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This dissertation addresses three issues faced by different stakeholders in the digital ad-

vertising ecosystem. In the first chapter, we analyze a problem faced by Mobile-Promotion

platforms, which enable advertisers (individual users or businesses) to directly launch

their personalized mobile advertising campaigns. These platforms contract with adver-

tisers to provide a certain number of impressions on mobile apps in their desired sets of

geographic locations (usually cities or zip codes) within their desired time durations (for

example, a month); the execution of each such contract is referred to as a campaign. To

fulfill the demands of the campaigns, the platform bids in real-time at an ad exchange to

win mobile impressions arising over the desired sets of locations of the campaigns and

then allocates the acquired impressions among the ongoing campaigns. The core features

that characterize this procurement problem – supply is uncertain, supply cannot be inven-

toried, and there are demand-side commitments to be met – are applicable to a variety of

other business settings as well. Our analysis in this paper offers near-optimal policies for a

static model representing a subscription-based setting, where customers provide informa-

tion of their campaigns in advance to the platform. In the second chapter, we generalize

our analysis of the first chapter and consider a dynamic model of campaign arrivals. The

dynamic model represents a setting where campaigns arrive randomly and the platform
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reacts to these arrivals in real time; for this model, our rolling-horizon policy periodically

re-computes the platform’s procurement (or bidding) and allocation decisions. We estab-

lish performance bounds on our policies for both models and demonstrate the attractive-

ness of these bounds on real data. By isolating important structural features of a given set

of campaigns, we discuss practical implementation issues and offer procurement-policy

recommendations for a variety of settings based on these features. In the third chapter,

we consider an ongoing issue of ad-blocking and analyze its impact on websites and con-

sumers. We also propose strategies and insights that websites can use to react to ad-block

users. We show that the website can increase its revenue by discriminating between reg-

ular and ad-block users via the ad-intensities shown to them. More interestingly, we find

that the discriminatory power bestowed on the website by ad-blockers can also benefit

its users when their outside option is not very attractive. Thus, the advent of ad-blockers

can lead to a win-win for both the website and its users. Finally, we propose a superior

selective-gating strategy in which only a fraction of ad-block users are gated. We establish

the robustness of our conclusions under several enhancements to our base setting: (a) het-

erogenous profitabilities from regular users and ad-block users, (b) endogenous adoption

of ad-blockers, (c) the presence of a subscription option, and (d) negative externality due

to increased traffic. Our analysis ends with recommendations for three stakeholders in

this problem, namely, publishers, web-browser developers, and policy makers.
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CHAPTER 1

INTRODUCTION

The ubiquity of online media such as smart phones, tablets, and personal computers,

has led to their increasing use for advertising over the past decade (Central Market Re-

search, 2012; Lieberman, 2013). In particular, smart phones and tablets are rarely shared

by multiple individuals and can be tracked, thereby offering tremendous opportunities

for targeted advertising. Not surprisingly, mobile advertising is leading the rise in media

ad spending, with annual revenues in the US of about $18 billion in 2014 and projected to

exceed $50 billion by 2018 (eMarketer, 2014).

The focus of the current study is on advertising on a mobile device (e.g., a smart phone,

or a tablet). Specifically, we consider ads that are displayed on a mobile application (here-

after abbreviated as an app), such as an app for weather, stocks, or a game. This form

of advertising is on the increase. Here, advertisers – who provide ads created to promote

products or services, and ultimately generate demand for advertising space – and pub-

lishers, i.e., owners of the mobile apps that supply the space for ad-display, often interact

with each other through their respective agents. Advertisers are represented by demand

aggregators (e.g., Cidewalk, Sitescout) who provide advertisers with access to a variety

of publishers for the appropriate exposure of their ads. On the other hand, publishers

are represented by supply aggregators (e.g., Tribal Fusion, Chitika) who help monetize the

space owned by publishers and earn revenue for them.

The opportunity to display an ad on an app is referred to as an impression. The arrival

(or generation) of impressions is determined by a host of factors, including population

density, time of day, and weather. Till recently, most of the supply of impressions was

sold on a contractual basis. That is, supply aggregators entered into relatively long-term

contractual arrangements with app owners to sell their space for the display of ads. These

contracts were often drawn on a revenue-sharing basis, i.e., app owners got a proportion

1



of the revenue generated from their ad-space. In recent times, with the advent of mobile ad

exchanges (e.g., DoubleClick, Opera), the supply of impressions on apps is fast becoming

a commodity. There are no long-term contracts; rather, each opportunity to display an ad

is auctioned off on a mobile ad exchange.

The growth of mobile ad exchanges has also led to changes in the demand-side of

the industry. Demand aggregators are now able to directly buy supply from exchanges

rather than accessing the supply via a supply aggregator. While the advertising needs

of large advertisers (such as GE or Sony) are often addressed in an “ad agency” mode

providing end-to-end service, demand aggregators are moving to a “managed-service”

mode for small advertisers. Here, advertisers directly launch their individual campaigns

using a mobile-promotion platform (a demand aggregator), which accepts the operational re-

sponsibility of procuring impressions from the desired locations and at the desired times

to fulfill these campaigns. This “managed-service” mode is suitable for thousands of

small advertisers without deep pockets and offers an attractive advertising solution for

a hitherto under-served segment of the market. Further, managed service can be of two

types: subscription-based and “walk-in”. In the former, advertisers provide information of

their campaigns (when they arrive, how many impressions they need, etc.) in advance

to the platform. In the latter, the advertisers start their campaigns dynamically and the

platform reacts in real time to satisfy the requirements. In Chapter 2, we analyze the op-

timal bidding policies for a platform that offers a subscription-based service. Then, in

Chapter 3, we analyze the bidding policies for a platform that offers walk-in service.

A mobile-promotion platform can be seen as an online substitute for the traditional

(offline) Yellow Pages. As with Yellow Pages, such platforms are ideal for small lo-

cal businesses. However, medium and large firms also use them to run advertising

campaigns targeted in specific geographic locations. A prominent example of a mobile-

promotion platform is Cidewalk, the company we interacted with in defining the prob-
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lems addressed in this paper. Other major mobile-promotion platforms include Sitescout

(http://www.sitescout.com/) and ExactDrive (http://www.exactdrive.com/).

Mobile-Promotion platforms scale well and provide access to supply via the use of

mobile ad exchanges. The platform’s key expertise is in the ability to bid intelligently to

procure (i.e., win) impressions on a mobile ad exchange. Also, there needs to be a high

level of integration between the ad exchange and the platform to complete the bidding

process in real-time (Real-Time Bidding or RTB) and render the winner’s ad on an app.

Such technical expertise is usually not possessed by small advertisers. Hence there is

a niche for firms that possess sophisticated integration skills and fast, real-time analytic

abilities to buy supply at affordable prices and deliver ad campaigns at a net profit.

Advertiser

Demand Aggregator 
(Mobile-Promotion 

Platform)
Supply Aggregator

Publisher

Publisher

Publisher

Supply-Side

Advertiser

Advertiser

Mobile Ad-
Exchange

Bid
Revenue

Impressions

Revenue

Impressions

Campaign

Figure 1.1. The Mobile-Promotion Supply Chain: Advertisers start their campaigns on a
mobile-promotion platform, which executes these campaigns by procuring the required
impressions on a mobile ad-exchange, where publishers come to monetize their supply
of space for ad-display.

Figure 1.1 depicts the operational details of the mobile-promotion supply chain. The

mobile-promotion platform enters into contracts with advertisers (individual users or

businesses) under which it has to provide a certain number of impressions on mobile apps

in their desired sets of geographic locations (usually a set of cities or zipcodes) within

their desired time durations (e.g., a week or a month). We will refer to the execution of

a contract with an individual advertiser as a campaign. Thus, the input corresponding
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to a campaign includes a target number of impressions, a set of locations in which the

impressions have to be provided, and a time duration of execution. There are multiple

such campaigns being executed simultaneously. The sets of locations of the campaigns

as well as their time durations may intersect. The platform bids on ad-exchanges to win

the impressions needed (to place ads) to fulfill these campaigns: The more the bid on an

impression, the higher is the probability of winning that impression. The objective of the

platform is to win enough impressions and allocate these impressions among the ongo-

ing campaigns to fulfill the requirements of the campaigns at minimum cost. Our goal

in this paper is to address the problem faced by the platform of optimizing its procure-

ment (or bidding) and allocation policy for mobile ad delivery to support its multiple ad

campaigns.

In Chapter 4, we address the problem of ad-blocking, faced by websites and analyze

the impact of ad-blocking. Online advertisements have been pivotal in keeping the in-

ternet largely free of cost for users. Many websites – small and large – rely solely on

advertising revenue for their survival. While it is a lifeline for a free internet, online

advertising has been widely criticized for deteriorating consumer experience by display-

ing an excessive amount of irrelevant ads to users (Wall Street Journal, 2014). Perhaps

as an inevitable systemic retaliation, recent advancements in technology have allowed

consumers of digital content to block advertisements by using a type of software that is

now commonly referred to as an Ad-Blocker (e.g., Adblock Plus, see Figure 1.2). A typical

ad-blocker works by blocking ads at their source, i.e., by preventing communication to

ad-servers that deliver ads. Therefore, the use of ad-blockers not only improves the vi-

sual experience of the user, but also results in other advantages, including reduced data

download and website loading time, and efficient use of battery power. It has been re-

ported that websites load nearly four times faster with an ad blocker and use about 50%

less data (Wall Street Journal, 2015).
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Figure 1.2. The ad-cleansing action of an ad-blocker (source: Adblock Plus).

Motivated by these benefits, companies like Apple and Samsung – that do not rely

heavily on ad revenues – have welcomed ad-blockers on their mobile devices by adding

the functionality to integrate third-party ad-blockers. According to a highly cited recent

report by PageFair,1 ad-blocking penetration in the U.S. is currently around 18% and in

some other countries, such as Indonesia, has reached above 50%. It is estimated that

publishers worldwide lost nearly $41.4 billion in 2016 to the use of ad-blockers.

Most ad-blockers come with a “white-listing” feature, that allows web-users to create

a list of websites, referred to as a white-list, in which the ad-blocker will not prevent ads

from appearing. If an ad-blocker is detected on a user’s device, the target website can ask

the user to white-list the website, failing which access to the website can be denied; ex-

amples include http://www.forbes.com and http://www.businessinsider.com. Thus,

websites do have a choice in allowing or denying access to ad-block users. This choice

raises a genuine predicament: on the one hand, ad-block users do not generate revenue

for the website; on the other hand, denying them access can shrink the user base and ad-

versely affect the popularity of the website, ultimately reducing traffic over the long run

1https://pagefair.com/blog/2017/adblockreport/
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(we refer to this phenomenon as a network effect). Indeed, many publishers who reacted to

the increase in ad-block users by denying them access quickly stepped back and stopped

doing so (e.g., http://www.ratemyprofessors.com). To our knowledge, no clear strategy

has yet emerged to resolve this dilemma.

We model the decision problem for a publisher facing two user segments: regular

users (hereafter, referred to as regulars) and ad-blockers.2 Regulars are potential users of

the website who do not use any ad-block software, whereas ad-blockers are potential

users of the website who also use some ad-block software. The first-level decision or

gating strategy is whether to (a) allow ad-free access to ad-block users or (b) require white-

listing by ad-block users in order to allow them access. In (a), the second-level decision

for the website is the level of advertising (ad intensity) to regular users. In (b), the second-

level decisions are the ad-intensities to be used for regular users and for ad-block users.3

The website’s revenue depends directly on the ad-intensity(ies) it chooses and the traffic

it generates from each of the two user segments. Moreover, the traffic it generates de-

pends on the net utility that each individual user receives from visiting the website and

the value of the best alternative to the website (i.e., the outside option). The net utility

offered by the website depends on (i) the intrinsic value of the website’s content, (ii) the

value users obtain due to network effects, i.e., value derived as a result of the amount of

traffic/popularity of the website, and (iii) a negative utility or cost incurred due to the

presence of ads, driven by the overall past experience of ads as a nuisance; regular and

ad-block users differ in terms of these ad-viewing costs. Using this model, we derive an op-

timal gating and ad-intensity strategy for the website. We also solve an identical model

for a world without ad-block software. We show analytically that the presence of such

2When no confusion arises in doing so, we use the term “ad-blocker” to interchangeably refer to ad
block software or a user who has installed such software.

3Websites can detect and track white-listers; see, e.g., (DVorkin, 2016).
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software can be used by the website to increase its revenue by discriminating between

regular and ad-block users in terms of the ad-intensities shown to them. Clearly, this was

not possible in the absence of such software.

One naturally wonders if the website’s benefit in the post-ad-block world comes at

the expense of consumer welfare. Interestingly, we establish the precise condition – the

utility users get from their outside option is lower than a threshold – under which both

the website and its consumers benefit after the advent of ad-block software. Intuitively,

when the website is able to customize ad-intensities for regulars and ad-blockers, the

total traffic to the website increases. When the outside option offers a low utility, these

additional users not only obtain a higher net utility (relative to the pre-ad-block world)

but also increase the value of the website, which in turn also increases the net utility of

the existing users.

Instead of gating either all or none of the users (integral gating), one can consider a

more-general selective gating strategy in which only a fraction of the ad-block users are

asked to white-list the website. We show that this can increase the website’s revenue

significantly from that under integral gating. This analysis also helps us derive insights on

the optimal selective gating strategy, with respect to the strength of the network effect and

the ad-blocking rate (the fraction of the potential user-population that uses ad-blockers).
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CHAPTER 2

PROCUREMENT POLICIES FOR MOBILE-PROMOTION

PLATFORMS1

Unlike classical settings in Operations Management where uncertainty in demand is ad-

dressed via supply-side commitments, a mobile-promotion platform faces a situation

where it has made firm delivery commitments to customers but its supply of impressions

is uncertain. There are two important distinctions here from the traditional literature on

delivery commitments under supply/demand uncertainty (see, e.g., Chapters 8 and 10

in Tayur et al. 2012) and that on inventory management under service-level constraints

(e.g., Bookbinder and Tan 1988; Bashyam and Fu 1998): First, the platform’s uncertain

supply of impressions cannot be inventoried. In other words, the platform cannot win

impressions and store them to satisfy requirements in the future. Second, supply uncer-

tainty arises here due to reasons unlike those in the classical OM literature, e.g., random

yields (Yano and Lee 1995; Wang and Gerchak 1996): the uncertain arrival of impressions

followed by real-time competitive bidding to win these impressions. Another important

distinguishing feature is that the platform faces a multi-campaign problem over multi-

ple locations: On the one hand, impressions won from a location can be distributed to

multiple campaigns; this is akin to distribution systems, where a manufacturer allocates

supply to multiple retailers. On the other hand, a single campaign’s demand can be satis-

fied by sourcing impressions from multiple locations – this is similar to having multiple

suppliers for a product. Further, since the sets of locations differ across campaigns, the

situation becomes similar to one where customers (campaigns) desire subsets of partially-

substitutable items (impressions for a campaign are sourced only from a specific subset of

1Republished with permission of INFORMS, from “Procurement Policies for Mobile-Promotion Plat-
forms,” M. Aseri, M. Dawande, G. Janakiraman, and V. Mookerjee, forthcoming in Management Science,
October 2017; permission conveyed through Copyright Clearance Center, Inc.
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locations, but they could come from any location in the subset). Another related stream

from the supply chain literature is that on managing inventories in the face of uncer-

tain demand and a spot market for procurement (Haksöz and Seshadri 2007; Chen et al.

2013). One feature of our problem which further differentiates our work from the tradi-

tional Operations Management literature is that the network structure of our problem (see

Figure 1.1) changes much more frequently (whenever a new campaign arrives or leaves)

than in traditional settings.

As far as the application context is concerned, our paper is naturally related to the

growing literature on targeted advertising and, more generally, display advertising. Mobile-

promotion platforms help advertisers exploit both the location of their audience and the

time when their advertisements are sent. The efficacy of both these factors has been high-

lighted in several studies; see e.g., Forman et al. (2009), Luo et al. (2013), Andrews et al.

(2015), Fang et al. (2015). In the vast literature on display advertising, there are many

recent studies that address the challenges faced by the main stakeholders in the digital

advertising ecosystem. For example, Balseiro et al. (2014) address the problem of a pub-

lisher who has contracted with advertisers to deliver a certain number of impressions,

but still has a choice of selling the impressions on an ad-exchange. The goal of the paper

is to provide a policy to decide which impressions should be assigned to contracted ad-

vertisers and which should be sold on the ad-exchange. This problem is fundamentally

different from the one we address: First, the problem in Balseiro et al. (2014) is from the

viewpoint of a publisher while the problem we address is from the perspective of a plat-

form on which several advertisers execute their campaigns and the goal of the platform is

to satisfy these campaigns (i.e., deliver the required number of impressions) at minimum

cost. Second, Balseiro et al. (2014) assume that supply is plentiful, i.e., a sufficient number

of impressions are guaranteed to arrive to satisfy the requirement of the contracted adver-

tisers. On the other hand, the very core of the problem addressed in our paper is that the
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supply (the arrival of impressions) and the procurement of impressions (winning them)

are both uncertain. We mention three other papers: A problem of pricing impressions

faced by a publisher, who charges based on a cost-per-click pricing scheme, is addressed

in Najafi-Asadolahi and Fridgeirsdottir (2014). Turner (2012) addresses an ad-network’s

problem of allocating impressions generated by multiple demographic groups of users

to multiple advertisers, with the objectives of offering viewers a variety of ads and mak-

ing the execution highly predictable. Chickering and Heckerman (2003) address a prob-

lem faced by a publisher of maximizing the click-through-rate, subject to constraints that

guarantee a minimum volume of impressions for each advertiser.

The Computer Science literature investigates several other challenges encountered by

the different stakeholders in display advertising. For instance, (i) the design of contracts

between publishers and advertisers (see, e.g., Babaioff et al. 2009, Constantin et al. 2009,

and Feige et al. 2009), (ii) ad serving strategies for publishers who contract with mul-

tiple advertisers (see, e.g., Mahdian et al. 2007, Feldman et al. 2009, Kesselheim et al.

2014, and Esfandiari et al. 2015), (iii) the tradeoff faced by publishers between selling

impressions at ad exchanges versus selling them via long-term contracts with advertis-

ers (see, e.g., Ghosh et al., 2009, Balseiro et al. 2014, Arnosti et al. 2016), (iv) revenue-

maximizing strategies for ad exchanges when there is a significant gap between the high-

est and second-highest bids for certain impressions (see, e.g., Mirrokni et al. 2010, Celis

et al. 2014), (v) learning of advertisers’ valuations for impressions through repeated inter-

actions between an ad exchange and advertisers (see, e.g., Amin et al. 2013, Kanoria and

Nazerzadeh 2014). For a broader discussion of these and other challenges, we refer the

reader to the recent survey by Korula et al. (2016).

Finally, the analysis of our rolling-horizon policy for the platform’s procurement and

allocation decisions makes a useful contribution to the existing literature on re-optimization

methods. We mention three recent studies: Jasin and Kumar (2012) consider a network
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revenue management problem with customer choice and exogenous prices, and develop

a performance guarantee for a class of heuristics that periodically re-solve deterministic

linear programs. (Jasin, 2014) addresses a seller’s goal of maximizing total expected rev-

enue for a dynamic pricing problem with finite inventories, finite selling horizon, and

stochastic demands, and establishes performance guarantees for heuristics that require

few or no re-optimizations. Motivated by applications in display advertising and net-

work revenue management, Ciocan and Farias (2012) consider a class of dynamic alloca-

tion problems with unknown and volatile demand. The authors establish performance

guarantees for a simple algorithm that uses a combination of re-optimization and “ro-

bust” forecasting.

2.1 Analysis of a Static Model of Campaign Arrivals

In this section, we describe and study a model in which information about all the cam-

paigns, i.e., their time durations, demands, and locations of interest, is available at the

beginning of the planning horizon. Thus, this model is a static model of campaign arrivals.

The formulation and analysis of this model will serve as a useful stepping stone for the

dynamic model studied in Chapter 3.

Let L = {1, 2, . . . , L} denote the set of locations2 (say, zip-codes) in the geographic

region considered. Each campaign is interested in displaying its ad over a specific set of

locations on mobile devices when users open apps – we refer to the event of a mobile

device user, in one of the desired locations, opening an app as an impression. Thus, there

are 2L − 1 campaign-types based on the set of locations a campaign is interested in. Let

C = {1, 2, . . . , C} denote this set, where C = 2L − 1. For every c ∈ C, we use Lc to denote

the set of locations of interest to campaign-type c. For ease of exposition, we assume

2The notion of a location here can also be used to model the finer attributes of an impression such as the
(location, app) combination and/or the demographic segment of the mobile user.
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that one campaign of each type arrives at the beginning of the horizon;3 thus, we use

“campaign c” to refer to the type-c campaign which arrives. For every c ∈ C, let Mc

denote the number of impressions required by campaign c.

There are three units of time which we use in our model. The planning horizon con-

sists of a set of S periods denoted by S = {1, 2, . . . , S}, where a time period is typi-

cally a day. Each time period consists of I time blocks indexed by i = 1, 2, . . . , I , where

each block is typically a segment of a day, say early morning, mid-morning, etc.. Let

I = {1, 2, . . . , I} be the set of distinct time blocks. Each block consists of many time slots,

where a time slot is typically a millisecond. For notational convenience, each block is as-

sumed to consist of ∆ time slots. Then, the planning horizon consists of the set of time

slots T := {1, 2, . . . , SI∆}. We also use the notation Ts to denote the set of time slots in

period s and Ts,i to denote the set of time slots in block i of period s.

The length of a time slot is chosen to be sufficiently small to ensure that at most one

impression arrives in one time slot. For any time slot t ∈ Ts,i , let qi,l be the probability

that an impression from location l arrives in that time slot. Impression arrivals are prob-

abilistically independent across time slots. The impressions are auctioned in real-time on

an ad-exchange. The platform, and also other advertisers or companies acting on behalf

of advertisers, bid for these impressions. The highest bidder wins the impression and

pays the price that she bids to the exchange. Clearly, the higher the bid, the greater the

probability of winning an impression. We model this using a win-curve, that is, a func-

tion pi,l(b) : [0, bmaxi,l ] → [0, 1], l ∈ L, i ∈ I, which means the following: Given that an

impression arrives from location l in some time slot t ∈ Ts,i (for some s ∈ S and i ∈ I),

pi,l(b) specifies the probability of winning that impression by bidding an amount b. It is

3The assumption that each campaign arrives at the beginning of the planning horizon is purely for ex-
positional convenience. The analysis in this section easily extends to the situation when there are (possibly)
multiple campaigns of each type and they start at different times.
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reasonable and convenient to assume that bmaxi,l is a large enough value that an impression

will definitely be won with a bid of that value.

For every c ∈ C, let Kc denote the number of periods over which campaign c lasts;

that is, this campaign’s duration is Kc periods. Thus, tc := KcI∆ is the last time slot in

campaign c’s duration. That is, campaign c requires a delivery ofMc impressions from the

set of locations, Lc, within the firstKc periods (i.e., first tc time slots). For every campaign,

the platform commits to meeting this requirement with a probability α, whose value is

close to 1.4

The platform’s decisions are as follows: (i) Procurement Policy – The bids to place

through time on the impressions that (possibly) arrive from the desired locations. (ii)

Allocation – If an impression is won from a certain location and if several campaigns are

interested in that location, then the platform also chooses the campaign to which that

impression is to be assigned.

Notice that the platform’s bids can be dynamic; for example, if many impressions have

been won early on within the campaign time-duration, then the platform may start bid-

ding low on subsequent impressions. The platform’s objective is to minimize its expected

cost subject to the constraint that it obtains at least Mc impressions with a probability of

α or more, for each campaign c ∈ C. We denote this problem by Pstatic( ~M,α), where

~M ∈ RC
+ is the vector with elements Mc, c ∈ C.

For our mathematical formulation of Pstatic( ~M,α), it is useful to define the bid curve

bi,l(x) : [0, 1] → [0, bmaxi,l ], i ∈ I, l ∈ L, as the inverse of the function pi,l(·); that is,

bi,l(x) = p−1
i,l (x). Thus, bi,l(x) is the bid required during time-block i at location l, to ensure

a winning probability of x. We also define fi,l(x) = xbi,l(x); this is the expected cost asso-

ciated with choosing a win-probability of x for an impression at location l in time-block i.

4In practice, it is not possible for the platform to choose α = 1, because there is always a chance (al-
beit small) that very few impressions arrive during the campaign duration (e.g., a natural calamity may
cause this). If the platform fails to meet the demand for a campaign, then the payment is refunded to the
advertiser; however, with the choice of a high value of α, this event is quite rare.
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It should be clear that our problem can also be formulated as one in which the platform’s

decisions are the win-probabilities to use on the impressions that arrive (instead of the

corresponding bid amounts). We now proceed to present the mathematical formulation

of Pstatic( ~M,α).

Consider any period s in the planning horizon S and any time block i ∈ I. For every

t ∈ Ts,i, let jt,c denote the number of impressions won by campaign c before the start of

time-slot t. Thus, ~jt = (jt,c : c ∈ C) denotes the state vector at the beginning of time-slot

t; this vector captures the information on the number of impressions won by the various

campaigns. Let Jt denote the set of all feasible state vectors in time-slot t.

A policy π is defined by a set of target win-probability functions {xπt,l : Jt → [0, 1], t ∈

T , l ∈ L} and a set of allocation functions {yπt,l,c : Jt → [0, 1], t ∈ T , l ∈ L, c ∈

C}. If an impression arises from location l in time-slot t, then xπt,l(~jt) denotes the win-

probability targeted by π for this impression and yπt,l,c(~jt) denotes the probability with

which policy π wins this impression and allocates it to campaign c.5 We also assume

an upper bound xmax ∈ (0, 1] on the target win-probabilities {xπt,l}. In practice, most of

the campaigns come from metropolitan areas, where the supply of mobile impressions

is plentiful. Therefore, the platform typically needs to procure only a small fraction of

the total supply of impressions. For instance, Cidewalk does not need to target a win-

probability higher than 0.05 from any location in any time slot (Cidewalk, Inc., 2016).

From a theoretical perspective, we will see that the provable cost performance of the

policy we propose depends on xmax.

Next, we explain how we model the random outcomes associated with the arrival, the

winning, and the allocation of impressions. Consider any period s ∈ S and block i ∈ I.

For every slot t ∈ Ts,i, let U imp
t be a random variable that takes any value l ∈ L with

5We note that the decisions xπt,l and yπt,l,c depend on the history until time slot t only through ~jt. This is
because of the assumed independence of the arrival of impressions across time slots (over all time periods).
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probability qi,l (denoting the event that an impression arrives in location l in time slot

t) and the value 0 with probability 1 −
∑

l∈L qi,l (denoting the event that no impression

arrives in time slot t). We assume that these random variables are independent across

time slots. To model the winning and the allocation of impressions, we use a set of U [0, 1]

random variables (this is a standard and convenient mathematical device) as follows.

Let {Uwin
t : t ∈ T } and {Ualloc

t : t ∈ T } denote two sets of mutually independent

i.i.d U [0, 1] random variables, independent of {U imp
t : t ∈ T }. If an impression arises

from location l in time-slot t, we say that this impression is won by policy π if and only

if Uwin
t ≤ xπt,l

(
~jt
)
. If this impression is won, then it is allocated to campaign c if Ualloc

t

is between
∑c−1

ĉ=1 y
π
t,l,ĉ(~jt)/x

π
t,l

(
~jt
)

and
∑c

ĉ=1 y
π
t,l,ĉ(~jt)/x

π
t,l

(
~jt
)
. This ensures that, in time slot

t, an impression is won for campaign c from location l ∈ Lc with probability yπt,l,c(~jt).

Let ~Ut =
(
U imp

1 , Uwin
1 , Ualloc

1 , U imp
2 , Uwin

2 , Ualloc
2 , . . . , U imp

t , Uwin
t , Ualloc

t

)
be the history of these

random variables until time-slot t (including t) and let Ut be the set of all possible vectors

~Ut. Also, let jπt,c(~ut−1) represent the number of impressions procured by policy π for cam-

paign c by the start of time slot t when the realized history ~Ut−1 = ~ut−1. Let~jπt (~ut−1) be the

vector containing elements jπt,c(~ut−1), ∀c ∈ C.

From the definition of xπt,l
(
~jt
)

and yπt,l,c
(
~jt
)
, we note that xπt,l

(
~jt
)

=
∑

c∈C y
π
t,l,c

(
~jt
)
, ∀ ~jt ∈

Jt. Furthermore, since campaign c is only interested in the set of locations Lc, we have

yπt,l,c
(
~jt
)

= 0, if l /∈ Lc, ∀c ∈ C, ~jt ∈ Jt. For any policy π, let

fπ :=
∑
s∈S

∑
i∈I

∑
t∈Ts,i

∑
l∈L

E~Ut−1

[
qi,lfi,l

(
xπt,l
(
~jπt (~Ut−1)

))]

denote the expected cost of policy π.

The platform’s problem Pstatic( ~M,α) can now be written as follows:
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Pstatic( ~M,α) :



minπ f
π (2.1)

subject to:
∑

c∈C y
π
t,l,c(~j) = xπt,l(~j), ∀ t ∈ T , ~j ∈ Jt, l ∈ L, (2.2)

jπt+1,c(~ut) = jπt,c(~ut−1) +
∑

l∈Lc 1(U imp
t = l) (2.3)

×1
(
Uwin
t ≤ xπt,l

(
~jπt (~ut−1)

))
×1
(∑c−1

ĉ=1 y
π
t,l,ĉ

(
~jπt (~ut−1)

)
xπt,l

(
~jπt (~ut−1)

) < Ualloc
t ≤

∑c
ĉ=1 y

π
t,l,ĉ

(
~jπt (~ut−1)

)
xπt,l

(
~jπt (~ut−1)

) )
,

∀ t ∈ T , c ∈ C, ~ut ∈ Ut,

xπt,l(~j), y
π
t,l,c(~j) ∈ [0, xmax], ∀ t ∈ T , ~j ∈ Jt, l ∈ L, c ∈ C, (2.4)

P
[
jπtc+1,c(~Utc) ≥Mc

]
≥ α, ∀ c ∈ C. (2.5)

Equation (2.3) defines the transition of jπt,c(~ut−1) to jπt+1,c(~ut). To understand this equation,

note that the first indicator variable on its right side takes the value 1 if an impression

arrived at location l in time slot t, the second indicator takes the value 1 if this impression

is won by policy π, and the third indicator takes the value 1 if the impression is allocated

to campaign c.

Our plan to analyze Pstatic( ~M,α) is as follows: In the next subsection, we will study

a relaxation of problem Pstatic( ~M,α) and obtain an optimal policy for this relaxation. Then,

in Section 2.1.2, we will use that policy to obtain a near-optimal policy for problemPstatic( ~M,α).

Note: We have assumed that the arrivals of impressions are independent across time slots.

However, our analysis can be extended for an arbitrary stochastic process of impression

arrivals; see Remark 2 in Section 2.1.2 for a discussion.

2.1.1 A Relaxation and Its Optimal Solution

We start by defining a new problem, similar to problem Pstatic( ~M,α), in which the con-

straint is to deliver a certain number of impressions, say βc ≥ 0, in expectation for each

campaign c ∈ C. Let ~β be the vector with elements βc, c ∈ C. Formally, we denote by
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PEstatic(~β) the following problem:

PEstatic(~β) :


minπ f

π

subject to: (2.2), (2.3), (2.4) and

E
[
jπtc+1,c(~Utc)

]
≥ βc, ∀ c ∈ C. (2.6)

Next, using Markov’s inequality we observe that, for each c ∈ C, the probabilistic

guarantee in problem Pstatic( ~M,α), that is, the constraint P
[
jπtc+1,c(~Utc) ≥Mc

]
≥ α implies

the inequality E
[
jπtc+1,c(~Utc)

]
≥ αMc. Thus, for the choice ~β = α ~M , problem PEstatic(α ~M) is

a relaxation of problem Pstatic( ~M,α). We now proceed to solve PEstatic(~β) for any ~β.

We assume that for l ∈ L and i ∈ I, the expected cost fi,l(x) of ensuring a win-

probability of x at location l during time block i, is a strictly increasing and strictly con-

vex function of x. This is a reasonable assumption; for instance, this result can be easily

derived if we assume that the win curve pi,l(b) – which defines the probability of winning

an impression at location l during time block i by bidding an amount b – is strictly in-

creasing and concave in b (or, equivalently, that the bid curve bi,l(x) is strictly increasing

and convex in x). This latter assumption has been verified on real data in prior research;

see e.g., Zhang et al. (2014). In Chapter 3, we validate the strict convexity of fi,l(x) on real

data. Accordingly, we will henceforth assume that fi,l(x) is strictly increasing and strictly

convex in x. We now introduce a deterministic problem P̂(~β) and then establish its equiv-

alence to PEstatic(~β); that is, we show that an optimal policy for PEstatic(~β) can be obtained

from an optimal solution to P̂(~β). For any vector x̂ = (x̂s,i,l : s ∈ S, i ∈ I, l ∈ L), let

f̂(x̂) =
∑

s∈S
∑

i∈I
∑

l∈L∆ qi,l fi,l(x̂s,i,l).

Let P̂(~β) denote the following problem:

P̂(~β) :



minx̂,ŷ f̂(x̂)

subject to:
∑

c∈C ŷs,i,l,c = x̂s,i,l, ∀ s ∈ S, i ∈ I, l ∈ L, (2.7)∑Kc
s=1

∑
i∈I
∑

l∈Lc ∆ qi,lŷs,i,l,c ≥ βc, ∀ c ∈ C, (2.8)

x̂s,i,l, ŷs,i,l,c ∈ [0, xmax], ∀ s ∈ S, i ∈ I, l ∈ L, c ∈ C.
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Theorem 1. Let
(
x̂∗(~β), ŷ∗(~β)

)
be an optimal solution to P̂(~β). Let π(~β) denote the following

policy:

π(~β) :=

 x
π(~β)
t,l (~j) = x̂∗s,i,l(

~β), ∀ t ∈ Ts,i, s ∈ S, i ∈ I, l ∈ L, ~j ∈ Jt,

y
π(~β)
t,l,c (~j) = ŷ∗s,i,l,c(

~β), ∀ t ∈ Ts,i, s ∈ S, i ∈ I, l ∈ L, c ∈ C, ~j ∈ Jt.

Then, π(~β) is an optimal policy for PEstatic(~β).

The proofs of all the technical results are in the Appendix. Two important observations

about the policy π(~β) in Theorem 1 are relevant here: (i) This policy is a static (i.e., state-

independent) policy. That is, the platform’s target win-probability at a given time does

not depend upon the state of the system at that time, namely the number of impressions

won for the individual campaigns. This is an appealing feature, since the platform does

not need to alter its bidding intensity either with time (within a time block) or with the

number of impressions won. (ii) This policy is obtained by solving problem P̂(~β), which is

a problem of minimizing a (non-linear) convex function over a polyhedral feasible region,

and is therefore efficiently solvable.

2.1.2 A Near-Optimal Solution to Problem Pstatic( ~M,α)

We know that the policy π(~β) is optimal for Problem PEstatic(~β). Given this, we now

proceed to find a suitable vector, ~β, such that π(~β) is feasible for our original problem

Pstatic( ~M,α) and has a near-optimal expected cost for that problem. The basic intuition

in identifying the “correct” ~β to use is the following: Recall that, in Problem PEstatic(~β), ~β

is the vector of the expected number of impressions won (for the different campaigns).

Notice that, under any feasible policy for Pstatic( ~M,α), the vector of the expected num-

ber of impressions won is larger (componentwise) than α ~M . Thus, any feasible policy

for Pstatic( ~M,α) is also feasible for PEstatic(α ~M); the converse is, of course, not true. The

idea then is to find the optimal policy for PEstatic(~β) for a suitably picked “padded vector”
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~β ≥ α ~M . That is, we need to add a “safety cushion” to α ~M and target, in expectation,

the resulting inflated vector. Since, for any expected target vector ~β, the optimal policy

π(~β) is a state independent policy, the number of impressions won for each campaign

c over every time block (s, i) has a Binomial distribution. Using the optimal policy for

PEstatic(~β) from Theorem 1, we can see that the mean of this distribution is ∆ p̂
~β
s,i,c, where

p̂
~β
s,i,c :=

∑
l∈Lc qi,lŷ

∗
s,i,l,c(

~β) and that its variance is ∆ p̂
~β
s,i,c(1 − p̂

~β
s,i,c). Given the large num-

ber of time slots over which impressions arrive, this Binomial distribution is approxi-

mately normally distributed. Thus, the total number of impressions delivered to cam-

paign c is approximately normally distributed with mean
∑Kc

s=1

∑
i∈I ∆ p̂

~β
s,i,c and variance∑Kc

s=1

∑
i∈I ∆ p̂

~β
s,i,c(1 − p̂

~β
s,i,c). Therefore, the probabilistic guarantee associated with cam-

paign i requires us to ensure that
∑Kc

s=1

∑
i∈I ∆ p̂

~β
s,i,c − zα

√∑Kc
s=1

∑
i∈I ∆ p̂

~β
s,i,c(1− p̂

~β
s,i,c) =

Mc, c ∈ C, where zα := Φ−1
N (α) and ΦN denotes the standard normal cumulative dis-

tribution function. Since the probability that an impression arrives (in any location) in

a given time slot is extremely small, the value of 1 − p̂
~β
s,i,c ≈ 1 for any ~β. This im-

plies that we need to find ~β such that
∑Kc

s=1

∑
i∈I ∆ p̂

~β
s,i,c − zα

√∑Kc
s=1

∑
i∈I ∆ p̂

~β
s,i,c = Mc.

From the definitions of ŷ∗s,i,l,c(~β) (which is an optimal, and therefore feasible, solution to

P̂(~β)) and p̂
~β
s,i,c, we know that

∑Kc
s=1

∑
i∈I ∆ p̂

~β
s,i,c =

∑Kc
s=1

∑
i∈I ∆

∑
l∈Lc qi,lŷ

∗
s,i,l,c(

~β) = βc.

Thus, the above equation is the same as βc − zα
√
βc = Mc, solving which we obtain

βc =
2Mc+z2α+

√
(2Mc+z2α)2−4M2

c

2
. In practice, the number of impressions Mc required by any

campaign c is of the order of thousands. Also, the platform’s probabilistic guarantee α

is typically in the range [0.95, 0.99]. In such settings, the above expression approximates

to βc = Mc + zα
√
Mc. This has a nice interpretation: The quantity zα

√
Mc is the safety

cushion for campaign c, similar to the notion of safety stock in the newsvendor model. We
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now show that the policy π(~β), where βc is chosen as above (for every c), is near-optimal

to Pstatic( ~M,α).6

For c ∈ C, let β∗c = Mc + zα
√
Mc. We will use the policy π( ~β∗) as our solution to

Pstatic( ~M,α). Theorem 2 below provides a bound on the performance of this policy. Let

Opt( ~M,α) denote the optimal cost in Problem Pstatic( ~M,α). Let γ = maxc∈C

[
β∗c
αMc

]
=

maxc∈C

[
1
α

(
1 + zα√

Mc

)]
. Define

ψi,l(x) =
xf ′i,l(x)

fi,l(x)
, ∀ i ∈ I, l ∈ L, x ∈ [0, 1].

Since α ∈ [0.95, 0.99] and Mc is of the order of 100,000, we have γxmax � 1. We proceed

under the assumption that γxmax < 1, and define ψ = max
x∈[0,γxmax]

max
i∈I,l∈L

ψi,l(x). Assume that

ψ < γ
γ−1

: This assumption is easily satisfied in realistic problem instances. For example, in

the discussion following Theorem 2, we will see that ψ is an order of magnitude smaller

than γ
γ−1

.

Theorem 2. The ratio of the expected cost of policy π( ~β∗) to the optimal cost in ProblemPstatic( ~M,α)

is bounded from above as follows:

fπ( ~β∗)

Opt( ~M,α)
≤ 1

1− (γ−1)
γ
ψ
. (2.9)

A quantity of immediate interest is the magnitude of the bound 1

1− (γ−1)
γ

ψ
on realistic

problem instances. We shed light on this through the following realistic example. Let

Mc = 150, 000 for all c, xmax = 0.05 and α = 0.99. Then, γ = 1.016. For the win-curves

estimated in Chapter 3 based on real data, we get ψ = 1.42. Substituting γ = 1.016 and

ψ = 1.42 in the right-hand side of (2.9), the bound 1

1− (γ−1)
γ

ψ
equals 1.023. That is, the total

cost corresponding to the state-independent policy π( ~β∗) is at most 2.3% higher than that

of an optimal policy for Pstatic( ~M,α).

6It is easy to see that our analysis can naturally be extended to one in which the platform provides a
campaign-specific probabilistic guarantee αc. In this case, the value of the “padded demand” βc will be
computed using βc =Mc + zαc

√
Mc.
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We now examine the intuition behind the two parameters γ and ψ in (2.9):

• As far as the performance bound of our policy is concerned, the quantity of imme-

diate interest is the extent to which we over procure. This quantity is represented

by γ: For a campaign c ∈ C, the ratio Mc+zα
√
Mc

αMc
captures the (percentage) additional

number of impressions needed by our policy (to ensure a probabilistic guarantee of

α) over the amount αMc needed by the relaxed problem PE(α ~M) (which provides

a lower bound on the optimal cost) for campaign c. Thus, γ = maxc∈C

[
Mc+zα

√
Mc

αMc

]
is the maximum additional percentage of impressions needed by our policy. For

example, if γ = 1.05, then our policy procures 5% additional impressions.

• Note that ψi,l(x) =
f ′i,l(x)

fi,l(x)/x
. The numerator of the expression on the right-hand-side

of the above equation is the marginal expected cost at win-probability x while the

denominator is the marginal expected cost at win-probability x if the expected cost

function were a linear function with a slope fi,l(x)/x. Thus, for a win-probability

of x, the ratio ψi,l(x) compares the (true) marginal cost relative to the (hypothetical)

marginal cost if the expected cost function were linear. In other words, ψi,l(x) is a

measure of how fast the expected cost function changes relative to a (hypothetical)

linear cost function. Thus, ψ = max
x∈[0,γxmax]

max
i∈I,l∈L

ψi,l(x)

is the maximum rate at which the expected cost function increases relative to a linear

cost function. For example, if ψ = 1.4, then the maximum rate at which the expected

cost function increases, relative to a linear expected cost function, is 40%.

The following two results highlight the structure of our policy with respect to its win

probabilities, i.e., the values x̂∗s,i,l( ~β∗), s ∈ S, i ∈ I, l ∈ L.

Proposition 1. For any location l ∈ L, the target win-probabilities for location l in our policy

π( ~β∗) decrease with time in the following sense: x̂∗s,i,l( ~β∗) ≥ x̂∗s+1,i,l(
~β∗), i ∈ I, 1 ≤ s ≤ S − 1.
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Proposition 2. For any location l ∈ L, any time period s ∈ S and any time-block i ∈ I, the

target win-probabilities in our policy π( ~β∗) decrease with an increase in the arrival probability qi,l.

That is, as qi,l increases, the win-probability x̂∗s,i,l( ~β∗) decreases.

Remark 1: Since the derivation of our policy π( ~β∗), which has a closed-form expression,

uses the Normal approximation to the c.d.f. of a Binomial distribution, it is possible that

this policy slightly violates the probabilistic guarantee that every campaign c is delivered

Mc impressions with probability α. This infeasibility can be easily avoided if closed-

form expressions are not required. In this case, we can numerically compute a padded

vector ~̃β such that policy π(~̃β) satisfies the probabilistic guarantee. Such a policy is also

endowed with the cost performance guarantee stated in Theorem 2 with the change that

γ be replaced by γ̃ := maxc∈C

[
β̃c
αMc

]
. �

Remark 2: We now explain how our analysis thus far continues to hold when we relax

the assumption that the arrivals of impressions are independent across time slots.

• The results that (i) problem PEstatic(α ~M) is a relaxation of problem Pstatic( ~M,α) and

(ii) problem PEstatic(~β) is equivalent to problem P̂(~β), continue to hold for an arbi-

trary stochastic process of impression arrival (after making obvious modifications

in the notation).

• The derivation in Theorem 1 of an optimal policy for problem PEstatic(~β) by solving

P̂(~β) and the fact that this policy is a state-independent policy also continue to hold

for an arbitrary stochastic process of impression arrival.

• The next step of our analysis was the computation of the padded vector ~β∗ such that

the optimal policy for problem PEstatic(~β∗) is feasible for Pstatic( ~M,α). In the absence

of the independence assumption, we lose the simple, closed-form expression for ~β∗.

In the literature, Markov Modulated Poisson processes have been used as a popular
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model to capture dependence in continuous time (see, e.g., Song and Zipkin 1993,

Abhyankar and Graves 2001). In our discrete-time setting, this is best modeled by

a discrete-time Markov chain which can potentially change states at the beginning

of every time block. This state would then dictate the arrival rate of impressions.

It is common to assume that this state is observable (for example, the outcome of a

certain sports event affecting the arrival rate of impressions of a certain type). In this

setting, similar to Remark 1 above, we can numerically compute a padded vector ~̃β.

Here too, the cost performance guarantee remains as stated in Theorem 2 with the

change that γ be replaced by γ̃ := maxc∈C

[
β̃c
αMc

]
. �

2.2 Implementation Issues and Policy Recommendations

When an impression arrives, it is auctioned at a mobile ad-exchange in real time. For the

platform to participate in the auction, it must typically respond with a bid in less than 100

milliseconds (Downey, 2012). Once all legal bids are in, the ad exchange decides the win-

ner and displays the winner’s ad on the impression. The stringent time requirement for

the platform’s response (i.e., bid) necessitates the adoption of a specific architecture for the

procurement and allocation process; real-world platforms typically use a “master-slave”

bidding architecture. When advertisers initiate campaigns, their requests are received by

a master server, which manages the campaigns by first decomposing the tasks involved in

fulfilling the campaigns and then assigning responsibilities to multiple slave servers. The

use of multiple slave servers ensures that a (potential) technical failure of one server does

not stall the procurement process of all the campaigns. Decomposition ensures that each

slave server is largely independent, i.e., it has its own budget and can bid independently,

thus saving time by avoiding the need to coordinate with the other slave servers.

One effective decomposition approach is to partition the campaigns across locations:

Each slave server is assigned the responsibility of procuring impressions from a set of
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locations; for each location, the number of impressions to procure, the time limit, and

the budget, are provided to the slave server by the master server. The slave servers do

not share locations and can, therefore, go about their task without coordinating with the

other slave servers. The key question for the master server then is to achieve such a

decomposition.

For simplicity of our exposition here, we consider a special case (of the model in Sec-

tion 2.1) in which all the campaigns start and end at the same time, and the impression-

arrival probabilities and the bid curves stay the same through time. The time duration of

each campaign is T time slots. We now discuss two decomposition approaches.

2.2.1 An Informed Decomposition Based on Our Near-Optimal Policy

Our policy (Section 2.1.2) lends itself nicely for implementation on this architecture. Re-

call that this policy requires each location l ∈ L to target a constant win-probability x̂∗l (~β
∗)

within a time block, to satisfy the platform’s probabilistic guarantee α for each campaign.

Since we have only one time block here, our policy becomes a static policy in this special

case. Assume that we have s slave servers and consider a partition of the set of locations

L into s disjoint subsets: L1,L2, . . . ,Ls. Then, slave server k is assigned the responsibility

of winning impressions from the locations in the subset Lk, k = 1, 2, . . . , s. Although we

do not propose any particular partitioning approach, a partition that assigns roughly a

similar number of locations to each server or a partition in which each server procures

roughly a similar number of impressions should be reasonable in practice. Our policy

can now be implemented as follows: For a specific location l ∈ Lk, slave server k bids

bl
(
x̂∗l (

~β∗)
)

on an impression to target a winning probability of x̂∗l (~β
∗) at that location. The

impressions won by the slaves can then be allocated to the various campaigns using the

probabilities ŷ∗l,c( ~β∗), l ∈ L, c ∈ C, specified by the policy. Next, we discuss an intuitive

approach for decomposing campaigns across locations.
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2.2.2 Greedy Decomposition

Assume that the bid curves bl(x) can be strictly ordered across locations: For any two

locations l, l′ ∈ L, exactly one of the following holds: bl(x) < bl′(x),∀x ∈ (0, 1], or

bl(x) > bl′(x), ∀x ∈ (0, 1]. It then follows that each campaign has a unique cheapest loca-

tion. For campaign c ∈ C, let l*c ∈ Lc denote its cheapest location, i.e., bl*c(x) < bl(x), ∀l ∈

Lc\{l*c}, x ∈ (0, 1].

In the greedy decomposition approach, each campaign c ∈ C procures all its impres-

sions from its cheapest location l*c. Since the set of locations for the different campaigns

may overlap, it is possible for a given location to be the cheapest location for multiple

campaigns. Let C*
l be the set of campaigns for which location l is the cheapest location,

i.e., C*
l = {c ∈ C : l*c = l}. Thus, all the impressions needed for the campaigns in C*

l will

be sourced from location l. Recall from our analysis in Section 2.1.2 that the expected

number of impressions needed for a campaign c ∈ C to meet the platform’s probabilistic

guarantee is β∗c = Mc + zα
√
Mc. Thus, the aggregate number of impressions to be pro-

cured from location l ∈ L is Ml =
∑

c∈C*
l
β∗c . Using the same notation as in the previous

subsection, suppose that slave server k is responsible for winning impressions from the

locations in the subset Lk, k = 1, 2, . . . , s. Then, if slave server k uses a static policy, it

targets a win-probability of xl = Ml

Tql
for a specific location l ∈ Lk.

2.2.3 A Comparison of Decomposition and Procurement Approaches

By using either of the decomposition approaches discussed above, suppose that a slave

server is assigned the task of procuring Ml impressions from location l ∈ L. Let jt,l be

the number of impressions procured from location l by the end of time slot t − 1. Thus,

at the beginning of time slot t, the remaining number of impressions to be procured from

location l is Ml − jt,l while ql(T − t) is the expected number of impressions yet to arrive
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from location l over the campaign time-duration T . Accordingly, the server targets a win-

probability of xl,t = min
{Ml−jt,l
ql(T−t)

, 1
}

at location l; i.e., it bids bl(xl,t) in state jt,l. Clearly,

the server’s bidding intensity in this policy changes with the state. For example, if the

remaining number of impressions to be procured approaches the expected number of

impressions to arrive, then the bids become aggressive. This policy is based on our obser-

vations at Cidewalk.

The preceding discussion identifies two approaches each for the decomposition of

campaigns across slaves (namely, Informed and Greedy) and a server’s procurement policy

(namely, Static and Reactive). As a result, we have the following four approaches: (i)

Informed-Static (IS) – The informed approach (I) for decomposition followed by the static

procurement policy (S). (ii) Informed-Reactive (IR) – The informed approach (I) for decom-

position followed by the reactive procurement policy (R). (iii) Greedy-Static (GS) – The

greedy approach (G) for decomposition followed by the static procurement policy (S).

(iv) Greedy-Reactive (GR) – The greedy approach (G) for decomposition followed by the

reactive procurement policy (R). We now use numerical experiments to examine these

approaches for different practical settings of the platform’s problem and then offer our

recommendations.

Simulation and Recommendations

We begin by specifying the default setting of the simulation. To assess the impact of a

specific parameter, we will vary only that parameter while retaining the remainder of the

default setting.

There are 4 campaigns and 4 locations, i.e., C = {1, 2, 3, 4} and L = {1, 2, 3, 4}. Each

campaign needs 3000 impressions within a time-duration of T = 106 time slots. Thus,

Mc = 3000,∀c ∈ C. For each of the four locations, the probability that an impression

will arrive in a time slot is 0.05, i.e., ql = 0.05, ∀l ∈ L. The platform’s probabilistic
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guarantee α is 0.99. We choose a simple polynomial form for a bid curve that makes it

easy to vary the heterogeneity in the bid curves across locations: For location l ∈ L, the

bid curve is bl(x) =
(
1 + (a−1)l

4

)
x4, where a ≥ 1 is a parameter; thus, as a increases, the

locations become increasingly heterogeneous. We use a = 2 as a default. Also, notice

that the cost of winning impressions at the locations is in the order of their index l, with

location 1 being the cheapest. The locations of interest for the four campaigns, i.e., the sets

Lc, c ∈ C, are specified by a 0-1 “association” matrix 〈c, l〉, c ∈ C, l ∈ L: the entry (c, l) = 1,

if campaign c is interested in location l; 0, otherwise. Thus, for campaign c ∈ C, the set Lc

consists of the locations with entry 1 in the row of the matrix corresponding to campaign

c. Four different association matrices are illustrated in Figure 2.1; we will soon discuss

the interpretations of these matrices. We use the association matrix A2 as our default.

A1 =


l1 l2 l3 l4

c1 1 1 1 1
c2 0 1 1 1
c3 0 0 1 1
c4 0 0 0 1


Low Overlap

A2 =


l1 l2 l3 l4

c1 0 1 1 1
c2 0 1 1 1
c3 0 0 1 1
c4 0 0 0 1


Medium Overlap

A3 =


l1 l2 l3 l4

c1 0 1 1 1
c2 0 0 1 1
c3 0 0 1 1
c4 0 0 0 1


Medium Overlap

A4 =


l1 l2 l3 l4

c1 0 0 1 1
c2 0 0 1 1
c3 0 0 1 1
c4 0 0 0 1


High Overlap

Figure 2.1. Matrices representing increasing levels of overlap in the cheapest locations for
the campaigns.

We now discuss three important properties that we wish to investigate to compare the

four approaches defined above, namely IS, IR, GS, and GR.

• Overlap in the Locations Across Campaigns: The extent of overlap in the locations

across the campaigns is difficult to characterize succinctly: For two campaigns, not

only is the number of overlapping locations important but also are the identities of

these locations. Also, both the number and the identities of the overlapping loca-

tions are likely to vary across pairs of campaigns. We use four campaign-location

matrices to vary the extent of overlap across campaigns; Figure 2.1 defines these
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four matrices. Recall that the locations are indexed in the increasing order of their

bid curves bl(·). For the first matrix A1, the cheapest location for campaign ci is

li, i = 1, 2, 3, 4; thus, there is no overlap in the cheapest locations for the four cam-

paigns. On the other hand, for the matrix A4, the cheapest location is the same

(namely, l3) for campaigns c1, c2, and c3; thus, matrix A4 corresponds to a setting

with a high overlap. The remaining two matrices (A2 and A3) are intermediate set-

tings that represent a medium amount of overlap.

• Total Demand Over the Campaigns: Broadly, the higher the total demand, the

higher should be the platform’s bidding intensity. We consider the following set

of values for the demand of each campaign: {1000, 2000, 3000, . . . , 7000}.

• Heterogeneity in the Cost of Procuring Impressions Across Locations: An increase

of the heterogeneity in the bid curves across locations leads to the platform increas-

ingly preferring certain locations over others. We use the following set of values

of the parameter a in the expression for the bid curves (defined above) to vary the

heterogeneity in the cost of procuring impressions across locations: {1, 2, 3, . . . , 10}.

We now discuss our main observations from the simulation.

Effect of Overlap in the Locations: Figure 2.2(a) compares the four approaches as the

extent of overlap in the campaign locations increases. Clearly, when there is little or no

overlap, then the decomposition method does not have a significant bearing on the total

cost: both methods prefer procuring from the cheapest locations of the respective cam-

paigns. Moreover, the cheapest locations of the campaigns are largely distinct, and it is

therefore possible to source the required impressions from these locations. Thus, the static

approaches (IS and GS) incur nearly the same costs. Similarly, the reactive approaches (IR

and GR) too incur similar, but relatively higher, costs. As the overlap increases, the benefit
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of informed decomposition becomes apparent and the static approaches become signifi-

cantly superior. With an increase in the overlap, the set of cheap locations available for

procuring the impressions shrinks. Consequently, the number of impressions required

from these cheap locations progressively increases, which in turn increases the target

win-probabilities at these locations and makes the reactive policy compete better with

the static policy (for instance, when the target win-probabilities are close to 1, it is easy to

see that the costs of the static and reactive policies are similar for a given decomposition

method). The same effect vis-à-vis the comparison of the static and reactive policies can

be seen in the two greedy approaches as well.

Under a very high overlap, it may become expensive to procure impressions. In such

a situation, it is possible that the reactive policy (IR) might perform marginally better

than the static policy (IS), for the following reason: In the latter, we procure Mc + zα
√
Mc

impressions for each campaign c (see Section 2.1.2), while in the former we procure Mc

impressions. When impressions are expensive to procure, then the advantage that the

static policy has – in terms of being derived by solving a global optimization problem,

namely P̂(~β) – can sometimes get negated by the additional cost of procuring the extra

zα
√
Mc impressions.

Effect of Increase in Demand: Figure 2.2(b) shows the impact of increase in the demand

of impressions faced by the campaigns. When demand is low, it is possible to procure

most of the impressions needed for a campaign from its cheapest location. Consequently,

both the informed and greedy decompositions behave in a similar manner and the de-

composition method does not have a significant effect on the total cost. Hence, the static

approaches (IS and GS) cost nearly the same and so too do the reactive approaches (IR and

GR), with the static approaches being relatively better. As the demand of impressions for

a campaign increases, both the use of multiple locations to satisfy the demand as well

as a careful division of this demand across these locations become important, which is
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Extent of the Overlap in the Cheapest Location: Lowest to Highest
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Figure 2.2. Effect of overlap in the cheapest locations across campaigns and increase in
the demand of the campaigns.

exactly what informed decomposition achieves. Consequently, the benefit from informed

decomposition progressively increases with the demand for impressions.

The target win-probabilities of the campaigns (at their respective sets of preferred loca-

tions) increase with demand and result in an improvement in the relative performance of

the reactive policy. Recall from Section 2.1.2 that the target win-probability of our policy

is computed after inflating the required number of impressions (by the additional amount

zα
√
Mc) to ensure that the platform’s probabilistic guarantee is met. The reactive policy,

on the other hand, does not need this additional amount. Therefore, when the demand

for impressions is high (and hence they are expensive to procure), the reactive policy may

perform marginally better than the static policy.

Effect of Bid-Curve Heterogeneity: An increase in the heterogeneity in the bid curves

(i.e., the cost of procuring impressions) across geographical locations naturally leads to

the campaigns increasingly favoring their cheapest locations. Therefore, the costs corre-

sponding to the greedy and informed decompositions come closer as bid-curve heterogeneity in-

creases. To isolate this effect, the left-hand-side subfigure of Figure 2.3 plots two ratios: (i)
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Figure 2.3. Effect of bid-curve heterogeneity.

The ratio CostGS
CostIS

of the costs corresponding to the greedy and informed decompositions

when the procurement policy is static and (ii) The ratio CostGR
CostIR

of the costs corresponding

to greedy and informed decomposition when the procurement policy is reactive. Both

these ratios decrease as bid-curve heterogeneity increases.

The right-hand-side subfigure of Figure 2.3 shows the costs of the four approaches. As

expected, the combination of greedy decomposition and reactive procurement (i.e., the

GR approach) is the worst. To improve from the GR approach, there are three possible

choices: (i) Shift to informed decomposition, while continuing to use the reactive pro-

curement (approach IR). (ii) Shift to static procurement, while continuing to use greedy

decomposition (approach GS). (iii) Change both the decomposition method and procure-

ment policy (approach IS). The figure shows an interesting compounding effect: The reduc-

tion in cost realized by improving both the the decomposition method and procurement

policy (i.e., moving from GR to IS) is greater than the sum of the reductions achieved by

improving either the decomposition alone or the procurement policy alone.
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CHAPTER 3

ANALYSIS OF A DYNAMIC MODEL OF CAMPAIGN ARRIVALS1

In this chapter, we generalize our analysis of the first chapter and consider a dynamic

model of campaign arrivals. First, we describe the model. Recall that in Section 2.1,

we assumed that one campaign of each type arrives in period 1 (the first period in a

finite planning horizon) and that there are no further arrivals of campaigns. In contrast,

we now consider an infinite horizon2 and assume that, at the beginning of every period

s ∈ N, one campaign of each type arrives (a non-arrival is modeled as a campaign with

a requirement of zero impressions). For expositional convenience, we assume that all

campaigns have the same time duration of K time periods. Let (s, c) denote the type-c

campaign that arrives in period s and let M̃s,c be the random variable representing the

number of impressions required by campaign (s, c). We allow any correlation structure

between these random variables, for a given period, s. The joint distribution of these

random variables is known. Observe that we allow the possibility that campaigns of all

types might not arrive in every period; for example, if P(M̃s,c = 0) > 0, there is a positive

probability that a type c campaign does not arrive in period s. (Note: Our assumption

that at most one campaign of any given type can arrive in a period is made exclusively

for notational simplicity.) The random vector M̃s of requirements corresponding to each

of the campaign types in period s is assumed to be independently and identically distributed

across time periods, that is, the sequence {M̃s} is i.i.d.. Let Mc = E[M̃s,c] be the expected

requirement of a type-c campaign, c ∈ C.

1Republished with permission of INFORMS, from “Procurement Policies for Mobile-Promotion Plat-
forms,” M. Aseri, M. Dawande, G. Janakiraman, and V. Mookerjee, forthcoming in Management Science,
October 2017; permission conveyed through Copyright Clearance Center, Inc.

2Therefore, the set of time periods in the horizon is S = N and the set of time slots in the horizon is also
T = N.
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Consider any period s and any i ∈ I. For every t ∈ Ts,i, we define s(t) = s; that

is, s(t) denotes the period to which slot t belongs. For any s ≤ s(t), let jt,(s,c) denote

the number of impressions won by campaign (s, c) before the start of time-slot t. Thus,

~jt = (jt,(s,c) : s(t) −K + 1 ≤ s ≤ s(t), c ∈ C) denotes the state vector at the beginning of

time-slot t; this vector captures the information on the number of impressions won by the

various campaigns that have arrived before time slot t but have not ended by that time.

Let Jt denote the set of all feasible state vectors in time-slot t.

A policy π is defined by a set of target win-probability functions {xπt,l : Jt → [0, 1], t ∈

T , l ∈ L} and a set of allocation functions {yπt,l,(s,c) : Jt → [0, 1], t ∈ T , l ∈ L, s ≤

s(t), c ∈ C}. If an impression arises from location l in time-slot t, then xπt,l(~jt) denotes the

win-probability targeted by π for this impression and yπt,l,(s,c)(
~jt) denotes the probability

with which policy π wins this impression and allocates it to campaign (s, c).3 We also

assume an upper bound xmax ∈ (0, 1] on the target win-probabilities {xπt,l}.

The random outcomes associated with the arrival, the winning, and the allocation of

impressions are defined in exactly the same manner as in Section 2.1 using the random

variables {U imp
t }, {Uwin

t } and {Ualloc
t }. Recall also that M̃s denotes the vector of require-

ments for the various campaign types arriving in period s. For any t, let

~Ut =
(
U imp

1 , Uwin
1 , Ualloc

1 , U imp
2 , Uwin

2 , Ualloc
2 , . . . , U imp

t , Uwin
t , Ualloc

t , M̃1, M̃2, . . . , M̃s(t)

)
be the history of these random variables until time-slot t (including t) and let Ut be the

set of all possible vectors ~Ut. From the definition of xπt,l
(
~jt
)

and yπt,l,(s,c)
(
~jt
)
, we note that

xπt,l
(
~jt
)

=
∑

(s,c):s≤s(t),c∈C y
π
t,l,(s,c)

(
~jt
)
, ∀ ~jt ∈ Jt . Furthermore, since a type-c campaign is

only interested in the set of locationsLc, we have yπt,l,(s,c)
(
~jt
)

= 0, if l /∈ Lc, ∀c ∈ C, ~jt ∈ Jt.

3We note that the decisions xπt,l and yπt,l,c depend on the history until time slot t only through ~jt. This is
because of the assumed independence of the arrival of impressions (campaigns) across time slots (periods).
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For any policy π, let

fπ := lim
S→∞

∑S
s=1

∑
i∈I
∑

t∈Ts,i

∑
l∈L E~Ut−1

[
qi,lfi,l

(
xπt,l
(
~jπt (~Ut−1)

))]
S

denote the expected per-period cost of policy π. Below, we present a mathematical for-

mulation of the platform’s problem PDyn(α). Here, we will use the notation ≤l (<l) to

denote smaller (strictly smaller) in the lexicographic order.4

PDyn(α) :



minπ f
π

subject to:

xπt,l
(
~j
)

=
∑

(s,c):s≤s(t),c∈C y
π
t,l,(s,c)

(
~j
)
, ∀ t ∈ T , ~j ∈ Jt, l ∈ L, (3.1)

jπt+1,(s,c)(~ut) = jπt,(s,c)(~ut−1) +
∑

l∈Lc 1(U imp
t = l)

×1
(
Uwin
t ≤ xπt,l

(
~jπt (~ut−1)

))
×1
(∑

(ŝ,ĉ) <l (s,c) y
π
t,l,(ŝ,ĉ)

(
~jπt (~ut−1)

)
xπt,l

(
~jπt (~ut−1)

) < Ualloc
t ≤

∑
(ŝ,ĉ) ≤l (s,c) y

π
t,l,(ŝ,ĉ)

(
~jπt (~ut−1)

)
xπt,l

(
~jπt (~ut−1)

) )
∀ t ∈ T , ∀ s ≤ s(t), c ∈ C, ~ut ∈ Ut, (3.2)

xπt,l(~j), y
π
t,l,(s,c)(

~j) ∈ [0, xmax],

∀ t ∈ T , s ≤ s(t), ~j ∈ Jt, l ∈ L, c ∈ C, (3.3)

P
[
jπ(s+K−1)I∆,(s,c)(

~U(s+K−1)I∆) ≥ M̃(s,c) | ~U(s−1)I∆+1 = ~u
]
≥ α,

∀ c ∈ C, ∀s ∈ S, ∀~u ∈ U(s−1)I∆+1. (3.4)

Equation (3.2) defines the transition of jπt,(s,c)(~ut−1) to jπt+1,(s,c)(~ut). To understand this equa-

tion, note that the first indicator variable on its right side takes the value 1 if an impression

arrived at location l in time slot t, the second indicator takes the value 1 if this impression

is won by policy π, and the third indicator takes the value 1 if the impression is allocated

to campaign (s, c). Inequality (3.4) states that the probability that M̃(s,c) impressions will

be delivered to campaign (s, c) over that campaign’s duration
(
which ends in the slot

4 For any ŝ, s ∈ S and ĉ, c ∈ C, we say that (ŝ, ĉ) ≤l (s, c) if either (a) ŝ < s or (b) ŝ = s and ĉ ≤ c. We say
(ŝ, ĉ) <l (s, c) if (ŝ, ĉ) ≤l (s, c) and (ŝ, ĉ) 6= (s, c).
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(s+K − 1)I∆
)
, conditional on the history of the system at the time when that campaign

arrives (i.e., beginning of period s which corresponds to time slot (s− 1)I∆ + 1), exceeds

α.

3.1 Lower Bound on the Optimal Per-Period Cost

Let PE,Dyn(α) represent the problem in which campaigns arrive dynamically, and the con-

straint is the following expectation constraint as opposed to the probabilistic guarantee in

Problem PDyn(α): For every (s, c), the expected number of impressions delivered is at

least αM̃s,c; this constraint is mathematically represented by inequality (3.8) below. It is

easy to see that PDyn(α) is a relaxation of PE,Dyn(α). Thus, we have

C∗Dyn(α) ≥ C∗E,Dyn(α) , (3.5)

where C∗Dyn(α) and C∗E,Dyn(α) denote the optimal costs in PDyn(α) and PE,Dyn(α), respec-

tively.

Consider any policy π = (xπ, yπ) which is optimal (therefore, feasible) for PE,Dyn(α).

Thus,

C∗E,Dyn(α) = fπ = lim
S→∞

∑S
s=1

∑
i∈I
∑

t∈Ts,i

∑
l∈L E~Ut−1

[
qi,lfi,l

(
xπt,l
(
~jπt (~Ut−1)

))]
S

. (3.6)

From the feasibility of policy π for problem PE,Dyn(α), we know that π satisfies the fol-

lowing two relations:

xπt,l(~j) ≥
s(t)∑

s=s(t)−K+1

∑
c∈C

yπt,l,(s,c)(~j), ∀ t ∈ T , l ∈ L, ~j ∈ Jt, (3.7)

αM̃s,c ≤
s+K−1∑
ŝ=s

I∑
i=1

∑
t∈Tŝ,i

∑
l∈Lc

qi,lE[yπt,l,(s,c)
(
~jπt (~Ut−1)

)
| ~U(s−1)I∆+1 = ~u

]
∀ c ∈ C, ∀s ∈ S, ∀~u ∈ U(s−1)I∆+1. (3.8)
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Inequality (3.7) holds because, for any time slot t and any location l, the corresponding

impression (if one arrives) can be allocated only to campaigns which arrive in the set of

time periods starting in s(t) − K + 1. Inequality (3.8) holds because, for any campaign

(s, c), the expected guaranteed number of impressions (i.e., αM̃s,c) should be generated

from impressions arising from any time slot in periods s, s + 1, . . . , s + K − 1 and from

any location l ∈ Lc.

We present two useful definitions next. Let x̃πi,l = limS→∞

∑S
s=1

∑
t∈Ts,i

E[xπt,l(
~jπt (~Ut−1))]

S∆

denote the average win-probability targeted from location l over all time slots belonging

to block i. Similarly, let

ỹπi,l,c = lim
S→∞

∑S
s=1

∑s+K−1
ŝ=s

∑
t∈Tŝ,i E[yπt,l,(s,c)

(
~jπt (~Ut−1)

)]
S∆

denote the average probability (averaged over all impressions at location l and over all

time slots belonging to block i) of winning an impression for a type-c campaign.

Then, applying Jensen’s inequality on fi,l(·) in (3.6), we obtain

C∗E,Dyn(α) ≥
∑
i∈I

∑
l∈L

[
qi,lfi,l

(
x̃πi,l
)]

∆.

Moreover, it is straight forward to show that inequality (3.7) implies that, for any i and l,

we have x̃πi,l ≥
∑

c∈C ỹ
π
i,l,c. Similarly, using the definition Mc = E[M̃s,c], it is easy to see that

inequality (3.8) implies that, for any c, αMc ≤
∑

i∈I
∑

l∈Lc qi,lỹ
π
i,l,c∆.

The three inequalities above, along with (3.5), imply that C∗Dyn(α) ≥ G1(αM), where

M := (Mc : c ∈ C) and, for any m ∈ RC,+,

G1(m) := minx̃,ỹ ∆
∑
i∈I

∑
l∈L

[
qi,lfi,l(x̃i,l)

]
s.t. x̃i,l ≥

∑
c∈C

ỹi,l,c ∀ i ∈ I, l ∈ L,

mc =
∑
i∈I

∑
l∈Lc

qi,lỹi,l,c∆ ∀c ∈ C,

x̃i,l ∈ [0, xmax] ∀ i ∈ I, l ∈ L, and

ỹi,l,c ∈ [0, xmax] ∀ i ∈ I, l ∈ L, c ∈ C.
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Let the math program above be referred to as P1(m): this program represents a single-

period problem with a vector of expected requirements of m forC campaigns, one of each

type in C.

3.2 Rolling-Horizon Policy with a Horizon Length of One Period

In this section, we define a rolling-horizon policy with a horizon length of one period. Let

us denote this policy by π1. For every period s, this policy computes its decisions for that

period at the beginning of that period by solving a single-period optimization problem

defined below. We will show that this policy is a feasible solution to Problem PDyn(α).

Consider any s ∈ N. For any ŝ ∈ {s − K + 1, s − K + 2, . . . , s} and any c ∈ C,

let m̃ŝ,c denote the realization of M̃ŝ,c and let m̂ŝ,c =
m̃ŝ,c
K

+ zα

√
m̃ŝ,c
K
. This quantity can

be interpreted as the per-period requirement of campaign (ŝ, c) plus a carefully chosen

safety cushion. Also, for every s ∈ N and c ∈ C, define m̄s,c =
∑s

ŝ=s−K+1 m̂ŝ,c, where

m̂ŝ,c := 0 if ŝ ≤ 0. Let x̃∗ and ỹ∗ denote the optimal solution to the single-period problem

P1(m̄s), where m̄s = (m̄s,c : c ∈ C). Then, the decisions of policy π1 in period s are defined

as follows:

xπ1t,l = x̃∗i,l ∀ i ∈ I, t ∈ Ts,i, l ∈ L, and (3.9)

yπ1t,l,(ŝ,c) = ỹ∗i,l,c

(
m̂ŝ,c

m̄s,c

)
∀ c ∈ C, i ∈ I, t ∈ Ts,i, l ∈ L, ŝ ∈ {s−K + 1, s−K + 2, . . . , s}.(3.10)

Equation (3.10) ensures that the procured impressions of type c are allocated to the cam-

paigns of that type in the proportion of their per-period requirements m̂ŝ,c.

Feasibility of Policy π1 to Problem PDyn(α): For any ŝ ∈ {s − K + 1, s − K + 2, . . . , s},

the number of impressions won for campaign (ŝ, c) in block i of period s is binomially

distributed with parameters ∆ and
∑

l∈L qi,ly
π1
t,l,(ŝ,c) =

∑
l∈L qi,lỹ

∗
i,l,c

(
m̂ŝ,c
m̄s,c

)
. Since ∆ is large

and qi,l is very small, this binomial distribution can be approximated by a Normal distri-

bution with mean and variance both equal to ∆
∑

l∈L qi,lỹ
∗
i,l,c

(
m̂ŝ,c
m̄s,c

)
. Thus, the number of
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impressions won for campaign (ŝ, c) from all the time blocks of period s is approximately

normally distributed with mean and variance both equal to ∆
∑

i∈I
∑

l∈L qi,lỹ
∗
i,l,c

(
m̂ŝ,c
m̄s,c

)
.

Observe that the feasibility of x̃∗ and ỹ∗ to the single-period problem P1(m̄s) implies the

following:

∆
∑
i∈I

∑
l∈Lc

qi,lỹ
∗
i,l,c = m̄s,c. (3.11)

Therefore, from (3.10) and (3.11), the mean (variance) of the number of impressions won

for campaign (ŝ, c) from all the time blocks of period s is equal to (approximately equal

to) m̂ŝ,c. Thus, the number of impressions won for any campaign ŝ ∈ Scamp during its K-

period duration {ŝ, ŝ+1, . . . , ŝ+K−1} is approximately normally distributed with mean

and variance Km̂ŝ,c since the mean and variance of a sum of K i.i.d. random variables are

equal toK times the mean and variance, respectively, of the individual random variables.

This implies that the probability that campaign (ŝ, c) is delivered at least m̃ŝ,c impressions

is

1−ΦN

(
m̃ŝ,c −Km̂ŝ,c√

Km̂ŝ,c

)
= 1−ΦN

(
−
√
Km̃ŝ,czα√
Km̂ŝ,c

)
= ΦN

(√
Km̃ŝ,czα√
Km̂ŝ,c

)
≈ ΦN

(√
Kzα

)
≥ α,

where we have used m̂ŝ,c =
m̃ŝ,c
K

+ zα

√
m̃ŝ,c
K
≈ m̃ŝ,c

K
, since m̃ŝ,c

K
is large.

Cost of Policy π1: It is clear from the definition of π1 that, for any period s ∈ N, the

expected cost incurred by π1 (given the information available at the beginning of that

period) is G1(m̄s). For any s ∈ {K,K + 1, . . .}, we know that m̄s,c is the realization of the

random variable M̄s,c :=
∑s

ŝ=s−K+1 M̂ŝ,c, where M̂ŝ,c :=
M̃ŝ,c

K
+ zα

√
M̃ŝ,c

K
. By assumption,

for every c ∈ C, the set of random variables {M̃ŝ,c : ŝ ∈ N} is i.i.d. which implies that

{M̄s,c : s ≥ K} is also i.i.d.. Let us use M̄c to denote the sum of K i.i.d. samples of

the random variable M̂1,c; then, M̄s,c ∼ M̄c for every s ≥ K. Thus, the expected cost

incurred in any period s ≥ K, where the expectation is taken at the beginning of period 1,

is E[G1(M̄)], where M̄ is the vector (M̄c : c ∈ C). Therefore, the long run average expected
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cost per period is E[G1(M̄)]. Combining this with the lower bound we derived on the

optimal cost per period in Problem PDyn(α), we obtain the following result.

Theorem 3. The ratio of the expected cost per period incurred by π1 to the lower bound on the

optimal expected cost per period is

E[G1(M̄)]

G1(αM)
. (3.12)

Assessment of the Performance Guarantee in Theorem 3: We now examine the quality

of our performance guarantee, i.e., (3.12), on the following realistic setup: Each time

period represents one day, which consists of 20 million time slots. Each campaign has

a time duration of 30 days (periods); thus K = 30. We consider five locations from the

Boston area (locations 1, 2, 3, 4, and 5, corresponding to zip-codes 02110, 02114, 02116,

02118, and 02119, respectively) and estimate the expected-cost function fl(x) (of ensuring

a win-probability of x at location l) in these five locations using Logistic-Regression (see

the Appendix) on data obtained from Cidewalk.com. Figure 3.1 plots these functions for

each of the five locations; consistent with our assumption in Section 2.1.1, these functions

are indeed strictly increasing and strictly convex. For location l ∈ {1, 2, 3, 4, 5}, the

expected-cost function is

fl(x) =
x

βl1

[
ln

x(1− xl0) + xl0
1− x(1− xl0)− xl0

− βl0
]

where (β1
0 , β

2
0 , β

3
0 , β

4
0 , β

5
0) = (−2.281,−2.192,−1.905,−1.936,−2.193), (β1

1 , β
2
1 , β

3
1 , β

4
1 , β

5
1) =

(0.705, 1.042, 0.876, 0.767, 0.976) and xl0 = eβ
l
0

1+eβ
l
0
. We consider two values of the total num-

ber of locations L: 4 and 5. Each campaign is interested in a maximum of two locations;

thus, when L = 5, there are a total of 15 possible sets of locations in which a campaign

is interested (resp., 10 possible sets of locations when L = 4). Since the set of locations

in which a campaign is interested defines its type, we have a total of C = 15 campaign-

types when L = 5 (resp., C = 10 campaign-types when L = 4). In each period, a cam-

paign of each type arrives with probability r; we consider the following five values of
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Figure 3.1. The expected cost fl(x) of ensuring a win-probability of x at five locations in
the Boston area.

r: {0.1, 0.2, 0.3, 0.6, 0.9}. At each location, the probability that an impression arrives

in a time slot is q = 0.05. The platform’s probabilistic guarantee is α = 0.99. For every

c ∈ C and s ∈ S , the requirement of campaign (s, c), conditional on that campaign ar-

riving, is deterministic. This deterministic requirement takes one of the values in the set

{10000, 50000, 150000, 250000}. In the following discussion, we refer to this parameter as

the campaign-demand.

Thus, we have a total of 2 × 5 × 4 = 40 different configurations of the parameters.

The average (resp., maximum, minimum) value of the guarantee is 1.05 (resp., 1.09, 1.02).

Thus, the cost of the rolling-horizon policy π1 is at most 9% higher than the lower bound

on the optimal cost which we developed in Section 3.1. The performance guarantee of

our policy improves as the campaign-arrival probability parameter r increases and as the

campaign-demand parameter increases. An increase in either parameter increases the

“demand on the system” in the sense that the platform is required to procure a greater

number of impressions. This leads to two effects: (1) The safety cushion (the square root

term in the expression for M̂s,c) relative to the average demand per campaign, Mc (which

is r times the campaign-demand), becomes smaller. (2) At the same time, the lower bound

G1(αM) is a convex increasing function of Mc. Together, these two effects cause the ratio
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in Theorem 3 to decrease. Moreover, an increase in r leads to an additional effect which

also causes the ratio to decrease: (3) The number of impressions required by all type c

campaigns which arrive over a certain number of periods is binomially distributed with

mean proportional to r and variance proportional to r(1 − r). Thus, the coefficient of

variation is proportional to
√

(1− r)/r, which decreases as r increases, thus making the

problem closer to a deterministic problem.

The performance guarantee in Theorem 3 can be bounded above by an expression

similar to the guarantee we obtained for the static model in Theorem 2. Recall from Sec-

tion 2.1 that we defined ψi,l(x) =
xf ′i,l(x)

fi,l(x)
. Let the support of the random variable M̃ŝ,c be

[0, Mmax
c ]. Let γrmax = maxc∈C

[
Mmax
c +zα

√
KMmax

c

αMc

]
. As in our analysis in Section 2.1, since

α ∈ [0.95, 0.99] and Mmax
c is of the order of 100,000, we have γrmaxxmax � 1. We proceed

under the assumption that γrmaxxmax < 1, and define ψr = max
x∈[0,γrmaxxmax]

max
i∈I,l∈L

ψi,l(x). Sim-

ilar to our assumption in Section 2.1.2, we assume here that ψr ≤
γrmax
γrmax−1

; again, it is easy

to verify that this assumption holds comfortably in practice.

Corollary 3. The ratio in Theorem 3 satisfies E[G(M̄)]
G(αM)

≤ 1

1− (γrmax−1)
γrmax

ψr
.

3.3 Higher Values of the Rolling-Horizon Length

The performance bounds we derived in Theorem 3 and Corollary 3 were for a rolling-

horizon length of one period. The rolling-horizon policy can be naturally extended for

larger horizon lengths. The formal definition of this extension involves introducing cum-

bersome notation; we therefore provide a high-level description here. Let τ denote the

length of the rolling horizon. At the beginning of, say, period s, the platform solves a τ -

period problem (corresponding to periods s, s+ 1, . . . , s+ τ − 1), in which the demand of

each active campaign is prorated to the horizon of τ periods. For example, if a campaign

has a demand of p impressions over a remaining time duration of q ≥ τ periods, then
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its prorated amount over τ time periods is p
q
× τ . Future campaigns, expected to arrive

within the horizon of τ periods, are prorated in a similar manner using their expected

demand. After solving the τ -period problem, the platform implements only the decisions

(i.e., the win and allocation probabilities) for the current period, i.e., period s. Thereafter,

at the beginning of period s + 1, the platform again solves a τ -period (corresponding to

periods s+ 1, s+ 2, . . . , s+ τ ) and implements the decisions for period s+ 1. The process

continues.

While the performance guarantee of the rolling-horizon policy for τ = 1 is quite

attractive, it is instructive to examine its performance for higher values of τ . To assess

this, we use the following setup: The total number of locations L = 4. Each campaign is

interested in a maximum of two locations. Since the type of campaign is defined by the

set of locations it is interested in, there are a total of 10 types of campaigns; thus, C = 10.

The campaign arrival probability for each type of campaign is r = 0.6. For each of the four

locations, the probability that an impression will arrive from that location in a time slot is

q = 0.05. The platform’s probabilistic guarantee α = 0.99. We consider a time horizon of

100 time periods (days). Each campaign has a requirement of 100,000 impressions over a

time duration of 10 periods; thus campaign-demand = 100, 000, K = 10. At the beginning

of each period, the platform solves a τ -period problem; we consider the following four

values of τ : {1, 2, 3, 4}. Future campaigns are considered with their expected prorated

demand within the τ -period horizon.

Figure 3.2 shows the change in the percentage gap between the average per-period

cost (over the 50 simulations) of the rolling-horizon policy and the lower bound on the

optimal per-period cost (derived in Section 3.1), for each choice of the rolling-horizon

length τ . While the policy performs better for higher values of τ , the marginal improve-

ment diminishes with τ .
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Figure 3.2. Percentage Gap Between the Cost of the Rolling-Horizon Procedure and the
Lower Bound on the Optimal Cost Developed in Section 3.1.

3.4 Discussion and Future Research Directions

The procurement problem we addressed in this paper has the following salient features: (a)

The supply is uncertain, (b) The supply cannot be inventoried, and (c) There are demand-

side commitments which have to be met. Our approach can potentially be applied to a

variety of other settings as well; we now illustrate with an example.

Third-Party Vendors at Google AdWords: Google’s AdWords service allows advertisers

to display their ads to users when they search on Google. Advertisers can bid to display

their ads when the results of a keyword search are displayed to a user. Since all adver-

tisers may not have the time and resources to build and maintain an AdWords account,

Google runs a partner program through which approved third-party vendors (e.g., AOL,

Adacado, AdSpeed) are allowed to bid on behalf of advertisers. A third-party vendor,

who executes a campaign for an advertiser, faces the following problem: Given the set

of search keywords of interest to the advertiser, the campaign’s duration, and the cam-

paign’s budget, the vendor has to decide a bid for every impression that arises from the

relevant keywords over the duration of the campaign, to maximize the advertiser’s objec-

tive (e.g., maximize the number of impressions or clicks) without exceeding the budget.
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As before, we divide the time horizon into time slots; let the duration of the campaign

be T time slots. LetW be the set of keywords of interest to the advertiser and let Γ be the

budget. Let qw be the probability that an impression corresponding to keyword w ∈ W

will arrive in a time slot. Let Γ̃t be the random variable representing the amount of money

spent by the end of time slot t and let bt,w(Γ̃t−1) be the bid amount in period t for keyword

w. Let xw(b) be the win-curve for keyword w; i.e., the win-probability of an impression

corresponding to keyword w when the bid amount is b. Let α be the probability that the

budget Γ will not be exceeded. The third-party vendor’s optimization problem, when the

advertiser’s objective is, say, to maximize the number of impressions, is as follows:

PAdWords :


maxb

∑T
t=1

∑
w∈W E

[
qwxt,w

(
bt,w(Γ̃t−1)

)]
subject to: P

[
Γ̃T > Γ

]
≤ 1− α,

where the evolution of Γ̃t is similar to that of ~j in the formulation of Pstatic( ~M,α) (Sec-

tion 2.1). Our solution approach in this paper can be used to obtain a solution of problem

PAdWords.

Our analysis in this paper did not consider the platform’s pricing decisions for the

various mobile advertising campaigns it offers. For given prices of the campaigns, our

focus was on minimizing the procurement cost incurred by the platform in fulfilling the

demand of these campaigns. One direction for future work is to study the platform’s

profit-maximization problem in which both the prices of the campaigns and the plat-

form’s procurement and allocation policies are decisions.

Our study focused on the operations of a “managed-service” platform that agrees to

meet the demand-fulfillment constraints of the campaigns and obtains the required sup-

ply at least cost. As an area for future investigation, consider a problem arising in a “self-

serve” mode, where the customer is completely in control, e.g., which apps to bid upon,

how much to bid for each opportunity, when to stop a campaign, etc. In such a self-serve
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scenario, the mobile-promotion platform acts as a provider, with no operational decision-

making responsibilities. Customers run their campaigns on a platform that faithfully

executes whatever procurement strategy they choose to use. In this self-serve model, the

problem we solved in this paper would shift to the customer and would presumably need

to be solved on a much smaller scale. However, the analysis in the current study would

be useful to guide end customers on how to optimize their mobile advertising campaigns.
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CHAPTER 4

AD-BLOCKERS: A BLESSING OR A CURSE?

The stream of literature that is closest to our work is the one on ad-avoidance. The main

focus of this literature is on the consequences of ad-avoidance for advertisers and con-

sumers; see, e.g., Hann et al. 2008, Johnson 2013, and Goh et al. 2015. The modus operandi

to avoid ads that have been examined here include, among others, avoiding TV ads by

switching channels, avoiding tele-marketing ads by registering in Do-Not-Call lists, and

ignoring marketing emails. There also exist studies that investigate the impact of ad-

avoidance on the revenue of the facilitators of advertising content; e.g., TV broadcast-

ers and print media (Stühmeier and Wenzel 2011). However, the ramifications of ad-

avoidance on web-based advertising and the creation of effective response strategies for

publishers is a relatively understudied subject. This is expected, since contracts for adver-

tising on TV and telephone are long-term delivery contracts, where the facilitator usually

gets paid regardless of whether or not the ad is actually seen by the consumer (in some

cases, the payments are adjusted based on overall viewership statistics). Consequently,

facilitators remain largely insulated from the ad-avoidance behavior of consumers. In

contrast, a majority of present-day digital advertising content is cleared via real-time bid-

ding for ad-space, with publishers often getting paid only when an ad is clicked upon

by the consumer (i.e., pay-per-click payments). Therefore, in web-based advertising,

ad-avoidance by consumers can significantly dent the revenue of publishers. With ad-

blockers being the latest tool that consumers are increasingly adopting to avoid web ads,

the question of how publishers should react intelligently to ad-blockers naturally gains

importance. One key difference between ad-blocking on websites and ad-avoidance in

traditional media (e.g., TV, radio) is the ability of facilitators to deliver ads: In contrast

to traditional media, an ad cannot even be delivered on a website in the presence of an
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ad-blocker since it is blocked at its source. Further, relative to traditional media, web-

based advertising presents a much richer setting to counter ad-avoidance since, here, the

publisher has the ability to interact with each user individually; e.g., by asking a user to

white-list the website. Accordingly, there is scope to develop novel “micro-level” strate-

gies for publishers, investigate their structural properties, and assess their impact on rev-

enue. Our work is an attempt to contribute in these directions. Two recent papers

analyze settings that also involve the adoption of ad-blockers by users: Ray et al. (2017)

analyze strategic interactions among content providers (websites), ad-blocking platforms,

users, and advertisers. The content provider decides the quality of content and the ad-

blocking platform decides the prices to charge users (for installation) and advertisers (for

not blocking their ads). Given the quality of content provided by websites and the prices

set by the platform, users and advertisers decide whether to adopt the platform. The pa-

per derives useful insights on the optimal pricing structure for the platform, the adoption

of the platform by users and advertisers, and the quality of content provided by websites.

(Despotakis et al., 2017) analyze the impact of ad-blockers in a setting of two compet-

ing websites. Consistent with one of our results, this study also finds that the advent of

ad-blockers can benefit the two websites; however, the analysis in this study does not con-

sider the presence of network effects, which play a critical role in our analysis for deriving

a website’s optimal strategy in reacting to ad-block users.

The work that is perhaps closest to our study is (Hann et al., 2008). However, along

with the above-mentioned finer granularity of decision-making in our context, there are

several other important differences in the analysis. In (Hann et al., 2008), the value of the

product being advertised does not depend on the number of users of the product. On the

other hand, the network effect is at the core of our paper and plays a critical role in the

website’s decisions. Further, in (Hann et al., 2008), there are two consumer segments

– low-benefit and high-benefit – that differ in the profitability they offer to the decision
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maker. In contrast, the consumer segments in our analysis are equally profitable from

the website’s viewpoint. It is in their individual sensitivities to ads (i.e., their respective

ad-viewing costs) that these segments differ.

(Hann et al., 2008) find that when low-benefit consumers conceal themselves, adver-

tising becomes cost effective and leads sellers to advertise more to the remaining users.

One of our findings – actions by some consumers (i.e., ad-block users) to avoid adver-

tisements affects other consumers – is consistent with the above result in (Hann et al.,

2008). However, the force behind these two results is different. In (Hann et al., 2008), the

externality arises from the advertising becoming cost effective. In our analysis, instead,

the externality arises from (i) the ability of the website to discriminate users on the basis

of their ad-viewing costs and (ii) the presence of the network effect. In practice, the

extent of such externalities has been empirically established in Goh et al. (2015), in the

context of consumers registering in Do-Not-Call lists to avoid marketing solicitations.

In our analysis, a website derives value from two components – an intrinsic compo-

nent based on the website’s content and another based on network effect (driven by the

traffic/popularity of the website). This decomposition has been well-established in the

literature, dating back at least to the work of Katz and Shapiro (1985). In their clas-

sic paper, Parker and Van Alstyne (2005) examine the reasons behind the practice of firms

giving away free products. They argue that for firms that produce complementary goods,

it may sometimes be profitable to provide a good for free. Intuitively, the cost incurred

in providing a free good can be more than offset by the resulting increase in the demand

for a premium good due to network effect. This result bears similarity to one of our re-

sults – in the ad-blocking context, allowing some ad-block users ad-free access increases

the website’s traffic and thereby its value (due to network effect), and in-turn leads to

an increase in the number of regular (non-ad-block) users. The notion of network effect

has been exploited in several other contexts; e.g., to examine the strategic interactions
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between service providers and their users (Nair et al., 2015), to measure the dependence

between user-generated content and social ties in online social networks (Shriver et al.,

2013), to measure the financial value of retaining and acquiring content contributors for

a website which provides user-generated content (Zhang et al., 2012). Dou et al. (2013)

examine how firms can engineer network externalities to their advantage and Kauffman

et al. (2000) examine the impact of network externalities on the adoption of a network.

A website’s decision to allow ad-block users to access the website without being sub-

ject to ads is akin to a firm providing a free version of its product or service; see, e.g.,

(Chellappa and Shivendu, 2010), Niculescu and Wu (2014), Lambrecht and Misra (2016).

Typically, free versions offer a limited set of features, relative to the premium varieties.

In our context, however, ad-blockers (if allowed to access the website) and regular users

experience the same content.

The beneficial discrimination of the user population is an idea that our work shares

with the versioning literature; see, e.g., Varian 1997, Chellappa and Shivendu 2005, Bhar-

gava and Choudhary 2008, Wu and Chen 2008, Lahiri and Dey 2013, Wei and Nault 2014.

There are significant differences, however, in our setting relative to what is typical in a

traditional versioning problem, and also in how discrimination is operationalized. We

now discuss some of these differences. Note that, in our context, all the users of the focal

website have access to the same content – the basis for discrimination is the disutility they

incur due to advertisements. In other words, all the users experience the same consump-

tion utility (the equilibrium value of the website) but the two subgroups of users (namely,

white-listers and regulars) incur different disutilities from ads. This is in contrast with the

typical versioning setting, where price is the discriminating tool and a “premium” version

usually offers a higher consumption utility than the “standard” version; e.g., the former

typically offers more features than the latter. Further, in our setting, the absence of price
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as a discriminatory tool generates an interesting contrast in the following sense: In a typ-

ical versioning problem, the firm’s revenue is determined by the consumption utility the

product offers to the consumer (the price paid by the consumer equals the revenue the

firm makes). In our setting, since users do not pay anything, it is the disutility imposed

on them – and the extent of it – that indirectly generates revenue for the website (higher

ad-intensities result in higher advertising revenue). Also, the notions of “high-type” and

“low-type” consumers, which are common in the versioning literature, are not apparent

in our setting. For instance, it is typical to find a high-type consumer incur more cost

(since she buys the premium version, which is priced higher). On the other hand, in our

context, a regular visitor is shown a relatively higher ad-intensity but his ad-sensitivity is

relatively lower – thus, the cost (disutility) he incurs is not directly comparable to that for

an ad-block user.

The discrimination of users based on their ad-viewing costs further gives rise to in-

teresting operational possibilities such as selective gating (Section 4.5), where a subset of

ad-block users is given ad-free access to exploit network effects (in the versioning setting,

this would correspond to distributing a premium version free to a subset of consumers).

One can also combine non-monetary and monetary levers to improve our capability to

discriminate. For instance, in Section 4.6.2, we study a setting in which the website offers

potential users the option of paid-subscription to access ad-free content in addition to the

option of viewing ad-supported free content by white-listing the website. Thus, via the

use of different ad-intensities, selective gating, and the subscription option, a website can

have four types of users: (i) ad-block users who get ad-free access, (ii) white-listers (who

get an ad-light experience), (iii) regular users (who get a relatively ad-heavy experience),

and (iv) subscribers, who are given (paid) ad-free access.

A website that survives on advertising revenue can afford to let some ad-block users

free-ride by enjoying ad-free content if it can generate sufficient revenue from non-ad-

block users. In this sense, our work is related to the free-riding phenomenon. Shin (2007)
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analyzes the free-riding behavior of a discount retailer that does not provide pre-sale

customer service (say, helping customers choose the right product) and therefore incurs

lower operating costs, leading to lower prices. The author finds that when customers

are heterogeneous in terms of their opportunity cost of visiting the discount retailer after

receiving pre-sale customer service from another retailer that provides such a service,

then the latter can benefit due to the free-riding behavior of the former. In our context

too, the heterogeneity of users drives the increase in revenue of the website in the post-

ad-block world. Asvanund et al. (2004) empirically examine the impact of free-riding by

users in a P2P network and find that the extent of free-riding increases as the size of the

network increases; Johar et al. (2011) analyze congestion in P2P networks and provide a

mechanism to induce socially-optimal sharing.

The advent of ad-blockers has triggered an arms race between publishers and firms

that develop ad-block software: developers continue to devise new techniques to evade

the detection of their ad-blockers while publishers react by working out ways to detect

an ad-blocker’s presence. This has generated a significant amount of work in the Com-

puter Science literature; for instance, new ad-blocking techniques (see, e.g., Krammer

2008, Storey et al. 2017), legal implications and impact on privacy (see, e.g., Krammer

2008, Vallade 2008, Gervais et al. 2016, and Garimella et al. 2017), and anti ad-blocking

reactions and the impact of ad-blockers on the targeting ability of publishers (see, e.g.,

Johnson 2013 and Nithyanand et al. 2016).

4.1 Model

We consider a publisher (a website) whose entire revenue comes from advertisements and

whose potential user-population consists of two segments: ad-blockers (potential users of

the website, who use some ad-block software) and regulars (potential users of the web-
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site, who do not use any ad-block software).1 We denote the size of the potential user-

population by N , the fraction corresponding to ad-blockers by B, and the fraction corre-

sponding to regulars by B̄ := 1 − B. We assume that the content-creation cost for this

website is sunk, and the cost of serving that content to a user is zero. We consider the

following two decisions for this publisher (see Figure 4.1 for a real-world illustration of

these decisions):

• Gating: The publisher could allow ad-blockers to access the website for free (i.e.,

without showing any ads) or require them to white-list this website in order to ac-

cess it. We use IG ∈ {0, 1} to denote this gating decision, with IG = 0 denoting

ad-free access and IG = 1 the white-listing requirement.

• Ad-Intensity: If IG = 1, the publisher decides two ad-intensities, ar and ab, respec-

tively, for regulars and ad-blockers who white-list (we refer to these as white-listers).

If IG = 0, the publisher decides an ad-intensity ar for regulars; since ad-blockers

are allowed to access the website without seeing ads, ab = 0 in this case. Driven by

practical considerations (e.g., the minimum level necessary to grab user attention

and/or the minimum amount dictated by the need to complete ad-campaigns in a

timely manner), if ads are shown, the publisher is required to maintain a minimum

ad-intensity2 of amin > 0. Thus,

ar, ab ∈ {0} ∪ [amin,∞); moreover, ab = 0 if IG = 0.

While users do occasionally find ads useful, they are on average (based on past experi-

ence) typically perceived as a nuisance. Accordingly, we assume that users have a nega-

tive average perception of ads; in other words, users incur non-negative ad-viewing costs.

1For brevity, we refer to the publisher as “she” and a potential user as “he”.

2The results for the case when there is no positive lower bound on the ad-intensities (i.e., amin = 0) are
summarized later in Remark 2 (Section 4.3).
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Figure 4.1. The message shown by Forbes.com to an ad-block user. The message high-
lights the following two actions: (i) The user is not allowed access to the website unless
she disables the ad-blocker, and (ii) Upon white-listing, the user will be offered an ad-light
experience.

We model heterogenous ad-viewing costs for potential users. For a randomly picked

regular (ad-blocker) who is shown an ad-intensity of 1, the ad-viewing cost is a random

variable denoted by c̃r ∼ U [0, Cr] (c̃b ∼ U [0, Cb]). Therefore, when a regular (ad-blocker)

is shown an ad-intensity of ar (ab), he incurs an ad-viewing cost of arc̃r (abc̃b). Thus, the

two segments of potential users differ in their distributions of ad-viewing costs for any

given ad-intensity. We also refer to c̃b and c̃r as the ad-sensitivity of an ad-blocker and a

regular user, respectively. We assume that Cb ≥ Cr to reflect the idea that ad-blockers are

likely to perceive ads as being a greater nuisance than what regulars perceive. For every

user visiting the website, the publisher makes a revenue of r · a if the ad-intensity is a;

thus, r is the ad-revenue-per-user from an ad-intensity of 1.3

Let v denote the gross value that users obtain by accessing the website (excluding ad-

viewing costs). This value, v, has two components: One component is the intrinsic value

of the website generated through its content, and the other component is the network

value of the website generated through the usage of the website. This decomposition

3 Our analysis and results continue to hold for either of the two most popular payment formats in use
today: pay-per-click and pay-per-impression. The revenue r can be interpreted as revenue per impression
in the case of the pay-per-impression format or the expected revenue in the case of the pay-per-click format
(click probability multiplied by per-click revenue).
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as well as our assumption of uniformly distributed ad-viewing costs are consistent with

the literature (see, e.g., Katz and Shapiro 1985). When users beneficially communicate

and exchange information among themselves, the value of the website increases with the

number of users. For instance, platforms such as Uber operate under very high two-sided

network effects – an increase in the number of drivers increases the value of the platform

for riders. Likewise, an increase in the number of riders increases the attractiveness of

the platform for drivers. Platforms such as eBay and Amazon derive value from the in-

teractions among their participants – more the number of participants, more is this value.

An increase in the user base of a website increases its popularity and can, in turn, lead to

an increase in the links (on other websites) that point to that website – this can improve

its PageRank on Google search. Social media can also fuel network effects. For example,

for a website such as Forbes.com, network value can be created by an increase in read-

ership due to traffic enabled via social media by the sharing of content between existing

users. Let n represent the number of users of this website out of the total population of N

potential users. We assume the following functional form for v:

v = V
[
ᾱ + α

n

N

]
, (4.1)

where α ∈ [0, 1] and ᾱ := 1−α. Here, V denotes the maximum value users can obtain from

the website. The fraction n/N denotes the extent of market penetration by this website.

The constant ᾱ denotes the fraction of the value generated from the website’s content

while αn/N denotes the corresponding fraction generated due to network effects. We

therefore refer to α as the network-effect parameter.4

4 The functional form v = V
[
λ+ γ nN

]
with λ, γ ≥ 0, where the intrinsic value (represented by λ) and

the network value (represented by γ) are independent, can be transformed to the form in (4.1) by letting
V = V (λ+ γ) and α = γ

λ+γ . Here, the value of α can be interpreted as the relative magnitude of the network
effect.
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Let u0 represent the net utility of an outside option for the potential users. The outside

option represents some other website or source where similar content can be accessed (if

no such source exists, then u0 = 0). We assume that u0 ≤ V , failing which no potential

user will be interested in visiting this website. Therefore, a regular with an ad-sensitivity

of c̃r becomes a user of this website if v − arc̃r ≥ u0. Similarly, an ad-blocker with an

ad-sensitivity of c̃b becomes a user of this website if the website allows ad-free access to

ad-blockers (i.e., does not gate them) and v ≥ u0 (in this case, c̃b is inconsequential); if the

website requires ad-blockers to white-list (i.e., gates them), then this ad-blocker white-

lists and becomes a user if v− abc̃b ≥ u0. Thus, the publisher faces the following trade-off.

On the one hand, an increase in the ad-intensity leads to a higher revenue from each user.

On the other hand, this increase reduces the net utility that potential users obtain from

this website and, therefore, reduces the number of users which, in turn, reduces revenue.

𝐵 1 − 𝐵

Gate
𝐼𝐺 = 1

No Gate
𝐼𝐺 = 0

White-list

Outside Option
𝑢0

Access

Website Decides
𝑰𝑮, 𝒂𝒃, 𝒂𝒓

Ad-Block Users Regular Users

Outside Option
𝑢0

Regular
User Decides

Ad-Block
User Decides

𝑁

(0, 𝑣)

(0, 𝑢0) (𝑟𝑎𝑏, 𝑣 − 𝑎𝑏 ǁ𝑐𝑏)

(𝑟𝑎𝑟 , 𝑣 − 𝑎𝑟 ǁ𝑐𝑟)(0, 𝑢0)

Figure 4.2. The sequence of events of the game: First the website decides IG, ab, and ar.
Then, the ad-blockers decide whether or not to white-list the website, and the regulars
decide whether or not to access the website. The quantities in brackets represent the
payoffs received by the website and the user, respectively.
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Table 4.1. The main notation for our analysis
Notation Description

v Equilibrium value of the website.
V Maximum possible equilibrium value of the website.
n Equilibrium traffic of the website.
N Size of the potential user-population of the website.
α Strength of the network effect. ᾱ := 1− α.
u0 Net utility of the outside option.
B Fraction of ad-block users among all potential users. B̄ := 1−B.
IG Indicator variable representing the gating decision: Equals 1 if the

website decides to gate; 0 otherwise.
ab Ad-intensity for white-listers.
ar Ad-intensity for regulars.
amin Minimum possible (non-zero) ad-intensity.
Cb Maximum ad-viewing cost among ad-block users for an ad-

intensity of 1.
Cr Maximum ad-viewing cost among regular users for an ad-intensity

of 1.
r Ad-revenue per user from an ad-intensity of 1.

Figure 4.2 depicts the sequence of events of the game. The website first decides IG, ab,

and ar. After the website’s decisions, all the N potential users decide whether to pick the

focal website (i.e., become a user) or pick the outside option, based on the comparison

of their net utilities from these two sources as explained above. In Figure 4.2, the two

quantities in brackets represent, respectively, the website’s revenue from a potential user

and that potential user’s net utility. For every regular user, the website earns a revenue

of rar. If IG = 0 (that is, the website does not gate ad-blockers), the website makes no

revenues from ad-blockers. If IG = 1, the website makes a revenue of rab from every ad-

blocker. Table 4.1 summarizes our main notation. Figure 4.3 is a graphical representation

of the fraction of regulars who become users and the fraction of ad-blockers who become

users.

Rational Expectations Equilibrium: Note that n, the number of users of the website, is

the aggregate number of regulars and ad-blockers who decide to become users. These
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ǁ𝑐𝑏0 𝑣 − 𝑢0 𝑎𝑏𝐶𝑏

White-List

ǁ𝑐𝑟0 𝑣 − 𝑢0 𝑎𝑟𝐶𝑟

Access

Ad-Block Users Regular Users 

Figure 4.3. An ad-block user with ad-viewing cost lower than v − u0 white-lists the web-
site, where v is the value users obtain from the website and u0 is the net utility of the
outside option. Similarly, a regular with ad-viewing cost lower than v − u0 accesses the
website.

individual decisions are influenced by the value v and their individual ad-viewing costs.

However, v itself depends on n. We follow the standard assumption of rational expectations

(see, e.g., Sheffrin 1996). That is, all potential users have a belief on v, the value of the

website, and make their decisions. These decisions, in turn, result in a value for v which

is consistent with the belief of the users.

Website’s Problem: Every choice of IG, ab, and ar will lead to a corresponding (i) equi-

librium value of v denoted by v(IG, ab, ar), (ii) equilibrium number of ad-blockers who

become users, denoted by nb(IG, ab, ar), (iii) equilibrium number of regulars who become

users, denoted by nr(IG, ab, ar), and (iv) equilibrium value of the total traffic n, denoted by

n(IG, ab, ar) = nb(IG, ab, ar) + nr(IG, ab, ar). Thus, the equilibrium revenue for the website,

denoted by R(IG, ab, ar), can be expressed as follows:

R(IG, ab, ar) = r
[
nb(IG, ab, ar) · ab + nr(IG, ab, ar) · ar

]
. (4.2)

4.2 Analysis

In this section, we assess the impact of ad-block software on the website’s decisions and

its revenue. To this end, we solve for the optimal decisions of the website both before and

after the advent of ad-block software, and also compare these decisions.
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4.2.1 Optimal Decisions After the Advent of Ad-Blockers

The problem for the website after the advent of ad-block software is to maximize its equi-

librium revenue; that is,

max
IG,ab,ar

R(IG, ab, ar) s.t. IG ∈ {0, 1} and ar, ab ∈ {0} ∪ [amin,∞). (PAfter)

Let I∗G, a∗b and a∗r , respectively, denote the optimal values of IG, ab and ar, and let v∗ :=

v(I∗G, a
∗
b , a
∗
r). We first note some important properties of the optimal solution (I∗G, a

∗
b , a
∗
r).

• Property A1: (Ad-Light Experience for White-Listers) The optimal ad-intensities

are such that a∗b ≤ a∗r .

◦ Intuition: We know that Cb ≥ Cr, i.e., ad-blockers are more sensitive to ads

than regulars. Therefore, the optimal ad-intensity for ad-blockers is less than

that for regulars. This property is derived as part of the proof of Theorem 5 in

the Appendix. �

• Property A2: (Complete Market Penetration) If a∗b > amin, then v∗ − a∗bCb = u0 and

v∗ − a∗rCr = u0; that is, all regulars and ad-blockers become users.

◦ Proof: Since a∗b > amin, we should have I∗G = 1; moreover, from Property A1,

we know that a∗r > amin. Thus, Problem PAfter simplifies to the unconstrained

maximization ofR(1, ab, ar). The number of ad-blockers who become users and

the number of regulars who become users are both proportional to the “value

premium” v − u0 and inversely proportional to the respective ad-intensities.

That is, nb(1, a∗b , a
∗
r) = NB(v∗−u0)

a∗bCb
and nr(1, a

∗
b , a
∗
r) = N(1−B)(v∗−u0)

a∗rCr
; therefore,

R(1, a∗b , a
∗
r) = nb(1, a

∗
b , a
∗
r)ra

∗
b + nr(1, a

∗
b , a
∗
r)ra

∗
r . Thus, maximizing revenue is
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equivalent to maximizing v which, in turn, is equivalent to maximizing the to-

tal traffic, n. To maximize n, we need to convert all ad-blockers and regulars to

users. The largest ad-intensities which will allow this are those that ensure that

the regular with the highest ad-viewing cost and the ad-blocker with the high-

est ad-viewing cost are both indifferent between becoming a user and choosing

the outside option. The statement of the property above ensures exactly that.

�

• Property A3: (Rational Belief on Value) The optimal solution satisfies the follow-

ing relations: 0 ≤ v∗ − u0 ≤ a∗rCr and, if IG = 1, v∗ − u0 ≤ a∗bCb.

◦ Proof: (i) If v∗ < u0, then no potential user visits the website; thus, the revenue

obtained is zero and cannot be optimal – thus, we should have 0 ≤ v∗ − u0.

(ii) If v∗ − u0 > a∗rCr, then all regulars become users of the website because

the net utility obtained by that regular with the highest ad-viewing cost is

v∗ − a∗rCr which strictly exceeds u0, the value of the outside option. Thus, the

website could increase a∗r slightly and still ensure that all regulars continue to

be users of the website, while the net utilities obtained by ad-blockers remain

unchanged (and thus, the number of ad-blockers who visit the website also

remains unchanged). Thus, this increase in a∗r will lead to a revenue increase.

This shows that, at the optimal solution, v∗−u0 ≤ a∗rCr. An identical argument

shows that, at the optimal solution, v∗ − u0 ≤ a∗bCb. �

• Property A4: (Equilibrium Traffic) The equilibrium number of regulars and the

equilibrium number of ad-blockers who become users are given by the following
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expressions:

nr(I
∗
G, a

∗
b , a
∗
r) = NB̄(v∗ − u0)/(a∗rCr),

nb(I
∗
G, a

∗
b , a
∗
r) = NB(v∗ − u0)/(a∗bCb), if I∗G = 1, and

nb(I
∗
G, a

∗
b , a
∗
r) = NB, if I∗G = 0.

◦ Proof: This result follows directly from Property A3 and our model of uni-

formly distributed ad-viewing costs for regulars and ad-blockers. �

The revenue function R(IG, ab, ar) can now be computed using the expressions in Prop-

erty A4. Theorem 4 below states the optimal solution to problem PAfter; a proof of op-

timality is provided in the Appendix. To express the optimal solution, we define the

following four parametric constants:

um = V − V αB(BCr + B̄Cb)amin

B̄(BV α− aminCb) + (BCr + B̄Cb)amin

,

ag = max
{
amin,

[
V (1− αB)− u0

]
Cbamin

Cr(Cbamin − V αB)

}
,

Ĉ =
V − u0

amin

, and

uh = V ᾱ− V αBK2

K3 −K2

,

where K2 =
B̄amin

aminCr−V αB̄
and K3 =

(BCr+B̄Cb)amin

aminCbCr−V α(BCr+B̄Cb)
.

For a chosen set of decisions (IG, ab, ar), the value premium offered by the website is

φ(IG, ab, ar) = v(IG, ab, ar) − u0. By expressing the equilibrium value v in terms of the

decisions (see (A.20) in the Appendix), we obtain

φ(IG, ab, ar) =
V ᾱ + V α(1− IG)B − u0

1− V α
(
IGB
Cbab

+ 1−B
Crar

) .

The condition φ(IG, ab, ar) ≥ 0, which appears in the result below, can be naturally inter-

preted as the “survival condition” for the website, in the sense that the website does not

receive any traffic if this condition fails.
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Theorem 4. An optimal solution of problem PAfter is as follows:

• If Cb, Cr < Ĉ, then

(I∗G, a
∗
b , a

∗
r) =

(
1,

V − u0

Cb
,
V − u0

Cr

)
.

• If Cb, Cr > Ĉ, then

(I∗G, a
∗
b , a

∗
r) =


(0, amin, amin), if u0 > uh, φ(0, amin, amin) ≥ 0,

(1, amin, amin), if u0 ≤ uh, φ(1, amin, amin) ≥ 0,

(0, 0, 0), otherwise.

• If Cr ≤ Ĉ ≤ Cb, then

(I∗G, a
∗
b , a

∗
r) =


(0, amin,

V−u0
Cr

), if u0 > um, φ(0, amin,
V−u0
Cr

) ≥ 0,

(1, amin, ag) if u0 ≤ um, φ(1, amin, ag) ≥ 0,

(0, 0, 0), otherwise.

The three cases in this result signify three types of websites, categorized on the basis of the

ad-viewing costs (or, equivalently, ad-sensitivities) of their user-population. We elaborate

below:

(a) Low Cb and Low Cr
(
Cb, Cr < Ĉ

)
: This represents the class of websites whose target

audience is not very sensitive to ads; for instance, websites that offer discounted

deals. Since potential users of such websites are likely to white-list when required to

do so, it is optimal to always gate ad-blockers. Moreover, the higher ad-tolerance of

the users implies that the website can set relatively high ad-intensities (as compared

to the two cases below) for both regulars and ad-blockers.
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(b) High Cb and High Cr
(
Cb, Cr > Ĉ

)
: This represents websites which cater to an

ad-sensitive population – for example, senior business executives. An ad-sensitive

audience necessitates a cautious gating decision: Gate ad-blockers only if the outside

option is not very attractive. Understandably, the ad-intensity is at its lowest for

both regulars and ad-blockers.

(c) High Cb and Low Cr
(
Cr ≤ Ĉ ≤ Cb

)
: In each of the previous two cases, ad-blockers

and regulars were similar in that both groups had low (high) ad-sensitivity. This

third case represents websites that face a wider variety of ad-sensitivities in their

potential users. Here, when the outside option is attractive (i.e., when u0 > um),

it is optimal not to gate ad-blockers. Further, since the ad-sensitivity of regulars

is low, as in Case (a) above, the optimal ad-intensity for these users is the same

as in that case. When the outside option is not attractive (i.e., when u0 ≤ um),

it becomes optimal to gate ad-blockers. Under this possibility, since ad-blockers

are highly ad-sensitive, their ad-intensity is the lowest possible. The gating of ad-

blockers results in the website losing some of these potential users. To compensate,

the website attracts regulars by offering them an ad-intensity which is lower than

that in Case (a) (it is easy to see that ag ≤ V−u0
Cr

).

The closed-form expressions in Theorem 4 help us establish the monotonicity of the

ad-intensities, for a given gating decision, with respect to an increase in the upper bound

V on the value of the website. Surprisingly, as shown in Theorem 5 below, the optimal

gating decision may not be monotone in the value of the website.

Theorem 5. (Behavior of Ad-Intensities and Gating Decisions): (i) For a given gating

decision IG, the optimal ad-intensities (âb(IG), âr(IG)) increase with the maximum value V offered

by the website. Thus, for a given gating decision, the website advertises more as its maximum

value increases. (ii) The optimal gating decision (I∗G) is, in general, not monotone in V .
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Interestingly, a website may decide to stop gating with an increase in V , under certain

conditions. Consider, for instance, a website facing (i) a high network effect (i.e., α is

high), (ii) a low ad-blocking rate (i.e., B is low), and (iii) a highly ad-sensitive target

audience (i.e., Cb and Cr are high). As can been seen from Theorem 4, if the website gates,

then a highly ad-sensitive user population makes it optimal to advertise at the minimum

level both to regulars and to ad-blockers who white-list. Here, ad blockers contribute

little to the revenue of the website, since they constitute a small fraction of the potential

user population and, further, being ad-sensitive, most of them do not white-list. In this

situation, an increase in V can make it optimal for the website to stop gating, driven by

the following benefits: (i) Due to a strong network effect, allowing ad-free access to ad-

blockers increases the value of the website (over and above the increase due to a higher

V ). (ii) In turn, this increase in value enables the website to attract more regulars and

also advertise to them at a higher intensity. Note that a further increase in V may make

it optimal for the website to start gating again: If the increase in V is substantial enough,

then despite the loss of ad-blockers who refuse to white-list, the website can (a) further

increase the advertising intensity for regulars and (b) generate revenue from ad-blockers

who white-list.

Remark 1. The special case of α = 0 corresponds to the complete absence of the network effect.

In this case, it is easy to verify that uh = um = V and therefore, from Theorem 4, the website’s

optimal strategy is to always gate ad-block users. More generally, this strategy is attractive for

websites that experience a low network effect; e.g., forbes.com and businessinsider.com. On the

other hand, a website such as facebook.com relies heavily on the network effect and would therefore

refrain from always gating ad-block users.

To be able to assess the impact of ad-block software on the ad-intensities and the rev-

enue of the website, we next analyze the website’s decisions before the advent of such

software.
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4.2.2 Optimal Ad-Intensity in the Pre-Ad-Block World

After the advent of ad-block software, the publisher is able to discriminate between the

two segments of potential users, namely regulars and ad-blockers, who differ in their ad-

viewing cost distributions. In the world prior to ad-block software, the publisher had no

such tool to identify which segment a potential user belongs to and thus used a common

ad-intensity for all potential users. Since it could be confusing to refer to the two segments

as regulars and ad-blockers in the pre-ad-block world, we refer to these segments as low-

cost and high-cost, respectively. The subscript r will refer to the low-cost segment and the

subscript b will refer to the high-cost segment. Using the same notation as in the previous

section, the pre-ad-blocking world corresponds to the website always gating; i.e., IG = 1

and choosing a common ad-intensity ab = ar = a (say). Thus, the website’s revenue

is R(1, a, a) and we now have the following optimization problem, which we refer to as

problem PBefore.

max
a

R(1, a, a) s.t. a ∈ {0} ∪ [amin,∞). (PBefore)

Let a∗ be the optimal ad-intensity in problem PBefore. Let v∗ := v(1, a∗, a∗) (resp.,

n(1, a∗, a∗)) denote the corresponding equilibrium value (resp., equilibrium traffic) of the

website. As in Section 4.2.1, we first present important properties that an optimal solution

of problem PBefore must satisfy and then use them to derive an optimal solution.

• Property B1: (Ad Intensities) Let û0 = V
[
1− αBρ̄

1−B

]
. If a∗ > amin, then (i) if u0 ≤ û0,

the optimal ad-intensity a∗ satisfies v∗ − a∗Cr = u0, (ii) otherwise, v∗ − Cba∗ = u0.

◦ Intuition: When the utility of the outside option is low, the website can hope

to attract users even at a high ad-intensity. Driven by this, the optimal ad-

intensity is such that the entire low-cost segment prefers the website to the

outside option but only a fraction of the high-cost segment does so. When
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the outside option is attractive, the website is more conservative and uses a

relatively lower ad-intensity, which ensures that both the low-cost and high-

cost segments become users.

This property is derived as part of the proof of Theorem 6 in the Appendix. �

• Property B2: (Rational Belief on Value) The optimal ad-intensity a∗ and the equi-

librium value v∗ satisfy 0 ≤ v∗ − u0 ≤ a∗Cb.

◦ Proof: The proof of this property is similar to that of Property A3 in Sec-

tion 4.2.1. �

• Property B3: (Equilibrium Traffic) The equilibrium number of users is

n(1, a∗, a∗) =


N(1−B) (v∗−u0)

a∗Cr
+NB (v∗−u0)

a∗Cb
, if 0 ≤ v∗ − u0 ≤ a∗Cr,

N(1−B) +NB (v∗−u0)
a∗Cb

, if a∗Cr ≤ v∗ − u0 ≤ a∗Cb.

(4.3)

◦ Proof: This result follows directly from Property B2 and our model of uni-

formly distributed ad-viewing costs for high-cost and low-cost users. �

The revenue function R(1, a, a) can now be computed using the expression of n(1, a∗, a∗)

in (4.3). Theorem 6 below states the optimal solution to problem PBefore; a proof of op-

timality is provided in the Appendix. To express the optimal solution, we define the

following four parametric constants:

Ĉr =
(V − u0 − V αB)Cb
aminCb − V αB

,

ub = V (1− αB) +
M2

M1

,

â =
V (1− αρ)− u0

Cr
,

ˆ̂a =
V − u0

Cb
,
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where ρ =
B(Cb−Cr)

Cb
, ρ̄ = 1− ρ, M1 =

ρ̄
Cr

+ Bamin

V αB−Cbamin
, and M2 =

ρ̄V α−B̄aminCb
Cb

. It is

easy to show that â ≥ ˆ̂a and Ĉ ≥ Ĉr.

As we did in Section 4.2.1, it is convenient to obtain the expression for the value pre-

mium, i.e., v(a)−u0, offered by the website, for a chosen ad-intensity a. Using the expres-

sion for the equilibrium value v
(
see (A.30) and (A.34) in the Appendix

)
, we have

v(a)− u0 =


φl(a) =

aCr(V ᾱ−u0)
aCr−V αρ̄ , if Cb ≥ Ĉ, Cr ≥ Ĉr,

φh(a) =
aCb[V (1−αB)−u0]

aCb−V αB
, otherwise.

Parallel to the meaning of the condition φ(IG, ab, ar) ≥ 0 in the analysis of Problem PAfter

(Section 4.2.1), here the survival condition for the website (i.e., the website does not re-

ceive any traffic if this condition fails) is (i) φl(a) ≥ 0, for a highly ad-sensitive user popu-

lation and (ii) φh(a) ≥ 0, otherwise. We use these conditions in the result below.

Theorem 6. An optimal solution of problem PBefore is as follows:

• If Cb, Cr < Ĉ, then

a∗ =


â, if u0 ≤ û0, φh(â) ≥ 0,

ˆ̂a, if u0 > û0, φh(ˆ̂a) ≥ 0,

0, otherwise.

• If Cb ≥ Ĉ, Cr ≥ Ĉr, then

a∗ =


amin, if φl(amin) ≥ 0,

0, otherwise.
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• If Cb ≥ Ĉ, Cr < Ĉr, then

a∗ =


â, if u0 ≤ ub, φh(â) ≥ 0,

amin, if u0 > ub, φh(amin) ≥ 0,

0, otherwise.

As in Theorem 4, the three cases in the above result represent three categories of websites

based on the ad-sensitivities of their potential users.

(a) Low Cb and Low Cr
(
Cb, Cr < Ĉ

)
: When the outside option is low (high), the web-

site uses a relatively high ad-intensity â (resp., low ad-intensity ˆ̂a). Due to the low

ad-sensitivity (i.e., high ad-tolerance) of the user-population in this category, these

intensities are higher than their corresponding values for the other two categories.

(b) High Cb and High Cr
(
Cb ≥ Ĉ, Cr ≥ Ĉr

)
: Here, due to the high ad-sensitivity of the

user-population, it is optimal to keep the ad-intensity at its lowest.

(c) High Cb and Low Cr
(
Cb ≥ Ĉ, Cr < Ĉr

)
: In this case, the website serves users with

a wider variety of ad-sensitivities. If the outside option is not attractive, then the

website advertises at a high ad-intensity (â); otherwise, it chooses the the minimum

ad-intensity.

Analogous to Theorem 5 (which was for Problem PAfter), the following result estab-

lishes the monotonicity of the optimal ad-intensity in Problem PBefore with respect to the

upper bound V on the value of the website. The proof of this result is similar to that of

Theorem 5 and therefore not provided for brevity.
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Figure 4.4. A pictorial comparison of the ad-intensities in the optimal solutions to prob-
lems PAfter and PBefore.

Theorem 7. (Monotonicity of Ad-Intensity): Keeping all other parameters fixed, as the max-

imum value V offered by the website increases, the optimal ad-intensity a∗ increases. In other

words, the website advertises more as its maximum value increases.

Using the optimal solutions in Theorems 4 and 6, we now compare the ad-intensities

before and after the advent of ad-block software.

4.2.3 Comparing Optimal Ad-Intensities in the Pre- and Post-Ad-Block Worlds

Figure 4.4 is a pictorial comparison of the ad-intensities in the optimal solutions to prob-

lems PAfter and PBefore. As shown here, for both these problems, the (Cb, Cr)-space can

be decomposed into three regions – I, II, and III – that broadly represent the websites

that serve users with low, high, and moderate ad-sensitivities, respectively. In the pre-ad-

block world, the websites belonging to Region II found it optimal to keep the ad-intensity

at its minimum level; i.e., amin. In the post-ad-block world, the discriminatory power be-

stowed by ad-blockers enables the choice of a higher ad-intensity for regular users with
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Cb ≥ Ĉ, Cr ∈ [Ĉr, Ĉ]. Thus, Region II of the pre-ad-block world shrinks in the post-ad-

block world (or, equivalently Region III expands).

4.3 Impact of Ad-Block Software on Publishers

In the previous section, we obtained the optimal decisions of the publisher before and

after the advent of ad-block software. In this section, we use the analysis thus far to

assess the impact on (i) the revenue of the website and (ii) the ad-intensities for the two

segments of the population.

Theorem 8. Under the optimal decisions derived in Section 4.2, the revenue of the website in-

creases after the advent of ad-block software. That is,

R(I∗G, a
∗
b , a
∗
r) ≥ R(1, a∗, a∗).

The intuition behind the above result is as follows. By definition, a∗ is the optimal ad-

intensity of the website before the advent of ad-block software. Consider the following

strategy of the website after the advent of ad-block software: ab = ar = a∗, IG = 1.

In following this strategy, the website continues to keep the same ad-intensity after the

advent of ad-block software as before, and gates all ad-blockers. Since the ad-intensity is

the same before and after the advent of ad-block software and the website gates all ad-

blockers, any potential user who became a user in the pre-ad-block world also becomes a

user in the post-ad-block world. Thus, the maximum revenue obtained by the publisher

before the advent of ad-block software is a lower bound on the optimal revenue of the

website after the advent of ad-block software. This finding is consistent with that of a

recent empirical investigation at Forbes (DVorkin 2016) in which ad-blockers were gated

and offered an ad-light experience while regulars were offered a higher ad-intensity. The

main finding was that, as compared to the earlier setting where ad-blockers were not
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gated, Forbes was able to deliver 63 million additional ad impressions in two weeks to

those users who agreed to whitelist, without significantly affecting the total traffic to the

website.

Theorem 9. Compared to the ad-intensity before the advent of ad-block software, the ad-intensity

for the high-cost segment decreases and the ad-intensity for the low-cost segment increases after

the advent of ad-block software. That is,

a∗b ≤ a∗ ≤ a∗r.

The intuition for the above theorem is this: Since the two segments of the population

differ in terms of their ad-viewing cost distributions, the ability to discriminate between

their ad-intensities, in the world with ad-block software, makes it optimal to more aggres-

sively advertise to the low-cost segment and to less aggressively advertise to the high-cost

segment, than before.

Remark 2. (Unconstrained Ad-Intensities) Both problems PBefore and PAfter imposed a lower

bound, namely amin, on the ad-intensities. In the absence of this lower bound, i.e., when

amin = 0, the optimal solutions of these problems simplify significantly. Using the same

notation as in our analysis above, the optimal solution of PAfter when amin = 0 is

(I∗G, a
∗
b , a

∗
r) =

(
1,

V − u0

Cb
,
V − u0

Cr

)
.

and the optimal solution of PBefore is

a∗ =


â, if u0 < û0,

ˆ̂a, if û0 ≤ u0 ≤ V ᾱ + V αB̄,

0, otherwise.

The key results of our analysis continue to hold when amin = 0: the website’s revenue

increases, white-listers receive an ad-light experience, and regulars are offered a higher

ad-intensity in the post-ad-block world. �
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Thus far, our focus was on the impact of ad-block software on the website’s revenue.

We now examine the impact on consumer surplus and social surplus.

4.4 Welfare Analysis

We define consumer surplus as the total expected net utility over all the consumers; that

is, the sum of the net utilities of all the consumers. Social surplus is defined as the sum of

consumer surplus and the revenue of the website. The main takeaway from our analysis

in this section is an argument in favor of a website providing niche content to ensure

that both the website and the consumers of its content benefit. We now proceed with the

analysis.

For simplicity of exposition, we focus on the case when the minimum ad-intensity

threshold is low; specifically, amin ≤ V−u0
Cb

. From our analysis of Problem PAfter in Sec-

tion 4.2 we know that, in this case, a∗b = V−u0
Cb

, a∗r = V−u0
Cr

, n = N , and v = V . Let CSAfter

denote the consumer surplus after the advent of ad-block software. An ad-block user

with an ad-sensitivity of c̃b receives a net utility of V − a∗b c̃b. Similarly, a regular user

with an ad-sensitivity of c̃r receives a net utility of V − a∗r c̃r. Since c̃b ∼ U [0, a∗bCb] and

c̃r ∼ U [0, a∗rCr], we have

CSAfter = NB

[
V − a∗bCb

2

]
+N(1−B)

[
V − a∗rCr

2

]
.

Using a∗r = V−u0
Cr

and a∗b = V−u0
Cb

we get

CSAfter =
N(V + u0)

2
. (4.4)
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Let CSBefore denote the consumer surplus before the advent of ad-block software. Us-

ing an analysis similar to that above, we have

CSBefore =



Nρ̄(V−V αρ+u0)+2NBρu0
2

, if u0 ≤ û0,

NB̄[2CbV−Cr(V−u0)]+CbNB(V+u0)
2Cb

, otherwise.

(4.5)

For more details on the expressions in (4.5), we refer the reader to the proof of the fol-

lowing result, which characterizes the increase in consumer surplus after the advent of

ad-block software.

Theorem 10. After the advent of ad-block software, consumer surplus increases if and only if

u0 ≤ û0.

The intuition behind this result is as follows. In the pre-ad-block world, the publisher

– who had no tool to segment users based on their ad viewing costs – used a single ad-

intensity for all potential users. Not surprisingly, this common ad-intensity is too high for

some high-cost potential users, who therefore choose not to become users of the website

and instead consume the low-utility outside option (u0 ≤ û0). However, after the advent

of ad-block software, the website is able to discriminate by offering a lower ad-intensity

to such high-cost users, thereby converting them into users of the website and leading

to an increase in the total traffic of the website. This increases consumer surplus in two

ways: First, all the new users (the users of the website after the advent of ad-block soft-

ware but not before) obtain a higher net utility compared to the low utility from the out-

side option, which they were consuming earlier. Second, the increase in traffic increases

the value of the website; therefore, the old users (the users of the website both before and

after the advent of ad-block software) also obtain a higher net utility from the website. In
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this manner, consumer surplus increases after the advent of ad-block software when the

outside option has low net utility.

When the outside option offers a high-enough net utility (u0 > û0), then the ad-

intensity in the world prior to ad-blockers is itself quite low (see Theorem 6). After the

advent of ad-block software, while the website is able to decrease the ad-intensity for

high-cost users, this decrease is not significant given that the ad-intensity was already

low. On the other hand, the ad-intensity increases significantly for low-cost users – while

the website is able to retain these users by carefully increasing their ad-intensity, their

consumer surplus decreases due to this increase. Overall, the loss of consumer surplus

due to the (significant) increase in the ad-intensity for low-cost users more than offsets

the gain in consumer surplus due to the (small) decrease in the ad-intensity for high-cost

users. As a consequence, the total consumer surplus decreases.

We now examine the social surplus. Let WBefore and WAfter (resp., RBefore and RAfter)

denote the social surplus (resp., optimal revenue of the website) before and after the ad-

vent of ad-block software, respectively. We know that

RBefore =



Nrρ̄(V−V αρ−u0)
Cr

, if u0 ≤ û0,

Nr(V−u0)
Cb

, otherwise,

(4.6)

and

RAfter =
Nrρ̄(V − u0)

Cr
. (4.7)

The expressions for WBefore and WAfter can be obtained using (4.4), (4.5), (4.6), and

(4.7). The following result characterizes the movement in total surplus in the post-ad-

block world.
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Theorem 11. After the advent of ad-block software, social surplus increases if and only if u0 ≤ û0.

One direction of this result follows immediately from Theorems 8 and 10, since both

the revenue of the website and the consumer surplus increase in the post-ad-block world

when u0 ≤ û0. In the reverse direction (i.e., when u0 ≥ û0), while consumer surplus

decreases in the post-ad-block world (Theorem 10), an attractive outside option for con-

sumers compels the website to choose a low ad-intensity, thereby limiting the increase in

its revenue. Consequently, the increase in the website’s revenue is not enough to compen-

sate for the loss of consumer surplus, leading to a net decrease in social surplus. Figure 4.5

summarizes the conclusions of Theorems 8, 10, and 11.

𝑢0 ≤ ො𝑢0
(Low Outside Option)

𝑢0 > ො𝑢0
(High Outside Option)

 Publisher surplus increases.

 Consumer surplus increases.

Win-Win

 Publisher surplus increases.

 Consumer surplus decreases.

Win-Lose

Social surplus increases

Social surplus decreases

Figure 4.5. The advent of ad-blockers leads to a win-win for the websites that serve niche
content (u0 ≤ û0) and their users.

In summary, relative to the pre-ad-block world, regular users are worse-off in the post-

ad-block world while ad-block users (white-listers) are better-off (since they receive an

ad-light experience). As long as the outside option is low enough, both the consumer

surplus and the social surplus improve in the post-ad-block world (Theorem 10 and 11),

and the website’s revenue also improves (Theorem 8).

The expressions for RBefore and RAfter in (4.6) and (4.7) help us establish the following

result.
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Theorem 12. The rate of increase in the optimal revenue with an increase in the maximum value

V of the website is higher in the post-ad-block world, i.e., ∂RAfter
∂V

≥ ∂RBefore
∂V

. Further, equality

holds for B = 0 and B = 1.

In both the pre- and post-ad-block worlds, the increase in the website’s value from

an increase in V enables it to advertise at a higher ad-intensity. However, because of

the discriminatory power endowed by ad-blockers in the post-ad-block world, the web-

site can customize the ad-intensity for each of the two user segments, i.e., regulars and

ad-blockers. This is in contrast to the pre-ad-block world, where a common ad-intensity

had to be chosen for the entire user population. This added advantage results in a rela-

tively higher rate of increase in revenue with an increase in V in the post-ad-block world.

Clearly, the ability to individually customize the ad intensities for the two segments can

lead to a significant benefit only if both the segments are of sufficient size; i.e., the ad-

blocking rate B is sufficiently away from 0 and 1.

A website can increase V by improving the quality of its content or service and/or by

providing niche content. Thus, Theorem 12 implies that the website has a higher incentive

to undertake such endeavors post the advent of ad-block software. Further, current ad-

blocking rates are fractional for most websites, thus making the effort to increase V more

potent. Finally, from (4.4) and (4.7), we also know that both consumer surplus and the

website’s revenue increase with V , leading to an increased social surplus. In summary,

content managers can view the provision of better/niche content or service as a curative response

to ad-block software – one that is beneficial both to the website and its potential consumers and,

therefore, generates more social value.

Remark 3. (White-Listing Cost) Our analysis assumes that ad-block users do not incur any

cost for white-listing the website. However, it is conceivable that users incur or perceive

a positive white-listing cost – for example, users may feel annoyed when asked to white-

list despite having an ad-blocker installed or non-tech-savvy users may find it difficult to
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properly white-list the website. In practice, websites try to reduce this cost by providing

instructions on how to white-list and by explaining to users that ads are necessary to

finance the creation of high-quality content. As long as the white-listing cost is sufficiently

low, it is easy to show that the main results of our analysis – that the website’s revenue

increases after the advent of ad-blockers and that consumers also benefit under a low

outside option – continue to hold. �

Our analysis thus far assumes that the website’s gating decision is binary – either al-

low ad-free access to all ad-blocker users or require all these users to white-list to gain

access. With the aim of further increasing the website’s revenue, we now examine a gen-

eralization in which only a fraction of the ad-block users are gated.

4.5 Improving Revenue Further: Selective Gating

Let p denote the fraction of ad-blockers who are gated. The remaining 1 − p fraction of

ad-blockers are not gated, i.e., are allowed to access the website without disabling the

ad-block software. We refer to p as the gating intensity and to this strategy as selective

gating. There are several ways in which selective gating can be implemented – e.g.,

tossing a coin (with success probability p) at each user visit to decide whether or not to

gate, or randomly choosing a p fraction of users for gating. We will refer to the strategy

in Section 4.2 of gating all or none of the potential users as integral gating, to contrast it

with selective gating. Under selective gating, the sequence of events shown in Figure 4.2

of Section 4.1 will only change as follows: the indicator IG = 1 is replaced by p and the

indicator IG = 0 is replaced by (1 − p). Clearly, the equilibrium value of the website v

will now be different from that in the case of integral gating (i.e., IG ∈ {0, 1}). Thus,

the decisions of the users change through the change in v. A regular user with an ad-

sensitivity of c̃r becomes a user of the website if v − arc̃r ≥ u0. An ad-blocker with an
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ad-sensitivity of c̃b becomes a user of this website under the following conditions: (a) if

this user is selected for gating (with probability p) and v − abc̃b ≥ u0, (b) if this user is not

selected for gating (with probability 1− p) and v ≥ u0; in this case, c̃b is inconsequential.

Our goal in this section is to identify the conditions under which the use of selective

gating can lead to a substantial increase in the website’s revenue, relative to integral gat-

ing. Recall from Theorem 4 that our analysis in Section 4.2 partitioned the website’s deci-

sions into three cases, based on the ad-viewing cost parameters Cb and Cr: (i) Cb, Cr < Ĉ,

(ii) Cb, Cr > Ĉ, and (iii) Cr ≤ Ĉ ≤ Cb. In the first case, using an analysis similar to that in

the proof of Theorem 4, we have p∗ = 1, i.e., the optimal gating intensity under selective

gating is naturally integral. Thus, in this case, selective gating does not affect the revenue

of the website.

From the other two cases (namely, ii and iii), for brevity, we only discuss Case ii in

this section, namely Cb, Cr > Ĉ. For this case, using an analysis similar to that in the

proof of Theorem 4, we can show that, for any gating intensity p ∈ [0, 1], a∗b = a∗r = amin.

Thus, we only need to obtain the optimal gating intensity p∗. Let R(p, amin, amin) represent

the revenue of the website when gating intensity is p. Therefore, the website solves the

following problem:

max R(p, amin, amin) s.t. p ∈ [0, 1]. (PSelect)

Let p∗ be the optimal gating intensity and let v∗ := v(p, amin, amin). Let n(p∗, amin, amin)

represent the equilibrium traffic received by the website. Similar to Sections 4.2.1 and

4.2.2, we first present some important properties that an optimal solution must satisfy

and then use them to derive the optimal solution.

• Property C1: (Rational Belief on Value) The optimal gating intensity p∗ is such that

the equilibrium value v∗ satisfies 0 ≤ v∗ − u0 ≤ aminCr.
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◦ Proof: (i) If v∗ < u0, then the website does not receive any traffic and therefore

does not earn any revenue. Therefore, we should have v∗ ≥ u0. (ii) We know

that Cr ≥ Ĉ, where, from Section 4.2.1, Ĉ = V−u0
amin

. Since V ≥ v∗, we have

Cramin ≥ v∗ − u0. �

• Property C2: (Equilibrium Traffic) The equilibrium number of users is

n(p∗, amin, amin) =
NB(v∗ − u0)p∗

aminCb
+ (1− p∗)NB +

N(1−B)(v∗ − u0)

aminCr
. (4.8)

◦ Proof: This result follows directly from Property C1 and our model of uni-

formly distributed ad-viewing costs for ad-blockers and regulars. �

The revenue function R(p, amin, amin) can now be computed using (4.8). It is easy to show

that R(p, amin, amin) is a concave function of p. When R′(0) ≥ 0 and R′(1) ≤ 0, let p̂ be

such that R′(p̂) = 0; clearly, such a value exists. We formally state the optimal gating

intensity.

Theorem 13. The optimal gating intensity is given by

p∗ =


0, if R′(0) < 0, R′(1) < 0,

1, if R′(0) > 0, R′(1) > 0,

p̂, if R′(0) ≥ 0, R′(1) ≤ 0.

We now proceed to examine the benefit of selective gating for the website.

4.5.1 Illustrating the Benefit of Selective Gating

To assess the benefit of selective gating, it is instructive to first understand the behavior

of the optimal gating intensity p∗. We illustrate this using the following choice of the pa-

rameters: Cr = 100, Cb = 200, u0 = 50, amin = 1, N = 1, 000, 000, r = 1, and V = 100.
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Figure 4.6. The benefit of selective gating is zero when the optimal gating intensity p∗ is
naturally integral, and is high for those combinations of α (the strength of the network
effect) and B (the fraction of ad-block users) for which p∗ is close to 0.5.

Figure 4.6(a) plots the optimal gating intensity (p∗) with respect to the network effect α

and the ad-blocking rate B. Our main observations – which can be viewed as recom-

mendations on the optimal gating intensity for the website based on the strength of its

network effect and the ad-blocking rate of its user-population – are discussed below:

• From the lower half of the figure, we note the following:

◦ When the strength of the network effect is low, it is optimal to always gate

ad-blockers for all values of the ad-blocking rate, i.e., p∗ is 1 for all values of B.

◦ As the ad-blocking rate increases, the region in which p∗ is 1 expands.

The gating of ad-blockers affects a website in two ways: On the one hand, if an ad-

blocker agrees to white-list the website, then revenue may be generated from this

user who is otherwise a free-rider. On the other hand, if the ad-blocker does not

white-list and leaves, then the resulting negative externality can adversely affect the

user base of the website – the extent of this externality depends on the strength of
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the network effect for the website. Thus, when the magnitude of the network effect

is low, the latter force is weak relative to the former and, as a result, it becomes

optimal to always gate ad-blockers. Moreover, as the ad-blocking rate increases

and ad-blockers constitute a larger fraction of the user-base, the conversion of ad-

blockers to white-listers becomes even more attractive for the website, resulting in

the expansion of the region in which p∗ equals 1.

• The upper-left quadrant shows that a near-zero gating intensity is optimal when the

ad-blocking rate is low but the network effect is strong. Both these features act in

tandem towards a low gating intensity: while the strong network effect dissuades

the website from gating ad-blockers, the low ad-blocking rate means that there is

also no compelling need to react to ad-blockers.

• In the upper-right quadrant – where the network effect is strong and the ad-blocking

rate is high – a fractional gating intensity is optimal. Here the tradeoff is healthy: while

the strong network effect keeps the website from gating ad-blockers aggressively,

the high ad-blocking rate also necessitates some action towards ad-blockers. This

creates a fertile situation for selective gating to realize its potential, resulting in a

fractional value of p∗. Further, as expected, p∗ reduces as the network effect becomes

stronger.

Another interesting observation from Figure 4.6(a) is that when the ad-blocking rate

is low, the optimal gating intensity is largely integral, i.e., p∗ is either 0 or 1. This perhaps

explains why selective gating is not yet common in practice: Ad-blocking rates are still

quite modest; in the U.S., for example, it is currently around 18%. As ad-blockers become

prevalent, one can expect to see an increase in the use of the selective-gating strategy.

Benefit of Selective Gating Over Integral Gating: Having obtained the website’s optimal

revenue under both integral (Section 4.2) and selective gating, we can now examine the
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percentage increase in revenue from the latter. For our chosen values of the parameters, it

can be verified that the optimal ad-intensities are a∗b = a∗r = amin under both integral and

selective gating. Let

ΘSelect =
R(p∗, amin, amin)−R(I∗G, amin, amin)

R(I∗G, amin, amin)
× 100.

Figure 4.6(b) plots the logarithm (base 10) of ΘSelect with respect to the network-effect

parameter α (strength of the network effect) and the ad-blocking rate B (fraction of ad-

block users). We now discuss our observations in this figure using additional information

from Figure 4.6(a). Obviously, the benefit of selective gating is zero where the optimal

gating intensity p∗ is naturally integral. The benefit is highest in the region where p∗ is

around 0.5 (and therefore farthest from the integral extreme values). This is precisely the

region in which both α and B are high. As is clear from our discussion above, concerns

over the use of ad-blockers are particularly important for websites that face both a high

network effect and a high fraction of ad-block users – these are the websites that can

benefit most from selective gating.

Improvement in Revenue: In Theorem 8, we established that, under the optimal deci-

sions derived in Section 4.2, the revenue of the website increases after the advent of ad-

blockers. While that result assumed an integral gating decision, selective gating further

increases the website’s revenue. Recall from Section 4.2.2 that the website’s revenue in

the pre-ad-block world corresponds (in the post-ad-block world) to the website gating all

potential users and using a common ad intensity ab = ar = a. Under our chosen val-

ues of the parameters, using Theorems 6 and the discussion earlier in this section, the

website’s revenue in the post-ad-blocker (resp., pre-ad-blocker) world is R(p∗, amin, amin)(
resp., R(1, amin, amin)

)
. Thus, the percentage increase in the website’s revenue after the

advent of ad-blockers is
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Figure 4.7. When the network effect is strong, the percentage increase in the website’s
revenue in the post-ad-blocking world peaks at a moderate ad-blocking rate B. When the
network effect is weak, there is little or no increase in revenue.

ΥRev =
R(p∗, amin, amin)−R(1, amin, amin)

R(1, amin, amin)
× 100.

Figure 4.7 plots ΥRev with respect to ad-blocking rate B and network effect α. When

the network effect is weak, the optimal gating intensity in the post-ad-block world is nat-

urally close to 1
(
recall our earlier discussion for the lower half of Figure 4.6(a)

)
; therefore,

there is little or no increase in revenue. When the network effect is strong, the percentage

increase in revenue peaks for a moderate ad-blocking rate B (close to 0.5) – this is when

the website can fully exploit the ability endowed by ad-blockers to discriminate between

the two segments, namely regulars and ad-blockers.
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4.6 Extensions: Robustness Check under Additional Features

We now analyze the following additional features as extensions to our base model in

Section 4.1:

• Heterogeneous profitability of the two user groups – namely, ad-block users and

regular users – to the website,

• The offering of a paid, ad-free subscription option by the website (in addition to the

option of viewing ad-supported free content by white-listing the website),

• Endogenous adoption of ad-blockers by users in response to the website’s strategy

(i.e., its chosen ad-intensities for white-listers and regular users), and

• Negative externality (congestion cost) imposed on the website by an increase in

traffic.

We add each of these features, one at a time, to our base model and establish the validity

of our main conclusions: (i) the revenue of the website increases in the post-ad-block

world relative to that in the pre-ad-block world (Theorem 8), (ii) ad-block users receive an

ad-light experience (Theorem 9), and (iii) the social surplus can either increase or decrease

in the post-ad-block world relative to that in the pre-ad-block world (Theorem 11).

Recall that, in our base model, the domain for the ad-intensities ar and ab (decisions of

the website) for, respectively, regular users and white-listers is {0} ∪ [amin,∞]. That is, ar

(resp., ab) is either 0 or at least amin. For simplicity of exposition, we present the analysis

of the above extensions under the assumption amin = 0.

In the following subsections, we define the setting for each of the four extensions; the

corresponding technical analysis is provided in Appendix.
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4.6.1 Heterogeneous Profitability

Our basic model in Section 4.1 assumes that both ad-block users and regular users are

equally profitable. That is, the website earns the same revenue r per unit ad-intensity from

both ad-block users and regular users. We now relax this assumption and let these two

user groups be heterogeneous in terms of their profitability to the website. Specifically, we

assume that the website earns a revenue of rb per unit ad-intensity from ad-block users,

and a revenue of rg per unit ad-intensity from regular users. We make no assumption on

the relative comparison of these two values (i.e., our analysis holds regardless of whether

rb ≤ rg or rb ≥ rg). The analysis of this extension is in the Appendix.

4.6.2 Subscription Option

Our basic model of Section 4.1 considers a website that operates only on advertising rev-

enue. While this is indeed the case for most websites on the internet, there are websites

that also offer a paid subscription option to users for viewing ad-free content. To ad-block

users, such websites typically give an additional option of subscription after gating them.

In this extension, we model a website that offers its users both ad-supported free content

and ad-free paid content (subscription).

We assume that the website charges a subscription fee f per visit (a decision for the

website) for its ad-free content (if the subscription fee is charged periodically, say per year,

then it can be appropriately amortized to a per-visit fee). Figure 4.8 depicts the sequence

of events when the website offers the subscription option. If the website decides to gate

an ad-block user, then that user has the following three options: (i) white-list the website,

(ii) subscribe to the website, or (iii) leave the website and consume the outside option. The

website decides the optimal subscription fee f along with the optimal ad-intensities ab

and ar. In the pre-ad-block world, the website decides the optimal subscription fee f and
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the optimal ad-intensity a for the entire user population. The analysis of this extension is

in the Appendix.

𝐵 1 − 𝐵

Gate
𝐼𝐺 = 1

No Gate
𝐼𝐺 = 0

White-list

Outside 
Option

Access

Website Decides
𝑰𝑮, 𝒂𝒃, 𝒂𝒓, 𝒇

Ad-Block Users Regular Users

Outside 
Option

Regular
User Decides

Ad-Block
User Decides

𝑁

(0, 𝑣)

(0, 𝑢0)(𝑟𝑎𝑏, 𝑣 − 𝑎𝑏 ǁ𝑐𝑏)

(𝑟𝑎𝑟 , 𝑣 − 𝑎𝑟 ǁ𝑐𝑟) (0, 𝑢0)

Subscribe

Subscribe

(𝑓, 𝑣 − 𝑓)

(𝑓, 𝑣 − 𝑓)

Figure 4.8. The sequence of events of the game when the website offers both the white-
listing and subscription options: The website first decides IG, ab, ar, and f . The ad-
blockers then decide whether to white-list (for ad-supported content) or subscribe (for
ad-free content) or consume the outside option. Similarly, the regulars decide whether to
access the website with ads or subscribe or consume the outside option. The quantities in
brackets represent the payoffs received by the website and the user, respectively.

4.6.3 Endogenous Adoption of Ad-Blockers

In our basic model of Section 4.1, we consider two exogenously given groups of users

(ad block users and regular users). Instead, in this extension, we let these two groups

form endogenously in response to the website’s strategy (i.e., its chosen ad-intensities for

white-listers and regular users). In practice, the adoption of ad-blockers by users is typi-

cally influenced by the ad-intensities of a multitude of websites. Thus, the setting where a

single website can control the adoption of ad-blockers by changing its ad-intensities is re-

alistic only for influential websites that serve a large number of users (e.g., Youtube.com).
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We consider such a website in this extension. For our analysis in this section, it is con-

venient to view v as the (infinite-horizon, discounted) lifetime value of the website to a

user. We assume a potential user population with heterogenous ad-sensitivities: For a

randomly-picked potential user who is shown an ad-intensity of 1, the ad-viewing cost

is a random variable denoted by c̃a ∼ U [0, Ca]; a similar lifetime interpretation is con-

venient for these costs as well as the maximum-possible value V from the website. We

assume that a user incurs a cost S ≥ 0 in installing an ad-blocker. The analysis of this

extension is in the Appendix.

4.6.4 Negative Externality (Congestion Cost) Due to Increase in Traffic

Our basic model of Section 4.1 does not consider any negative externality imposed on the

website due to an increase in traffic. In this extension, the website incurs a congestion cost

due to increased traffic. Specifically, for a constant kc ≥ 0, we assume that the website

incurs a congestion cost of kcn2, where n is the equilibrium traffic of the website. It is

convenient to interpret this as a “service cost”; that is, the cost incurred by the website in

increasing server capacity (due to increased traffic) to maintain a fixed service level. The

analysis of this extension is in the Appendix.

Next, we discuss the recommendations offered by our analysis for publishers, web-

browsers, and policy makers.

4.7 Recommendations for Publishers, Browsers, and Policy Makers

Publishers: While publishers always benefit in the post-ad-block world (Section 4.3), the

specific strategy – namely, the gating decision and the ad-intensities for regulars and ad-

blockers – to realize this benefit differs across publishers. Two key characteristics that
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Figure 4.9. The recommended gating decision and advertisement intensity based on the
strength of a website’s network effect and the ad-sensitivity of its potential users.

shape a publisher’s strategy are the strength of the network effect it faces and the ad-

sensitivity of its potential users. Figure 4.9 summarizes the associated recommendations

offered by our analysis: If the network effect is strong and the user population is ad-

sensitive, then no gating and a low ad-intensity is recommended. On the other extreme,

if the network effect is low and users have a high ad-tolerance, then always gating and a

high ad-intensity is suggested. Otherwise, the website should selectively gate users and

advertise at a moderate intensity. In all these cases, when a website gates, it is recom-

mended that white-listers be offered an ad-light experience.

Browsers: Recently, Google announced that it plans to provide an inbuilt ad-blocker

for its Chrome web browser (Wall Street Journal, 2017). There already exist other web

browsers that come with an inbuilt ad-blocker, e.g., Adblock Browser for mobiles, and

Opera for both desktops and mobiles. We now discuss the potential impact of the deci-
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sion of web browsers to provide an inbuilt ad-blocker on the welfare of publishers and

consumers. Specifically, let us imagine the following setting: The web browsers of all po-

tential users of the website have an inbuilt ad-blocker with a white-listing feature (both

Opera and Adblock Browser offer this feature). Thus, the only way that the website can

show ads to its users is by asking them to white-list the website on their browsers.

As our analysis in Sections 4.2 and 4.3 showed, the conscious decision of users to in-

stall an ad-blocker divulges information about their ad-viewing costs, which can then

be exploited by the website to tailor their ad-intensities. When the outside option of-

fers low utility, this separation not only benefits publishers but also improves consumer

surplus. On the flip side, this discrimination is not powerful enough when the outside

option offers a high-enough utility, in the sense that users with low ad-viewing costs can

be worse-off after the advent of ad-blockers. However, if all potential users have an in-

built ad-blocker, the publisher cannot distinguish them on the basis of their ad-viewing

costs and therefore loses the ability to customize their ad-intensities. Thus, we are back

to the situation before the advent of ad blockers. Let PInbuilt refer to the website’s problem

for a user population with in-built ad-blockers. The analysis of this problem is identical

to that in Section 4.2.2 of problem PBefore – the website will gate all users and offer them

a single ad-intensity upon white-listing. Thus, the comparison between PInbuilt and PAfter

is identical to the comparison between PAfter and PBefore with the trends reversed. That is,

with in-built ad-blockers (i) the website’s revenue decreases and (ii) both the consumer

surplus and social surplus increase if u0 ≥ û0, and decrease otherwise.

It would be safe to assume that the primary goal of a web browser is to provide a

compelling browsing experience to its users. Thus, the decision of web browsers to pro-

vide an inbuilt ad-blocker is perhaps aimed at improving consumer surplus. However,

our analysis suggests that inbuilt ad-blockers increase consumer welfare of only those

websites for which the outside option is high (u0 ≥ û0). Publishers that offer unique
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content – e.g., Facebook, Twitter, and Youtube – arguably have low-utility outside op-

tions; their users can be worse-off with in-built ad-blockers. Overall, we conclude that the

well-intentioned intervention to provide inbuilt ad-blockers can have undesirable conse-

quences and should therefore be maneuvered carefully. Alternately, it would be best to

let the ecosystem evolve organically, i.e., let users consciously make a choice to install

ad-blockers.

Policy Makers: Publishers and firms that develop ad-block software continue to en-

gage in protracted legal battles. With ad-revenue being their only source of revenue,

publishers have argued for the imposition of a legal ban on ad-block software – a charge

that ad-blocking firms have thus far successfully fought against (Meyer, 2016; Rodriguez,

2017). Also, privacy activists have objected to publishers detecting ad-blockers in users’

web browsers without their permission (Heilpern, 2016). Our analysis derives the con-

ditions under which both publishers and users can benefit from ad-block software and

also derives the associated operational decisions for the publisher. Perhaps these results

can help the stakeholders better understand the implications of ad-block software and,

consequently, de-escalate the conflict between the two parties.

4.8 Concluding Remarks

A typical website consists of multiple webpages. An underlying assumption of our anal-

ysis in this paper was that the website’s decisions, namely those of gating and choosing

the ad-intensities for regulars and ad-blockers, are the same for each page of the website.

It is not uncommon, however, for some pages of a website to offer unique content (for in-

stance, an opinion piece on nytimes.com) while other pages provide generic content that

is easily available elsewhere. Naturally, it is easier for the website to convince potential

users to whitelist pages that offer unique content. Thus, one can potentially investigate
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a richer set of decisions for the website; e.g., an aggressive gating policy for pages with

unique content and a relatively relaxed one for those with generic content. This setting

can be challenging to analyze, for example due to the subtle interaction between the equi-

librium traffic on these two types of pages. Another potential enhancement to our setting

would be to incorporate the presence of a competing website.
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APPENDIX

PROOF OF THEOREMS

Proof of Theorem 1: Consider any policy π which is feasible to PEstatic(~β). Define the

vector (x̃, ỹ) as follows:

x̃s,i,l =

∑
t∈Ts,i E~Ut−1

[
xπt,l
(
~jπt (~Ut−1)

)]
∆

, (A.1)

ỹs,i,l,c =

∑
t∈Ts,i E~Ut−1

[
yπt,l,c

(
~jπt (~Ut−1)

)]
∆

. (A.2)

Our proof involves demonstrating the following claims:

(a) (x̃, ỹ) is feasible to P̂(~β).

(b) π(~β) is feasible to PEstatic(~β).

(c) fπ ≥ f̂(x̃).

(d) f̂(x̃) ≥ f̂
(
x̂∗(~β)

)
.

(e) f̂
(
x̂∗(~β)

)
= fπ(~β).

Combining (a) – (e) we obtain the desired result that fπ(~β) ≤ fπ for any policy π which is

feasible for PEstatic(~β). Thus, π(~β) is optimal for PEstatic(~β). It only remains to show (a) – (e).

Proof of (a): The feasibility of (x̃, ỹ) for P̂(~β) follows from its definition and the feasibility

of policy π for problem PEstatic(~β).

Proof of (b): The feasibility of π(~β) for problem PEstatic(~β) follows from its definition and

the feasibility of
(
x̂∗(~β), ŷ∗(~β)

)
for problem P̂(~β).

Proof of (c): The following two inequalities follow from Jensen’s inequality:

E~Ut−1

[
fi,l

(
xπt,l
(
~jπt (~Ut−1)

))]
≥ fi,l

(
E~Ut−1

[
xπt,l
(
~jπt (~Ut−1)

)])
, ∀ t ∈ Ts,i, s ∈ S, i ∈ I, l ∈ L,
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and ∑
t∈Ts,i

E~Ut−1

[
fi,l

(
xπt,l
(
~jπt (~Ut−1)

))]
∆

≥ fi,l

(∑
t∈Ts,i E~Ut−1

[
xπt,l
(
~jπt (~Ut−1)

)]
∆

)

= fi,l(x̃i,l), ∀ s ∈ S, i ∈ I, l ∈ L.

Multiplying both sides by ∆qi,l and summing over l ∈ L, we obtain∑
t∈Ts,i

∑
l∈L

qi,lE~Ut−1

[
fi,l

(
xπt,l
(
~jπt (~Ut−1)

))]
≥ ∆

∑
l∈L

qi,lfi,l(x̃i,l).

Summing over s ∈ S, i ∈ I, we have

fπ ≥ f̂(x̃).

Proof of (d): This claim follows immediately from claim (a) and the optimality of x̂∗(~β)

for problem P̂(~β).

Proof of (e): Since π(~β) is a state independent policy, directly substituting its definition in

the expression fπ gives fπ(~β) = f̂
(
x̂∗(~β)

)
. �

Proof of Theorem 2: We want to find a bound for the ratio

fπ( ~β∗)

Opt( ~M,α)
.

Recall that problem PEstatic(α ~M) is a relaxation of problem Pstatic( ~M,α) and that P̂(α ~M)

is equivalent to PEstatic(α ~M). Let π(α ~M) =
(
x̂∗(α ~M), ŷ∗(α ~M)

)
be the solution of problem

P̂(α ~M), where

x̂∗(α ~M) =
(
x̂∗s,i,l(α ~M) : s ∈ S, i ∈ I, l ∈ L

)
and

ŷ∗(α ~M) =
(
ŷ∗s,i,l,c(α ~M) : s ∈ S, i ∈ I, l ∈ L, c ∈ C

)
.

Therefore,

Opt( ~M,α) ≥ f̂
(
x̂∗(α ~M)

)
=
∑
s∈S

∑
i∈I

∑
l∈L

∆ qi,l fi,l
(
x̂∗s,i,l(α ~M)

)
. (A.3)
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We can obtain a feasible solution for problem P̂( ~M + zα ~Mr), where ~Mr ∈ R|C|+ is a

vector with elements
√
Mc, c ∈ C, by simply multiplying the solution

(
x̂∗(α ~M), ŷ∗(α ~M)

)
of problem P̂(α ~M) by the factor

γ = max
c∈C

[
Mc + zα

√
Mc

αMc

]
= max

c∈C

[
1

α

(
1 +

zα√
Mc

)]
.

Thus, πγ(α ~M) :=
(
γx̂∗(α ~M), γŷ∗(α ~M)

)
is a feasible solution for problem P̂( ~M + zα ~Mr).

We know that the cost associated with policy πγ(α ~M) is fπγ(α ~M). Since πγ(α ~M) is only a

feasible policy for problem P̂( ~M + zα ~Mr), the cost corresponding to πγ(α ~M), i.e., fπγ(α ~M),

is higher than the optimal cost for problem P̂( ~M + zα ~Mr), i.e., fπ(~β∗). Thus, fπ(~β∗) ≤

fπ
γ(α ~M). We also know that fπγ(α ~M) =

∑
s∈S
∑

i∈I
∑

l∈L∆ qi,l fi,l
(
γx̂∗s,i,l(α

~M)
)
. Therefore,

fπ(~β∗) ≤
∑
s∈S

∑
i∈I

∑
l∈L

∆ qi,l fi,l
(
γx̂∗s,i,l(α ~M)

)
. (A.4)

From (A.3) and (A.4) we can write,

fπ(~β∗)

Opt( ~M,α)
≤
∑

s∈S
∑

i∈I
∑

l∈L∆ qi,l fi,l
(
γx̂∗s,i,l(α

~M)
)∑

s∈S
∑

i∈I
∑

l∈L∆ qi,l fi,l
(
x̂∗s,i,l(α

~M)
) . (A.5)

Now, consider the ratio,
fi,l
(
γx̂∗s,i,l(α

~M)
)

fi,l
(
x̂∗s,i,l(α

~M)
) .

Since γ ≥ 1, γx̂∗s,i,l(α ~M) ≥ x̂∗s,i,l(α
~M). Further, we know that fi,l(·) is convex. Thus, we

can write,

fi,l
(
γx̂∗s,i,l(α

~M)
)

fi,l
(
x̂∗s,i,l(α

~M)
) ≤ fi,l

(
γx̂∗s,i,l(α

~M)
)

fi,l
(
γx̂∗s,i,l(α

~M)
)
−
(
γx̂∗s,i,l(α

~M)− x̂∗s,i,l(α ~M)
)
f ′i,l
(
γx̂∗s,i,l(α

~M)
) ,

=
fi,l
(
γx̂∗s,i,l(α

~M)
)

fi,l
(
γx̂∗s,i,l(α

~M)
)
− (γ − 1)x̂∗s,i,l(α

~M)f ′i,l
(
γx̂∗s,i,l(α

~M)
) ,

=
1

1− (γ−1)
γ

γx̂∗s,i,l(α
~M)f ′i,l

(
γx̂∗s,i,l(α

~M)
)

fi,l

(
γx̂∗s,i,l(α

~M)
) .
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Now, the above inequality can be rewritten as

fi,l
(
γx̂∗s,i,l(α

~M)
)

fi,l
(
x̂∗s,i,l(α

~M)
) ≤ 1

1− (γ−1)
γ
ψi,l
(
γx̂∗s,i,l(α

~M)
) ,

≤ 1

1− (γ−1)
γ
ψ
. (A.6)

Using (A.5) and (A.6), we obtain the desired result that

fπ(~β∗)

Opt( ~M,α)
≤ 1

1− (γ−1)
γ
ψ
.

This completes the proof of Theorem 2. �

Proof of Proposition 1: The simple intuition behind the proof is as follows: Consider

the set of active campaigns at location l at any point in time. As time progresses, some

campaigns end, resulting in fewer campaigns being active in the later time blocks. Thus,

a higher number of active campaigns in the earlier time blocks leads to higher target win-

probabilities than those in the later time blocks.

Let x̂(~β) = {x̂s,i,l(~β) : s ∈ S, i ∈ I, l ∈ L} and ŷ(~β) = {ŷs,i,l,c(~β) : s ∈ S, i ∈ I, l ∈

L, c ∈ C} be an optimal solution of problem P̂(~β). Consider an arbitrary time block i ∈ I

and location l ∈ L, and assume, for a contradiction, that there exist two consecutive time

periods d and d + 1 with x̂d,i,l(~β) < x̂d+1,i,l(~β). That is, in time block i at location l, the

target win-probability in the d-th period is strictly less than the target win-probability

in the (d + 1)-th period. We will construct another feasible solution
(
x̂′(~β), ŷ′(~β)

)
such

that (i) x̂′d,i,l(~β) = x̂′d+1,i,l(
~β), (ii) x̂′s,i,l(~β) = x̂s,i,l(~β), s ∈ S \ {d, d + 1}, (iii) x̂′s′,i′,l′(~β) =

x̂s′,i′,l′(~β), (s′, i′, l′) ∈ S×I×L\
{

(d, i, l), (d+1, i, l)
}

, and (iv) the objective function value

of the solution
(
x̂′(~β), ŷ′(~β)

)
is strictly less than that of the solution

(
x̂(~β), ŷ(~β)

)
.

Let

x̄d,d+1,i,l(~β) =
x̂d,i,l(~β) + x̂d+1,i,l(~β)

2
.
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For location l and time block i, define

x̂′d,i,l(
~β) = x̂′d+1,i,l(

~β) = x̄d,d+1,i,l(~β), (A.7)

x̂′s,i,l(
~β) = x̂s,i,l(~β), ∀ s ∈ S \ {d, d+ 1}.

For all other time periods, time blocks, and locations define

x̂′s′,i′,l′(
~β) = x̂s′,i′,l′(~β), (s′, i′, l′) ∈ S × I × L \

{
(d, i, l), (d+ 1, i, l)

}
.

We now define the allocation probabilities ŷ′(~β) by adjusting the original allocation prob-

abilities ŷ(~β). We do this by advancing the procurment for some campaigns from time

period d+ 1 to time period d. Let

c∗ = min

{
c̃ :

c̃∑
c=1

ŷd+1,i,l,c(~β) ≥ x̂d+1,i,l − x̄d,d+1,i,l(~β)

}
.

For location l, define

ŷ′d,i,l,c(
~β) = ŷd,i,l,c(~β) + ŷd+1,i,l,c(~β), ∀ c ∈ {1, 2, . . . , c∗ − 1},

ŷ′d+1,i,l,c(
~β) = 0, ∀ c ∈ {1, 2, . . . , c∗ − 1},

ŷ′d,i,l,c∗(
~β) = ŷd,i,l,c∗(~β) +

[(
x̂d+1,i,l(~β)− x̄d,d+1,i,l(~β)

)
−

c∗−1∑
c=1

ŷd+1,i,l,c(~β)

]
,

ŷ′d+1,i,l,c∗(
~β) = ŷd+1,i,l,c∗(~β)−

[(
x̂d+1,i,l(~β)− x̄d,d+1,i,l(~β)

)
−

c∗−1∑
c=1

ŷd+1,i,l,c(~β)

]
,

ŷ′d,i,l,c(
~β) = ŷd,i,l,c(~β) ∀ c ∈ {c∗ + 1, c∗ + 2, . . . , |C|},

ŷ′d+1,i,l,c(
~β) = ŷd+1,i,l,c(~β) ∀ c ∈ {c∗ + 1, c∗ + 2, . . . , |C|}.

For all other time periods, time blocks, and locations define

ŷ′s′,i′,l′,c(
~β) = ŷs′,i′,l′,c(~β), (s′, i′, l′) ∈ S × I × L \

{
(d, i, l), (d+ 1, i, l)

}
, c ∈ C.

It is easy to verify that
(
x̂′(~β), ŷ′(~β)

)
is a feasible solution of problem P̂(~β). The fact

that the cost of
(
x̂′(~β), ŷ′(~β)

)
is strictly less than that of

(
x̂(~β), ŷ(~β)

)
is a direct consequence

of the strict convexity of fi,l(·). This completes the proof. �
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Proof of Proposition 2: Define x̂∗(~β) = {x̂∗s,i,l(~β) : s ∈ S, i ∈ I, l ∈ L} and ŷ∗(~β) =

{ŷ∗s,i,l,c(~β) : s ∈ S, i ∈ I, l ∈ L, c ∈ C}. Let
(
x̂∗(~β), ŷ∗(~β)

)
be an optimal solution of prob-

lem P̂(~β). We want to prove that the optimal win-probability in location l during time

block i of time period s decreases with an increase in the impression-arrival probability

qi,l. That is, we want to show that x̂∗s,i,l(~β) decreases with qi,l. Without loss of generality,

we prove this for x̂∗1,1,1(~β), i.e., we prove that x̂∗1,1,1(~β) decreases with an increase in q1,1.

Define B−1 = S × I × L \ (1, 1, 1). Let x̂−1(~β) =
{
x̂s,i,l(~β) : (s, i, l) ∈ B−1

}
. We now define

a new problem in which for a given value of win-probability in location l = 1 for time

block i = 1 and time period s = 1, we find all other win-probabilities. For a given value

of x̂1,1,1, we define z = ∆q1,1x̂1,1,1.

Thus, we solve the following optimization problem to obtain the value of objective

function at the optimal values of the other win-probabilities, given x̂1,1,1:

P̂−1(~β) :



F(z) = min
x̂−1,ŷ

∑
(s,i,l)∈B−1

∆ qi,l fi,l(x̂s,i,l)

subject to:∑
c∈C

ŷs,i,l,c = x̂s,i,l, ∀ (s, i, l) ∈ B−1, (A.8)

∆q1,1

∑
c∈C

ŷ1,1,1,c = z,∑
(s,i,l)∈B−1

∆ qi,lŷs,i,l,c + ∆q1,1ŷ1,1,1,c ≥ βc, ∀ c ∈ C, Kc > 1, (A.9)

ŷs,i,l,c = 0, ∀ c ∈ C, l ∈ Lc, i ∈ I, s > Kc, (A.10)

x̂s,i,l ∈ [0, 1], ∀ (s, i, l) ∈ B−1,

ŷs,i,l,c ∈ [0, 1], ∀ (s, i, l) ∈ S × I × L, c ∈ C.

Since fi,l(·) is a convex function and minimization preserves convexity, function F(z) is

a convex function of z. For a given value of the z, we can obtain the value of F(z) by

solving the above optimization problem. Thus, we can find the optimal value of x̂1,1,1 by
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solving the following problem:

min
0≤x̂1,1,1≤1

∆q1,1f1,1(x̂1,1,1) + F(∆q1,1x̂1,1,1).

Let x̂∗1,1,1(~β) be an optimal solution of the above problem. Then, the first-order condition

for the above optimization problem results in

f ′1,1
(
x̂∗1,1,1(~β)

)
+ F ′

(
∆q1,1x̂

∗
1,1,1(~β)

)
= 0. (A.11)

Since f1,1(·) and F(·) are convex functions, f ′1,1(·) and F ′(·) are increasing functions. It

now immediately follows that x̂∗1,1,1(~β) decreases with an increase in q1,1. �

Proof of Corollary 3: We want to find a bound for the ratio

E[G(M̄)]

G(αM)
. (A.12)

Recall that G(M̄) is the objective function of problem P1(M̄) and G(αM) is the objective

function of problem P1(αM). Let π(αM) =
(
x̂∗(αM), ŷ∗(αM)

)
be the solution of problem

P1(αM), where x̂∗(αM) =
(
x̂∗i,l(αM) : i ∈ I, l ∈ L

)
and ŷ∗(αM) =

(
ŷ∗i,l,c(αM) : i ∈ I, l ∈

L, c ∈ C
)
.

We can obtain a feasible solution for problem P1(M̄) by simply multiplying the solu-

tion
(
x̂∗(αM), ŷ∗(αM)

)
of problem P1(αM) by a factor

γr = max
c∈C

[
M̄c

αMc

]
,

where r stands for our rolling-horizon policy. Since M̄c is a random variable, γr is also a

random variable. Therefore, we have

E[G(M̄)]

G(αM)
≤

∆
∑

i∈I
∑

l∈L Eγr
[
qi,lfi,l

(
γrx̂∗i,l(αM)

)]
∆
∑

i∈I
∑

l∈L

[
qi,lfi,l

(
x̂∗i,l(αM)

)] . (A.13)

We know that

M̄s,c =
s∑

ŝ=s−K+1

M̃ŝ,c

K
+ zα

√
M̃ŝ,c

K
.
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We know that the support of the random variable M̃ŝ,c is [0, Mmax
c ]. Thus, we have

M̄s,c ≤ Mmax
c + zα

√
KMmax

c .

We now define

γrmax = max
c∈C

[
Mmax

c + zα
√
KMmax

c

αMc

]
.

It is easy to see that γr ≤ γrmax with probability 1. Thus, from (A.13) we have

E[G(M̄)]

G(αM)
≤

∑
i∈I
∑

l∈L

[
qi,lfi,l

(
γrmaxx̂

∗
i,l(αM)

)]
∑

i∈I
∑

l∈L

[
qi,lfi,l

(
x̂∗i,l(αM)

)] . (A.14)

Now, consider the ratio,
fi,l
(
γrmaxx̂

∗
i,l(αM)

)
fi,l
(
x̂∗i,l(αM)

) .

By following an analysis identical to that in the proof of Theorem 2, we obtain

fi,l
(
γrmaxx̂

∗
i,l(αM)

)
fi,l
(
x̂∗i,l(αM)

) ≤ 1

1− (γrmax−1)
γrmax

ψr
. (A.15)

Using (A.12) and (A.15), we obtain the desired result that

E[G(M̄)]

G(αM)
≤ 1

1− (γrmax−1)
γrmax

ψr
.

This completes the proof of Corollary 3. �

Details of the Regression for Estimating the Win-Curves Using Real Data (Section 3.2)

Here we provide the details of our logistic regression to estimate the win-curves. A

few fields in our dataset are: (a) winning status (binary variable taking value 1 when

the bid is won, 0 otherwise), (b) click status (binary variable taking value 1 if the im-

pression is clicked, 0 otherwise), (c) bid amount, (d) zip-code, (e) device maker (Apple,

Samsung, etc.), (f) operating system (iOS, android, etc.). In the data set, we have 52,460

98



records corresponding to 5 different zip-codes in the Boston area. We ran five different

regressions, corresponding to each of the five zip-codes, to estimate the win-curves in

the respective locations. The bid amount is the independent variable and the winning

status is the dependent variable. After estimating the regression coefficients, we also

applied the chi-square test to check the goodness-of-fit of the regression model. For lo-

cation l ∈ {1, 2, 3, 4, 5}, (locations 1, 2, 3, 4, and 5, corresponding to zip-codes 02110,

02114, 02116, 02118, and 02119, respectively) we estimate the win-probability for a bid b

as xl(b) = eβ
l
0+β

l
1b

1+eβ
l
0+β

l
1b

. Then, we obtain the expected-cost function for location l using the

relation fl(x) = xlbl(x), where bl(·) is the inverse function of xl(·). The estimated function

fl(·) is convex at each location, as is assumed in our theoretical analysis (see Figure 3.1).

The results of the regression and the goodness-of-fit test for each zip-code are in Table A.1.

Table A.1. Results of the Regression
Zip Number Regression Regression Coefficient Chi-Square

Code of Records Constant (βl0) for Bid (βl1) Test Statistic
02110 1086 −2.281∗∗∗ 0.7051∗∗∗ 31.23302∗∗∗

(std. error: 0.2141) (std. error: 0.1290)
02114 27693 −2.291∗∗∗ 1.04294∗∗∗ 2415.644∗∗∗

(std. error: 0.03693) (std. error: 0.02224)
02116 6794 −1.905∗∗∗ 0.87651∗∗∗ 426.4403∗∗∗

(std. error: 0.07184) (std. error: 0.04388)
02118 2833 −1.936∗∗∗ 0.76762∗∗∗ 128.1244∗∗∗

(std. error: 0.11432) (std. error: 0.06958)
02119 14054 −2.193∗∗∗ 0.97615∗∗∗ 1053.156∗∗∗

(std. error: 0.05212) (std. error: 0.03133)
Significance codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1. The
chi-square test with p-value of less than 0.001 tells us that our model as a whole
fits significantly better than an empty model.

Proof of Theorem 4: Recall from Section 4.2.1 that problem PAfter is defined as follows:

max
IG,ab,ar

R(IG, ab, ar) s.t. IG ∈ {0, 1} and ar, ab ∈ {0} ∪ [amin,∞).
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• Overview of the Solution Procedure: For a given value of the gating decision IG, we

first ignore the constraints that ab and ar should be at least amin and obtain the un-

constrained optimal values of the ad-intensities. Let aub and aur denote these uncon-

strained optimal ad-intensities for ad-blockers and regulars, respectively. Then, the

consideration of amin leads to the following three possibilities: (i) amin < min {aub , aur},

(ii) amin > max {aub , aur}, and (iii) min {aub , aur} ≤ amin ≤ max {aub , aur}. We separately

solve for the optimal decisions in each of these three ranges. As we will see below,

the three ranges of amin correspond to the three cases in the statement of Theorem 4.

We now proceed with the analysis. Recall from (4.2) that the equilibrium revenue of

the website is

R(IG, ab, ar) = r
[
nb(IG, ab, ar) · ab + nr(IG, ab, ar) · ar

]
.

We will obtain the equilibrium expressions for nb(IG, ab, ar) and nr(IG, ab, ar). Using the

same argument as in the proof of Property A3, we see that it is sufficient to consider only

the set of feasible decisions (IG, ab, ar) that lead to an equilibrium value of v satisfying the

following conditions:

0 ≤ v − u0 ≤ Crar, 0 ≤ v − u0 ≤ Cbab. (A.16)

If the website gates ad-blockers, then the probability that a randomly chosen ad-blocker

will white-list the website is v−u0
Cbab

. On the other hand, if the website does not gate ad-

blockers, then all the ad-blockers become users of the website (because v− u0 ≥ 0). Thus,

we have

nb(IG, ab, ar) =
NBIG(v − u0)

Cbab
+ (1− IG)NB. (A.17)

Similarly, the probability that a randomly chosen regular will become a user of the website

is v−u0
Crar

. Thus, we have

nr(IG, ab, ar) =
N(1−B)(v − u0)

Crar
. (A.18)
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The equilibrium traffic of the website can now be written as

n(IG, ab, ar) = nb(IG, ab, ar) + nr(IG, ab, ar),

=
NBIG(v − u0)

Cbab
+ (1− IG)NB +

N(1−B)(v − u0)

Crar
. (A.19)

Let A1(IG) = V ᾱ+V α(1−IG)B and A2(ab, ar) = V α
[
IGB
Cbab

+ 1−B
Crar

]
. Using (4.1) and (A.19),

we get

v =
A1(IG)− u0A2(ab, ar)

1− A2(ab, ar)
. (A.20)

Recall from Section 4.2.1 that

φ(IG, ab, ar) = v − u0 =
V ᾱ + V α(1− IG)B − u0

1− V α
(
IGB
Cbab

+ 1−B
Crar

) .

Thus, from (A.16) and the above equation, we have

φ(IG, ab, ar) ≥ 0, (A.21)

ar ≥
V − V αIGB − u0

Cr

[
1− V αIGB

Cbab

] , (A.22)

ab ≥
V ᾱ + V αB − u0

Cb

[
1− V α(1−B)

Crar

] . (A.23)

Substituting the expression of v from (A.20) in (A.17) and (A.18), we obtain expressions

for nb(IG, ab, ar) and nr(IG, ab, ar) in terms of our three decision variables. Using these

expressions in (4.2), we have

R(IG, ab, ar) =
Nr[A1(IG)− u0]

1− A2(ab, ar)

[
BIG
Cb

+
1−B
Cr

]
. (A.24)
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Since A2(ab, ar) is decreasing in both ab and ar, it is easy to see that R(IG, ab, ar) is also

decreasing in ab and ar. Therefore, the unconstrained optimal values of ab and ar are the

lowest feasible values. From (A.22) and (A.23), we have

aur =
V − V αIGB − u0

Cr

[
1− V αIGB

Cba
u
b

] , (A.25)

aub =
V ᾱ + V αB − u0

Cb

[
1− V α(1−B)

Craur

] . (A.26)

Solving for aub and aur , we have

aub =
V − u0

Cb
, aur =

V − u0

Cr
. (A.27)

Having obtained the unconstrained ad-intensities, we now consider the constraints that

ab, ar ≥ amin. Since Cb ≥ Cr, we have aub ≤ aur . Thus, the three cases mentioned in the

overview of this proof translate into: (i) amin < aub , (ii) amin > aur , and (iii) aub ≤ amin ≤ aur .

We now proceed to obtain the optimal gating decision in each of the three cases.

Case (i) (amin < aub ): Using (A.27) and Cb ≥ Cr, it is easy to see that the condition amin < aub

is identical to Cb, Cr < Ĉ. In other words, this case corresponds to the class of websites

with low Cb and low Cr. Since amin < aub , we have aub , a
u
r > amin. Thus, the unconstrained

optimal solution in (A.27) is feasible for the constrained problem, and, therefore, we have

a∗b = aub and a∗r = aur . Substituting a∗b and a∗r in (A.24), we get

R(IG, a
∗
b , a
∗
r) = N(V − u0)r

[
BIG
Cb

+
1−B
Cr

]
.

It is easy to see that R(1, a∗b , a
∗
r) ≥ R(0, a∗b , a

∗
r); therefore, I∗G = 1. The optimal solution is:

(I∗G, a
∗
b , a

∗
r) =

(
1,

V − u0

Cb
,
V − u0

Cr

)
.

Case (ii) (amin > aur ): Using (A.27) andCb ≥ Cr, it is easy to see that the condition amin > aur

is identical to Cb, Cr > Ĉ. Thus, this case corresponds to the class of websites with high
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Cb and high Cr. Here, the unconstrained optimal values of ab and ar are both lower than

amin. Since R(IG, ab, ar) is decreasing in ab and ar, we have a∗b = a∗r = amin. Substituting a∗b

and a∗r in (A.24), we get

R(IG, a
∗
b , a
∗
r) =

Nr[A1(IG)− u0]

1− A2(amin, amin)

[
BIG
Cb

+
1−B
Cr

]
.

Comparing the revenues at IG = 0 and IG = 1, we obtain the following optimal solution:

(I∗G, a
∗
b , a

∗
r) =


(0, amin, amin), if u0 > uh, φ(0, amin, amin) ≥ 0,

(1, amin, amin), if u0 ≤ uh, φ(1, amin, amin) ≥ 0,

(0, 0, 0), otherwise.

Case (iii) (aub ≤ amin ≤ aur ): Using (A.27) and Cb ≥ Cr, it is easy to see that the condition

aub ≤ amin ≤ aur is identical to Cr ≤ Ĉ ≤ Cb. Thus, this case corresponds to the class of

websites with high Cb and low Cr. Since aub is lower than amin in this case, andR(IG, ab, ar)

is decreasing in ab, the optimal value of ab is amin; that is, a∗b = amin. Thus, from (A.25), we

have

a∗r =
V − V αIGB − u0

Cr

[
1− V αIGB

Cbamin

] .

Substituting a∗b and a∗r in (A.24) we get

R(IG, a
∗
b , a
∗
r) = Nr

[
V −BIGV α− u0

1− V αBIG
aminCb

] [
BIG
Cb

+
1−B
Cr

]
.

Comparing the revenue at IG = 0 and IG = 1, we obtain the following optimal solution:

(I∗G, a
∗
b , a

∗
r) =


(0, amin,

V−u0
Cr

), if u0 > um, φ(0, amin,
V−u0
Cr

) ≥ 0,

(1, amin, ag) if u0 ≤ um, φ(1, amin, ag) ≥ 0,

(0, 0, 0), otherwise.

This completes the proof of Theorem 4. �
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Proof of Theorem 5: From our analysis in the proof of Theorem 4, we also obtain the

optimal ad-intensities for a given value of the gating decision IG. We note these below:

• Case A: If IG = 0, then

◦ Case A1: (âb, âr) = (amin,
V−u0
Cr

), if amin ≤ V−u0
Cr

, φ(0, amin,
V−u0
Cr

) ≥ 0,

◦ Case A2: (âb, âr) = (amin, amin), if amin >
V−u0
Cr

, φ(0, amin, amin) ≥ 0,

◦ Case A3: (âb, âr) = (0, 0), otherwise.

• Case B: If IG = 1, then

◦ Case B1: (âb, âr) = (V−u0
Cb

, V−u0
Cr

), if amin <
V−u0
Cb

, φ(1, V−u0
Cb

, V−u0
Cr

) ≥ 0,

◦ Case B2: (âb, âr) = (amin, ag), if V−u0
Cb
≤ amin ≤ V−u0

Cr
, φ(1, amin, ag) ≥ 0,

◦ Case B3: (âb, âr) = (amin, amin), if amin >
V−u0
Cr

, φ(1, amin, amin) ≥ 0,

◦ Case B4: (âb, âr) = (0, 0), otherwise.

Consider Case A (i.e., IG = 0). Then, we have the following:

• If the optimal ad-intensities (âb, âr) fall under Case A1, then an increase in V keeps

us in Case A1. This is because (a) the condition amin ≤ V−u0
Cr

continues to hold and

(b) the condition φ(0, amin,
V−u0
Cr

) ≥ 0 also continues to hold since the left-hand-side

is an increasing function of V .

• If the optimal ad-intensities (âb, âr) fall under Case A2, then an increase in V ei-

ther keeps us in Case A2, in which case the result holds trivially, or we switch to

Case A1, where both the ad-intensities are at least as large as their corresponding

values under Case A2 (since V−u0
Cr
≥ amin).

• If the optimal ad-intensities fall under Case A3, then the result holds trivially.
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The argument is similar for Case B (IG = 1).

To show that the optimal gating decision I∗G is not necessarily monotone in V , it suf-

fices to exhibit a numerical counter-example. To this end, let Cr = 100, Cb = 200, amin = 2,

N = 106, r = 1, α = 0.99, B = 0.01, and u0 = 50. It is easy to verify using Theorem 4 that,

for these parameters, I∗G = 1 at V = 240, and I∗G = 0 at V = 260. �

Proof of Theorem 6: Recall from Section 4.2.2 that problem PBefore is as follows:

max
a

R(1, a, a) s.t. a ∈ {0} ∪ [amin,∞).

Similar to our analysis of problem PAfter, here too we will first ignore the constraint

a ≥ amin and solve the relaxed problem. Let au denote the optimal ad-intensity in this

unconstrained problem. Since n(1, a, a) is the equilibrium traffic of the website, its rev-

enue is

R(1, a, a) = n(1, a, a)ra. (A.28)

We now proceed to obtain the optimal ad-intensity of the relaxed problem. Since Cb ≥ Cr,

using property B2 in Section 4.2.2, we have the following two possibilities depending on

the equilibrium value v:

• Case (i) (0 ≤ v − u0 ≤ aCr): This case corresponds to the value premium offered by

the website over the outside option, v−u0, being low. Since Cb ≥ Cr, the probability

that a randomly chosen low-cost potential user becomes the user of the website

is v−u0
aCr

. Similarly, the probability that a randomly chosen high-cost potential user

becomes the user of the website is v−u0
aCb

. Thus, in this case, the equilibrium traffic of

the website is

n(1, a, a) =
N(1−B)(v − u0)

aCr
+
NB(v − u0)

aCb
. (A.29)
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Let A3(a) = V α(1−ρ)
aCr

. Recall from Section 4.2.2 the two parametric constants â =

V (1−αρ)−u0
Cr

and ˆ̂a = V−u0
Cb

. Using (4.1) and (A.29), we obtain

v =
V ᾱ− u0A3(a)

1− A3(a)
. (A.30)

Using 0 ≤ v − u0 ≤ aCr and (A.30), we have

φl(a) ≥ 0, a ≥ â. (A.31)

Substituting the expression of v from (A.30) in (A.29) leads to the expression for

n(1, a, a) in terms of the decision variable a. Using this expression in (A.28), we

have

R(1, a, a) =
Nr(1− ρ)

Cr

[
V ᾱ− u0

1− A3(a)

]
. (A.32)

Since A3(a) is decreasing in a, R(1, a, a) is decreasing in a. Thus, the optimal value

of a is its minimum feasible value. Using (A.31), we therefore have au = â.

• Case (ii) (aCr ≤ v − u0 ≤ aCb): Here, the value premium offered by the website

is high. Since v − u0 ≥ aCr, all the low-cost potential users become users of the

website. However, the probability that a randomly chosen high-cost potential user

becomes a user of the website is v−u0
aCb

. Thus, the equilibrium traffic of the website is

n(1, a, a) = N(1−B) +
NB(v − u0)

aCb
. (A.33)

Let A4(a) = V αB
aCb

. Using (4.1) and (A.33), we obtain

v =
(V ᾱ + V αB̄)− u0A4(a)

1− A4(a)
. (A.34)

Using aCr ≤ v − u0 ≤ aCb and (A.34), we have

φh(a) ≥ 0, ˆ̂a ≤ a ≤ â. (A.35)
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Substituting the expression of v from (A.34) in (A.33), we obtain the expression of

n(1, a, a) in terms of the decision variable a. Using this expression in (A.28), we have

R(1, a, a) =

[
B̄ +

B(V ᾱ + V αB̄ − u0)

aCb − V αB

]
Nra. (A.36)

Thus,

∂2R(1, a, a)

∂a2
=

2V α2B3Nr

C3
b a

4

[V ᾱ + V αB̄ − u0]

(1− V α B
aCb

)3
. (A.37)

Using (A.35), it is straightforward to show that 1−V α B
aCb
≥ 0 and u0 ≤ V ᾱ+ V αB̄.

Thus, we have ∂2R(1,a,a)
∂a2

≥ 0. Thus, R(1, a, a) is a convex function of a, and the opti-

mal value of a is at the boundary of its feasible region. Using (A.35) and observing

that R(1, ˆ̂a, ˆ̂a) ≤ R(1, â, â) if and only if u0 ≤ û0, we have au = â when u0 ≤ û0;

otherwise au = ˆ̂a.

Combining the above two cases, we have

au =


ˆ̂a, if u0 > û0,

â, if u0 ≤ û0.

(A.38)

We now consider the constraint a ≥ amin. Since ˆ̂a ≤ â, we have the following three

cases: (a) amin < ˆ̂a, (b) amin > â, and (c) ˆ̂a ≤ amin ≤ â. These correspond to the three cases

in the statement of Theorem 6.

Case (a) (amin < ˆ̂a): Using (A.38) and Cb ≥ Cr, the condition amin < ˆ̂a is equivalent to

Cb, Cr < Ĉ. Accordingly, this case corresponds to the class of websites with low Cb and

low Cr. Since amin < ˆ̂a, we have au > amin. Thus, the unconstrained optimal solution in

(A.38) is feasible to problem PBefore. The optimal solution in this case is:

a∗ =


â, if u0 ≤ û0, φh(â) ≥ 0,

ˆ̂a, if u0 > û0, φh(ˆ̂a) ≥ 0,

0, otherwise.
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Case (b) (amin > â): Using (A.38) and Cb ≥ Cr, the condition amin > â is identical to

Cb ≥ Ĉ, Cr > Ĉr. Therefore, this case corresponds to the class of websites with high Cb

and high Cr. In this case, the unconstrained optimal value of a is lower than amin. Thus,

the optimal solution in this case is:

a∗ =


amin, if φl(amin) ≥ 0,

0, otherwise.

Case (c) (ˆ̂a ≤ amin ≤ â): Using (A.38) and Cb ≥ Cr, it is easy to see that the condition

ˆ̂a ≤ amin ≤ â is identical to Cb ≥ Ĉ, Cr ≤ Ĉr. Thus, this case corresponds to the class of

websites with high Cb and low Cr. The optimal ad-intensity in this case is:

a∗ =


â, if u0 ≤ ub, φh(â) ≥ 0,

amin, if u0 > ub, φh(amin) ≥ 0,

0, otherwise.

This completes the proof of Theorem 6. �

Proof of Theorem 8: Let a∗Before be an optimal ad-intensity in the pre-ad-block world. Us-

ing the argument presented immediately after the statement of the theorem in Section 4.3,

we have that the website’s revenue in the post-ad-block world under the feasible solution

(IG, ab, ar) = (1, a∗Before, a
∗
Before) is exactly the same as its optimal revenue in the pre-ad-

block world. Thus, the revenue of the website in the pre-ad-block world is a lower bound

on its revenue in the post-ad-block world. The result follows. �

Proof of Theorem 9: Using the optimal solutions in the post- and pre-ad-block worlds

from Theorems 4 and Theorem 6, respectively, we summarize the optimal ad-intensities

in Tables A.2 and A.3 below. The notation used here is as defined in Sections 4.2.1 and

4.2.2.
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Table A.2. The optimal ad-intensities in the pre- and post-ad-block worlds, when the
outside option u0 > um.

u0 > um Pre-Ad-Block Post-Ad-Block

amin ≤ V−u0
Cb

a∗ =

{
â = V−V αρ−u0

Cr
, if u0 ≤ û0,

ˆ̂a = V−u0
Cb

, otherwise.
a∗b = V−u0

Cb

a∗r = V−u0
Cr

V−u0
Cb
≤ amin ≤ V−u0

Cr
a∗ =

{
â, if amin ≤ â, u0 ≤ û0,

amin, otherwise.
a∗b = 0

a∗r = V−u0
Cr

amin ≥ V−u0
Cr

a∗ = amin a∗b = a∗r = amin

Table A.3. The optimal ad-intensities in the pre- and post-ad-block worlds, when the
outside option u0 ≤ um.

u0 ≤ um Pre-Ad-Block Post-Ad-Block

amin ≤ V−u0
Cb

a∗ =

{
â = V−V αρ−u0

Cr
, if u0 ≤ û0,

ˆ̂a = V−u0
Cb

, otherwise.
a∗b = V−u0

Cb

a∗r = V−u0
Cr

V−u0
Cb
≤ amin ≤ ag a∗ =

{
â = V−V αρ−u0

Cr
, if amin ≤ â, u0 ≤ û0,

amin, otherwise.
a∗b = amin

a∗r = ag

amin ≥ ag a∗ = amin a∗b = a∗r = amin

In each of the cases in Tables A.2 and A.3, it is straightforward to verify that a∗b ≤ a∗

and a∗r ≥ a∗. �

Proof of Theorem 10: From the proof of Theorem 4, when amin ≤ V−u0
Cb

, we have the

following for Problem PAfter (i) n = N , (ii) v = V , and (iii) a∗b = V−u0
Cb

, and (iv) a∗r = V−u0
Cr

.

Thus, we have

CSAfter = N(1−B)

(
V − a∗rCr

2

)
+NB

(
V − a∗bCb

2

)
.

Using a∗r = V−u0
Cr

and a∗b = V−u0
Cb

, we get

CSAfter =
N(V + u0)

2
. (A.39)
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For Problem PBefore, from the proof of Theorem 6, the optimal ad-intensity when

amin ≤ V−u0
Cb

is:

a∗ =


â = V−V αρ−u0

Cr
, if u0 ≤ û0,

ˆ̂a = V−u0
Cb

, otherwise.

We now compute the consumer surplus in the pre-ad-block world in the following two

cases.

Case (i): u0 ≤ û0. In this case, we have a∗ = â. Let v(â) be the value of the website when

the ad-intensity is â. Then, the consumer surplus can be written as

CSBefore = NB̄

[
v(â)− âCr

2

]
+
NB[v(â)− u0]

âCb

[
v(â)− v(â)− u0

2

]
+NB

[
1− v(â)− u0

âCb

]
u0.

(A.40)

Using v(â)− u0 = âCr and â = V−V αρ−u0
Cr

, we get

CSBefore =
N(1− ρ)(V − V αρ+ u0)

2
+NBρu0.

Using the definition of û0, it can be easily verified that û0 ≤ V [1−(1−ρ)(1−αρ)]
ρ(2B−1)

. Since u0 ≤ û0,

we have u0 ≤ V [1−(1−ρ)(1−αρ)]
ρ(2B−1)

, which implies that CSAfter ≥ CSBefore.

Case (ii): u0 > û0. In this case, we know that a∗ = ˆ̂a. Then, from the proof of Theorem 6,

we have n = N and v = V . Thus,

CSBefore = N(1−B)

[
V −

ˆ̂aCr
2

]
+NB

[
V −

ˆ̂aCb
2

]
.

Using ˆ̂a = V−u0
Cb

, we get

CSBefore = N(1−B)

[
V − (V − u0)

Cb

Cr
2

]
+
NB(V + u0)

2
.

Clearly, CSBefore is increasing in Cb. Further, whenever Cb = Cr, we have CSBefore =

CSAfter. Thus, for Cb ≥ Cr, we have CSAfter ≤ CSBefore.
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To summarize, consumer surplus increases if u0 ≤ û0 and decreases otherwise. Fur-

ther, it is easy to verify that the above arguments are reversible; i.e., the condition

CSAfter ≥ CSBefore

implies u0 ≤ û0. �

Proof of Theorem 11: From Theorem 8, we know that, for any u0, the revenue of the

website increases in the post-ad-block world. Further, from Theorem 10, consumer sur-

plus increases in the post-ad-block world if u0 ≤ û0, and decreases otherwise. Thus, if

u0 ≤ û0, both consumer surplus and the website’s revenue increase in the post-ad-block

world and hence the social surplus also increases. If u0 > û0, consumer surplus decreases

but the revenue of the website increases. In this case, we know that (i) a∗ = ˆ̂a, from

Theorem 6, and (ii) (I∗G, a
∗
b , a
∗
r) =

(
1, V−u0

Cb
, V−u0

Cr

)
, from Theorem 4. Therefore,

WBefore = N(1−B)V − N(1−B)(V − u0)Cr
2Cb

+
NB(V + u0)

2
+
Nr(V − u0)

Cb
,

and

WAfter = Nr(V − u0)

[
B

Cb
+

1−B
Cr

]
+
N(V + u0)

2
.

It is straightforward to verify that WBefore > WAfter. Thus, the social surplus decreases in

the post-ad-block world if u0 > û0. The result follows. �

Proof of Theorem 12: Let vr = u0/
[
1− αBρ̄

1−B

]
. Recall from Section 4.2.2 that ρ = B(Cb−Cr)

Cb
.

Using (4.6), (4.7), and the definitions of vr and û0, we have

∂RBefore

∂V
=



Nr(1−ρ)(1−αρ)
Cr

, if V ≥ vr, vr ≥ 0,

Nr
Cb

, otherwise,
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and

∂RAfter

∂V
=
Nr(1− ρ)

Cr
,

= Nr

[
B

Cb
+

1−B
Cr

]
.

Thus,

∂RAfter

∂V
− ∂RBefore

∂V
=



Nr(1−ρ)αρ
Cr

, if V ≥ vr, vr ≥ 0,

Nr(1−B)
Cr

, otherwise.

(A.41)

Thus, ∂RAfter
∂V

− ∂RBefore
∂V

≥ 0. Further, it is easy to verify that equality holds at B = 0 and

B = 1. �

Proof of Theorem 13: We only need to show that R(p, amin, amin) is a concave function

of p. To do this, we first derive the expression for this function. Using property C1 in

Section 4.5, we know that 0 ≤ v − u0 ≤ aminCr. Thus, a v−u0
aminCb

fraction of ad-blockers and

a v−u0
aminCr

fraction of regulars become users of the website. Therefore, the total traffic of the

website is

n(p, amin, amin) =
NB(v − u0)p

aminCb
+ (1− p)NB +N(1−B)

v − u0

aminCr
. (A.42)

Using (4.1) and (A.42), we have

v(p) =
H1 − V αu0H2

1− V αH2

, (A.43)

where H1 = V ᾱ + V α(1− p)B and H2 = Bp
aminCb

+ 1−B
aminCr

. Thus,

∂v

∂p
=

BV α

1− V αH2

[
v − u0

aminCb
− 1

]
. (A.44)

Since v − u0 ≤ aminCb, we have ∂v
∂p
≤ 0. Similarly, we have

∂2v

∂p2
=

BV α

aminCb(1− V αH2)

∂v

∂p
+

(
v − u0

aminCb
− 1

)
Bv2

0V α
2

(1− V αH2)2

B

aminCb
. (A.45)
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Since ∂v
∂p
≤ 0 and v − u0 ≤ aminCb, we have ∂2v

∂p2
≤ 0.

The revenue of the website is

R(p, amin, amin) =
NB(v − u0)p

aminCb
ramin +N(1−B)

v − u0

aminCr
ramin,

= Nr(v − u0)

[
Bp

Cb
+

1−B
Cr

]
.

Thus, we have

∂R(p, amin, amin)

∂p
= Nr(v − u0)

B

Cb
+Nr

[
Bp

Cb
+

1−B
Cr

]
∂v

∂p
,

∂2R(p, amin, amin)

∂p2
=
NrB

Cb

∂v

∂p
+Nr

[
Bp

Cb
+

1−B
Cr

]
∂2v

∂p2
+
∂v

∂p

NrB

Cb
.

Using ∂v
∂p
≤ 0 and ∂2v

∂p2
≤ 0, we have d2R(p,amin,amin)

∂p2
≤ 0. Thus, R(p, amin, amin) is concave

function of p. The result follows. �

Analysis of Extensions in Section 4.6:

Here, we analyze the four extensions that were defined in Section 4.6.

Heterogeneous Profitability:

Recall the setting of this extension from Section 4.6.1. In the pre-ad-block world, when

the website was unable to discriminate between users, the website’s expected revenue

corresponding to an ad-intensity of a was

[na(a)× ara + ng(a)× arg],

where na(a) is the equilibrium number of users of the website from the potential ad-block

(resp., regular) user population.

It is easy to see that in the post-ad-block world, if the website gates all the ad-block

users and offers the same ad-intensity a (as that in the pre-ad-block world) to all users,

then the website earns the same revenue. This is because, under this specific post-ad-

block strategy, the utility of every regular user (resp., every ad-block user) is the same
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as her utility in the pre-ad-block strategy. Thus, the number of regular users visiting the

website, the number of ad-block users visiting the website, and the website’s revenue

under this post-ad-block strategy are all equal to their corresponding values under the

pre-ad-block strategy. This observation immediately implies that the website’s optimal

post-ad-block revenue is greater than or equal to its optimal pre-ad-block revenue.

We now proceed to show that our other main conclusions also continue to hold. Under

heterogeneous profitabilities for ad-block users and regular users, we obtain the optimal

ad-intensities and the corresponding social welfare in both the pre- and post-ad-block

worlds. This analysis is summarized below:

Post-Ad-Block Analysis: The analysis in the proof of Theorem 4 remains the same until

(and including) equation (A.24). The revenue of the website can now be written as

R(IG, ab, ar) =
N [A1(IG)− u0]

1− A2(ab, ar)

[
BIGrb
Cb

+
(1−B)rg

Cr

]
, (A.46)

where A1(IG) and A2(ab, ar) are as defined in the proof of Theorem 4. Using the same

argument as in that proof, we have

a∗b =
V − u0

Cb
, a∗r =

V − u0

Cr
, and (A.47)

R(IG, a
∗
b , a
∗
r) = N(V − u0)

[
BIGrb
Cb

+
(1−B)rg

Cr

]
.

It is easy to see that R(1, a∗b , a
∗
r) ≥ R(0, a∗b , a

∗
r); therefore, I∗G = 1. Thus, we have

(I∗G, a
∗
b , a

∗
r) =

(
1,

V − u0

Cb
,
V − u0

Cr

)
.

The consumer surplus CSAfter in the post-ad-block world is

CSAfter =
N(V + u0)

2
. (A.48)
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Thus, the social welfare WAfter in the post-ad-block world is

WAfter = N(V − u0)

[
Brb
Cb

+
(1−B)rg

Cr

]
+
N(V + u0)

2
.

Pre-Ad-block Analysis: The analysis of the pre-ad-block world continues to hold, and

we have

a∗ =


â, if u0 ≤ û0, φh(â) ≥ 0,

ˆ̂a, if u0 > û0, φh(ˆ̂a) ≥ 0,

0, otherwise,

where â, ˆ̂a, û0, and φh(.) are as defined in Section 4.2.2. The revenue of the website in the

pre-ad-block world is

RBefore =


N(1− ρ)[Brb + (1−B)rg]â, if u0 ≤ û0, φh(â) ≥ 0,

N [Brb + (1−B)rg]ˆ̂a, if u0 > û0, φh(ˆ̂a) ≥ 0,

where ρ is as defined in Section 4.2.2.

The consumer surplus CSBefore in the pre-ad-block world is

CSBefore =



N(1−ρ)(V−V αρ+u0)
2

+NBρu0, if u0 ≤ û0, φh(â) ≥ 0,

N(1−B)V − N(1−B)(V−u0)Cr
2Cb

+ NB(V+u0)
2

, if u0 > û0, φh(ˆ̂a) ≥ 0,

(A.49)

where ρ̄ = 1− ρ. The social welfare is equals RBefore + CSBefore.

Using the expressions of ad-intensities it can be easily verified that ad-block users

receive an ad-light experience. Similarly, it is also straightforward to verify that the social

welfare does not necessarily increase in the post-ad-block world.

Subscription Option:
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Recall the setting of this extension from Section 4.6.2. As with the previous exten-

sion, it is easy to see that the revenue of the website increases in the post-ad-block world.

Specifically, if the website offers to all users in the post-ad-block world the same subscrip-

tion fee and ad-intensity as in the pre-ad-block world, then all the relevant equilibrium

quantities – number of regular users, number of white-listers, value of the website, etc –

remain the same. Thus, the revenue of the website in the pre-ad-block world is a lower

bound on its revenue in the post-ad-block world.

To obtain the optimal decisions in the post-ad-block world, we partition the feasible

space into two cases: (i) v−f < u0 and (ii) v−f ≥ u0. After optimally solving each of these

cases, a comparison of website’s revenue yields the optimal solution for the problem.

Case (i): v − f < u0. That is, f > v − u0. In words, the subscription fee is high enough so

that it is better for potential users to choose the outside option rather than the subscription

option. Since no potential user chooses the subscription option, the analysis in this case

remains the same as that without the subscription option. Thus, from our analysis in

Section 4.2, the optimal decisions of the website in this case are:

(I∗G, a
∗
b , a

∗
r) =

(
1,

V − u0

Cb
,
V − u0

Cr

)
.

Also, since there is no revenue from subscription in this case, the website relies purely on

advertisement revenue. Let RAfter
Ads represent the website’s revenue in this case. We have

RAfter
Ads = N(V − u0)r

[
B

Cb
+

(1−B)

Cr

]
. (A.50)

Case (ii): v−f ≥ u0. That is, f ≤ v−u0. An ad-block user chooses the subscription option

if v − f ≥ v − abc̃b or, equivalently, c̃b ≥ f/ab. A regular user will choose to subscribe if

v − f ≥ v − arc̃r or, equivalently, c̃r ≥ f/ar. Figure A.1 pictorially depicts these choices.

The defining condition of this case (i.e., v − f ≥ u0) implies that all the users prefer

paying for subscription over consuming the outside option. Thus, no user chooses the
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ǁ𝑐𝑏0 𝑓/𝑎𝑏 𝐶𝑏

White-List

ǁ𝑐𝑟0 𝑓/𝑎𝑟 𝐶𝑟

Access

Ad-Block Users Regular Users 

Subscribe Subscribe

Figure A.1. Ad-block users (resp., regular users) with ad-sensitivity more than f/ab (resp.,
f/ar) subscribe to the website for ad-free content.

outside option and we have n = N , which leads to v = V . Also, since all the users prefer

either paying or white-listing over the outside option, it is straightforward to see that the

optimal gating decision I∗G = 1. We can now write the revenue of the website as

RAfter = NB

[
f/ab
Cb
× rab +

(
1− f/ab

Cb

)
f

]
+N(1−B)

[
f/ar
Cr
× rar +

(
1− f/ar

Cr

)
f

]

= −f 2NB1(ab, ar) + fNB2, (A.51)

where B1(ab, ar) = 1−B
arCr

+ B
abCb

and B2 = B
(

r
Cb

+ 1
)

+ (1 − B)
(

r
Cr

+ 1
)

. The first-order

condition gives us f = f̂(ab, ar) = B2

2B1(ab,ar)
. Using the defining condition of this case, i.e.,

f ≤ V − u0, and the concavity of RAfter with respect to f , the optimal subscription fee

f ∗(ab, ar) = min
{
f̂(ab, ar), V − u0

}
. Substituting this in (A.51), we have

RAfter(ab, ar) =



NB2
2

4B1(ab,ar)
, if f̂(ab, ar) ≤ V − u0,

−(V − u0)2NB1(ab, ar) + (V − u0)NB2, otherwise.

It is easy to verify that RAfter(ab, ar) is an increasing function of both ab and ar. It is

reasonable to assume a practical limit, say amax, on each of these ad-intensities. Then, we

have a∗b = a∗r = amax. Note that, in this case, the website generates revenue from both ads

and subscription.
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Let us now define two terms: If, in the optimal solution, a positive fraction of users

choose the ad-light experience via white-listing and a positive fraction of users choose

the ad-free subscription option, then we refer to such an offering by the website as a

mixed offering. Otherwise, if no user chooses the subscription option (which, therefore,

makes it redundant) then we refer to the offering by the website as an ads-only offering.

In Case (ii) above, it is optimal for the website to offer a mixed offering; let RAfter
Mix

denote the corresponding revenue. That is,

RAfter
Mix = RAfter(amax, amax). (A.52)

In contrast, in Case (i) above, it is optimal for the website to choose an ads-only offering.

The website chooses the ads-only offering if RAfter
Ads ≥ RAfter

Mix ; otherwise, it chooses the

mixed offering. Using (A.50) and (A.52), it can be verified that both these possibilities can

occur.

A similar analysis for the pre-ad-block world shows that, there too, the website can

offer either the ads-only or the mixed offering. Thus, the possibilities for the website’s

chosen offering in the pre- and post-ad-block worlds are as follows: (A) (Ads-Only, Ads-

Only), (B) (Ads-Only, Mixed), (C) (Mixed, Ads-Only), and (D) (Mixed, Mixed). When it is

optimal for the website to choose the mixed offering in the post-ad-block world, then its

ad-intensities for both regular and white-listers are the same (equal to amax). The website

can thus obtain the same revenue in the pre-ad-block world too (by offering a common

ad-intensity, namely amax, to all users). This implies that possibility (B) above, namely the

website moving from an ads-only offering in the pre-ad-block world to a mixed offering

in the post-ad-block world, cannot occur. Depending on the values of the parameters

(e.g., r, V, and u0), each of the other three possibilities can occur. It is easy to verify that

white-listers get an ad-light experience in each of these three possibilities.
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Note that, in possibility (A) above, where the website continues with the ads-only

offering in the post-ad-block world, our analysis of the base model applies and implies

that social welfare does not necessarily increase in the post-ad-block world.

Endogenous Adoption of Ad-Blockers:

Recall the setting of this extension from Section 4.6.3. We analyze the pre- and post-

ad-block worlds separately.

Post-Ad-Block Analysis: We separately analyze the two cases IG = 1 and IG = 0, and

then compare the corresponding revenues to obtain the optimal value of IG.

• IG = 1: If ab ≥ ar, then no user installs an ad-blocker, because there is no benefit from

incurring the installation cost S. We therefore focus on the case when ab < ar. For a given

set of decisions ab and ar, we have the following:

◦ A potential user installs an ad-blocker and becomes a user of the website if the

following two conditions are satisfied: (i) v − abc̃a − S > v − arc̃a or, equivalently,

c̃a > ĉ, where ĉ = S
ar−ab

, and (ii) v − abc̃a − S > u0 or, equivalently, c̃a < ĉb, where

ĉb = v−S−u0
ab

. Together, these two conditions imply that ĉ < c̃a < ĉb.

◦ A potential user becomes a user of the website without installing an ad-blocker if

the following conditions hold: (i) v − abc̃a − S ≤ v − arc̃a, which is c̃a ≤ ĉ, and

(ii) v−arc̃a ≥ u0 or, equivalently, c̃a ≤ ĉr,where ĉr = v−u0
ar

. Together, these conditions

imply that c̃a ≤ min{ĉ, ĉr}.

Using the above expressions for ĉ, ĉb, and ĉr, it can be easily verified that either ĉ ≤

min{ĉr, ĉb} or ĉ ≥ max{ĉr, ĉb}. If ĉ ≥ max{ĉr, ĉb}, then there is no user with an ad-blocker

installed. Thus, we focus on the case where ĉ ≤ min{ĉr, ĉb}. This condition also implies

that ĉr ≤ ĉb. Further, we can assume that the website’s decisions (ab, ar) are such that

ĉb ≤ Ca, since the website’s profit when ĉb > Ca is at most that when ĉb = Ca. In summary,
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we have the following relationship among the thresholds defined above: ĉ ≤ ĉr ≤ ĉb ≤

Ca. Potential users with ad-sensitivities in [0, ĉ] use the website without installing an ad-

blocker, potential users with ad-sensitivities in [ĉ, ĉb] use the website with an ad-blocker

installed, and potential users with ad-sensitivities in [ĉb, Ca] consume the outside option.

Figure A.2 depicts this segmentation of users.

ǁ𝑐𝑎0 Ƹ𝑐 𝐶𝑎

Do Not 
Install Ad-Blocker

Install
Ad-Blocker

Ƹ𝑐𝑏

Consume
Outside Option

Figure A.2. Adoption of ad-blockers by users.

In the post-ad-block world, if the website gates all ad-block users and uses the same

ad-intensity for white-listers as in the pre-ad-block world, then it earns the same revenue

as in the pre-ad-block world. Thus, the revenue of the website in the pre-ad-block world

is a lower bound on its revenue in the post-ad-block world. We now proceed to obtain

the optimal ad-intensities and the social surplus.

Let nr represent the number of regular users. Then, we have nr = (ĉ/Ca)N. Similarly,

let nb represent the number of users who use an ad-blocker on the website. Then, we have

nb = [(ĉb − ĉ)/Ca]N. Thus, the total number of users on the website can be written as

n = nr + nb = N(v − S − u0)/(Caab). Using v = V
(
ᾱ + α n

N

)
, we have

v =
V ᾱ− A1(ab)(S + u0)

1− A1(ab)
, (A.53)

where A1(ab) = V α
Caab

. As in Section 4.2, we define the “value premium” for the website

φ = v − u0. Recall from Section 4.2 that the website receives a positive traffic only

if φ ≥ 0; this condition was referred to as the “survival condition”. In this section, this

survival condition simplifies to V ᾱ− u0 − S ≥ 0, and is assumed in your analysis below.
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The revenue of the website can be written as

Revenue =
Nr
[
V ᾱ− u0 − A1(ab)S

]
Ca[1− A1(ab)]

,

from which we have
∂Revenue

∂ab
= −Nr(V ᾱ− u0 − S)

(1− A1(ab))2

V α

C2
aa

2
b

.

Since V ᾱ − u0 − S ≥ 0, the revenue of the website is decreasing in ab. Thus, the optimal

value of ab is its minimum feasible value. Since ĉb ≤ Ca and ĉb is decreasing in ab, at

the optimal value of ab we have ĉb = Ca. Thus, a∗b = v−S−u0
Ca

. Substituting a∗b in (A.53),

we have v = V and, therefore, a∗b = V−S−u0
Ca

. The condition ĉ ≤ min{ĉr, ĉb} implies that

ar ≥
(V−u0)a∗b
(V−u0−S)

. Using the derived expression for a∗b , we have

ar ≥
V − u0

Ca
. (A.54)

Any value of ar that satisfies (A.54) results in an equilibrium (a∗b , ar); the website’s revenue

is the same at all these equilibria.

Since the preceding analysis corresponds to IG = 1, we let R1 refer to the optimal

revenue of the website in this case. Thus, we have

R1 =
Nr(V − u0)

Ca
. (A.55)

We now consider the other case, namely IG = 0.

• IG = 0: In this case, a user will install an ad-blocker if v − S > v − arc̃a or, equivalently,

c̃a > ĉ0, where ĉ0 = S
ar

. Therefore, users with an ad-sensitivity higher than ĉ0 will not

generate revenue for the website because they install ad-blockers and IG = 0. Let R0

represent the revenue of the website in this case. Then, we have

R0 =
ĉ0

Ca
×N × rar =

NrS

Ca
. (A.56)

From (A.55) and (A.56), we see that R1 ≥ R0. Thus, the optimal gating decision is I∗G = 1.
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The social surplus can now be written as

WAfter =
Nr(V − u0)

Ca
+NV − N

2Ca

[
arĉ

2 +
(V − S − u0)

Ca
(Ca − ĉ)2

]
− (Ca − ĉ)

Ca
NS.

(A.57)

We now conduct a similar analysis for the pre-ad-block world.

Pre-Ad-Block Analysis: We now conduct a similar analysis for the pre-ad-block world.

In this case, the website offers a common ad-intensity, say a for all the users. A user with

ad-sensitivity c̃ will access the website if v− ac̃ ≥ u0 or, equivalently, c̃ ≤ v−u0
a
. Using this,

the traffic on the website is n = N(v−u0)
aCa

. Solving with v = V
(
ᾱ + α n

N

)
, we get

v =
V − ᾱ− u0

1−D1

, (A.58)

where D1 = V α
aCa

. The revenue of the website in the pre-ad-block world can be written

as RBefore = nra = Nr(V ᾱ−u0)
Ca(1−D1)

. It is easy to see that RBefore is decreasing in ad-intensity a.

Thus, the optimal ad-intensity a is the minimum feasible value of a. Since v−u0
a
≤ Ca, the

optimal ad-intensity is a∗ = v−u0
Ca

. Using (A.58), we get v = V and a∗ = V−u0
Ca

. The social

welfare in the pre-ad-block world is

WBefore =
Nr(V − u0)

Ca
+
N(V + u0)

2
. (A.59)

Using (A.57) and (A.59), it can be verified that the social surplus does not necessarily

increase in the post-ad-block world. Further, a comparison of the optimal ad intensities

in the pre- and post-ad-block world shows that ad-block users receive an ad-light experi-

ence.

Negative Externality (Congestion Cost) Due to Increase in Traffic:

Recall the setting of this extension from Section 4.6.4. We analyze the pre- and post-

ad-block worlds separately.
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Post-Ad-Block World Analysis: As with our analysis of the base model in Section 4.2, the

revenue of the website in the post-ad-block world can now be written as

RAfter = N(v − u0)r

[
BIG
Cb

+
1−B
Cr

]
− kcf(n).

We note that, for a given set of decisions IG, ab, and ar, the expressions for the equilibrium

traffic n(IG, ab, ar) and the equilibrium value v(IG, ab, ar) of the website remain the same

as that for the base model. Thus, we have

v(IG, ab, ar) =
A1(IG)− u0A2(ab, ar)

1− A2(ab, ar)
,

n(IG, ab, ar) =
NBIG(v − u0)

Cbab
+ (1− IG)NB +

N(1−B)(v − u0)

Crar
.

where A1(IG) = V ᾱ + V α(1− IG)B and A2(ab, ar) = V α
[
IGB
Cbab

+ 1−B
Crar

]
.

We first comment on the comparison of the website’s net revenue (i.e., the revenue

minus the congestion cost) and the social surplus, and then analyze the optimal ad-

sensitivities.

◦ Using the same argument as in the base model, it is easy to see that the net revenue

of the website increases in the post-ad-block world. Specifically, if the website gates all

ad-block users and uses the same ad-intensity in the post-ad-block world as that in the

pre-ad-block world, then the website earns the same revenue and incurs the same cost.

Consequently, the net revenue of the website in the pre-ad-block world is a lower bound

its net revenue in the post-ad-block world.

◦ The base model is a special case, corresponding to kc = 0, of the above model with

congestion cost. Recall that social surplus does not necessarily increase in the post-ad-

block world (Theorem 11). Therefore, the same result continues to hold.

◦ We now proceed to compare the optimal ad-intensities in the post-ad-block world. If

it is optimal for the website to not gate ad-block users (i.e., set IG = 0), then it follows
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immediately that ad-block users receive an ad-light experience (relative to the pre-ad-

block world) in the post-ad-block world – this is because, in this case, ad-block users

experience an ad-intensity of 0 in the post-ad-block world. Thus, we will focus on the

case where IG = 1.

Let z = B
Cbab

+ B̄
Crar

. Using IG = 1 and the expressions for v and n above, we have

v − u0 =
V ᾱ− u0

1− V αz
and (A.60)

n =
N(V ᾱ− u0)z

1− V αz
.

The net revenue of the website is

RAfter =
N(V ᾱ− u0)r

1− V αz

[
B

Cb
+
B̄

Cr

]
− kc

(
N(V ᾱ− u0)z

1− V αz

)2

.

Recall from Section 4.2 that we can restrict our search to values of (ab, ar) that satisfy the

following constraints:

0 ≤ v − u0 ≤ arCr, (A.61)

0 ≤ v − u0 ≤ abCb. (A.62)

The following claim will be useful in our subsequent analysis:

Claim: There exist optimal ad-intensities a∗b and a∗r are such that a∗bCb = a∗rCr.

Proof of Claim: Let (a∗b , a
∗
r) denote the optimal ad-intensities. To establish the result, it

suffices to construct new ad-intensities (âb, âr) that also lead to the optimal net revenue.

To this end, choose âb and âr such that

âbCb = ârCr = 1
/[ B

a∗bCb
+

B̄

a∗rCr

]
. (A.63)

Note that v − u0 and RAfter both depend on the decisions (ad-intensities) only through z.

Further, the decisions (a∗b , a
∗
r) and (âb, âr) result in the same value of z. That is, B

a∗bCb
+ B̄
a∗rCr

=
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B
âbCb

+ B̄
ârCr

. It now follows immediately that both the equilibrium value of the website and

its net revenue both are the same for (a∗b , a
∗
r) and (âb, âr). The result follows. �

Using the above claim in the definition of z, we get abCb = arCr = 1
z
. This relation al-

lows us to convert the two decision (ab and ar) problem into a single decision (z) problem.

Using abCb = arCr = 1
z
, constraints (A.61) and (A.62) are both equivalent to v − u0 ≤ 1

z
.

Therefore, from (A.60) we have

z ≤ 1

V − u0

. (A.64)

We further simplify the expression of RAfter be defining ẑ = 1
1−V αz . Thus, we have

z =
(
1− 1

ẑ

)
/V α. We can now write the net revenue of the website in terms of ẑ as

RAfter = N(V ᾱ− u0)rẑ

[
B

Cb
+
B̄

Cr

]
− kc

(
N(V ᾱ− u0)(ẑ − 1)

V α

)2

.

RAfter is a concave function of ẑ. The first-order condition leads to ẑ = ẑ0, where

ẑ0 =
rV 2α2

2kN(V ᾱ− u0)

(
B

Cb
+
B̄

Cr

)
+ 1.

The value of z corresponding to ẑ = ẑ0 is z = z0, where z0 =
(
1 − 1

ẑ0

)
/V α. Let z∗post

represent the optimal value of z in the post-ad-block world. Using (A.64), we have z∗post =

min
{
z0,

1
V−u0

}
. Finally, using a∗bCb = a∗rCr = 1/z∗post, we get

a∗b =
1

Cbz∗post
, a∗r =

1

Crz∗post
.

Pre-Ad-Block World Analysis: As in the proof of Theorem 6, the analysis here for the

pre-ad-block world can be divided in the following two cases: 0 ≤ v − u0 ≤ aCr and

aCr ≤ v − u0 ≤ aCb.

0 ≤ v − u0 ≤ aCr: In this case, the equilibrium expressions of v, n, and the net revenue

remain the same as that in the above analysis of post-ad-block world, with an additional

constraint that ab = ar = a. Thus, we now have z = B
Cba

+ B̄
Cra

. The expression of z0
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remains the same. However, in this case, z needs to satisfy the constraint v − u0 ≤ aCr.

Substituting v − u0 from (A.60) and a = S1/z, where S1 = B
Cb

+ B̄
Cr

, we get

z ≤ CrS1

V ᾱ− u0 + CrS1V α
.

Let z∗pre represent the optimal value of z in the pre-ad-block world. Thus,

z∗pre = min

{
z0,

CrS1

V ᾱ− u0 + CrS1V α

}
.

Thus, the optimal ad-intensity in the pre-ad-block world is

a∗ =
1

z∗pre

[
B

Cb
+
B̄

Cr

]
.

Consider the special case where z0 ≤ 1
V−u0 and z0 ≤ CrS1

V ᾱ−u0+CrS1V α
: In this case, we

have z∗pre = z∗post = z0. Thus, we have

a∗b =
1

Cbz0

, a∗r =
1

Crz0

, and a∗ =
1

z0

[
B

Cb
+
B̄

Cr

]
= Ba∗b + B̄a∗r.

Thus, the optimal ad-intensity in the pre-ad-block world a∗ is a convex combination of

the optimal post-ad-block intensities a∗b and a∗r . Thus, a∗ ∈ [a∗b , a
∗
r], which implies that

ad-block users receive an ad-light experience in the post ad-block world.

When z0 >
1

V−u0 or z0 >
CrS1

V ᾱ−u0+CrS1V α
or when aCr ≤ v− u0 ≤ aCb, the website’s opti-

mization problem lacks sufficient structure for a clean analysis. Therefore, for simplicity,

we numerically verify that ad-block users receive an ad-light experience in the post-ad-

block world. Figure A.3 shows the representative behavior of the optimal ad-intensities

in the pre- and post-ad-block worlds with respect to the parameter kc of the congestion

cost. Notice that the ad-intensities increase with an increase in the congestion cost. This

intuition here is straightforward: as congestion cost increases, it is not necessarily desir-

able for the website to attract more traffic. Thus, its incentive to keep ad-intensities low

(to attract more traffic) diminishes.
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Figure A.3. Ad-intensities in the pre- and post-ad-block worlds in the presence of con-
gestion cost: Ad-block users receive an ad-light experience in the post-ad-block world.
Ad-intensities increase as the congestion-cost parameter kc increases.
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