1, NZ and NDP denote the average number
of tests performed by Algorithms Z and DP , respec-
tively; c1 (NDP − NZ)/NDP is the percent of tests
that Algorithm Z saves compared to Algorithm DP
on average; c2 (NZ − M(d,n))/M(d,n) denotes on
average how much more percent of tests Algorithm Z
requires compared to the information theoretic lower
bound M(d,n); cZ and cDP denote the average coef-
ficient c for Algorithms Z and DP , respectively, if
the number of tests performed by them is written as
d log(n/d)+ cd.

From c1 in Table 1, we can see that the advantage
of Algorithm Z over Algorithm DP becomes more
obvious as the value of d grows. For example, when
d 100 (n/10), Algorithm Z on average saves about
14.2% tests compared to Algorithm DP ; when d grows
to 500 (n/2), the percentage grows to 33.1%.

From c2 in Table 1, we can conclude that when
d is not very large (say, less than n/2), on average
Algorithm Z has very good competitive ratio (in the
original sense proposed in Du and Hwang 1993), as
compared to the information theoretic lower bound

Table 1 Computational Results for n 1,000

d M(d, n) NZ NDP (1 (%) (2 (%) cZ cDP

100 465 532�6 621�0 14�2 14�5 2.00 2.89
200 717 829�2 1,018�8 18�6 15�7 1.82 2.77
300 877 1,019�1 1,328�4 23�3 16�2 1.66 2.69
400 966 1,135�2 1,579�2 28�1 17�5 1.52 2.63
500 995 1,198�0 1,790�9 33�1 20�4 1.40 2.58
600 966 1,222�9 1,972�1 38�0 26�6 1.30 2.55
700 877 1,217�5 2,127�1 42�8 38�8 1.22 2.52
800 717 1,188�0 2,261�9 47�5 65�7 1.16 2.51
900 465 1,135�4 2,379�9 52�3 144�2 1.11 2.49
1,000 0 1,055�0 2,483�0 57�5 o 1.06 2.48

=

=

=
=

=

= =

=

= =

= =

=

=

= =

=

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS 685

0 200 400 600 800 1,000
0

500

1,000

1,500

2,000

2,500

d

N
um

be
r

of
 te

st
s

Algorithm DP

Algorithm Z

M(d, n)

(a) The average number of performed tests NDP and
NZ, and lower bound M (d, n)

0 200 400 600 800 1,000
1.0

1.5

2.0

2.5

3.0

3.5

d

C
oe

ff
ic

ie
nt

c

cDP

cZ

(b) The average coefficients c of Algorithm DP and
Algorithm Z

Figure 3 Average Number of Tests Performed by and the Average
Coefficients c of Algorithms DP and Z for n 1,000, over
1,000 randomly generated problem instances for each d
1,2, � � � ,1,000

M(d,n). For example, when d 100 (n/10), Algo-
rithm Z on average only requires about 14.5% more
tests than M(d,n); as d grows to 500 (n/2), the per-
centage only grows to 20.4%. As with c1 , the general
trend of c2 also increases as the value of d increases.

Figure 3(a) illustrates the comparison between the
average number of tests performed by Algorithms Z
and DP and the information theoretic lower bound
M(d,n) for 1 ≤ d ≤ n. From Figure 3(b), the value of
cDP stays above (or very close to, when d is close to
n) 2.5 for the whole range 1 ≤ d ≤ n. In contrast, the
general trend of cZ drops from slightly less than 2.5 to
very close to 1 as d increases, which is also consistent
with the theoretical finding in Theorem 3.12.

5. Concluding Remarks
Du and Park (1994) gave a sufficient condition for an
Algorithm A to be strongly competitive as the follow-
ing: if there exists a constant c such that for 1 ≤ d < n,

MA(d I n) ≤ d log(n/d) + cd, then A is strongly com-
petitive. Therefore, Theorem 3.12 immediately implies
the following.

Corollary 5.1. Algorithm Z is strongly competitive.

By Equation (1), when d < pn for some constant 0 <
p< 1 − 4/e2 0.45 . . . , the upper bound !log

l

n
d

n

l + 2d
of Schlaghoff and Triesch (2005) satisfies that

log
n

d

+ 2d ≥ d log
n

d
+
l

2 + log(e 1 − p)
n

d

−0.5 log d− 0.5 log(1 − p)− 1.567,

and so is asymptotically larger than our upper bound
d log(n/d)+ 3d + O(log2 d), as in the right-hand side
of the above inequality the coefficient 2 + log(e 1 − p)
for term d is larger than 3. However, it is not hard to
verify that when d is close to n, their upper bound is
smaller.

Equation (1) also indicates that in general one may
not expect to get an upper bound d log(n/d) + cd
with c < log e. Nevertheless, it is interesting to inves-
tigate whether our current upper bound in Theo-
rem 3.12 can be further improved. The arguments in
Appendix B indicate that we need to come up with
new algorithms to achieve this goal for the case d ≤
√
n. New upper bounds of form log

l

n
d

n

+ cd with c < 2
would also be attractive to investigate.

Whether there exists a nontrivial lower bound other
than !log

l

n
d

n

l for combinatorial group testing with an
unknown number of defectives stands as a central
open problem in this field. New heuristics with bet-
ter practical performances than Algorithm Z are also
interesting to investigate.

Acknowledgments
The authors thank the referees for their comments and
suggestions, which significantly improved the previous ver-
sions of this paper in the presentation, organization, and ref-
erences. This work was partially supported by the National
Natural Science Foundation of China [Grants 11101326 and
71071123], and the Program for Changjiang Scholars and
Innovative Research Team in University [IRT1173].

Appendix A. Proof of Lemma 3.11
For d 1,2,3 and x ∈ {1,2, . . . , d}, using k = !log nl <
log n+ 1 we can enumerate all the six combinations of (x,d)
to verify the lemma, as in the following: for d 1, the
inequality is f1 (x) ≤ log n+ 5. Since f1 (1) log n+ 4, the
lemma holds; for d 2, the inequality is f2 (x)≤ 2 log n+ 8.
Since f2 (1) log n+ 5 + k < 2 log n+ 6, and f2 (2) 2 log n+ 5,
the lemma holds. For d 3, the inequality is f3 (x)≤ 3 log n+

11 + 0.5(log 3)2 − 1.5 log 3 3 log n + 9.87 . . . , since f3 (1)
log n+ 5 + 2k < 3 log n+ 7, f3 (2) 2 log n+ k+ 6 < 3 log n+ 7,
and f3 (3) 3 log n + 10 − 3 log 3 3 log n + 5.24 . . . , the
lemma also holds.

Next we prove the lemma for d≥ 4. First,

f 1

d(x) (d+ log n− k+ 1.5 − log e)− (x+ log x).

=

=

=

= =

=

=

=

=

=

= =

=

= =

=

= =

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
686 INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS

Since function h(x) x + log x is monotonically increasing
in x and has value range (−o,+o), f 1

d(x) 0 has a unique
solution x0 .

Since k !log nl ≥ log n, we have

x0 + log x0 d+ log n− k+ 1.5 − log e

≤ d+ 1.5 − log e < d+ 2.

Since d ≥ 4, we have h(d) ≥ d + 2, by the above inequality
and the monotonicity of h(x) x+ log x we have

x0 <d. (A1)

Next we prove a lower bound on x0 . From x0 + log x0
d+ log n− k+ 1.5 − log e, and k < log n+ 1, we have

x0 + log x0 >d+ log n− (log n+ 1)+ 1.5 − log e d− (log e− 0.5).

Let c0 log e− 0.5. Then, 0 < c0 < 1, and the above inequal-
ity is

h(x0) x0 + log x0 >d− c0 .

Since h(x) x+ log x is monotonically increasing in x and

h(d− log d− c0) (d− log d− c0)+ log(d− log d− c0)

< (d− log d− c0)+ log d d− c0 ,

together with h(x0) > d− c0 , it follows that

x0 >d− log d− c0 . (A2)

Let k0 log n+ 1.5 − log e (here the choice of k0 is tech-
nical, which is to make the analysis easier and will be
explained in Claim A.1 below). Define

gd(x) 1 + 3d+ x log
n

x
+

[(2k0 − 3)− (d− x)](d− x)

2
,

which replaces k by k0 in fd(x). Then fd(x0) gd(x0) +

(k− k0)(d− x0). Since

k− k0 < (log n+ 1)− (log n+ 1.5 − log e) c0 ,

and by the inequalities in (A1) and (A2), we have 0 < d −

x0 < log d+ c0 . Thus,

fd(x0)<gd(x0)+ c0 (log d+ c0)< max
0<x<d

gd(x)+ c0 log d+ 1, (A3)

where in the above the second inequality holds because 0 <
c0 < 1. By Claim A.1, given below, when d≥ 4 we have

max
0<x<d

gd(x) ≤ 1 + 3d+ d log
n

d
+ 0.5 log2 d

+(2 − log e) log d. (A4)

Since c0 log e− 0.5, the two inequalities in (A3) and (A4)
imply

fd(x0) < max
0<x<d

gd(x)+ c0 log d+ 1

≤ d log
n

d
+ 3d+ 0.5 log2 d+ 1.5 log d+ 2,

which establishes Lemma 3.11. D

Claim A.1. Assume that d ≥ 4. Let gd(x) 1 + 3d +

x log(n/x)+ ([(2k0 − 3)− (d− x)](d− x))/2 for 0 < x < d, where

k0 log n+ 1.5 − log e (here k0 is chosen to make g1
d(x) d− x−

log x, which makes the analysis easier, as to be seen in the proof of
this claim given below). Then g1

d(x) 0 has a unique solution x1 ,
and d− log d < x1 <d− log d+ (2 log d)/d. Moreover,

max
0<x<d

gd(x) g(x1) ≤ 1 + 3d+ d log
n

d
+

log2 d

2
+ (2 − log e) log d.

Before proving Claim A.1, first we need the following
observation.

Observation A.2. −log(1 − log d/d)≤ (2log d)/d for d≥ 4.

Proof of Observation A.2. Since

− log(1 − x)

x

1 log e
x2

x

1 − x
− ln 1 +

x

1 − x
> 0,

for 0 < x < 1,

where in the above the inequality holds because y> ln(1 + y)
for y>0, it follows that − log(1 − x)/x is monotonically
increasing when 0 < x < 1. Also, it is easy to prove that
0 < log d/d ≤ 1

2 for d ≥ 4. Thus, for d ≥ 4 we have
− log(1 − log d/d)/log d/d≤ − log(1 − 1/2)/(1/2) 2. That is,
− log(1 − log d/d)≤ (2 log d)/d for d≥ 4. D

Proof of Claim A.1. First,

g1

d(x) x log n− x log x−
(2k0 − 3)(x− d)

2
−

(x− d)2

2

1

log n− (log x+ log e)− (k0 − 1.5)− (x− d)

d− x− log x,

where the last equality holds because k0 log n+ 1.5 − log e.
Thus, g11

d (x) = −1 − (log e)/x < 0 for x > 0, and so gd(x) is
concave for x > 0. Also, since d ≥ 4, we have g1

d(0
+) > 0

(that is, when x approaches 0 from the above, g1
d(x) > 0),

and g1
d(d)= − log d < 0. Thus, for x arbitrarily close to but

greater than 0, gd(x) is increasing in x; for x arbitrarily
close to but smaller than d, gd(x) is decreasing in x. There-
fore, max0<x<d gd(x) is achieved at the unique solution of
g1
d(x) 0 (the uniqueness follows from the monotonicity of

x + log x). Let x1 denote the unique solution of g1
d(x) 0;

then we have x1 + log x1 d.
We first show the lower and upper bounds on x1 in the

claim. Since d ≥ 4, we have x1 > 1, so x1 d − log x1 < d,
which implies the lower bound x1 d − log x1 > d − log d,
and the upper bound

x1 d− log x1 <d− log(d− log d)

d− log d− log 1 −
log d
d

≤ d− log d+
2 log d

d
,

where the last inequality is by Observation A.2. Next
we estimate gd(x1), based on the above lower and upper
bounds on x1 .

gd(x1) 1 + 3d+ x1 log
n

x1
+

[(2k0 − 3)− (d− x1)](d− x1)

2

1 + 3d+ x1 log n− x1 log x1

+
[(2 log n− 2 log e)− (d− x1)](d− x1)

2

= = =

=

=

=

=
=

=

=

=
=

=

=

=

= =

=

=

= =

=

=
=

=

=

=

=

=

=

=

=

=
=

=

=

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS 687

1 + 3d+ x1 log n− x1 log x1 + (d− x1) log n

− (d− x1) log e−
(d− x1)

2

2

1 + 3d+ d log n− x1 log x1 −
(d− x1)

2

2
− (d− x1) log e.

Because x1 + log x1 d, we have

−x1 log x1 −
(d− x1)

2

2
− (d− x1) log e

−x1 (d− x1)−
(d− x1)

2

2
− (d− x1) log e

x2
1 − d2

2
+ (x1 − d) log e.

Therefore,

gd(x1) 1 + 3d+ d log n+
x2

1 − d2

2
+ (x1 − d) log e. (A5)

From d ≥ 4 and d − log d < x1 < d − log d + (2 log d)/d,
we have

x2
1 − d2

2
+ (x1 − d) log e

≤
1
2

d− log d+
2 log d

d

2

−
d2

2
+ − log d+

2 log d
d

log e

log2 d

2
+

2 log2 d

d2
− d log d+ 2 log d−

2 log2 d

d

+ − log d+
2 log d

d
log e

log2 d

2
− d log d+ (2 − log e) log d

+
2 log2 d

d2
1 − d+

d log e
log d

.

Since log e < 1.5, for d ≥ 4 we have (d log e)/log d <
(1.5d)/log d ≤ (1.5d)/log 4 (3d)/4, and so 1 − d +

(d log e)/log d < 1 − d/4 ≤ 0. Hence, the above inequality
implies that

x2
1 − d2

2
+ (x1 − d) log e≤

log2 d

2
− d log d+ (2 − log e) log d.

By combining this inequality with Equation (A5), we obtain

gd(x1) ≤ 1 + 3d+ d log n+
log2 d

2
− d log d+ (2 − log e) log d

1 + 3d+ d log
n

d
+

log2 d

2
+ (2 − log e) log d,

establishing Claim A.1. D

Appendix B. An Asymptotically Tight Example
for 8 ≤ d≤

√
n

Without loss of generality, we consider the input set S
(and X) to Algorithm Z (and Procedure DIG) as an ordered
set, and we assume that during the execution of Algo-
rithm Z (and Procedure DIG), the ordering of all the uniden-
tified items in S (and X) always remains the same, as their

≥

…

…

…
…

S = �

n︷ ︸︸ ︷
1� � � � �1︸ ︷︷ ︸

d1

�0� � � � �0�1︸ ︷︷ ︸
2r−1+1

� � � � � � � �0� � � � �0�1︸ ︷︷ ︸
2r−1+1︸ ︷︷ ︸

d−d1 repetitions

�0� � � � �0︸ ︷︷ ︸
≥2r−1

�

Figure B.1 (a) The Input Set S Described in Appendix B, Where “0”
Stands for a Good Item, “1” Stands for a Defective Item,
ISI n 2k , the Number of Defective Items in S is
d 2d1 , and r k− d1 + 1; (b) Tests Performed in step (a)
of Algorithm Z on Set S

Note. The tests performed in step (a) start with d1 tests of results contam-
inated, and of ranks k, k − 1, � � � , r ; followed by 2(d − d1) tests of results
alternating between “pure” and “contaminated,” and of ranks alternating
between r − 1 and r , where each two consecutive tests with respective ranks
r − 1 and r (e.g., the two black nodes) form a zig zag pair; then followed by
a sequence of (at least two) tests and they are all of test results pure (the
gray nodes).

original ordering in S (and X). More specifically, assume
that in step 1 of Procedure DIG, we always choose a prefix
of the ordered set X to form subset Y ; in step (a) of Algo-
rithm Z, we always choose a prefix of the ordered set S to
form subset S 1 ; and each time after step (c) of Algorithm Z
is executed, all unidentified items in S 1 (with their original
ordering unchanged) are put back to set S as the first part
of S, so that the ordering of all the unidentified items in S
always stays the same as their original ordering in S.

Consider the scenario where n 2k, d 2d1 for integers
k > d1 ; let r k− d1 + 1, and consider the following input set
S of n items in which d of them are defectives. The ordered
items in S can be divided into three parts: the first part is a
sequence of d1 defective items, the second part is a sequence
of (d− d1) repetitions such that each is formed by 2r−1 good
items followed by one defective item, and the third (last)
part is a sequence of good items of length at least 2r − 1
(see Figure B.1(a)). That is, we assume that the following
inequality holds:

n− d1 − (d− d1)(2
r−1

+ 1)≥ 2r
− 1, (B1)

which, when d>4, is equivalent to n≥ (d(d− 1))/(log d− 2),
and so is clearly satisfied when 8 ≤ d≤

√
n. Next, we calcu-

late the total number of tests Algorithm Z performs on S.
According to the three parts of S described above, the exe-
cution of Algorithm Z on S can be divided into three phases
(see Figure B.1(b)).

• Phase 1: From input set S and the assumptions on Algo-
rithm Z (and Procedure DIG) made at the beginning of this
section, it can be verified that for the first d1 tests performed

=

=

=

=

=

=

= =

= =

=

=

== =

=

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
688 INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS

in step (a) by Algorithm Z on S, each has test result con-
taminated. These d1 tests are performed on subsets of sizes
2k,2k−1 , . . . ,2r , for each such test a subsequent DIG pro-
cedure is incurred, and each such incurred DIG procedure
identifies only one defective item and zero good items.

For each j (r ≤ j ≤ k), for a subset S 1 of size 2j , by
Lemma 2.1 the number of tests used by Procedure DIG on
S 1 is j , together with the test performed on S 1 in step (a),
in total j + 1 tests are used. Thus, for the first d1 tests per-
formed in step (a), the total number of tests incurred by
them, i.e., the total number of tests performed by Algorithm
Z in Phase 1, is

Lk
j r (j+ 1) ((k+ r+ 2)d1)/2. In contrast, the

total number of items identified by Algorithm Z in Phase
1—i.e., identified by these d1 tests performed in step (a) and
their incurred tests—is d1 , and they are all defective items.

• Phase 2: From input set S and by Inequality (B1), it
can be verified that the next 2(d− d1) tests (which immedi-
ately follow the first d1 tests) performed in step (a) have test
results alternating between pure and contaminated, and are
applied to subsets of sizes alternating between 2r−1 and 2r .
Moreover, each of the subsets of size 2r−1 contains 2r−1 good
items and so has test result pure, and each of the subsets of
size 2r is formed by one defective item followed by 2r − 1
good items, and so has test result contaminated. For each
test result contaminated from these 2(d − d1) tests, Proce-
dure DIG is called in step (c). Since each such incurred DIG
procedure is applied to a subset S 1 of size 2r and the first
item of S 1 is defective, it follows that the DIG procedure
identifies only one defective item (i.e., the first item in S 1)
and zero good items from S 1 . Here S 1 is considered to be
an ordered subset, as mentioned at the beginning of this
section.

These 2(d− d1) tests performed in step (a) form (d− d1)
zig-zag pairs, where each two consecutive tests (i.e., the first
and second test, the third and fourth test, etc.) form a pair.
Since d1 defective items have been identified in Phase 1, all
the remaining d − d1 defective items in S are identified in
Phase 2. For each of the above (d− d1) zig-zag pairs, one test
is performed on a pure subset of size 2r−1 , and one test and
a subsequent DIG procedure with—by Lemma 2.1—r tests
are performed on a contaminated subset of size 2r , thus the
number of tests incurred by each zig-zag pair is 2 + r . There-
fore, the total number of tests performed by Algorithm Z in
Phase 2 is (d− d1)(r+ 2). Each zig-zag pair, together with its
incurred tests, identifies 2r−1 + 1 items, of which one item is
defective and the other 2r−1 items are good.

• Phase 3: After Phase 2, all the d defective items in S
are identified; thus Phase 3 is formed by a sequence of tests
performed in step (a) with test results pure. In fact, it can
be seen that this sequence contains at least two tests, as
follows.

After Phase 2, the number of items remained (i.e., uniden-
tified) in S is

n− d1 − (d− d1)(2
r−1

+ 1),

which is at least 2r − 1 by Inequality (B1). Since we assume
that k > d1 , and so r k− d1 + 1 ≥ 2, thus 2r − 1 > 2r−1 . The
last test performed in step (a) in Phase 2 is of rank r and is
of test result contaminated, it follows that the first test per-
formed (in step (a)) in Phase 3 is of rank r− 1, and so the test
is performed on a pure subset of size 2r−1 . After these 2r−1

items are identified as good items and removed from S, the
number of remaining items in S is at least 2r − 1 − 2r−1 ≥ 1,
where the inequality is because r ≥ 2, as shown above. Thus,
at least one more test performed in step (a) is required.
Therefore, the number of tests performed in step (a) in
Phase 3 is at least two, and they are all of test results pure.

Combining Phases 1 and 2, the total number of tests per-
formed by Algorithm Z is at least

(k+ r + 2)d1

2
+ (d− d1)(r + 2).

By substituting in k log n, d1 log d, and r k− d1 + 1
log n− log d + 1, the above formula can be easily verified
being equal to d log(n/d)+ 3d + 0.5 log2 d − 1.5 log d. Com-
pared with the upper bound given in Theorem 3.12, we can
see that the input example S constructed above is tight for
Algorithm Z when 8 ≤ d ≤

√
n, up to the lower ordered

terms O(log d).
The assumptions made at the beginning of this section on

Algorithm Z (and Procedure DIG)—that they preserve the
ordering of all the unidentified items in S—are not essen-
tial. The arguments (on the tightness of the upper bound
given in Theorem 3.12 when 8 ≤ d ≤

√
n) presented here

can be easily transformed into adversary type arguments,
which are applicable to the more general frameworks of
Algorithm Z (and Procedure DIG) as described in §2, that
is, without the order preserving assumptions on the uniden-
tified items in set S.

References
Abolnikov L, Dukhovny A (2003) Optimization in HIV screening

problems. J. Appl. Math. Stochastic Anal. 16:361–374.
Bar-Lev SK, Parlar M, Perry D, Stadje W, Schouten FAVDD (2007)

Applications of bulk queues to group testing models with
incomplete identification. Eur. J. Oper. Res. 183:226–237.

Bar-Noy A, Hwang FK, Kessler I, Kutten S (1994) A new competi-
tive algorithm for group testing. Discrete Appl. Math. 52:29–38.

Barillot E, Lacroix B, Cohen D (1991) Theoretical analysis of library
screening using a n-dimensional pooling strategy. Nucleic Acids
Res. 19:6241–6247.

Bruno WJ, Balding DJ, Knill EH, Bruce D, Whittaker C, Doggett
N, Stallings R, Torney DC (1995) Design of efficient pooling
experiments. Genomics 26:21–30.

Claeys D, Walraevens J, Laevens K, Bruneel H (2010) A queueing
model for general group screening policies and dynamic item
arrivals. Eur. J. Oper. Res. 207:827–835.

Cormode G, Muthukrishnan S (2005) What’s hot and what’s
not: Tracking most frequent items dynamically. ACM Trans.
Database Systems 30:249–278.

Damaschke P, Sheikh Muhammad A (2012) Randomized group
testing both query-optimal and minimal adaptive. Proc. 38th
Internat. Conf. Current Trends in Theory and Practice Comput. Sci.
(SOFSEM 2012), Lecture Notes in Computer Science, Vol. 7147
(Springer, Berlin), 214–225.

Dorfman R (1943) The detection of defective members of large pop-
ulations. Ann. Math. Statist. 14:436–440.

Du DZ, Hwang FK (1993) Competitive group testing. Discrete Appl.
Math. 45:221–232.

Du DZ, Hwang FK (2000) Combinatorial Group Testing and Its Appli-
cations, 2nd ed. (World Scientific, Singapore).

Du DZ, Park H (1994) On competitive group testing. SIAM J. Com-
put. 23:1019–1025.

= = = = = =

=

Cheng, Du, and Xu: A Zig-Zag Approach for Competitive Group Testing
INFORMS Journal on Computing 26(4), pp. 677–689, © 2014 INFORMS 689

Du DZ, Xue GL, Sun SZ, Cheng SW (1994) Modifications of com-
petitive group testing. SIAM J. Comput. 23:82–96.

Goodrich MT, Hirschberg DS (2008) Improved adaptive group test-
ing algorithms with applications to multiple access channels
and dead sensor diagnosis. J. Combin. Optim. 15:95–121.

Hong EH, Ladner RE (2002) Group testing for image compression.
IEEE Trans. Image Processing 11:901–911.

Hong YW, Scaglione A (2004) On multiple access for distributed
dependent sources: A content-based group testing approach.
Proc. IEEE Inform. Theory Workshop, San Antonio, Texas, 298–303.

Hwang FK (1972) A method for detecting all defective members
in a population by group testing. J. Amer. Statist. Assoc. 67:
605–608.

Kahng AB, Reda S (2006) New and improved BIST diagnosis
methods from combinatorial group testing theory. IEEE Trans.
Comput.-Aided Design Integrated Circuits Systems 25:533–543.

Kautz WH, Singleton RC (1964) Nonrandom binary superimposed
codes. IEEE Trans. Inform. Theory 10:363–377.

Li CH (1962) A sequential method for screening experimental vari-
ables. J. Amer. Statist. Assoc. 57:455–477.

Manasse M, McGeoch LA, Sleator D (1988) Competitive algorithms
for on-line problems. Proc. 20th Annual ACM Sympos. Theory
Comput. (ACM, New York), 322–333.

Mezard M, Toninelli C (2011) Group testing with random pools:
Optimal two-stage algorithms. IEEE Trans. Inform. Theory 57:
1736–1745.

Schlaghoff J, Triesch E (2005) Improved results for competitive
group testing. Combinatorics, Probab. Comput. 14:191–202.

Sleator D, Tarjan R (1985) Amortized efficiency of list update and
paging rules. Comm. ACM 28:202–208.

Sobel M, Groll PA (1959) Group testing to eliminate efficiently all
defectives in a binomial sample. Bell System Technical J. 38:
1179–1252.

Wein LM, Zenios SA (1996) Pooled testing for HIV screening: Cap-
turing the dilution effect. Oper. Res. 44:543–569.

Wolf J (1985) Born again group testing: Multiaccess communica-
tions. IEEE Trans. Inform. Theory 31:185–191.

Zenios SA, Wein LM (1998) Pooled testing for HIV prevalence
estimation: Exploiting the dilution effect. Statist. Medicine
17:1447–1467.

