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In many fault-detection problems, we want to identify defective items from a set of n items using the minimum 
number of tests. Group testing is a scenario in which each test is on a subset of items and determines whether 

the subset contains at least one defective item. In practice, the number d of defective items is often unknown in 
advance. In this paper, we present a new algorithm for the above group testing problem and prove that it has 
very good performance guarantee. More specifically, the number of tests used by the new algorithm is bounded 
from above by d log(n/d)+ 3d+ O(log2 d). The new algorithm is designed based on a zig-zag approach that has 
not been studied before and is intuitive and easy to implement. When 0 <d < p0 n where p0 1 − 4/e2 0.45 . . . , 
which holds for most practical applications, our new algorithm has better performance guarantee than any 
previous best result. Computational results show that the new algorithm has very good practical performances. 
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1. Introduction
Suppose we are given a set S of n items in which 
some items are defective and others are good. Our task 
is to identify the defective items using a sequence of 
tests. Each test is on a subset of items in S and tells 
us whether the subset contains at least one defective 
item. The subset is said to be contaminated if it contains 
at least one defective item; otherwise, the subset is 
said to be pure. 

This scenario is the group testing problem, which 
was first introduced by Dorfman (1943) for efficient 
mass blood testing. Because of its basic nature, the 
problem later found various applications, including 
quality control in industrial product testing (Sobel 
and Groll 1959), sequential screening of experimental 
variables (Li 1962), searching files in storage systems 
(Kautz and Singleton 1964), multiple access commu-
nication (Wolf 1985, Goodrich and Hirschberg 2008) 
and data gathering in sensor networks (Hong and 
Scaglione 2004), screening of clone libraries (Barillot 
et al. 1991, Bruno et al. 1995), blood screening for HIV 
tests (Wein and Zenios 1996, Zenios and Wein 1998), 
data compression (Hong and Ladner 2002), streaming 
algorithms (Cormode and Muthukrishnan 2005), and 
testing and diagnosis for digital logic systems (Kahng 
and Reda 2006). Recently, Abolnikov and Dukhovny 

(2003), Bar-Lev et al. (2007), and Claeys et al. (2010) 
studied the scenario where there is a group testing 
center and items to be tested arrive at the center at 
random time points. For a thorough treatment of this 
subject, we refer the reader to the monograph by Du 
and Hwang (2000). 

Let M(d,n) denote the minimum number of tests 
required in the worst case, if the number of defectives 
d is known in advance. There are many studies on 
the bounds on M(d,n) in the literature. Hwang (1972) 
proposed a generalized binary-splitting algorithm that 
uses at most !log 

l 

n
d

n 

l + d − 1 tests in the worst case. 
As to lower bounds on M(d,n), in general the infor-
mation theoretic lower bound M(d,n) ≥ !log 

l 

n
d

n 

l is 
currently best known. The inequality in Equation (1) 
implies another lower bound, i.e., the right-hand side 
of the inequality, on M(d,n). The inequality is proved 
as Lemma 4.1.1 in Du and Hwang (2000, Chap. 4): For 
0 <p< 1, if 0 <d < pn, then 

log
 

n

d

 

≥ d

 

log 
n

d
+ log(e

 

1 −p)

 

− 0.5 log d− 0.5 log(1 − p)− 1.567. (1) 

In many applications, the assumption that d is 
known a priori is not realistic. Probably we only know 
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the existence of defectives but nothing else. In such 
a situation, we still want an algorithm whose num-
ber of tests used in the worst case will not be too 
much more than M(d,n), no matter what the num-
ber of defectives is. Motivated by the study of online 
algorithms (Sleator and Tarjan 1985, Manasse et al. 
1988), Du and Hwang (1993) proposed a concept of a 
competitive ratio to measure the quality of algorithms 
for solving the group testing problem with unknown 
number of defectives, as the following. 

Let A be an algorithm solving the group test-
ing problem when the number d of defectives is 
unknown, and let MA(d I n) denote the number of 
tests performed by A in the worst case if there are n
items and d of them are defective. Then A is called 
a c-competitive algorithm if there exists a constant 
a such that for 0 ≤ d < n, MA(d I n) ≤ cM(d,n) + a. 
The case d n is excluded in the definition because 
M(n,n) 0, and MA(n I n) ≥ n for any Algorithm A. 
If c is a constant, a c-competitive Algorithm A is 
simply called a competitive algorithm and c is called 
the competitive ratio of A. Du and Hwang (1993) pro-
posed a 2.75-competitive algorithm. The competitive 
ratio was improved to 2 by Bar-Noy et al. (1994) 
and then to 1.65 by Du et al. (1994). Schlaghoff and 
Triesch (2005) developed an Algorithm A8 satisfying 
MA8

(d I n)≤ (1.5 + 8)M(d,n)+ !0.4/8l + 6 for any 0 <
8 < 0.01 and 0 ≤ d < n and thus improved the com-
petitive ratio to 1.5 + 8 for all positive 8< 0.01. 

Du and Park (1994) introduced another notion of 
competitiveness. For an Algorithm A solving the 
group testing problem with unknown number of 
defectives, define 

n(d,k) max{n I M(d,n)≤ k},

nA(d I k) max{n I MA(d I n)≤ k}.

Algorithm A is called a strongly c-competitive algo-
rithm if there exists a constant a such that for every 
d ≥ 1 and k ≥ 1, n(d,k) ≤ cnA(d I k) + a. If c is a 
constant, then a strongly c-competitive algorithm is 
also called a strongly competitive algorithm. Du and 
Park (1994) proved that every strongly competitive 
Algorithm A is also competitive in the original sense, 
as defined in Du and Hwang (1993), and satisfies 
the following desirable property: limn→o(MA(d I n)/
M(d,n)) 1. Moreover, they proposed an algo-
rithm, which we will refer to as Algorithm DP , 
with MDP(d I n) ≤ d log(n/d) + 4d for 1 ≤ d≤ n. They 
showed that Algorithm DP is strongly competitive 
and wondered whether new algorithms exist such 
that the coefficient 4 for term d in the upper bound 
can be further reduced. Schlaghoff and Triesch (2005) 
proved that there exists an Algorith B satisfying that 
for 1 ≤ d ≤ n, MB(d I n) ≤ !log 

l 

n
d

n 

l + 2d; however, the 

Algorithm B implied by their constructive proof is 
rather complicated. 

If randomized group testing algorithms are consid-
ered, very recent results in Damaschke and Sheikh 
Muhammad (2012) show that, asymptotically, one can 
achieve nearly d log n tests, even with highly non-
adaptive testing strategies, to correctly solve (with 
any prescribed constant success probability) the above 
group testing problem with an unknown number of 
defectives. However, deterministic testing algorithms 
(which do not need to use randomization and can cor-
rectly identify all the defectives with certainty) using 
fewer tests in the worst case are still interesting for 
further investigation. 

The main contributions of this paper, presented 
next, are for the combinatorial group testing model. For 
the probabilistic group testing model, in which each item 
in S is defective with some probability p, for the 
case of small defect probability p« 1 and large num-
ber n of items, asymptotically optimal two-stage test-
ing strategies were obtained recently in Mezard and 
Toninelli (2011). 

In this paper, we present a new deterministic, 
strongly competitive Algorithm Z with MZ(d I n) ≤ 

d log(n/d) + 3d + O(log2 d), for the (combinatorial) 
group testing problem with unknown number of 
defectives. Algorithm Z is designed based on a zig-
zag approach that has not been studied before. Com-
pared to the result of Schlaghoff and Triesch (2005), 
our algorithm is much simpler and, by Equation (1), 
has an asymptotically smaller upper bound on the 
number of tests performed when d < pn for any con-
stant p < 1 − 4/e2 0.45 . . . . Considering that in prac-
tice we usually have d « n, in such cases our new 
algorithm has a better performance guarantee. Com-
putational results also indicate that our new algo-
rithm has very good practical performances. 

The rest of the paper is organized as follows. We 
describe our new Algorithm Z in §2 and present the 
analysis of it in §3. In §4, we show results of compu-
tational tests to compare the practical performances 
of Algorithm Z and Algorithm DP as proposed in 
Du and Park (1994). We conclude our paper in §5. 
Throughout the paper, log is of base 2 if no base is 
specified. 

2. The New Algorithm
In this section, we present a new Algorithm Z for the 
group testing problem when the number d of defec-
tive items is unknown. Algorithm Z uses at most 
d log(n/d) + 3d + O(log2 d) tests to identify all the 
defective items in the worst case. The new algorithm 
is intuitive and easy to implement. 

First we describe a binary splitting procedure DIG 
to identify one defective item (and an unspecified 

= 

= 

= 
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number of good items) from a contaminated set X. 
Procedure DIG has been used in a number of previous 
algorithms in the literature. 

Procedure DIG
• Input: a contaminated set X. 
• Procedure: 

—While IXI > 1 
1. Select a subset Y of size !IXI/2l from X. 

Test Y . 
2. If Y is contaminated then assign X Y , else 

identify all items in Y as good items and 
assign X X− Y . 

—Identify the single item in X as defective. 

We will use the following folklore lemma about 
Procedure DIG for later analysis. The lemma is easy 
and we state it without giving a proof. 

Lemma 2.1. For a contaminated set X with 2v−1 <
IXI ≤ 2v, where v ≥ 1 is an integer, the total number of 
tests performed by procedure DIG on X is v. 

The main idea of Algorithm Z is as follows. Each 
time we choose a subset to identify a defective item 
from it or to determine that the subset is pure. The 
size of the current subset depends on the size and 
test result of the previous subset. Roughly speaking, 
each time the size doubles if the previous subset is 
tested to be pure, and the size is reduced by half if 
the previous subset is tested to be contaminated. At 
the beginning we choose the whole set S as the sub-
set, and the process continues until every item in S is 
successfully identified. The following is the detailed 
description of Algorithm Z. 

Algorithm Z
• Input: a set S of n items in which an unknown 

number d≥ 1 of them are defectives. 
• Procedure: 

1. Initially, set k !log nl. 
2. While S is not empty 

(a) Select a subset S 1 of S with IS 1 I 2k (if ISI ≤ 

2k then select the whole S as S 1 ). Test S 1 . 
(b) If S 1 is pure, then identify all items in S 1 as 

good items and remove them from S; increase k by 1. 
(c) If S 1 is contaminated, then there are the fol-

lowing two possible cases: 
—If k > 0, then apply DIG(S 1 ) to identify 

one defective item (and an unspecified number of 
good items) in S 1 and remove these items from S; 
decrease k by 1. 

—If k 0, then identify the single item in 
S 1 as defective and remove it from S (note that in this 
case k 0 is unchanged). 

3. Analysis of Algorithm Z
Though our new algorithm is fairly simple to describe, 
it is not an easy task to analyze it. In this section, we 

show an upper bound of d log(n/d)+ 3d+ 0.5 log2 d+ 

1.5 log d + 2 on the number of tests used by Algo-
rithm Z in the worst case. First we introduce some 
notations and definitions before presenting the proof. 

Algorithm Z uses two types of tests: the first con-
sists of tests performed in step (a), and the second 
consists of tests performed in a DIG procedure in 
step (c). We use ? to denote the set of all the tests of 
the first type (i.e., all the tests performed in step (a) 
by Algorithm Z). Let q I?I, and we use T1 ,T2 , . . . , Tq
to denote the tests in ?, in the ordering that they are 
performed by Algorithm Z. 

Definition 3.1 (Incurred Tests). For a test T ∈ ?, 
let S 1 be the subset that test T is applied to in step (a). 
Define I(T ) to be the set of tests incurred by T as fol-
lows: If the test result of T is pure, then I(T ) contains 
only one test T ; i.e., I(T ) {T }. If the test result of T
is contaminated, then set I(T ) contains test T together 
with all tests performed in the subsequent DIG pro-
cedure on S 1 in step (c). 

By the above definition, the set of all tests per-
formed by Algorithm Z can be written as 

� 

T∈? I(T ), 
and the total number of tests used by Algorithm Z is 

tZ
 

T∈?

II(T )I 
q
 

i 1 

II(Ti)I. (2) 

Next, we define the rank of a test in ? and a zig-zag
pair of two tests in ?; these are key ingredients of our 
later analysis. 

Definition 3.2 (Rank). During the execution of 
Algorithm Z, for a test T in ? (i.e., performed in 
step (a)), if the current value of k is v, we say that T
is of rank v. 

From Algorithm Z, a test of rank v is applied to a 
subset of size at most 2v. 

Definition 3.3 (Zig-Zag Pair). We say that two 
tests Ti and Tj in ? form a zig-zag pair P (Ti, Tj) if 
for some integer v ≥ 1 Ti is of rank v and test result 
contaminated, and Tj is of rank v− 1 and test result 
pure. Moreover Tj is required to be applied to a subset 
of size exactly 2v−1 . We call v the rank of the zig-zag 
pair P (Ti, Tj). 

Notice that in the definition of a zig-zag pair P
(Ti, Tj), Ti and Tj are not required to be consecutive in 
?, and there is no requirement on the ordering of Ti
and Tj ; that is, both i < j and i > j are allowed. 

3.1. Partitioning ? Into Three Classes
We partition ? {T1 ,T2 , . . . , Tq}—the set of all the 
tests of the first type (i.e., all the tests performed in 
step (a))—into three classes: C1 , C2 , and C3 . First we 
have the following observation on the ranks of tests 
in ?. 

= = 

= 

= 

= = 

=

= 
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= 

= 
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Observation 3.4. For any test T ∈ ?, let r(T ) be the 
rank of T . Then 0 ≤ r(T )≤ k, where k !log nl. 

Proof. First, from Algorithm Z the rank of any test 
T ∈ ? is clearly nonnegative. Next we show that the 
rank of any test T ∈ ? is at most k !log nl. For the 
sake of contradiction, assume that there exists a test 
T of rank greater than k performed in step (a). Then, 
from Algorithm Z there must exist a test T 1 performed 
in step (a) before T , such that T 1 is of rank k and 
test result pure; then T 1 must be applied to the whole 
current set S (since 2k ≥ n) and identifies S as a pure 
set (i.e., all items in S are good) and terminates the 
algorithm, which contradicts that test T is performed 
after T 1 . D

Next, we define the three classes: C1 , C2 , and C3 . 
The first class C1 contains every test in ? that is of 
rank 0 and test result contaminated, together with Tq , 
the last test performed in step (a) by Algorithm Z. 

By Observation 3.4, for the rank rq of Tq , we have 
0 ≤ rq ≤ k. By Algorithm Z, starting from test T1 of 
rank k performed in step (a), to have a test Tq of rank 
rq performed in step (a) there must exist a sequence of 
tests T (k), T (k−1), . . . , T (rq+1) of ranks k,k− 1, . . . , rq + 1 
and test results “contaminated” performed in step (a) 
(they are not necessarily consecutive tests performed 
in step (a)). We choose T (k), T (k−1), . . . , T (rq+1) to be the 
first such tests (any such tests will work; we choose 
the first such tests to make the presentation more 
clear). The second class C2 is formed by the above 
sequence of tests T (k), T (k−1), . . . , T (rq+1) (if k rq , then 
the second class is empty). 

Since the rank of any test in the second class is 
higher than rq and the rank of any test in the first 
class is at most rq (in fact, is either 0 or rq), we have 
that the first two classes, C1 and C2 , are disjoint. 

The third class, C3 , is formed by all tests in ? that 
are not in the first two classes; i.e., C3 ?\(C1 ∪ C2 ). 

Lemma 3.5. The number of tests in C3 is even. More-
over, tests in C3 can be paired up to form IC3 I/2 zig-zag 
pairs, such that each test in C3 appears in exactly one pair. 

Proof. From the definition of C1 , after class C1 is 
removed from ?, the ranks of any two consecutive 
tests in ?\C1 (with their original ordering in ?) dif-
fer by 1. Consider a vertical line segment L (which 
is part of the y axis) with lower endpoint y 0 and 
upper endpoint y k. We map each test T ∈ ?\C1 
to a move between two consecutive integer points in 
{y 0, y 1, . . . , y k} of L as follows. Let r(T ) be 
the rank of T . The mapping depends on the test result 
of T . If the test result of T is pure, because T ∈ ?\C1 
is not the last test Tq performed in step (a), we have 
0 ≤ r(T )≤ k− 1 (since otherwise if r(T )≥ k, then the 
test immediately following T performed in step (a) 
will be of rank greater than k, contradicting Obser-
vation 3.4); we map T to a move on L from point 

y r(T ) to point y r(T )+ 1. If the test result of T is 
contaminated, then since T r C1 , we have 1 ≤ r(T )≤ k, 
and we map T to a move on L from point y r(T )
to point y r(T )− 1. We use (p1 → p2 ) to denote the 
move from point y p1 to point y p2 on L, where 
0 ≤ p1 , p2 ≤ k are integers and p2 p1 + 1 or p2 p1 − 1. 

By the above mapping, the tests in ?\C1 (with their 
original ordering in ?) map to a walk W ∗ , which is a 
set consisting of a sequence of moves; each move may 
either go upward or go downward on L from point 
y k to point y rq . Since k ≥ rq and the walk W ∗ 

goes within L from y k to y rq (note that the upper 
endpoint of L is y k and the lower endpoint of L is 
y 0), it follows that for any p ∈ {k, k− 1, . . . , rq + 1}
the number of moves (p→ p− 1) in W ∗ is one more 
than the number of moves (p − 1 → p) in W ∗ , and 
for any p ∈ {rq, rq − 1, . . . ,1} the number of moves 
(p → p − 1) in W ∗ is equal to the number of moves 
(p− 1 → p) in W ∗ . 

From the definition of C2 , the tests in C2 map to k− 

rq moves (k→ k− 1), (k− 1 → k− 2), . . . , (rq + 1 → rq). 
We use P ∗ to denote the set of the above k− rq moves 
(then P ∗ can be viewed as a simple directed path on 
the y axis from point y k to point y rq). Since C3 

?\(C1 ∪ C2 ) (?\C1 )\C2 , the above mapping gives 
a one-to-one correspondence between the tests in C3 

and the moves in W ∗ \P ∗ . From the above analysis, 
for any 1 ≤ p≤ k, the number of moves (p→ p− 1) in 
W ∗ \P ∗ is equal to the number of moves (p− 1 → p) in 
W ∗ \P ∗ . Thus, the total number of moves in W ∗ \P ∗ is 
even. The number of tests in C3 , which is equal to the 
number of moves in W ∗ \P ∗ , is also even. By the def-
inition of a zig-zag pair (Definition 3.3), for any 1 ≤ 

p≤ k, two tests mapping to the two moves (p→ p− 1)
and (p− 1 → p) form a zig-zag pair, which establishes 
the lemma (see Figure 1). D

3.2. Estimating the Total Number of Tests
Used by Algorithm Z

In §3.1, we have partitioned ? into three disjoint sub-
sets: C1 , C2 , and C3 . Thus, by Equation (2), the total 
number of tests used by Algorithm Z is 

tZ
T∈?

II(T )I 
T∈C1 

II(T )I + 

T∈C2 

II(T )I + 

T∈C3 

II(T )I. (3) 

For formula (3), we first estimate the sum of the first 
term and the third term 

L 

T∈C1 ∪C3 
II(T )I; then we incor-

porate the second term 
L 

T∈C2 
II(T )I to reach an upper 

bound on tZ. 

Definition 3.6 (Identified Items). For a test T ∈ ?, 
define D(T ) to be the set of items identified by tests 
in I(T ), and define n(T ) ID(T )I. 

    

= = 

= 

= 

= 

= = = 
= = 

= = 

= = 

= 

= 
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Figure 1 An Example to Illustrate the Partition of ? Into Three Classes and the Partition of C3 into IC3 I/2 Zig-Zag Pairs 
Notes. (a) The circles represent tests performed in step (a) (i.e., tests in ?), in the order that they are performed by Algorithm Z . In this example, we have 
q I?I 17. An arrow pointing to the bottom right from a circle (test) T indicates that the test result of T is contaminated, and the rank of the test (performed 
in step (a)) immediately following T is decreased by 1; an arrow pointing to the top right from a test T indicates that the test result of T is pure, and the rank of 
the test (performed in step (a)) immediately following T is increased by 1. Notice that it is possible that a test T of rank 0 has test result contaminated. In this 
case we draw a horizontal arrow from T pointing to the right, indicating that the rank of the test immediately following T in step (a) is also 0. For this example, 
C1 {T7 , T8 , T13 , T17 }. (b) Tests in ?\C1 . They map to a walk W ∗ with start point y k ( 4) and end point y rq ( 1). The second class C2 {T1 , T2 , T5 }. 
(c) Tests in C3 ?\(C1 ∪ C2 ). In this example, five zig-zag pairs are formed. One possibility for the pairing could be (T4 , T3 ), (T6 , T9 ), (T11 , T10 ), (T12 , T14 ), and 
(T16 , T15 ), as illustrated. The pairing is not unique; e.g., we can also pair T6 with T14 and pair T12 with T9 , as zig-zag pairs, etc. 

From Definitions 3.1 and 3.6, for a test T ∈ ?, D(T )
is the set of items identified by test T together with 
the DIG procedure incurred by T in step (c) (if the 
test result of T is contaminated, otherwise the DIG 
procedure is not called). That is, let S 1 be the sub-
set to which test T is applied in step (a); if the test 
result of T is contaminated, then T and its incurred 
DIG procedure identify one defective item e ∈ S 1 and 
a subset S 11 ⊆ S 1 of good items (note that S 11 can be 
empty); thus, D(T ) {e}∪ S 11 . If the test result of T is 
pure, then I(T ) {T }, and T identifies all items in S 1 

as good items; thus D(T ) S 1 . 

Lemma 3.7. For each test T ∈ C1 , II(T )I <2 + log n(T ). 

Proof. We first consider tests in C1 except Tq , where 
Tq is the last test performed in step (a). By the defini-
tion of class C1 , each such test T (T ∈ C1 , and T  = Tq) 
is of rank 0 and is contaminated, so T is applied 
to a subset of size one and identifies the only one 
item in the subset as defective; thus, n(T ) 1. Test T
incurs only one test (i.e., itself), since a subsequent 
DIG procedure is not necessary. Hence, I(T ) {T } and 
II(T )I 1. Therefore, we have II(T )I < 2 + log n(T ). 

For test Tq , let S 1 be the subset to which Tq is applied 
in step (a). There are the following two possible cases. 

Case 1. The test result of Tq is pure. Then all items 
in S 1 are identified as good items, so n(T ) = IS 1 I ≥ 1. 
In this case, a subsequent DIG procedure applied to 
S 1 is not required, so I(Tq) {Tq} and II(Tq)I 1. Thus, 
II(Tq)I < 2 + log n(Tq) holds. 

Case 2. The test result of Tq is contaminated. Since 
Tq is the last test performed in step (a), it must be 
that S 1 is equal to the current set S, and all items in 
S 1 are successfully identified by the DIG procedure 
incurred by Tq . Thus, in this case we have n(Tq) IS 1 I. 
By Lemma 2.1, the number of tests used by Proce-
dure DIG on subset S 1 is !log IS 1 Il, the total number 
of tests incurred by Tq (i.e., test Tq together with all 
the tests used by Procedure DIG on S 1 ) is II(Tq)I = 

1 + !log IS 1 Il 1 + !log n(Tq)l < 2 + log n(Tq). 
Therefore, in either case we have II(Tq)I < 2 + 

log n(Tq), the lemma is established. D
By Lemma 3.5, C3 can be partitioned into IC3 I/2 

zig-zag pairs, such that each test in C3 appears in 
exactly one pair. We fix one such partition and let ZP
denote the set of IC3 I/2 zig-zag pairs obtained from 
this partition. 

For any zig-zag pair P (Ti, Tj) in ZP , where 
Ti, Tj ∈ C3 , based on Definitions 3.1 and 3.6, let I(P)
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denote the set of all tests incurred by Ti and Tj ; i.e., 
I(P) I(Ti)∪ I(Tj). Let D(P) denote the set of all items 
identified by tests in I(P)—i.e., D(P) D(Ti)∪ D(Tj)
and let n(P) ID(P)I. 

From Algorithm Z, for any two different tests 
Ti, Tj ∈ ?, clearly, I(Ti) is disjoint to I(Tj), and D(Ti)
is disjoint to D(Tj). Thus, for any zig-zag pair P
(Ti, Tj), we have 

II(P)I = II(Ti)∪ I(Tj)I II(Ti)I + II(Tj)I,

n(P) = ID(P)I ID(Ti)∪ D(Tj)I 

= ID(Ti)I + ID(Tj)I n(Ti)+ n(Tj),

and the third term in Equation (3) can be written as 

T∈C3 

II(T )I 
P∈ZP

II(P)I.

Lemma 3.8. For each zig-zag pair P (Ti, Tj), II(P)I <
3 + log n(P). 

Proof. Let v be the rank of the pair P (Ti, Tj). 
By Definition 3.3, Ti has test result contaminated, and 
an incurred DIG procedure together with test Ti are 
applied to a subset S1 of size at most 2v; Tj has test 
result pure and is applied to another subset S2 of size 
exactly 2v−1 . Thus, one defective item and an unspec-
ified number of good items from S1 are identified, 
and all items in S2 are identified as good items, it fol-
lows that the total number of identified items satisfies 
n(P) ≥ 1 + IS2 I = 1 + 2v−1 . In contrast, the total num-
ber of tests incurred by Ti and Tj , II(P)I, is two plus 
the number of tests used by DIG(S1 ). By Lemma 2.1, 
DIG(S1 ) uses at most v tests, hence II(P)I ≤ 2 + v <
3 + log n(P). D

Based on Lemmas 3.7 and 3.8, we have the follow-
ing upper bound on the sum of the first and the third 
term in Equation (3). 

Lemma 3.9. Let x (0 ≤ x ≤ d) denote the total number 
of defective items identified by tests in 

� 

T∈C1 ∪C3 
I(T ). If 

x 0, then we have 
L 

T∈C1 ∪C3 
II(T )I 1; if 1 ≤ x≤ d, then 

we have 
L 

T∈C1 ∪C3 
II(T )I ≤ 1 + 3x+ x log(n/x). 

Proof. From the definition of ZP , we have 

T∈C1 ∪C3 

II(T )I = 

T∈C1 

II(T )I + 

T∈C3 

II(T )I 

T∈C1 

II(T )I + 

P∈ZP

II(P)I.

From the definitions of class C1 and zig-zag pairs, for 
each test T (except Tq) in C1 , we have I(T ) {T } and 
test T identifies exactly one defective item. Tests in 
I(Tq) identify no defective item if the test result of Tq is 
pure and identify one defective item if the test result 
is contaminated. For each zig-zag pair P ∈ ZP , tests in 
I(P) identify exactly one defective item. 

T (k)

T (k – 1)
k

k – 1

T (rq + 1)

rq + 1

Tqrq

Rank

…

…

Figure 2 Tests Performed in step (a) by Algorithm Z when 
x 0 Holds, Where x Is the Total Number of Defective 
Items Identified by Tests in 

� 

T∈C1 ∪C3 
I(T )

Note. In this case (i.e., when x 0), we have C1 {Tq}, where Tq is the 
last test performed in step (a), and the test result of Tq is pure, C2 

{T (k), T (k−1), � � � , T (rq+1)}, and C3 is empty. 

Thus, if x 0, it must be that C1 only contains one 
test Tq , and the test result of Tq is pure. Moreover, ZP
(and so class C3 ) is empty (see Figure 2). Therefore, if 
x 0 we have 

T∈C1 ∪C3 

II(T )I 
T∈C1 

II(T )I + 

T∈C3 

II(T )I II(Tq)I 1,

where the last equality is because the test result of Tq
is pure, so the set of all tests incurred by Tq is sim-
ply I(Tq) {Tq}; hence II(Tq)I = 1. Next we prove the 
lemma for 1 ≤ x≤ d. There are the following two pos-
sible cases. 
Case 1. The test result of Tq is pure. Then I(Tq) {Tq}, 

since a subsequent DIG procedure is not called. Hence 
II(Tq)I = 1, and tests in I(Tq) identify no defective 
item. Thus, in this case the total number of defective 
items identified by tests in 

� 

T∈C1 ∪C3 
I(T )—i.e., tests in 

(
� 

T∈C1 
I(T ))∪ (

� 

P∈ZP I(P))—is (IC1 I − 1)+ IZP I. Hence, 
(IC1 I − 1)+ IZP I x. 

We have 

T∈C1 

II(T )I + 

P∈ZP

II(P)I 

1 + 

T∈C1 \{Tq }

II(T )I + 

P∈ZP

II(P)I (4) 

< 1 + 

T∈C1 \{Tq }

(3 + log n(T ))+ 

P∈ZP

(3 + log n(P)) (5) 

1 + 3(IC1 I + IZP I − 1)+ 

T∈C1 \{Tq }

log n(T )

+ 

P∈ZP

log n(P)

1 + 3x+ 

T∈C1 \{Tq }

log n(T )+ 

P∈ZP

log n(P)

≤ 1 + 3x+ (IC1 I + IZP I − 1)
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log 

L 

T∈C1 \{Tq }
n(T )+ 

L 

P∈ZP n(P)

(IC1 I + IZP I − 1)
(6) 

1 + 3x+ x log 

L 

T∈C1 \{Tq }
n(T )+ 

L 

P∈ZP n(P)

x

≤ 1 + 3x+ x log 
n

x
, (7) 

where Equality (4) holds because II(Tq)I=1; Inequal-
ity (5) holds by Lemmas 3.7 and 3.8; Inequality (6) 
holds because log( ) is concave and IC1 I + IZP I − 

1 x, and x ≥ 1 as assumed in the lemma; and 
Inequality (7) holds because for any two different 
tests Ti, Tj ∈ ?, D(Ti) is disjoint to D(Tj), and since 
C1 is disjoint to C3 (i.e., ZP ), we have that each 
item in S is counted at most once in the summation 
L 

T∈C1 \{Tq }
n(T ) + 

L 

P∈ZP n(P), and so 
L 

T∈C1 \{Tq }
n(T ) + 

L 

P∈ZP n(P)≤ n. 
Case 2. The test result of Tq is contaminated. Then 

tests in I(Tq) identify one defective item. Thus, in 
this case the total number of defective items iden-
tified by tests in 

� 

T∈C1 ∪C3 
I(T ) is IC1 I + IZP I. Hence 

IC1 I + IZP I x. As in Case 1, we have 

T∈C1 

II(T )I + 

P∈ZP

II(P)I 

<
T∈C1 

(3 + log n(T ))+ 

P∈ZP

(3 + log n(P)) (8) 

3(IC1 I + IZP I)+ 

T∈C1 

log n(T )+ 

P∈ZP

log n(P)

≤ 3(IC1 I + IZP I)+ (IC1 I + IZP I)

log 
L 

T∈C1 
n(T )+ 

L 

P∈ZP n(P)

(IC1 I + IZP I)
(9) 

3x+ x log 
L 

T∈C1 
n(T )+ 

L 

P∈ZP n(P)

x

≤ 3x+ x log 
n

x
, (10) 

where Inequalities (8)–(10) hold for the same reasons 
as Inequalities (5)–(7) in Case 1. 

By combining the above two cases, the lemma is 
proved. D

For the second term 
L 

T∈C2 
II(T )I in Equation (3), we 

have the following lemma. 

Lemma 3.10. Let x (0 ≤ x≤ d) denote the total number 
of defective items identified by tests in 

� 

T∈C1 ∪C3 
I(T ). Then 

L 

T∈C2 
II(T )I ≤ ([(2k+ 3)− (d− x)](d− x))/2. 

Proof. By the definition of C2 , for each test T ∈ C2 , 
tests in I(T ) identify exactly one defective item (and 
an unspecified number of good items). Thus, the 
total number of defective items identified by tests in
� 

T∈C2 
I(T ) is IC2 I = k− rq , where k = !log nl. Clearly, 

Algorithm Z successfully identifies all the d defective 

items in S. Since we assume that the total number 
of defective items identified by tests in 

� 

T∈C1 ∪C3 
I(T )

is x, and notice that the set of all tests performed 
by Algorithm Z is 

� 

T∈C1 ∪C2 ∪C3 
I(T ), it follows that the 

total number of defective items identified by tests in
� 

T∈C2 
I(T ) is d− x. Therefore, k− rq d− x. 

For each test T (j) ∈ C2 of rank j (rq + 1 ≤ j ≤ k), T (j)

and the DIG procedure incurred by T (j) are applied to 
a subset of size no more than 2 j . Thus, by Lemma 2.1, 
II(T (j))I ≤ j + 1. We have 

T∈C2 

II(T )I = 

k

j rq+1 

II(T (j))I 

≤ 

k

j rq+1 

(j + 1)

(rq + k+ 3)(k− rq)

2 
[(2k+ 3)− (k− rq)](k− rq)

2 
[(2k+ 3)− (d− x)](d− x)

2 
. D

In addition, the following lemma is needed to prove 
a final upper bound on tZ, the total number of tests 
used by Algorithm Z. 

Lemma 3.11. Let fd(x) 1 + 3d + x log(n/x) + 

([(2k− 3)− (d− x)](d− x))/2, where d and n are integers, 
0 < d ≤ n, and k = !log nl. Then, fd(x) ≤ d log(n/d)+ 

3d+ 0.5 log2 d+ 1.5 log d+ 2 for integers x ∈ {1,2, . . . , d}. 

Proof. The proof is available in Appendix A. D
Now we are ready to prove the main result in this 

paper. 

Theorem 3.12. For 1 ≤ d≤ n, MZ(d I n)≤ d log(n/d)+ 

3d+ 0.5 log2 d+ 1.5 log d+ 2. 

Proof. As in Lemmas 3.9 and 3.10, let x (0 ≤ x≤ d) 
be the total number of defective items identified by 
tests in 

� 

T∈C1 ∪C3 
I(T ). We divide the proof into the fol-

lowing two possible cases: (1) 1 ≤ x≤ d and (2) x 0. 
Case 1. 1 ≤ x ≤ d. In this case, by Lemmas 3.9 

and 3.10, 

tZ
T∈C1 ∪C3 

II(T )I + 

T∈C2 

II(T )I 

≤ 1 + 3x+ x log 
n

x
+ 

[(2k+ 3)− (d− x)](d− x)

2 

1 + 3d+ x log 
n

x
+ 

[(2k− 3)− (d− x)](d− x)

2 
.

The last expression in the above derivation is fd(x)
in Lemma 3.11. By Lemma 3.11, for integer 1 ≤ 
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x ≤ d we have fd(x) ≤ d log(n/d) + 3d + 0.5 log2 d + 

1.5 log d+ 2; thus, for this case the theorem is proved. 
Case 2. x 0. In this case, by Lemmas 3.9 and 3.10, 

tZ
T∈C1 ∪C3 

II(T )I + 

T∈C2 

II(T )I 

≤ 1 + 
[(2k+ 3)− d)]d

2 
< 1 + d log n− 0.5d2 

+ 2.5d,

where the last inequality is because k = !log nl <
log n+ 1. Let 

1d d log 
n

d
+ 3d+ 0.5 log2 d+ 1.5 log d+ 2 

− (1 + d log n− 0.5d2 
+ 2.5d)

0.5d2 
+ 0.5d+ 0.5 log2 d+ 1.5 log d+ 1 − d log d.

For d≥ 4, we have log d≤ 0.5d, and so 

1d ≥ 0.5d2 
+ 0.5d+ 0.5 log2 d+ 1.5 log d+ 1 − 0.5d2 

0.5d+ 0.5 log2 d+ 1.5 log d+ 1 

> 0.

For d 1,2,3, it can be verified directly that 11 2, 
12 4, and 13 5.87 . . . . Thus, 1d > 0 also holds for 
d 1,2,3. Hence, 1d > 0 holds for every integer d≥ 1, 
and so the theorem is proved for the case x 0. D

Though some relaxations are used to obtain the 
upper bound on MZ(d I n) in Theorem 3.12, we com-
ment that when d is small compared to n (more 
accurately, when 8 ≤ d ≤ 

√ 
n), the above analysis 

for Algorithm Z is almost tight, up to the lower 
ordered terms O(log d), as illustrated by the example 
described in Appendix B. 

4. Computational Tests
We have implemented Algorithm Z and Algorithm DP
(Du and Park 1994) with Matlab. In this section, we 
present computational results on the practical per-
formances of these two algorithms and comparisons 
between them. 

Roughly speaking, Algorithm DP works in the fol-
lowing way. For a subset X of items (initially X is 
the input set S of all items), test X. If X is pure, 
then identify all items in X as good items; otherwise, 
use Procedure DIG to identify and remove one defec-
tive item (and an unspecified number of good items) 
from X. Then bisect the current set X (if IXI > 1) 
into two subsets, X 1 and X 11 , and repeat the above 
process for both. The algorithm stops when all items 
in S are successfully identified. The rationale behind 
using Procedure DIG to remove one defective item 

from X (which is also the key ingredient of the algo-
rithm) is that, if both X and X 1 are contaminated sets 
and X 1 ⊂ X, then the test result “X 1 is contaminated” 
renders the test result “X is contaminated” redun-
dant; i.e., the test result on X provides no extra infor-
mation, given the test result on X 1 . To resolve this 
issue, in Algorithm DP once a contaminated set X
is found, a defective item is identified and removed 
from X before bisecting it into two smaller subsets. It 
is proved in Du and Park (1994) that the number of 
tests used by Algorithm DP is at most d log(n/d)+ 4d, 
where n is the number of items in S and d (1 ≤ d ≤ n) 
is the number of defective items in S. 

Table 1 reports the simulation results of Algo-
rithms Z and DP for n 1,000. For each d ∈ 

{100, 200, . . . ,1,000}, all the statistics are collected 
as the average over 1,000 independent random prob-
lem instances, each of which is uniformly and ran-
domly selected from the set of all the 

l 

n
d

n 

possi-
ble problem instances with parameters n and d. 
In Table 1, NZ and NDP denote the average number 
of tests performed by Algorithms Z and DP , respec-
tively; c1 (NDP − NZ)/NDP is the percent of tests 
that Algorithm Z saves compared to Algorithm DP
on average; c2 (NZ − M(d,n))/M(d,n) denotes on 
average how much more percent of tests Algorithm Z
requires compared to the information theoretic lower 
bound M(d,n); cZ and cDP denote the average coef-
ficient c for Algorithms Z and DP , respectively, if 
the number of tests performed by them is written as 
d log(n/d)+ cd. 

From c1 in Table 1, we can see that the advantage 
of Algorithm Z over Algorithm DP becomes more 
obvious as the value of d grows. For example, when 
d 100 ( n/10), Algorithm Z on average saves about 
14.2% tests compared to Algorithm DP ; when d grows 
to 500 ( n/2), the percentage grows to 33.1%. 

From c2 in Table 1, we can conclude that when 
d is not very large (say, less than n/2), on average 
Algorithm Z has very good competitive ratio (in the 
original sense proposed in Du and Hwang 1993), as 
compared to the information theoretic lower bound 

Table 1 Computational Results for n 1,000 

d M(d, n) NZ NDP (1 (%) (2 (%) cZ cDP

100 465 532�6 621�0 14�2 14�5 2.00 2.89 
200 717 829�2 1,018�8 18�6 15�7 1.82 2.77 
300 877 1,019�1 1,328�4 23�3 16�2 1.66 2.69 
400 966 1,135�2 1,579�2 28�1 17�5 1.52 2.63 
500 995 1,198�0 1,790�9 33�1 20�4 1.40 2.58 
600 966 1,222�9 1,972�1 38�0 26�6 1.30 2.55 
700 877 1,217�5 2,127�1 42�8 38�8 1.22 2.52 
800 717 1,188�0 2,261�9 47�5 65�7 1.16 2.51 
900 465 1,135�4 2,379�9 52�3 144�2 1.11 2.49 
1,000 0 1,055�0 2,483�0 57�5 o 1.06 2.48 
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Figure 3 Average Number of Tests Performed by and the Average 
Coefficients c of Algorithms DP and Z for n 1,000, over 
1,000 randomly generated problem instances for each d
1,2, � � � ,1,000 

M(d,n). For example, when d 100 ( n/10), Algo-
rithm Z on average only requires about 14.5% more 
tests than M(d,n); as d grows to 500 ( n/2), the per-
centage only grows to 20.4%. As with c1 , the general 
trend of c2 also increases as the value of d increases. 

Figure 3(a) illustrates the comparison between the 
average number of tests performed by Algorithms Z
and DP and the information theoretic lower bound 
M(d,n) for 1 ≤ d ≤ n. From Figure 3(b), the value of 
cDP stays above (or very close to, when d is close to 
n) 2.5 for the whole range 1 ≤ d ≤ n. In contrast, the 
general trend of cZ drops from slightly less than 2.5 to 
very close to 1 as d increases, which is also consistent 
with the theoretical finding in Theorem 3.12. 

5. Concluding Remarks
Du and Park (1994) gave a sufficient condition for an 
Algorithm A to be strongly competitive as the follow-
ing: if there exists a constant c such that for 1 ≤ d < n, 

MA(d I n) ≤ d log(n/d) + cd, then A is strongly com-
petitive. Therefore, Theorem 3.12 immediately implies 
the following. 

Corollary 5.1. Algorithm Z is strongly competitive. 

By Equation (1), when d < pn for some constant 0 <
p< 1 − 4/e2 0.45 . . . , the upper bound !log 

l 

n
d

n 

l + 2d
of Schlaghoff and Triesch (2005) satisfies that
 

log 
n

d

  

+ 2d ≥ d log 
n

d
+ 
l 

2 + log(e 1 − p)
n 

d

−0.5 log d− 0.5 log(1 − p)− 1.567,

and so is asymptotically larger than our upper bound 
d log(n/d)+ 3d + O(log2 d), as in the right-hand side 
of the above inequality the coefficient 2 + log(e 1 − p)
for term d is larger than 3. However, it is not hard to 
verify that when d is close to n, their upper bound is 
smaller. 

Equation (1) also indicates that in general one may 
not expect to get an upper bound d log(n/d) + cd
with c < log e. Nevertheless, it is interesting to inves-
tigate whether our current upper bound in Theo-
rem 3.12 can be further improved. The arguments in 
Appendix B indicate that we need to come up with 
new algorithms to achieve this goal for the case d ≤ 
√ 
n. New upper bounds of form log 

l 

n
d

n 

+ cd with c < 2 
would also be attractive to investigate. 

Whether there exists a nontrivial lower bound other 
than !log 

l 

n
d

n 

l for combinatorial group testing with an 
unknown number of defectives stands as a central 
open problem in this field. New heuristics with bet-
ter practical performances than Algorithm Z are also 
interesting to investigate. 
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Appendix A. Proof of Lemma 3.11
For d 1,2,3 and x ∈ {1,2, . . . , d}, using k = !log nl <
log n+ 1 we can enumerate all the six combinations of (x,d)
to verify the lemma, as in the following: for d 1, the 
inequality is f1 (x) ≤ log n+ 5. Since f1 (1) log n+ 4, the 
lemma holds; for d 2, the inequality is f2 (x)≤ 2 log n+ 8. 
Since f2 (1) log n+ 5 + k < 2 log n+ 6, and f2 (2) 2 log n+ 5, 
the lemma holds. For d 3, the inequality is f3 (x)≤ 3 log n+ 

11 + 0.5(log 3)2 − 1.5 log 3 3 log n + 9.87 . . . , since f3 (1)
log n+ 5 + 2k < 3 log n+ 7, f3 (2) 2 log n+ k+ 6 < 3 log n+ 7, 
and f3 (3) 3 log n + 10 − 3 log 3 3 log n + 5.24 . . . , the 
lemma also holds. 

Next we prove the lemma for d≥ 4. First, 

f 1 

d(x) (d+ log n− k+ 1.5 − log e)− (x+ log x).
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Since function h(x) x + log x is monotonically increasing 
in x and has value range (−o,+o), f 1 

d(x) 0 has a unique 
solution x0 . 

Since k !log nl ≥ log n, we have 

x0 + log x0 d+ log n− k+ 1.5 − log e

≤ d+ 1.5 − log e < d+ 2.

Since d ≥ 4, we have h(d) ≥ d + 2, by the above inequality 
and the monotonicity of h(x) x+ log x we have 

x0 <d. (A1) 

Next we prove a lower bound on x0 . From x0 + log x0 
d+ log n− k+ 1.5 − log e, and k < log n+ 1, we have 

x0 + log x0 >d+ log n− (log n+ 1)+ 1.5 − log e d− (log e− 0.5).

Let c0 log e− 0.5. Then, 0 < c0 < 1, and the above inequal-
ity is 

h(x0 ) x0 + log x0 >d− c0 .

Since h(x) x+ log x is monotonically increasing in x and 

h(d− log d− c0 ) (d− log d− c0 )+ log(d− log d− c0 )

< (d− log d− c0 )+ log d d− c0 ,

together with h(x0 ) > d− c0 , it follows that 

x0 >d− log d− c0 . (A2) 

Let k0 log n+ 1.5 − log e (here the choice of k0 is tech-
nical, which is to make the analysis easier and will be 
explained in Claim A.1 below). Define 

gd(x) 1 + 3d+ x log 
n

x
+ 

[(2k0 − 3)− (d− x)](d− x)

2 
,

which replaces k by k0 in fd(x). Then fd(x0 ) gd(x0 ) + 

(k− k0 )(d− x0 ). Since 

k− k0 < (log n+ 1)− (log n+ 1.5 − log e) c0 ,

and by the inequalities in (A1) and (A2), we have 0 < d − 

x0 < log d+ c0 . Thus, 

fd(x0 )<gd(x0 )+ c0 (log d+ c0 )< max 
0<x<d

gd(x)+ c0 log d+ 1, (A3) 

where in the above the second inequality holds because 0 <
c0 < 1. By Claim A.1, given below, when d≥ 4 we have 

max 
0<x<d

gd(x) ≤ 1 + 3d+ d log 
n

d
+ 0.5 log2 d

+(2 − log e) log d. (A4) 

Since c0 log e− 0.5, the two inequalities in (A3) and (A4) 
imply 

fd(x0 ) < max 
0<x<d

gd(x)+ c0 log d+ 1 

≤ d log 
n

d
+ 3d+ 0.5 log2 d+ 1.5 log d+ 2,

which establishes Lemma 3.11. D

Claim A.1. Assume that d ≥ 4. Let gd(x) 1 + 3d + 

x log(n/x)+ ([(2k0 − 3)− (d− x)](d− x))/2 for 0 < x < d, where 

k0 log n+ 1.5 − log e (here k0 is chosen to make g1 
d(x) d− x− 

log x, which makes the analysis easier, as to be seen in the proof of 
this claim given below). Then g1 

d(x) 0 has a unique solution x1 , 
and d− log d < x1 <d− log d+ (2 log d)/d. Moreover, 

max 
0<x<d

gd(x) g(x1 ) ≤ 1 + 3d+ d log 
n

d
+ 

log2 d

2 
+ (2 − log e) log d.

Before proving Claim A.1, first we need the following 
observation. 

Observation A.2. −log(1 − log d/d)≤ (2log d)/d for d≥ 4. 

Proof of Observation A.2. Since 

− log(1 − x)

x

1 log e
x2 

x

1 − x
− ln 1 + 

x

1 − x
> 0,

for 0 < x < 1,

where in the above the inequality holds because y> ln(1 + y)
for y>0, it follows that − log(1 − x)/x is monotonically 
increasing when 0 < x < 1. Also, it is easy to prove that 
0 < log d/d ≤ 1 

2 for d ≥ 4. Thus, for d ≥ 4 we have 
− log(1 − log d/d)/log d/d≤ − log(1 − 1/2)/(1/2) 2. That is, 
− log(1 − log d/d)≤ (2 log d)/d for d≥ 4. D

Proof of Claim A.1. First, 

g1 

d(x) x log n− x log x− 
(2k0 − 3)(x− d)

2 
− 

(x− d)2 

2 

1 

log n− (log x+ log e)− (k0 − 1.5)− (x− d)

d− x− log x,

where the last equality holds because k0 log n+ 1.5 − log e. 
Thus, g11 

d (x) = −1 − (log e)/x < 0 for x > 0, and so gd(x) is 
concave for x > 0. Also, since d ≥ 4, we have g1 

d(0
+ ) > 0 

(that is, when x approaches 0 from the above, g1 
d(x) > 0), 

and g1 
d(d)= − log d < 0. Thus, for x arbitrarily close to but 

greater than 0, gd(x) is increasing in x; for x arbitrarily 
close to but smaller than d, gd(x) is decreasing in x. There-
fore, max0<x<d gd(x) is achieved at the unique solution of 
g1 
d(x) 0 (the uniqueness follows from the monotonicity of 

x + log x). Let x1 denote the unique solution of g1 
d(x) 0; 

then we have x1 + log x1 d. 
We first show the lower and upper bounds on x1 in the 

claim. Since d ≥ 4, we have x1 > 1, so x1 d − log x1 < d, 
which implies the lower bound x1 d − log x1 > d − log d, 
and the upper bound 

x1 d− log x1 <d− log(d− log d)

d− log d− log 1 − 
log d
d

≤ d− log d+ 
2 log d

d
,

where the last inequality is by Observation A.2. Next 
we estimate gd(x1 ), based on the above lower and upper 
bounds on x1 . 

gd(x1 ) 1 + 3d+ x1 log 
n

x1 
+ 

[(2k0 − 3)− (d− x1 )](d− x1 )

2 

1 + 3d+ x1 log n− x1 log x1 

+ 
[(2 log n− 2 log e)− (d− x1 )](d− x1 )

2 
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1 + 3d+ x1 log n− x1 log x1 + (d− x1 ) log n

− (d− x1 ) log e− 
(d− x1 )

2 

2 

1 + 3d+ d log n− x1 log x1 − 
(d− x1 )

2 

2 
− (d− x1 ) log e.

Because x1 + log x1 d, we have 

−x1 log x1 − 
(d− x1 )

2 

2 
− (d− x1 ) log e

−x1 (d− x1 )− 
(d− x1 )

2 

2 
− (d− x1 ) log e

x2 
1 − d2 

2 
+ (x1 − d) log e.

Therefore, 

gd(x1 ) 1 + 3d+ d log n+ 
x2 

1 − d2 

2 
+ (x1 − d) log e. (A5) 

From d ≥ 4 and d − log d < x1 < d − log d + (2 log d)/d, 
we have 

x2 
1 − d2 

2 
+ (x1 − d) log e

≤ 
1 
2 

d− log d+ 
2 log d

d

2 

− 
d2 

2 
+ − log d+ 

2 log d
d

log e

log2 d

2 
+ 

2 log2 d

d2 
− d log d+ 2 log d− 

2 log2 d

d

+ − log d+ 
2 log d

d
log e

log2 d

2 
− d log d+ (2 − log e) log d

+ 
2 log2 d

d2 
1 − d+ 

d log e
log d

.

Since log e < 1.5, for d ≥ 4 we have (d log e)/log d <
(1.5d)/log d ≤ (1.5d)/log 4 (3d)/4, and so 1 − d + 

(d log e)/log d < 1 − d/4 ≤ 0. Hence, the above inequality 
implies that 

x2 
1 − d2 

2 
+ (x1 − d) log e≤ 

log2 d

2 
− d log d+ (2 − log e) log d.

By combining this inequality with Equation (A5), we obtain 

gd(x1 ) ≤ 1 + 3d+ d log n+ 
log2 d

2 
− d log d+ (2 − log e) log d

1 + 3d+ d log 
n

d
+ 

log2 d

2 
+ (2 − log e) log d,

establishing Claim A.1. D

Appendix B. An Asymptotically Tight Example
for 8 ≤ d≤ 

√ 
n

Without loss of generality, we consider the input set S
(and X) to Algorithm Z (and Procedure DIG) as an ordered 
set, and we assume that during the execution of Algo-
rithm Z (and Procedure DIG), the ordering of all the uniden-
tified items in S (and X) always remains the same, as their 

≥

…

…

…
…

S = �

n︷ ︸︸ ︷
1� � � � �1︸ ︷︷ ︸

d1

�0� � � � �0�1︸ ︷︷ ︸
2r−1+1

� � � � � � � �0� � � � �0�1︸ ︷︷ ︸
2r−1+1︸ ︷︷ ︸

d−d1 repetitions

�0� � � � �0︸ ︷︷ ︸
≥2r−1

�

Figure B.1 (a) The Input Set S Described in Appendix B, Where “0” 
Stands for a Good Item, “1” Stands for a Defective Item, 
ISI n 2k , the Number of Defective Items in S is 
d 2d1 , and r k− d1 + 1; (b) Tests Performed in step (a) 
of Algorithm Z on Set S

Note. The tests performed in step (a) start with d1 tests of results contam-
inated, and of ranks k, k − 1, � � � , r ; followed by 2(d − d1 ) tests of results 
alternating between “pure” and “contaminated,” and of ranks alternating 
between r − 1 and r , where each two consecutive tests with respective ranks 
r − 1 and r (e.g., the two black nodes) form a zig zag pair; then followed by 
a sequence of (at least two) tests and they are all of test results pure (the 
gray nodes). 

original ordering in S (and X). More specifically, assume 
that in step 1 of Procedure DIG, we always choose a prefix 
of the ordered set X to form subset Y ; in step (a) of Algo-
rithm Z, we always choose a prefix of the ordered set S to 
form subset S 1 ; and each time after step (c) of Algorithm Z
is executed, all unidentified items in S 1 (with their original 
ordering unchanged) are put back to set S as the first part 
of S, so that the ordering of all the unidentified items in S
always stays the same as their original ordering in S. 

Consider the scenario where n 2k, d 2d1 for integers 
k > d1 ; let r k− d1 + 1, and consider the following input set 
S of n items in which d of them are defectives. The ordered 
items in S can be divided into three parts: the first part is a 
sequence of d1 defective items, the second part is a sequence 
of (d− d1 ) repetitions such that each is formed by 2r−1 good 
items followed by one defective item, and the third (last) 
part is a sequence of good items of length at least 2r − 1 
(see Figure B.1(a)). That is, we assume that the following 
inequality holds: 

n− d1 − (d− d1 )(2
r−1 

+ 1)≥ 2r
− 1, (B1) 

which, when d>4, is equivalent to n≥ (d(d− 1))/(log d− 2), 
and so is clearly satisfied when 8 ≤ d≤ 

√ 
n. Next, we calcu-

late the total number of tests Algorithm Z performs on S. 
According to the three parts of S described above, the exe-
cution of Algorithm Z on S can be divided into three phases 
(see Figure B.1(b)). 

• Phase 1: From input set S and the assumptions on Algo-
rithm Z (and Procedure DIG) made at the beginning of this 
section, it can be verified that for the first d1 tests performed 
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in step (a) by Algorithm Z on S, each has test result con-
taminated. These d1 tests are performed on subsets of sizes 
2k,2k−1 , . . . ,2r , for each such test a subsequent DIG pro-
cedure is incurred, and each such incurred DIG procedure 
identifies only one defective item and zero good items. 

For each j (r ≤ j ≤ k), for a subset S 1 of size 2j , by 
Lemma 2.1 the number of tests used by Procedure DIG on 
S 1 is j , together with the test performed on S 1 in step (a), 
in total j + 1 tests are used. Thus, for the first d1 tests per-
formed in step (a), the total number of tests incurred by 
them, i.e., the total number of tests performed by Algorithm 
Z in Phase 1, is 

Lk
j r (j+ 1) ((k+ r+ 2)d1 )/2. In contrast, the 

total number of items identified by Algorithm Z in Phase 
1—i.e., identified by these d1 tests performed in step (a) and 
their incurred tests—is d1 , and they are all defective items. 

• Phase 2: From input set S and by Inequality (B1), it 
can be verified that the next 2(d− d1 ) tests (which immedi-
ately follow the first d1 tests) performed in step (a) have test 
results alternating between pure and contaminated, and are 
applied to subsets of sizes alternating between 2r−1 and 2r . 
Moreover, each of the subsets of size 2r−1 contains 2r−1 good 
items and so has test result pure, and each of the subsets of 
size 2r is formed by one defective item followed by 2r − 1 
good items, and so has test result contaminated. For each 
test result contaminated from these 2(d − d1 ) tests, Proce-
dure DIG is called in step (c). Since each such incurred DIG 
procedure is applied to a subset S 1 of size 2r and the first 
item of S 1 is defective, it follows that the DIG procedure 
identifies only one defective item (i.e., the first item in S 1 ) 
and zero good items from S 1 . Here S 1 is considered to be 
an ordered subset, as mentioned at the beginning of this 
section. 

These 2(d− d1 ) tests performed in step (a) form (d− d1 )
zig-zag pairs, where each two consecutive tests (i.e., the first 
and second test, the third and fourth test, etc.) form a pair. 
Since d1 defective items have been identified in Phase 1, all 
the remaining d − d1 defective items in S are identified in 
Phase 2. For each of the above (d− d1 ) zig-zag pairs, one test 
is performed on a pure subset of size 2r−1 , and one test and 
a subsequent DIG procedure with—by Lemma 2.1—r tests 
are performed on a contaminated subset of size 2r , thus the 
number of tests incurred by each zig-zag pair is 2 + r . There-
fore, the total number of tests performed by Algorithm Z in 
Phase 2 is (d− d1 )(r+ 2). Each zig-zag pair, together with its 
incurred tests, identifies 2r−1 + 1 items, of which one item is 
defective and the other 2r−1 items are good. 

• Phase 3: After Phase 2, all the d defective items in S
are identified; thus Phase 3 is formed by a sequence of tests 
performed in step (a) with test results pure. In fact, it can 
be seen that this sequence contains at least two tests, as 
follows. 

After Phase 2, the number of items remained (i.e., uniden-
tified) in S is 

n− d1 − (d− d1 )(2
r−1 

+ 1),

which is at least 2r − 1 by Inequality (B1). Since we assume 
that k > d1 , and so r k− d1 + 1 ≥ 2, thus 2r − 1 > 2r−1 . The 
last test performed in step (a) in Phase 2 is of rank r and is 
of test result contaminated, it follows that the first test per-
formed (in step (a)) in Phase 3 is of rank r− 1, and so the test 
is performed on a pure subset of size 2r−1 . After these 2r−1 

items are identified as good items and removed from S, the 
number of remaining items in S is at least 2r − 1 − 2r−1 ≥ 1, 
where the inequality is because r ≥ 2, as shown above. Thus, 
at least one more test performed in step (a) is required. 
Therefore, the number of tests performed in step (a) in 
Phase 3 is at least two, and they are all of test results pure. 

Combining Phases 1 and 2, the total number of tests per-
formed by Algorithm Z is at least 

(k+ r + 2)d1 

2 
+ (d− d1 )(r + 2).

By substituting in k log n, d1 log d, and r k− d1 + 1 
log n− log d + 1, the above formula can be easily verified 
being equal to d log(n/d)+ 3d + 0.5 log2 d − 1.5 log d. Com-
pared with the upper bound given in Theorem 3.12, we can 
see that the input example S constructed above is tight for 
Algorithm Z when 8 ≤ d ≤ 

√ 
n, up to the lower ordered 

terms O(log d). 
The assumptions made at the beginning of this section on 

Algorithm Z (and Procedure DIG)—that they preserve the 
ordering of all the unidentified items in S—are not essen-
tial. The arguments (on the tightness of the upper bound 
given in Theorem 3.12 when 8 ≤ d ≤ 

√ 
n) presented here 

can be easily transformed into adversary type arguments, 
which are applicable to the more general frameworks of 
Algorithm Z (and Procedure DIG) as described in §2, that 
is, without the order preserving assumptions on the uniden-
tified items in set S. 
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