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AI agents must work in alliance with the humans, be it in mundane activities or in critical and

strategic tasks to realize their full potential. This is crucial to envisage the objective of developing

intelligent agents that can learn an act in noisy structured environment and are robust to observation

density and quality. While extensive research and sophisticated techniques exist for faithfully

modeling complex and rich information in structured noisy domains, robustness to density and

quality are open challenges.

Though AI agents are expected to learn/reason better with more data, yet arbitrarily large/dense

data sets may, instead, lead to inefficiency, especially in structured domains. The problem is even

more critical in sequential decision making, where the agent has to learn or reason continuously.

The challenge of observation-quality, though distinct, is not completely orthogonal to the problem

of density. Low-quality observations may originate due to systematic signal error, cognitive bias

in data persistence as well as sample sparsity (known as systematic noise in general). Thus the two

challenges are closely coupled. When the density becomes extremely low, it affects quality.

Naive solutions for such interconnected and closely-coupled challenges, such as powerful compu-

tational hardware or explicit noise modeling with the help of gold-standard observations can be

insufficient. This is due to the fact that the real problem lies at a deeper, more conceptual level and

there is a need to develop domain independent solutions. For instance, it is difficult to model sys-
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tematic noise, even reasonably well, using most existing noise modeling approaches and presence

of gold-standard observations is a strong assumption.

This dissertation investigates these challenges in depth and presents our unified Human-Allied AI

(HAAI) framework to address them. It highlights some crucial insights in the context of both the

challenges we address. Detailed algorithms are presented and analyzed as needed. We gain clarity

about how Human-AI alliance, while not the more popular competitive or adversarial setting, is

still a reasonable approach to address the above challenges. We also understand what a true HAAI

system should entail and this work is a significant step in that direction. For instance progressive

knowledge enhancement of the AI agent is one of the key aspects in HAAI, but is extremely

difficult in real-time while the agent interacts with a human. One of subsequent chapters proposes

principled approach to achieve the same. In summary this dissertation takes a significant step

towards developing a robust intelligent agent. Finally, it outlines the open problems that are integral

in developing true AI with common sense.
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CHAPTER 1

INTRODUCTION

Inspired by John McCarthy’s grand vision (McCarthy, 1968) of AI with common sense, our ob-

jective is to develop intelligent agents that can efficiently and effectively reason, make decisions

and act in noisy complex and structured environments. To realize the true potential of Artificial

Intelligence, it is essential that AI agents are perceived as allies to humans, facilitating in tasks

ranging from mundane perception tasks, such as sensor/device control, to higher-level congnitive

and strategic tasks, such as decision modules in deep space rovers, market intelligence systems,

clinical decision support systems etc. Such AI agents should be robust to both quality and density

of observations1.

Given: Complex environment with implicit domain structure and potentially noisy noisy ob-

served data.

To Do: Develop an AI agent that learns to act in such environments, using varied forms of

observations, and be robust to quality and density of observations.

Example 1. Consider a clinical decision support system that facilitates a physician to create suit-

able treatment plans for patients or the hospital administration in making strategic decisions about

health-care practices (Fig. 1.1). Such a system may have access to different kinds of observations

(data) such as Electronic Health Records (EHRs) of patients, drug reactivity databases, imaging

data and so on. Such observations are at varied levels of representation; from low-level signals to

structured databases containing entities, relations and hierarchies. Also, they could be noisy due

to possible errors in observation, data-entry or implicit lack of samples.

The AI agent must learn and reason with such varied forms of observationsFor effective treat-

ment planning, it should predict potential adverse effects of drugs for diagnosis or track patient

1We use ‘observations’ and ‘data’ interchangeably throughout.
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Figure 1.1: Our envisioned intelligent clinical decision support agent

state/condition at it evolves, for suggesting decisions in a treatment plan. It should also be able to

learn/reason about various clinical and financial resources for providing optimal healthcare.

Real environments are complex and exhibit inherent structures such as objects, relationships

and hierarchies, irrespective of how we encode them. An AI system must be able to represent

and reason with such underlying structures to appropriately characterize the environment com-

plexity. A flattened vectorized representation of such complex interactions, for traditional machine

learning, is not sufficient since it results in loss of critical information (Jensen and Neville, 2002).

Extensive research provides us with the sophisticated machinery which can faithfully model both

implicit structure and noise, thereby allowing for learning and acting in such environments. Sta-

tistical Relational Learning (SRL/StarAI) (Getoor and Taskar, 2007; Raedt et al., 2016) combines

a symbolic structured representation (such as First-Order Logic) with probabilistic semantics to

faithfully model, learn and reason about in structured noisy domains both in the context of pre-

dictive modeling (Domingos and Richardson, 2004; Domingos and Lowd, 2009; Getoor et al.,

2001; Kersting and De Raedt, 2007; Muggleton, 1996; Poole, 2003; Natarajan et al., 2012) as well

as sequential decision making and acting, such as Reinforcement Learning, Planing/Probabilistic-

Planning, Imitation Learning etc. (Tadepalli et al., 2004; Ratliff et al., 2009; Lang and Toussaint,
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2010; Natarajan et al., 2011). However, there are two key challenges we need to address for real-

izing our envisioned robust AI agent.

1. Observation density: Class of approaches that enable effective learning/reasoning have a ma-

jor limitation; they are difficult to scale to arbitrarily large samples (data-dense)

2. Observation quality: Effective, learning or acting with sparse, or in general low quality,

samples is a provably difficult task. It is even more critical in structured environments where

the state/feature spaces are intractably large.

1.1 Observation Density - Scalablility

While SRL has been effectively and successfully adapted for many complex problems including

recommendation systems (Yang et al., 2017) etc, scaling learning/inference in SRL to arbitrarily

large data sets (dense observations) remains a challenge. Substantial research exists on efficient

learning/inference in SRL (Natarajan et al., 2012; Khot et al., 2011; Schapire and Freund, 2012;

Singla and Domingos, 2008; Poole, 2003; Niepert, 2012; Kersting et al., 2009). However, most

SRL formulations involve a fundamental, albeit hard (#P-complete), operation – counting satisfied

instances of logic rules. It signifies computing the cardinality of the set of supporting instances,

also known as coverage, of generalized compact features (in learning) or membership cardinality

of equivalence class of indistinguishable instances (in lifted inference). Counting operation can

become intractable as the density of observations increase, making both learning and inference

inefficient and, thus, non-scalable with arbitrarily large samples.

Example 2. The clinical decision support agent in Example 1 aims to facilitate resource planning

for hospital administration. To fulfill that objective, it has to learn and predict/forecast potential

disease outbreaks (such as Ebola). Such tasks require counting over large databases of patient

records, news reports and related entities such as, contact with patients diagnosed with ebola or
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with persons from countries with reported Ebola cases, located in vicinity of ports of entry and so

on, in order to estimate likelihood of an outbreak. Some example logic rules (model) could be,

Prep(h,′′ Ebola′′) : −Nb(h, n), In(n, p1), Contact(p1, p2), Confirmed(p2,
′′ Ebola′′) (1.1)

Prep(h,′′ Ebola′′) : −Nb(h, n), In(n, p1), Contact(p1, p2), From(p2, c1), Reported(c1, “Ebola
′′) (1.2)

where Prep(h) is a predicate that a hospital h should prepare for ‘‘Ebola’’ outbreak.

Nb(h,n) signifies the neighborhood of h, In(n,p1) signifies if person p1 lives in neighbor-

hood n and has ever had any contact with person p2 (Contact()) with confirmed case of Ebola.

Also From(p2, c1) denotes that person p2 is from a country c1, which has reported cases of Ebola.

To fully appreciate the complexity of the problem, consider that there could be millions of

people living in the neighborhood, who could have had contact with thousands of incoming trav-

elers from 100s of other countries. Computing the coverage (satisfied instances) of these rules is a

challenging task, even more so due to the structured nature of the domain with entities (hospitals,

people, countries, neighborhoods etc.) and interactions among them. Also, the patients already

admitted for treatment of some other condition can all be clustered into a group where they are

indistinguishable form each other since they are not of any interest in the given task. Size/count

of such groups are also required to efficiently infer, about the set of people not relevant to Ebola

outbreak, by exploiting symmetries. With large data sets, such counting operations are intractable.

However, (explained in later sections) exact values of counts are inconsequential in large samples

especially in classification tasks — 1000 is no worse then 992 persons, who satisfy the rules, when

predicting an Ebola outbreak. We develop fast approximation strategies for counting either

satisfied instances given the constraints/logic rules or cluster sizes of mutually indistinguish-

able entities given the task. Thus, we enable efficient learning/inference with arbitrarily large

data sets (observation-dense environments).

Given: Arbitrarily large samples (dense observations) in structured noisy domains

To Do: Efficient/scalable learning and lifted inference via approximate counting.
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1.2 Observation Quality

Another challenge is that of learning with low quality observations. By low quality observations

we refer to presence of systematic noise in the data. Systematic noise (Barber et al., 2009; Krip-

pendorff, 1970; Gove et al., 1976) is different from random noise and can generally be attributed

to the following sources.

• Sparse observations/samples: Sparse samples (low density observations) fail to effectively

characterize important regions of the feature space, unless fair sampling is ensured For in-

stance: lack of sufficient clinical trials for a new drug.

• Cognitive bias: Data in the real-world is the outcome of various activities and transactions

recorded regularly. Such data is prone to our social, geographical, ethnic or other biases For

instance: Ethnic and social biases in mental health treatment data (Snowden, 2003)

• Observation error: Error in subsets of observed attributes is distinct from random signal

noise. For instance: In a smart home for an elderly patient, a subset of the sensors may lose

calibration and send erroneous signals with respect to a particular location in the house.

Note that, impact of observation quality is not orthogonal to observation density. Sparse obser-

vations, as discussed earlier, is one of the sources of systematic noise (i.e. low quality data).

Systematic noise leads to generalization error (Niyogi and Girosi, 1996). Unlike random noise, it

is difficult to detect or characterize systematic noise without additional knowledge or presence of

supporting error-free observations. Thus, effective learning with systematic noise is challenging.

The principle of structural risk minimization (Vapnik, 1999) also shows how optimal generalization

from extremely sparse observations is quite hard.

Knowledge-based approaches have been proven to be widely successful in effective learning

with sparsity (i.e. data scarce environments), or systematic noise in general (Towell and Shavlik,

1994; Fung et al., 2002; Odom and Natarajan, 2018). Mitchell (1980) postulated that inductive
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bias is essential for true generalization over new instances. Augmenting learning with knowledge

from domain experts provides such inductive bias. This inspires our objective of human-in-the-

loop collaborative learning and problem solving framework to tackle the challenge of observation

quality. We term this phenomenon as Asymmetry of knowledge2 where humans and intelligent

agents have complementary set of competencies (not necessarily mutually exclusive).

Example 3. The AI agent in Figure 1.1, may have powerful reasoning engines, access to patient’s

medical records and so on. However, for the drug groups meant for carcinoid metastasis, there

are insufficient clinical trials making it difficult for the agent to effectively learn/predict about

any adverse side effect (ADE). If the agent can collaborate with a biomedical expert and leverage

additional knowledge about some biochemical properties of the drug group that the physician aims

to prescribe, then the agent could possibly to draw better conclusions.

In this age of big data, most predictive/analytics/decision-making systems tend to be com-

pletely data-centric and we fail to consider that data in the real world is sparse, incomplete, noisy,

unbalanced and mostly non-representative of the true concept. The problem of systematic noise

and sparsity is more critical in structured/relational spaces since most relations are false in the

world. While existing knowledge-based approaches have allowed for enhanced model learning

and decision-making, they have limitations including problem-specific representation, the way hu-

man experts are leveraged or even the class of problems considered therein. In this work, our

objective is to develop Human-Allied AI framework that allows the an AI agent be robust to

systematic noise, especially due to sparse samples (data-scarce environments).

Given: Structured noisy environments with low-quality observations (sparse samples, cognitive

biases) and access to human expert(s)

To Do: Human-Allied AI for effective learning and sequential decision making

2The term was coined from discussions within the DARPA Communicating with Computers (CwC) research group
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(a) Predictive Modeling (b) Sequential Decision Making

Figure 1.2: Our problem space with respect to Learning/Inference in predictive modeling (left) and
Sequential Decision Making (right). Red with asterisk is the part of the problem space with sparse
observations and the Green with ‘+’ is the part where observations are dense requiring scalable
approaches. This dissertation investigates both.

1.3 Dissertation Statement

This work aims to investigate the following: Approaches for effective and efficient learn-

ing/reasoning in structured domains, robust to the challenges of both observation quality and

density (sparse as well as arbitrarily large samples), in the context of predictive modeling, se-

quential decision-making or problem solving, across different levels of data representation.

1.4 Dissertation Contributions

This dissertation makes the following contributions towards the envisioned HAAI framework:

I. Scaling relational learning/reasoning to large data, via effective count approximation

II. Effective learning in structured domains with sparse noisy samples (low quality observa-

tions) via human-AI collaboration.

(i) Collaborative problem-solving (planning) in structured spaces but no demonstrations

(ii) Guided learning in low-level representations

(iii) Human-guided learning of novel concepts from sparse instances.
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1.5 Dissertation Outline

The dissertation has been divided into two high-level parts. Part I outlines our approaches for

efficient learning and inference with arbitrarily large data and Part II outlines the Human-AI col-

laborative frameworks for learning and decision-making in data-scarce environments.

Chapter 2 presents the necessary background and related work and positions our work in the

context of current research. First we discuss some concepts and existing research on learning

and decision-making in structured noisy domains, which lays the groundwork for this dissertation.

Subsequently, we outline the existing perspectives towards scaling and efficiency in reasoning with

structured data. We also present related literature on human knowledge augmented learning and

sequential decision making both with structured as well as low-level representations.

Part I

Chapter 3 details our first proposed approach, FACT, for scaling learning and inference in struc-

tured noisy domains to arbitrarily large data sets via graph databases. It presents our novel count

approximation framework that uses a message passing scheme to estimate frequencies using RDF

graphs, followed by an extensive evaluation on 3 major tasks of modeling structured data - (a)

Parameter Learning (b) Structure Learning and (c) Lifted Inference. We also discuss some adapta-

tions of our approximation technique for efficient reasoning in several real-world tasks.

Chapter 4 presents a generalized extension (MACH) of our count approximation strategy. It

addresses the limitations of our previous approach and other related approaches and proposes an

approximate satisfiability-counting technique based on hypergraph summaries. Specifically it

provides a principled formulation for efficiently estimating expected counts of satisfied instances

of First Order Logic clauses via intelligent factorization of the distribution induced by a clause.
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Part II

Chapter 5 presents, K-CLN, a human-guided training approach of structure-aware deep models

for effective learning with sparse data. Deep models have recently gained significant attention in

learning from low-level signals. Column Networks (CLN), a deep architecture, can also succinctly

capture domain structure along with modeling low-level representations. But, they may still be

prone to sub-optimal learning from sparse and noisy samples. Hence, we propose Knowledge-

augmented CLN that leverage human advice/knowledge for noisy/sparse samples.

Chapter 6 presents PGPLANNER, an active preference elicitation framework for automated

planning in AI. Planning, one of the several sequential decision making paradigms, uses a lim-

ited amount of domain axioms and performs intelligent search to infer a sequence of actions to

achieve given goals. Unlike other paradigms, there is no data/demonstrations to learn from in au-

tomated planning. This chapter discusses and exhaustively evaluates this novel framework, where

a planning agent can actively seek human guidance for finding better plans.

Chapter 7 investigates and proposes our concept learning framework that allows for induction of

novel concepts from sparse data/demonstrations. Our GOCI framework, extends Inductive Logic

Programming a novel conceptual distance metric and active human guidance to learn an optimally

generalized representation of novel concepts from single (or few) instance(s). We provide empiri-

cal validation of its effectiveness as well as theoretical guarantees on both the validity of our novel

metric and the PAC learnability in our problem setting.

Chapter 8 presents some additional challenges that I have explored as part of my dissertation,

where we have either adapted some of the techniques outlined above or have proposed novel so-

lutions. Chapter 9 presents our concluding remarks and insights about our work discussed in

the earlier chapters and finally introduces several open challenges that remain to be addressed to

achieve a true human-AI collaboration and discusses their potential impact.
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CHAPTER 2

TECHNICAL BACKGROUND

This chapter provides a comprehensive background on the problem space that this dissertation aims

to address. We first describe that basic concepts that are essential in understanding the challenges

involved in learning and acting in structured noisy domains. Next we discuss the extensive litera-

ture on modeling and learning/decision-making in structured spaces, their limitations and how they

connect with the key contributions of this dissertation. Finally, we present and analyze the existing

research that closely relate to the solution approaches we propose in the subsequent chapters.

2.1 Learning and Decision Making in Structured Noisy Domains

Observations/data acquired from real-world scenarios are implicitly structured. Most environments

can be characterized in terms of entities and entity classes, their properties, relationships among

them and their hierarchies. In fact, that is a natural cognitive strategy of humans. For instance, in a

treatment planning context (Example 1), to reason about the potential adverse effects of prescribed

drugs it is necessary to model complex biochemical interactions when a drug is metabolized in a

human body. Such interactions involve different entities including enzymes, antibodies and dif-

ferent compounds in the drug. Interactions of chemical nature among these entities or groups

(hierarchies) of such entities constitute the structural information essential for prediction and dis-

covery of adverse effects. Thus intuitively, every environment can be modeled as a multi-relational,

hierarchical, directed (or bidirected) graph.

Our representational choices merely affect our ability to preserve that rich structural informa-

tion. A vectorized representation of observations is insufficient. For instance, on one hand we

cannot pre-determine the number interactions a drug is involved in with other biochemical com-

pounds making it impossible to encode them as fixed length feature vectors and on the other hand

feature vectors with respect of each drug makes it difficult to generalize over it’s reactions with
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other drugs. Thus, we encounter two primary problems with vectorizing structured domains -

‘linkage’ and ‘autocorrelation’ (Jensen and Neville, 2002). This problem is equivalent to the prob-

lem of arbitrary number of (self)joins required in an SQL query to construct the correct view of the

data. One may argue that some data could be implicitly unstructured such as text or image data.

However, using a richer model can allow for inferring richer domain relationships. Our hospital

resource planning scenario involves learning from news reports and broadcasts. However, there

does exist implicit relationships such as entities (countries, patients, hospitals etc.). There could

also be ’reference’ relationships between news reports. Treating news reports as ‘bag-of-words’

unstructured data is, hence, a representational choice leading to loss of such vital information.

Extensive research on relational databases (Silberschatz et al., 1997) and graph databases (An-

gles and Gutierrez, 2008) allows us the privilege of structured representation in terms of persistent

storage. It is necessary that predictive modeling or sequential decision making approaches exploit

such rich structural information. Thus we need a representational language that is powerful enough

to seamlessly capture relationships and hierarchies as well as generalize over classes and arbitrary-

sized groups of entities. Logic (esp. First Order Logic, abv. FOL (Flach, 1994)) is an ideal solution

since it is not just a powerful representational language but is also quite intuitive. For instance, our

hospital resource forecasting model may have a rule such as,

∀h, d, n, p1, p2 Prep(h,′′ Ebola′′) : −Nb(h, n), In(n, p1), Contact(p1, p2), Confirmed(p2,
′′ Ebola′′)

which signifies that any hospital h in any neighborhood n where any person p living in that neigh-

borhood has come in contact with a confirmed case of an infectious disease such as Ebola, must

start preparing for the outbreak of d (i.e. Prep(h, d)). Note how important relations and attributes

are captured via predicates such as Contact(), In(), Confirmed() etc. Most important

aspect is the use of quantifiers ∀ and ∃ in First Order Logic (FOL), which allows required gener-

alization and compact expressions. For instance, ∀h, n, p1, p2 generalizes over particular groups

of hospitals in vicinity of people in contact with confirmed Ebola affected cases. Clearly, it is
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intractable to capture patterns and rules about every possible combination of hospitals, people or

neighborhoods. Generalization is the key. Expert systems such as ‘Mycin’ (Shortliffe, 1974a) en-

coded expert knowledge into such rules and reasoned with them for treatment planning. We go

beyond expert systems and aim to learn from observations.

Inductive Logic Programming, ILP (Muggleton, 1991; Muggleton and De Raedt, 1994; Quin-

lan, 1990; Muggleton, 1995; Sammut and Banerji, 1986; Rouveirol, 1992, 1990; Srinivasan, 2007)

inductively learns a logical program (first-order theory) that aims to cover most of the positive

examples and none of the negative examples. Due to the representational power of First Order

Logic, through the decades, this has proved to be an extremely effective modeling paradigm to

faithfully capture and generalize structured information. With ILP, the goal is to generalize over

instances using background knowledge as search bias by building valid hypotheses about unseen

examples. While ILP allows for learning generalized compact features in structured spaces, real

environments are noisy and uncertain as well. For example, news articles have noise in them, such

as they may have the word “Ebola” but are not actually reporting a confirmed cases or in coun-

tries with extreme paranoia, news reports are likely to inflate the amount of reported cases and so

on. We also have to factor into our model, how rare a particular disease is.

(a) Bayes Net (b) Parameterized BN

Figure 2.1: A Bayesian Network and its parameterized form for hospital resource forecasting.
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Probabilistic models (Koller and Friedman, 2009), such as Bayes Nets, Markov Random Fields,

Dependency Networks, provide effective techniques to model stochastic dependencies among ran-

dom variables. However, such models are ‘propositional’; i.e. they represent dependencies among

features of a single entity and do not generalize over classes or groups or relationships among the

same. For instance, the Bayes Network in Figure 2.1(a) models the distribution over the outbreak

of only one disease, “Ebola”, and preparation of one hospital in one place. It fails to generalize to

other fatal infectious diseases and hospitals or important interactions such as vicinity and contact

with other reported cases.

Figure 2.2: The space of SRL approaches

Statistical Relational Learning models (SRL) (Getoor and Taskar, 2007; Raedt et al., 2016)

combine the representational power of FOL to capture rich structural information and the power of

probability theory (statistical models in general) to model noise and uncertainty. An alternate per-

spective of SRL is of ‘lifting’ probabilistic graphical models, where probabilistic dependencies are

captured among parameterized random variables (Neville and Jensen, 2007; Getoor et al., 2001).

Parameterization allows for generalization over multiple objects. For instance, Figure 2.1(b) illus-

trates the parameteried form of the outbreak model described earlier. Note that each node, now is
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paramaterized with a one or more logical variables, that allows for generalizing over all diseases

that are infectious as well as all hospitals and neighborhoods and the dependencies among them.

Thus, the ‘lifted’ form of such models are essentially templates which will manifest a typical

propositional graphical model if the logical variables are substituted with values. How the

conditional distributions are represented in such ‘lifted’ probabilistic models is beyond the scope

of this dissertation [refer to Bayesian Logic Programs (BLPs) (Kersting and De Raedt, 2007) or

Template Networks, such as Relational BNs (Jaeger, 2007)]. Clearly, both the representational

perspectives of SRL are conceptually equivalent. For instance, the lifted BN discussed above can

essentially be encoded as definite clause logic programs with contextual conditional distributions

(as in BLPs). Henceforth, for clarity in explanation of various concepts in the rest of the disser-

tation, we will use the notion of combining FOL with probabilities as an unified view of SRL.

Figure 2.2 illustrates how SRL is situated in the in the space of existing research. SRL approaches

have generally ranged from directed models (Kersting and De Raedt, 2007; Koller, 1999; Heck-

erman et al., 2007; Kazemi et al., 2014; Neville and Jensen, 2007; Kazemi and Poole, 2018) to

undirected models (Richardson and Domingos, 2006; Taskar et al., 2007; Kimmig et al., 2012;

Kazemi et al., 2014; Fatemi et al., 2016). Any SRL model has 2 major components, structure and

parameter. Structure refers to the the generalized compact patterns (relational features) represented

via FOL formulas or through template graphs and parameters refer to quantities that indicate the

relative importance of FOL rules or templates in the model. Such parameters can either be valid

probability values or such unbounded weights that has to be normalized later to a valid distribu-

tion. Parameters are tied/shared between all the instances of the same template or rule. Below is an

example of such a model, a Markov Logic Network (MLN) based on the disease outbreak planning

in hospitals (Richardson and Domingos, 2006). Note that the weights on the left indicate that the

Table 2.1: Example MLN based on Hospital Resource Forecasting domain.

C1 1.8 ∀h, d, n, p1, p2 Prep(h, d) : −Nb(h, n), In(n, p1), Contact(p1, p2), Confirmed(p2, d)
C2 0.5 ∀h, d, n, p1, p2, c1 Prep(h, d) : −Nb(h, n), In(n, p1), Contact(p1, p2), From(p2, c1), Reported(c1, d)
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first rule is more important than the second one. Unlike that of PROBLOG (De Raedt et al., 2007)

which uses valid probability values as weights on formulas, the weights in an MLN are unbounded

real numbers. They akin to log Odds (logP/(1−P )) for a random variable with binary outcomes.

2.1.1 Challenges in SRL

While these models are effective in modeling structured spaces faithfully and succinctly, learning

them is computationally intensive. This is due to the following aspects:

• Like ILP, learning occurs at multiple levels of abstraction, – object classes, groups/sub-

groups of objects and relations and possibly at the individual instances of the objects.

• Learning these models has two (not necessarily distinct) stages, namely, structure search

and parameter estimation. Structure search, similar to ILP, requires estimating the support

(instances in the data) of candidate formulas as well as their statistical measures which in turn

requires parameter estimation. Again parameter estimation requires performing inference

with the candidate models. Figure 2.3 illustrates the stages and their hierarchy.

Performing the different stages separately is challenging. Recent work on boosted approaches for

SRL (Natarajan et al., 2012; Schapire and Freund, 2012) enables concurrent structure search and

parameter estimation (full model learning), allowing efficient and effective learning.

Inference is equally challenging since, in a naive setting, it would require us to instantiate all

the logical variables in the rules of the model structure with all the entities in the domain and con-

struct a large probabilistic graphical model (each ground literal becomes a random variable) using

the rule weights as shared potentials and then perform probabilistic inference. This could easily

become intractable in large domains. For instance, the MLN shown in Table 2.1 will reduce to a

massive Markov Network when instantiated with all combinations of people, hospitals, countries,

and diseases in the Hospital Resource Planning domain. Lifted inference (Poole, 2003; Kersting
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Figure 2.3: Multiple stages of learning Statistical Relational Models

et al., 2009; Singla and Domingos, 2008) alleviates this challenge to some extent by exploiting

symmetries and inferring over groups of interchangeable objects as a whole.

Hence, there are two primary challenges in SRL, that aligns with the key challenges we are

trying to address in this dissertation in order to develop our envisioned agent, are as follows:

• Scaling to dense observations: Both learning and inference in SRL are computational in-

tensive tasks. While the approaches discussed above attempt to address this challenge to

some extent, it is still an open problem. Several sampling based approaches (Venugopal and

Gogate, 2014) and model reduction frameworks (Shavlik and Natarajan, 2009) attempt to

address this as well by controlling the size of the resultant underlying ground model. How-

ever, there is a fundamental operation inside most SRL approaches - counting the number

of satisfied instances of generalized compact patterns (r FOL rules) in the model structure.

Counting is hard (#P-complete), making scaling learning and inference to arbitrarily large

data sets (dense observations) extremely challenging. We explain in Section 2.2, the existing

research that aims to address this challenge and how our approaches relate to them.

• Sample sparsity: At the other extreme is the challenge of sample sparsity. While system-

atic noise in general may exist irrespective of representational choices, sample sparsity is

a critical challenge in structured domains. Structured domains may have arbitrary number

16



object classes, objects, relationship types among them. This makes the feature space ex-

ponentially large and even reasonable amount of observations is comparatively sparse and

may not be optimally representative of the population distribution. For example, in treatment

planning context, for adverse effect detection, there could be millions of drugs interacting

among each other as well as hundreds of metabolic chemical compounds, varied types of

pre-existing physical conditions and so on. The feature space is in the order of millions of

assertions and it is difficult to have a representative set of clinical observations.

We present a more detailed background on the above challenges and related research in Sections

2.2 and 2.3.

2.1.2 Decision Making in Structured Noisy Environments

Sequential Decision Making in structured noisy domains require such generalized compact models

as an internal reasoning engine. The high-level goal of sequential decision making is to learn (or

reason with) a mapping from the state space to the action space. Such a mapping is either termed as

a policy or, occasionally, an action model in planning (π : S→ A). Tabular encoding of this map-

ping via explicit state enumeration is only possible in domains with extremely small state spaces.

To tackle this challenge a factored representation of the state space is used, all the way from early

search techniques and planning to some of the more recent advances in RL (Sallans and Hinton,

2004). State spaces are factored when they are represented by a vector of features (properties of the

domain). For instance, in our treatment planning context a patient’s clinical attributes, allergies,

attributes obtained from current checkup etc., will be encoded as a feature vector. Changes in the

values of any feature, say BP measure, will imply a change in state. This allows us to use any ma-

chine learning technique of our choice to model state-action mapping. This is known as function

approximation. However, as discussed earlier a vectorized representation is insufficient in char-

acterizing structured, noisy environments. For instance, it is challenging to capture information

about clinical attributes of other patients who share kinship with the given patient in a vectorized
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representation of factored states. Similarly, it is impossible to generalize over arbitrary number of

procedures and clinical tests or over other related entities such as compounds inside drugs. Thus

SRL is indispensable for succinct factored representation (of policies/action models) for function

approximation in structured noisy domains.

In the automated planning paradigm (Ghallab et al., 2004), domain definitions have long been

encoded in restricted FOL representations, such as STRIPS and PDDL (Fox and Long, 2003),

and planning problems have been posed as sequential logical inference problems. In probabilistic

planning, the logical domain rules are softened with probabilities and interleaved logical inference

and probabilistic inference is performed to generate plans. However, planning approaches based

on Markov Decision Process (MDP) formulation as well as Reinforcement Learning (Sutton and

Barto, 1998) paradigms are faced with the challenge of generalization and large state spaces. As

is clear from the above example, factored MDPs and function approximation, partially address

this challenge. However, vectorized representation of factored state spaces lead to the problem

of loss of information (Jensen and Neville, 2002) as well as limits generalization across arbitrary

objects. Relational Reinforcement Learning (Džeroski et al., 2001; Tadepalli et al., 2004) and re-

lated approaches address this by modeling the problem as a relational MDP and using statistical

relational models as function approximators. Heirarchical environments structures have also been

utilized in sequential decision making, such as MaxQ (Dietterich, 2000), semi-MDPs (Sutton et al.,

1999), abstract-MDPs or hierarchical abstract machines (Parr and Russell, 1998) in reinforcement

learning and Hierarchical Task Networks (Nau et al., 2003; Erol et al., 1994) in planning. Natu-

rally, the challenges outlined in the context of SRL, directly apply to RRL and planning paradigms

as well - scalability and sample efficiency. While scalabiltiy is essential for efficient decision-

making, especially in high-impact domains such as treatment planning, the problem sparse obser-

vations/demonstrations is a more critical yet common problem. In large state spaces it is difficult

to explore all potentially relevant regions. Also, some parts of the space may not even be safe to

explore. For example, it is impossible to obtain observations about fatal side effects of some drug
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compounds. Before we outline existing research on knowledge-based approaches that address the

challenges of sample sparsity, we will briefly discuss automated planning, since we will present

our Human-Allied AI frameworks in the context of planning.

Automated Planning Planning problems and automated planners are often characterized us-

ing state space models. However, the problems are presented to planners in the form of com-

pact description in a suitable language (e.g., PDDL). A planning task can be seen as a 5-tuple

〈S,A, I,G, T 〉 where: S is a (finite set of states; A is a finite set of actions, where A(s) ⊆ A

corresponds to actions that are applicable at state s ∈ S; I ⊆ S is the set of possible initial

states; G ⊆ S is the set of possible goal states; T : S × A 7→ S is the transition function, where

T (s, a) returns the next state for deterministic domains, and returns the probability distribution

over the next states for stochastic domains. Additionally, in partially observable domains, some

information of the state is hidden. Given an initial state and a goal specification as an instance of

a planning task, automated planners produce a sequence of actions (aka. plan) to satisfy the goal

specification. The most basic form of automated planning is computationally hard (specifically,

PSPACE-complete (Bylander, 1991)). However, real-world applications require fast planners to

satisfy time constrains. Consequently, there is a large body of work to address this challenge

(Ghallab et al., 2004). Some representative approaches include reduction to SAT solving (Kautz

and Selman, 1992, 1996; Blum and Furst, 1997), forward state space search with human-designed

heuristics (Hoffmann and Nebel, 2001; Yoon et al., 2007), learned heuristics from solved plan-

ning problems (Yoon et al., 2008; Xu et al., 2009, 2010); planning with human-written control

knowledge (Erol et al., 1994; Bacchus and Kabanza, 2000) and solving probabilistic planning via

reduction to deterministic planning (Yoon et al., 2008). Hierarchical planning methods, such Hier-

archical Task Networks (HTN) (Erol et al., 1994), decompose bigger problems into smaller ones

recursively until it is relatively simple to obtain a partial plan for a sub-problem. Such technique

closely resemble how humans intuitively reason about problems and make decisions.
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2.1.3 Relation-aware deep model

Our envisioned AI agent (Example 1) must be able to learn and reason with varied levels of ob-

servations. For example, the treatment planner should reason with low-level signals such as ECG

signals, MRI scans etc. On the other side the resource forecasting AI agent has to reason with news

articles, broadcasts and tweets etc. Classical connectionist models (Rosenblatt, 1962), and more

recent deep architectures (Goodfellow et al., 2016), have had considerable success in a variety of

tasks involving such low-level signals. However, most deep models work with vectorized repre-

sentation of the feature space resulting in information loss discussed earlier. Column networks

transform relational structures into a deep architecture in a principled manner and are designed

especially for collective classification tasks (Pham et al., 2017). Note that the ‘Curse of dimen-

sionality’ of the parameter space, results in the requirement for large amounts of data for effective

training of such models. The problem is even more critical in structured spaces making effective

trainign difficult with sparse samples (low quality observations). Hence, in Chapter 5 we present

our knowledge augmented deep learning framework, that uses human advice for effective train-

ing with sparse samples. The architecture and formulation of the column network are suited for

adapting it to the advice framework. The GraphSAGE algorithm (Hamilton et al., 2017) shares

similarities with column networks since both architectures operate by aggregating neighborhood

information but differs in the way the aggregation is performed. Graph convolutional networks

(Kipf and Welling, 2016) is another architecture that is very similar to the way CLN operates,

again differing in the aggregation method. Diligenti et al., (2017) presents a method of incor-

porating constraints, as a regularization term, which are first order logic statements with fuzzy

semantics, in a neural model and can be extended to collective classification problems. Semantic-

based regularization method presented in Diligenti et al., (2017) is similar in spirit to our proposed

approach, but is differs in its representation and problem setup.

20



2.2 Scaling with dense observations

As discussed earlier, counting is a fundamental challenge in learning and acting in structured

spaces, that needs our attention. Most SRL models (even ILP) require counting over the satisfied

instances of FOL rules (relational features or generalized compact patterns) both for estimating

support/coverage during structure search and for estimating probabilities during parameter estima-

tion. For example, we may compute the likelihood of clauses to estimate support of a particular

clause to be added to the model. For clause C1 the likelihood could be1,

L =
#[Prep(h, d), Nb(h, n), In(n, p1), Contact(p1, p2), Confirmed(p2, d)]

#[Nb(h, n), In(n, p1), Contact(p1, p2), Confirmed(p2, d)]
(2.1)

Similarly for computing distributions we require counts as well. For instance, for an MLN the

joint distribution for a given world X = x is expressed as 1
Z

exp
∑

f∈F wfnf , where Z is the

partition function (normalization constant) and F is the set of formulas in the model and nf is the

number of groundings or satisfiability count of a formula f . Thus for our MLN in Table 2.1, for a

world/context of “Ebola” and “Parkland hospital” we get,

P (θ) =
1

Z
exp 1.8×#[C1/θ] + 0.5×#[C2/θ] (2.2)

where, θ is the partial substitution (refer FOL.), θ = {h/′′Parkland′′, d/′′Ebola′′}.

In lifted inference as well, counting is an essential operation to compute the membership car-

dinality of groups and sub-groups on which inference is performed. For instance, in the MLN

example in Table 2.1, if we are interested in inferring the probability of preparing ‘Parkland’ for

Ebola then all the neighborhoods who are not in its vicinity or people in contact with patients

of other infectious diseases are of no interest and hence will be treated symmetrically and clus-

tered into one group. However, we need the size of that group to compute the marginal over that

group which will then be used during normalization. This problem is known as the satisfiability

1We use #[] to signify counts/cardinality of satisfied instances.
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counting problem (#SAT) (Gu et al., 1996). It is a hard problem (#P-complete) and hence will

render learning and inference non-scalable to large evidence/data. Chapters 3 & 4 presents our

novel approaches for efficient approximation of this counting operation which allows us to scale

SRL to arbitrarility large data.

2.2.1 Approximate subgraph matching

Venugopal et. al’s work (2015) is closest in spirit, which scales via counting only the satisfied

groundings in MLNs. We aim to keep our approach model independent. The key idea behind our

work is that counting in SRL is akin to subgraph matching / enumeration, which when done in

exact fashion is another #P -complete (Valiant, 1979; Vadhan, 2001) problem in itself. Hence, as

we show we Chapters 3 and 4, we perform approximate subgraph enumeration. Use of graphs

in ILP and SRL is not new, as seen in Richards and Mooney’s work on relational path finding

(Richards and Mooney, 1992). However, they are restricted to exploiting the logical structure

and do not perform fast or approximate counting as we do. Our work closely relates to approxi-

mate sub-graph counting, in a graph theoretic context (Slota and Madduri, 2013; Bhaskara et al.,

2010). Most of such approaches focus, either on exploiting high performance architectures via

parallelization, subject to resource availability, or on utilizing properties of restricted classes of

graphs. FACT (Das et al., 2016), presented in Chapter 3 approximates counts via summarization

of in-memory Property Graphs (Corby et al., 2000) encoded using RDFs 2 but suffer from certain

fundamental limitations such as assuming binary relations and independence across relations shar-

ing entities. ISMA (Demeyer et al., 2013) adopts a search tree optimization and pruning approach

for subgraph enumeration in large biological networks. It has similar limitations and returns all

subgraphs instead of count estimates. Fürer and Kasiviswanathan (2014) propose a polynomial

time sampling-based approximation strategy for counting isomorphic subgraphs matching a given

2https://www.w3.org/RDF/
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template leveraging bounded-width ordered bipartite decompositions of the templates. A key fea-

ture of this approach is its provable generalization across varied classes of graphs. Ravkic et al.

(2018) extend this principle for parameter learning in SRL via efficient computation of the decom-

positions. While potentially applicable in our context, these approaches have major limitations that

include restricted arity of relations and requirement of decomposability of templates.

A hypergraph representation alleviates some of these limitations as we show in Chapter 4.

Approximate matching has been extensively studied in graph theory, recently in the context of

hypergraphs (Dudek et al., 2014, 2013). While these approaches are interesting with theoret-

ical guarantees, they apply to specific classes of simple hypergraphs with bounded degree and

regularity which cannot model real-world multi-relational data. For instance, in a treatment plan-

ning scenario there could be a relation called LabTest(person,hospital,test). Now

“person” and “hospital” can also be involved in another relation, say a technician works in that

hospital, WorksIn(person, hospital) ∧ Technician(person). Adapting the above mentioned

hypergraph approximation approaches could only be possible if we partition the multi-relational

graph by the relation types and model each partition separately. For example we could create

two different hypergraphs one with hyperedges of type “LabTest” and the other with WorksIn.

An entity, say Eva, will be present as nodes in both the hypergraphs. However, since entities

(ex: person) may participate in multiple types of relationships, creating partitions that preserve

information of shared relations is impossible.

2.2.2 Cardinality estimation in databases

Our approximate counting strategy depends on probabilistic estimates about the presence of (hy-

per)edges (predicates) between nodes (constants). In essence, we are meta-learning the statis-

tical estimates about the entities and relationships of various types. We elaborate in the sub-

sequent chapters how we obtain such estimates from summary statistics. This is closely re-

lated to cardinality/selectivity estimation and has been deeply studied in the context of relational
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databases (Schiefer et al., 1998), be it using incremental statistics across tables and frequently

executed queries such as histograms (Seputis, 2000), VC dimension based summaries (Riondato

et al., 2011). Probabilistic database systems, such as ‘Tuffy’ (Niu et al., 2011) exploit the power

of relational databases for persistence and computations in SRL. While successful on standard

benchmarks, these approaches are not directly applicable to our problem setting where we are

interested in learning from adhoc databases. Also, such systems may encounter challenges of re-

lational databases including arbitrary join costs and may require carefully designed join caches

for optimization. More importantly, they have not yet been applied to the challenging task of

full model learning in SRL (only parameter-learning). Graph-based systems can potentially al-

leviate such limitations while allowing seamless representation of logical assertions. However,

cardinality approximation is an open problem in the context of Graph databases (Neumann and

Moerkotte, 2011; Stocker et al., 2008), especially for hypergraphs. The complexity lies in the fact

that graphs can potentially be multi-relational with the freedom of encoding infinitely many rela-

tions among infinitely many different types of entities. Thus there is no underlying “schema” to a

graph-structured database. Hence, histogram based cardinality estimation methods that work well

with a relational database and SQL appear to be inadequate for modeling our task.

Our generalized count approximation approach (Chapter 4) relaxes these limitations by using

a hypergraph representation and establishing equivalent bi-directional transformations between

function-free FOL and hypergraphs.

2.3 Robustness to systematic noise (sparse, low-quality observations)

2.3.1 Knowledge-based Learning

Using domain advice as inductive bias to accelarate learning has long been explored (Fung et al.,

2002; Le et al., 2006; Towell and Shavlik, 1994; Kunapuli et al., 2010; Odom and Natarajan, 2018).

Fu, (1995) presents a unified view of different variations of knowledge-based neural networks.
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Such advice based learning has been proposed for support vector machines (Fung et al., 2002; Le

et al., 2006) in propositional cases and probabilistic logic models (Odom and Natarajan, 2018) for

relational cases. Towell & Shavlik, (1994) introduce the KBANN algorithm which compiles first

order logic rules into a neural network and Kunapli et al., (2010) present the first work on applying

advice, in the form of constraints, to the perceptron. The knowledge-based neural network frame-

work has been applied successfully to various real world problems such as recognizing genes in

DNA sequences (Noordewier et al., 1991), , robotic control (Handelman et al., 1990) and recently

in personalised learning systems (Melesko and Kurilovas, 2018). Combining relational (symbolic)

and deep learning methods has recently gained significant research attention. This is due to the

fact that relational approaches are indispensable in faithful and explainable modeling of implicit

domain structure, which is a major limitation in most deep architectures in spite of their success.

While extensive literature exists that aim to combine the two (Sutskever et al., 2009; Rocktäschel

et al., 2014; Lodhi, 2013; Battaglia et al., 2016), to the best of our knowledge, there has been little

or no work on incorporating the advice in any such framework.

2.3.2 Modeling noise in deep models

Several recent approaches aim to make deep architectures robust to label noise by either learn-

ing from easy samples with importance weights or by additional noise-adaptation layers or, may

be, by regularization over virtual adversarial randomization (Jiang et al., 2018; Goldberger and

Ben-Reuven, 2017; Patrini et al., 2017; Miyato et al., 2018). While the above approaches enable

effective learning of deep models in presence of noise, there are some fundamental differences

with the problem setting of our knowledge-augmented deep model presented in Chapter 5.

(1) [Type of noise]: Our envisioned AI agent aims to handle systematic noise (Odom and

Natarajan, 2018) which is frequent in real-world data due to cognitive bias in the data record-

ing process or sample sparsity (refer Chapter, 1 Section 1.2).
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(2) [Type of error]: Systematic noise leads to generalization errors (see Example 3).

(3) [Structured data]: Our work is in the context of structured data (entities/relations). Though

crucial, structured data is inherently sparse (most relations are false in the real world).

(4) [Noise prior]: All the noise handling approaches for deep models mentioned earlier explic-

itly try to model the noise, which is impossible for systematic noise. Our Human-Allied AI

setting instead allows expert knowledge to guide the learner towards better generalization

via an inductive bias.

Augmented learning with human advice has been proven to be an effective strategy in machine

learning, probabilistic learning or sequential decision making, in presence of systematic noise

(sparsity + sample bias + errors in data recording). Although, pseudo-labels as weak supervision

introduced by Lee, (2013) are used for constructing efficient semi-supervised methods in deep

learning, weak supervision is not always successful as it assumes presence of large amounts of

data and certainly not the best approach with noisy data (since the pseudo-lables are derived from

the fully observed label set where noise could propagate). Advice is typically provided before

the data set is encountered i.e., by a domain expert and hence is independent of the fully labeled

data (which can be noisy). Data programming (Ratner et al., 2016) constrains the data using weak

labels and is an orthogonal to our setting, since our approaches can be interpreted as constraining

the model or hypotheses space.

2.3.3 Preference Elicitation in Sequential Decision Making (Planning)

As with predictive modeling (Sub-section 2.3.1), there has been a surge in interest towards using

domain expertise to improve decision-making (Sohrabi and McIlraith, 2008; Sohrabi et al., 2009;

Kunapuli et al., 2013; Judah et al., 2014; Odom and Natarajan, 2016a). While distinct methods

differ in the form of knowledge that can be specified, preference elicitation has been explored

inside automated planning (Myers, 1996; Boutilier et al., 1997; Huang et al., 1999; Brafman and
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Chernyavsky, 2005; Sohrabi and McIlraith, 2008), reinforcement learning (RL) (Maclin and Shav-

lik, 1994, 1996; Natarajan and Tadepalli, 2005) and inverse reinforcement learning (IRL) (Kuna-

puli et al., 2013; Odom and Natarajan, 2016a).

The type of human knowledge that we aim to incorporate in our HAAI framework are repre-

sented as preferences. These correspond to IF-THEN statements where the IF defines the condi-

tions (without negation) under which the preferences should apply and the THEN represents the

preference. In RL or IRL, preferences could represent sets of preferred/non-preferred actions in a

given set of states (Torrey et al., 2005). In the context of HTN planning, preferences could cor-

respond to preferred/non-preferred decompositions of certain tasks (Sohrabi et al., 2009). Across

these approaches, preferences have shown to be a good choice for specifying expert knowledge.

However, many of these approaches require all of the preferences/advice upfront. This requires

the domain expert (may not be machine learning experts) to provide the knowledge that would be

useful for the learner. Our approach solicits preferences during the decision-making process only

as needed. This leads to effective interaction by reducing the number of uninformative queries.

Recent work on active advice-seeking (Odom and Natarajan, 2016a) introduces a framework

to allow the learning algorithm to request preferences over interesting areas of the feature or state

space. To the best of our knowledge, our approach, oulined in Chapter 6, is the first to actively

solicit preferences in the planning setting. Sarne et. al.’s work, on multi-agent planning & schedul-

ing with mixture of human and autonomous agents (Sarne and Grosz, 2007), explicitly estimates

the value of (future) additional information from humans about the feasibility of given options in

order to generate queries. Our formulation does not assume existence of a “coordination” module

making estimation of the value of information impossible. As a surrogate for such an estimate, PG-

PLANNER (our framework presented in Chapter 6) instead identifies regions in task space where

it has inadequate information. We show that our formulation facilitates human expert in providing

more useful information, not limited to feasibility of given options.

Mixed-initiative planning (Ferguson et al., 1996; Ai-Chang et al., 2004; Talamadupula et al.,

2013) interleaves planning by expert with automated planning which is similar in spirit to our
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framework. However, they are conceptually different in the expert’s role and intervention in the

planning process. Mixed-initiative planning is a negotiation between an agent and human on mu-

table3 goals/sub-goals, and partial plans. Such an intervention can be initiated by either party. On

the other hand, our approach is responsible for only acquiring expert knowledge wherever it is ex-

pected to be most useful. Intuitively, in our setting, the responsibility to seek human intervention

lies with the planner itself. since it allows the human to encode coarse knowledge and subsequently

learn fine-grained knowledge via interaction.

3‘Mutable’ refers to the fact that the sub-goals are not finalized before the planning process and may be updated.
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PART I

OBSERVATION DENSITY: DATA-RICH ENVIRONMENTS
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CHAPTER 3

SCALABLE LEARNING IN STRUCTURED NOISY ENVIRONMENTS

In this chapter we present our graph-based approach (Das et al., 2016) for approximating counts

of satisfied instances of generalized patterns (First Order Logic rules) and show how probabilistic

inference and learning can easily scale to arbitrarily large data sets by incorporating our approxi-

mation strategy.

3.1 Introduction

Statistical Relational AI(Getoor and Taskar, 2007) deals with the problems of learning and infer-

ence in the presence of rich, structured multi-relational data. A key operation required by most,

if not all, StaRAI models is counting. For instance, Markov Logic networks (MLNs)(Domingos

and Lowd, 2009) use counting as their fundamental operation in computing probabilities. Simi-

larly, most directed probabilistic models employ a combination function such as mean or weighted

mean(Natarajan et al., 2009) that require counts. Finally, lifted inference methods(Poole, 2003;

Kersting et al., 2009; Milch et al., 2008) that aim to exploit symmetries during inference also

require efficient counting.

However, since the counts are primarily used in exponents of different functions (be it the

log-linear function of MLNs or the products in lifted inference methods), computing exact counts

is not always necessary, especially when the counts are large. This is particularly true because

most systems are relational where counting is one of the most expensive operations, more so, since

counting all possible true relations is a major bottleneck (Poyrekar et al., 2014). For instance,

intuitively, it should not matter (to an inference algorithm) whether a particular professor has co-

authored approximately 500 publications or exactly 519 publications when answering a query

about the success of this professor.

Our hypothesis is that efficiently performing approximate counting can allow for efficiency

gains with a small loss of performance. To this effect, we exploit the progress in the graph
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databases and graph theory (Metzler and Miettinen, 2015; Castellana et al., 2015; Sun et al., 2012)

to perform fast, approximate counting over query structures. More specifically, we compile our

logical model to a graph/network represented in resource description framework (RDF) format.

This equivalent model allows for both approximate and exact counts to be performed in a fraction

of time that is required by the original logical model.

We first show how the logical/relational model can be converted to an equivalent graph rep-

resentation. Then, we present the exact computation algorithm that simply counts sub-graphs via

queries. We then outline an approximation method (similar to message passing methods for prob-

abilistic graphical models) that uses summary statistics (expected values) based on in-degrees and

out-degrees to estimate the counts. Finally, we demonstrate the effectiveness and efficacy of the

proposed counting approach on different types of problems in standard benchmark data sets.

To summarize, we make the following key contributions: (1) We propose a compilation strategy

based on graph databases for relational probabilistic models. (2) We show how counting can be

posed as queries in these models. (3) We derive a message passing method that can allow for fast

approximate counts in such graphs. (4) Finally, we perform evaluation on several standard data

sets in learning and probabilistic inference tasks.

3.2 Graph-Based Approximate Counting

We now present how formulas in first order logic (FOL)(Flach, 1994) can be represented as a

“property graph” before presenting the counting algorithms. The key observation is that satisfia-

bility of formulas in FOL (especially with fuction-free assumptions) is equivalent to ‘searching’

for the existence of a particular subgraph in the graph. Before we delve into further detail we

present some necessary backgroung definitions:

Definition 1 (Property Graph (Model)). Property Graph Model (Corby et al., 2000) is a model

for representing graph structured data efficiently. Every edge E = 〈v1, v2〉 is denoted as a triple
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〈subject, predicate, object〉, such that, subject = v1, object = v2 and predicate = label(E).

Conceptually, predicate is a property of the subject, and the object is the value of that property.

For example 〈Book,Name, “Hamlet”〉 is a triple where the predicate Name is a property of the

subject Book and Hamlet is the value of the property Name. This allows us to encode multiple

types of entities and relations between entities on a single graph.

Definition 2 (Resource Description Framework (RDF)). Resource Description Framework (RDF)

(Corby et al., 2000) is a framework for representing a property graph where subject, predicate or

object is a resource, with a namespace binding. The namespace has to be a valid URL.

Definition 3 (SPARQL). SPARQL (PrudHommeaux et al., 2008) is a query language for querying

RDFs. It is different from SQL, in that the subgraph we query is encoded in the WHERE part of the

query as connected triples. The variables are denoted with a ‘?’ in front and the constants must

be bound by the declared namespace as shown below.

PREFIX namespace:〈url〉 SELECT ?a ?b ?c FROM Gf
WHERE {?a namespace:Friends ?b. ?b namespace:Hates ?c}

3.2.1 Structure transformation

Given the predicate type definitions in logical form, the goal is to construct an equivalent property

graph G. The arguments of the predicates become the nodes of G. Each predicate becomes a

labeled, directed edge in G with the label being the name. This edge connects the nodes which are

the argument of the corresponding predicate. The direction of the edge is determined by the order

of the arguments of the predicate. This is motivated by the fact that predicates express relation

between two or more entities or at times a property of an entity, viewed as a reflexive relation of

an entity with itself.

For example consider a predicate pred(A1, A2). The arguments A1 and A2 are added to nodes

set (N ) in G. E = A1 → A2 is a directed edge added to the set of edgesE, where label(E) = pred.

We now show how we handle the predicates.
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- Unary Predicates: For unary predicates (pred(Ai)), the directed edge will be a ‘self-loop’,

i.e., E = Ai → Ai ∈ E. This is illustrated in Figure 3.1(a).

- Binary Predicates: This is the straightforward case. For pred(A1, A2), the two nodesA1 and

A2 have a directed edge E = A1 → A2 ∈ E. See Figure 3.1(b).

- N-ary Predicates: The more general case can possibly be handled by converting the N-

ary to N − 1 binary predicates as is done with most formalisms. Thus, for predicate

pred(A1, A2, A3), we can construct two edges E1 = A1 → A2 and E2 = A2 → A3 (Fig-

ure 3.1(c)), both the edges having the same label. While this can introduce some spurious

relations (Kersting and De Raedt, 2007), with large amounts of data, this might be a rea-

sonable approximation. However, in the current context, we focus on only unary and binary

cases. Handling the N-ary predicates in a principled manner is presented in the next chapter.

(a) Unary (b) Binary (c) N-ary

Figure 3.1: Handling Arity

To summarize, given a set of facts (evidence) Fev = {predi(Ai1, Ai2, . . . , Aij)}Ki=1 where K is

the number of facts and j ≥ 1 (value of j is the Arity of predicate predi), we construct a corre-

sponding evidence graph Gev of size O(K ∗ |A|). We use the standard “Smokes-Friends-Cancer”

problem (Domingos and Lowd, 2009) and demonstrate the graph construction in Figure 3.2(a).

As can be observed, Smokes(Anna) and Cancer(Gary) are both unary predicates and hence are

self-loops while others are directed edges. As another example, for the facts (about authors and

venues) presented below, the equivalent graph is shown in Figure 3.2(b).
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author(“class 7′′, “auth ba′′). author(“class 8′′, “auth ba′′). author(“class 9′′, “auth ba′′).

title(“class 7′′, “TITLE A′′). title(“class 8′′, “TITLE A′′). title(“class 9′′, “TITLE B′′).

venue(“class 7′′, “venue1′′). venue(“class 8′′, “venue2′′). venue(“class 9′′, “venue3′′).

haswordauthor(“auth ba′′, “word a′′). haswordauthor(“auth ba′′, “word b′′). (3.1)

(a) Smokes Friends Graph (b) Author-Venue Property Graph

Figure 3.2: Property Graphs for Smokes-Friends (left) and Author-Venue (right) domains

Algorithm 1 presents the creation of the evidence graph. Evidence graph construction is

straightforward parsing of facts (ground atoms given as evidence) and adding corresponding nodes

and edges to the graph Gev as described earlier. It runs in linear time O(n), n being the size of the

evidence. However, arity of the predicates have to be handled carefully.

3.2.2 Obtaining approximate satisfiability counts

We now explain the counting process given summary statistics of a graph. The key is that this is

equivalent to counting subgraphs in a heterogeneous network while satisfying certain constraints.

For example, consider the Smokes-Friends-Cancer example in Figure 3.2(a). For simplicity, let us

assume the following clause: Smokes(a1) ∧ Friends(a1, a2).
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Algorithm 1 CreateGraph
1: procedure CREATEGRAPH(F)
2: Input: Evidence File F
3: Output: Evidence Graph Gev
4: Initialization: Empty Evidence Graph Gev = {}
5: for each ground atom P = p(A1, A2, ..) in F do
6: Parse P
7: Edge E ← p
8: if P is unary then . transforming unary predicates into loop edge
9: Subject Node Ns ← A1

10: Object Node No ← Ns [Self loop]
11: else if P is binary then . transforming binary predicates into typical edge
12: Subject Node Ns ← A1

13: Object Node No ← A2

14: end if
15: New Triple T← 〈Ns, E ,No〉 . creating RDF triple for storage
16: Add T to Gev
17: end for
18: return (Gev)
19: end procedure

To calculate the number of satisfiable groundings of this clause, we count the subgraphs (mo-

tifs) that have the structure shown in Figure 3.3(a) that are present in the Smokes-Friends-Cancer

network given in Figure 3.2(a). This particular structure becomes the constraint on the counting

task, i.e., the goal is to count subgraphs that satisfy this (structure) constraint. Figure 3.3(b) is an

example of this structure given two groundings of the above clause (Bob and Ed being friends of

Anna). i.e.,

1 : Smokes(Anna) ∧ Friends(Anna,Bob); 2 : Smokes(Anna) ∧ Friends(Anna,Ed)

Exact Counting

Given that we have mapped the counting of satisfied groundings to subgraph counting, exact count-

ing can be performed in a relatively straightforward manner. First, we represent the property graph

as an RDF (as shown earlier). Now, exact counting requires simply retrieving all the subgraphs

matching the motif or the pattern induced by a clause as shown in Figure 3.3 and finally, enumer-

ating and counting them. This can be achieved by a straightforward SPARQL query.
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(a) First Order Clause (b) SubGraphs satifying the clause

Figure 3.3: FO-Clause and equivalent subgraph counting

For the clause Smokes(a1) ∧ Friends(a1, a2), the query to return all the subgraphs is:

SELECT ?a1 ?a2 FROM Evidence_Graph

WHERE {?a1 Smokes ?a1. ?a1 Friends ?a2}

This query will return all the subgraphs present in the evidence graph Gev which can then be

counted. All the constraints (here parameterised first order predicates) are encoded in the “WHERE”

part of the query. Once all possible subgraphs in the evidence graph are returned into a result set

Rs = {g(1)
s , g

(2)
s , . . .}, the size of result set |Rs| is the count value.

While this is straightforward, we have just essentially converted one NP-Complete problem

to another, since sub-graph matching is already a hard problem. Even though databases might

allow for efficient counting, this may not be tractable for all problems. So we next present an

approximate technique.

Approximate counting

We now present our algorithm called FACT (Fast Approximate CounTing for relational probabilis-

tic models). Our key intuition remains the same – a clause is equivalent to a pattern and our goal is
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Algorithm 2 Summarize
1: procedure SUMMARIZE(Gev)
2: Input: Evidence Graph Gev
3: Output: Summary statistics in a set of Hash data structures {Hin, Hout, H

(avg)
in , H

(avg)
out }

4: Initialization: {Hin, Hout} as empty structures.
5: Query ← “SELECT {count(?s) as ?cnt} ?p ?o from Gev WHERE {?s ?p ?o} GROUP BY ?p ?o”
6: ResultSet Rs ← execute(Query,Gev)
7: for each 〈cnt, p, o〉 ∈ Rs do
8: put(Hin, 〈o, 〈p, cnt〉〉)
9: end for

10: Query ← “SELECT ?s ?p {count(?o) as ?cnt} from Gev WHERE {?s ?p ?o} GROUP BY ?s ?p”
11: ResultSet Rs ← execute(Query,Gev)
12: for each 〈s, p, cnt〉 ∈ Rs do

put(Hout, 〈s, 〈p, cnt〉〉)
13: end for
14: H

(avg)
in , H

(avg)
out ← Aggregate

(average)
predicates(Hin, Hout)

15: return Hin, Hout, H
(avg)
in , H

(avg)
out

16: end procedure

to search for that pattern in the evidence graph Gev as shown in Figure 3.3. The important differ-

ence is that instead of getting the exact counts of the sub-graphs, we propagate summary statistics

obtained via the Summarize() procedure in Algorithm 2 to estimate the counts of the query results.

Summarization (Algorithm 2) involves getting the in-degree and out-degree summaries of each

node in the graph Gev via aggregation queries (SPARQL) and storing them using in-memory data

structures. Table 3.1 shows an example summary table based on the graph shown in Figure 3.2(a).

Table 3.1: Example summary

Node Edge Label (Predicate) Out-Degree

Anna
Smokes 1
Friends 2

Ed Friends 1
Gary Cancer 1

Inspired by the success of message passing algorithms in probabilistic graphical models, we de-

velop an algorithm that uses augmented count values from summary statistics as messages. Before

presenting the algorithm, we define a few terms.
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• Inpr(c) is the in-degree of a node with constant c present in Gev w.r.t edges with predicate

pr. In Figure 3.2(b), Inauthor(auth ba) = 3.

• Outpr(c) is the out-degree of a node with constant c present in Gev w.r.t edges with predicate

pr. In Figure 3.2(b), Outhaswordauthor(auth ba) = 2.

• In(avg)
pr is the average in-degree of all nodes that have incoming edge E with label(E) = pr.

Hence In(avg)
pr =

∑N
i Inpr(vi)

N
.

• Out(avg)pr is the average out-degree of all nodes that have incoming edge E with label(E) =

pr. Hence Out(avg)pr =
∑N
i Outpr(vi)

N
.

• Θ(v) or type count is the number of constants possible (given by the evidence) for variable

v. So for parameterized predicate pr(v), if the structure of the predicate is pr(typeA), i.e.,

the argument of the predicate is of type typeA then Θ(v) = |A|, where typeA ← A =

{a1, a2, . . .}.

• µprvi→vj is the message transmitted from node (variable) vi to node vj over edge pr.

• Gq is the query graph, or the graph formed by the formula/clause.

Next we will first describe the process informally, and present the algorithm. For example, consider

the clause below whose equivalent graph for the body of the clause1 is shown in Figure 3.4.

pr1(a1, a2) ∧ pr2(a3, a2) ∧ pr3(a2, a4)⇒ h(a2) (3.2)

We start with the assumption that at least one of the variables is grounded, that is, the counts

are obtained against one value of the variable (in our case let us assume that the variable a2 is

1This is an example of a horn clause of the form a implies b. a is the body (antecedent) and b is the head (conse-
quent).
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Figure 3.4: Graph for clause in Equation 3.2

(a) Initialization (b) Next step (c) Final step

Figure 3.5: Approximate Counting

grounded). This is typically the case in several problems. For instance, during probabilistic infer-

ence, we usually condition the query on the value of a variable. Or when learning the parameters,

we learn the distribution over the children values given the values of the parent. This value is what

we refer to as being grounded. However, even if no variable is grounded, we can always sum over

the counts for all values of a variable in the clause.

With this assumption, we first initialize the counts of each variable, in the graph formed using

the body of the clause (Figure 3.4). As the variable a2 is grounded, its count is initialized to 1 and

all other variables are initialized to their type counts, Θ(v). This is illustrated in figure 3.5(a). At

the initial state, count(a1) = na1 = Θ(a1), count(a2) = 1 [∵ a2 is a constant], count(a3) =

na3 = Θ(a3) and count(a4) = na4 = Θ(a4).

Given that the graph is initialized, we now demonstrate how the message passing occurs here

and the counts are updated. One important factor here is that, the graph is directional hence the

order of the variables (for eliminating variables during counting) is straightforward. The variables

(nodes) that have no incoming edges in the query graph Gq form the starting nodes for propagation
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and the order of the rest is implied. Thus, in our example we start with a1 and a3 and messages are

passed from these nodes to node a2 [µpr1a1→a2 from a1 to a2 and µpr2a3→a2 from a3 to a2] as displayed

in Figure 3.5(b). The messages are simply augmented counts:

µpr1a1→a2 =
Out

(avg)
pr1

Θ(a2)
.
Inpr1(C)

Θ(a1)
.na1 (3.3)

The expression
Out

(avg)
pr1

Θ(a2)
gives us the ratio of the average counts of out-going edges to the maximum

number of possible outgoing edges, with predicate pr1 in this case. Inpr1(C)

Θ(a1)
is a similar expression

for the case of the incoming edge. Their product gives us an approximation of the expected counts

of the predicate in Gev, which we then use to augment the count. Similarly, the message µpr2a3→a2 is

obtained as,

µpr2a3→a2 =
Out

(avg)
pr2

Θ(a2)
.
Inpr2(C)

Θ(a3)
.na3 (3.4)

Now, the count value of a2 is updated. Note how the mean/average of in-degree is not considered

here, since the variable a2 is grounded (constant C).

n
(new)
a2 =

∏
(v,pr)∈{(a1,pr1),(a3,pr2)}

µprv→a2.n
(old)
a2 (3.5)

where n
(old)
a2 = 1. Finally another message µpr3a2→a4 is passed from a2 to a4 as shown in fig-

ure 3.5(c). The message is as shown below:

µpr3a2→a4 =
Outpr3(C)

Θ(a4)
.
In

(avg)
pr3

Θ(a2)
.n

(new)
a2 (3.6)

Updating the count of a4 works in a similar fashion as shown in Equation 3.5. Due to reasons

mentioned earlier, mean/average out-degree is not considered (in Eqn 3.6), instead the out-degree

of the exact constant node is used.

Given n(new)
a4 , it is the final count that is required, since it is the only variable left after elimi-

nating the rest, which is an approximate estimate of the number of subgraphs present in Gev. We

now formally present the algorithm FACT (Algorithm 32).

2Note: In Algorithm FACT parse() is just a name given (for ease of representation) to the operation of parsing an
FOL clause into a query graph as shown in Equation 3.2 and Figure 3.4
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Pre-processing: To preprocess and construct the graph, we call methods CreateGraph(F)

(Algorithm 1) to get the evidence graph Gev and call Summarize(Gev) (Algorithm 2) to get the

summary data structures H = {Hin, Hout, H
(avg)
in , H

(avg)
out } at the beginning of any inference or

learning system.

Algorithm 3 FACT
1: procedure FACT(C, H,C,Υ)
2: Input: Clause C,H , constant C for variable Υ
3: Output: Approximate count cnt
4: Initialization: Build Gq(Nq, Eq)← parse(C)
5: n(ui)← Θ(ui) : ui ∈ Nq −Υ and n(Υ)← 1
6: Start eliminating nodes with no incoming edge in Gq
7: V ← ({v : v ∈ Nq} − {n : n ∈ Nq; @(uy n ∈ Eq)})
8: for each variable v ∈ V do
9: for x ∈ Nq, s.t. ∃pr(x, v) : xypr n ∈ Eq do

10: if v = Υ (substitute constant) then
11: µprx→v ← Out

(avg)
pr

Θ(v) .
Inpr(C)

Θ(x) .nx
12: else
13: if x = Υ (substitute constant) then
14: µprx→v ← Outpr(C)

Θ(v) .
In

(avg)
pr

Θ(x) .nx
15: else
16: µprx→v ← Out

(avg)
pr

Θ(v) .
In

(avg)
pr

Θ(x) .nx
17: end if
18: end if
19: end for
20: n

(new)
v ←

∏
{(xi,pr(xi,v))}i µ

pr
x→v.nv

21: if sizeOf(V ) = 1 then
22: cnt← nv
23: break
24: end if
25: V ← V − {v}
26: end for
27: return cnt
28: end procedure
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Discussion

There are a few important things to mention before presenting the experiments. First, we apply the

Closed World assumption, which allows us to model the negation of a predicate as absence of an

edge. Also, for a self loop, degree summary is considered to be either 1 or 0.

Second, for simplicity and ease of representation, we consider horn clauses i.e., clauses with

only ‘conjunction’ (∧) operators in the body (Eqn 3.7).

∧ipred(body)
i (a1, . . . , ax) =⇒ pred(head) (3.7)

Third, and most importantly, to prove that the values returned by our message-passing/variable-

elimination based system can be considered as counts, it is important to note a few characteristics

of the algorithm FACT: (1) If we multiply the initial count values of the variables in a query graph,

such as in Figure 3.5(a), we will get the size of the full cross-product. (2) Instead, the messages

“augment” these counts with the ‘belief’ about the presence of particular predicate/edge, based on

Gev, hopefully bringing the expected value closer to the exact count. (3) The counts returned by our

method are, often, slight over-estimations. However, as we show empirically, these are reasonable

approximations that can be computed in a fraction of the time required for precise counting.

3.3 Implementation & Experimental Evaluation

To seamlessly handle multi-relational graphs we employ a powerful graph representation language,

RDF (Corby et al., 2000; Pan, 2009), from the Graph Database community. We also employ the

SPARQL query language for querying on Graph structured data represented via RDF. Our Java

implementation uses “Apache Jena” a Java Library that provides an API which allows for fine grain

manipulation of Graph Structured data represented in RDF form and also supports SPARQL 1.1

(the latest version of query semantics on RDF). Note that off-the-shelf graph database systems have

their internal optimizers making it hard to benchmark the effectiveness of the proposed approach

by simply employing them. Hence, we use Apache Jena. Finally, we assume the inputs to be in

predicate logic format, since this is the common representation used across many SRL models.
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3.3.1 Experimental design

Our experiments, aim to answer the following questions:

(Q1:) How effective is the proposed approach compared to the standard counting method?

(Q2:) How does approximation affect performance of the learned/inferred models?

(Q3:) Is the proposed approach useful across a variety of learning and inference tasks inside

Statistical Relational Learning (SRL)?

Motivated by Q3, we evaluate our algorithm in three different types of SRL tasks - parameter

learning with combining rules, full model (structure+ parameters) learning from labeled data and

finally, performing lifted probabilistic inference that counts symmetric groups of variables when

answering probabilistic queries. For each of this setting, we used the corresponding state-of-the-art

algorithm and replaced the counting computations inside them with our approach. We discuss each

of them in detail.

Datasets: We primarily use several standard SRL data sets for evaluation, namely (1) Yeast data

set, which is about interaction among proteins, protein complexes and enzymes in yeasts. The

goal is to predict the class of protein. (2) IMDB data set, mainly about actors, directors and

movies, where the goal is to predict workedUnder(person1, person2), (3) Cora, where the pri-

mary goal is to predict if two citations are the same (particulary if the venues are same, i.e., predict

samevenue(venue1, venue2) in case of our experiments), (4) WebKB, where the goal is to predict

departmentOf(webPage, webPage) predicate - i.e., department of a web page, and (5) Smokes-

Friends-Cancer data set (Domingos and Lowd, 2009), where the goal is to predict who has cancer

based on the friends network of individuals and their observed smoking habits. Note that all the

results presented in the system are the results of 5 runs, but the sizes of the datasets vary according

to the problem. We present the appropriate sizes in the results.
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Table 3.2: Results of approximate counting on Combining Rules

Domains # Facts # Clauses Metrics CombRulesApprox CombRulesOriginal

yeast 819 1600
Counting time (secs) 2.80 ±0.01 7.89 ±0.12

MSE 0.26 0.24
CLL -0.72 -0.67

IMDb 264 16

Counting time (secs) 0.19 ±1.00E − 04 0.36 ±1.00E − 04
MSE 0.17 0.09
CLL -0.58 -0.23

Cora 1498 75

Counting Time (secs) 0.44 ±5.62E − 05 1.28 ±6.87E − 05
MSE 0.22 0.22
CLL -0.64 -0.63

WebKB 12284 11K

Counting Time (secs) 4.84 ±6.67E − 11 8.41 ±4.55E − 10
MSE 0.29 0.29
CLL -0.63 -0.59

3.3.2 Task 1: Learning Parameters of Relational Models

To demonstrate the usefulness of our proposed approach on learning probabilistic relational mod-

els, we consider the problem of parameter learning with mean and weighted-mean combining

rule (Natarajan et al., 2009). Specifically, we consider the use of EM for learning as developed

by Natarajan et al. (Natarajan et al., 2009). The key step of this algorithm is to count the num-

ber of satisfied groundings of a clause and the number of satisfied groundings across clauses that

share the same target predicate. We replace their simple counting method (CombRulesOriginal in

the results) with our approximate counting method (CombRulesApprox in the results). We used 4

bench-mark data sets (1) Yeast, (2) IMDB, (3) Cora and (4) WebKB. Their sizes are presented in

Table 3.2.

For both approaches, we measure the following - (1) Counting time: Time taken for count-

ing groundings that satisfy a clause for every example. (2) MSE: Mean Squared Error. (3) CLL:

Conditional Log Likelihood. Table 3.2 presents the results of our experiments. It can be observed

that there is at least a 2− 3 times reduction in counting time over all the data sets when using our

approximate counting approach. The MSE mse(CombRulesApprox) is comparable to the origi-

nal MSE mse(CombRulesOriginal), i.e., MSE does not suffer much because of approximation.

However as can be seen for the IMDB data set, the performance seems to be much worse than
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the original approach. Our hypothesis is that the data set is too small and since our approximate

counting mechanism is based on sample averages, they do not serve as good approximations on

small data sets. However, with larger data sets, the efficiency gains are higher with smaller losses

in effectiveness. Thus Q1 and Q2 can be answered by observing that for reasonably larger data

sets, the proposed method is effective and efficient.

3.3.3 Task 2: Learning Structure of SRL Models

Table 3.3: Results of Approx. Counting on MLN-Boost

Domains #Facts Metrics MLN-BoostApprox MLN-BoostOriginal

Yeast 1641

Learning Time(millisec) 15040 ±2.89 34108 ±3.45
Inference Time(millisec) 749 ±42.88 1346 ±67.02

AUC ROC 0.5 0.51
AUC PR 0.38 0.45

WebKB 26223

Learning Time(millisec) 10609 ±102.18 73123 ±364.7
Inference Time(millisec) 1542 ±96.55 3915 ±80.01

AUC ROC 1.00 1.00
AUC PR 1.00 1.00

Smokes-Friends-Cancer 150,401

Learning Time(millisec) 34K ±199.56 114K ±402.09
Inference Time(millisec) 806 ±201.55 2183 ±189.61

AUC ROC 0.74 0.75
AUC PR 0.82 0.82

Given the performance in parameter learning, we next turn our attention to learning structure of

SRL models. Specifically, we consider the state-of-the-art learning method for Markov Logic Net-

works that employs Functional Gradient Boosting (Khot et al., 2011) (called MLNBoost). Markov

Logic networks (Richardson and Domingos, 2006), in brief, are weighted first-order logic clauses

that soften logic by allowing the clauses to be unsatisfied in some cases. Roughly, the probabil-

ity of a given world (set of facts) being true is proportional to the weigted count of the satisfied

groundings of all the clauses. Specifically, the probability distribution over possible worlds x spec-

ified by a ground Markov network is given by P (X = x) = 1
Z

exp (
∑

iWini(x)) (where ni(x) is

the number of true groundings of the first-order formula Fi in x, x{i} is the state (truth values) of

the atoms appearing in Fi). We approximate ni(x). Count approximation is significant here since,
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complete grounding (instantiation) is a major bottleneck in inference tasks for MLNs, especially

when evidence is large (Poyrekar et al., 2014). Nearly all learning methods implicitly use inference

in their inner loop, making count approximation a compelling improvement strategy.

As with the previous experiment, we replace the counting of non-trivial groundings of a clause

(Khot et al., 2011) of the original system (called MLN-BoostOriginal in results), with our efficient

approximation method (referred as MLN-BoostApprox in results). We used 3 data sets (1) Yeast,

(2) A larger version of WebKB and (3) Smokes-Friends-Cancer (Table 3.3).

Since, inference is used inside MLN structure learning, we employed approximate counting

method for both inference and learning. We measured the following metrics to compare MLN-

BoostOriginal and MLN-BoostApprox : (1) Learning Time, (2) Inference Time, (3) AUC-ROC and

(4) AUC-PR. Table 3.3 presents the results of the experiment. It was observed that our method

brings reasonable improvement in Learning as well as Inference time without any significant de-

terioration in AUC-ROC/AUC-PR values. This allows us to answer both Q1 and Q2 affirmatively,

and our method being more efficient than the state-of-the-art on these challenging tasks makes for

a compelling case.

3.3.4 Task 3: Lifted Inference

As a final task, given the recent surge in interest in the so-called lifted probabilistic inference

methods, we employed our approximation strategy for counting in one such method. Specifically,

we considered C-FOVE (Milch et.al.)(Milch et al., 2008) that counts over satisfied formulas when

grouping evidence into symmetrical sets. We chose this method primarily because : (1) A working

implementaion of C-FOVE (on Java platform) is easily available online and (2) It is illustrative

of how lifted inference methods need counting for them to be efficient. Specifically, this method

focuses on explicit counting of satisfied formulae making it possible for our approximate method

to directly replace their counting procedure.
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We were able to run both the Original C-Fove system and our customized system (with approx-

imation) using Smokes-Friends-Cancer dataset presented earlier. However, in this experiment, we

had to consider a restricted size of 800 facts and 30 constants. Datasets larger than this, caused

Java Heap Memory issues in the original system. The results are presented in Table 3.4, showing

(1) Reasonable gain in Counting Time t due to approximation and (2) Negligible Average Absolute

Difference (AAD), between the exact final probability values (computed by C-Fove) and the ones

via approximation, for a given set of 10 query predicates. The results are similar to previous ones,

however the efficiency decrease is lower. A potential reason for this is the restricted representation

used by the C-FOVE system. The system is restricted to single length counting formulas where

counting is already reasonably efficient. Despite this, our system demonstrates a 50% decrease in

learning time compared to original system. This clearly answers Q1 and Q2 affirmatively.

Table 3.4: Results of Approx Counting on C-Fove

#Facts Metrics Approx Original

Smokes 800
t (sec) 4.11 ±0.02 6.72 ±0.00467
AAD 0.016 0.0

Final note: Given our experiments, Q3 can be answered affirmatively, that our proposed ap-

proach is both effective (predictive performance) and efficient (running time) across learning and

inference tasks against state-of-the-art systems in benchmark data sets.

3.4 Conclusion

We presented the first compilation to graph data bases method for approximate counting of sat-

isfied instances - a crucial operation in several relational probabilistic models. It converts the

predicate logic format to an equivalent graph database format that can be queried effciently. Our

novel approximate counting method is inspired by probabilistic message passing, and our extensive

experimental results demonstrate that it is effective in learning both parameters and structure and

performing probabilistic inference from moderate to large data sets, while reducing the running

time significantly.
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CHAPTER 4

GENERALIZED COUNT APPROXIMATION

The count approximation strategy detailed in the previous chapter, although successful in many

tasks, has several fundamental limitations. Such limitations exist both due to our representational

choice and solution formulation. This makes it challenging for our approach to be adapted to

several types of tasks and domains. In this chapter we address those challenges and present a

generalized approach, MACH (Das et al., 2019a), for approximating counts of satisfied instances

(groundings).

4.1 Introduction

Significant advancements in research on Statistical Relational Learning (SRL) and AI (Getoor and

Taskar, 2007; Raedt et al., 2016) and in lifted inference (Poole, 2003; Kersting et al., 2009) have

allowed for exploiting the symmetries of the data and model during learning and inference. The

advantage of these algorithms is that they can succinctly represent and reason with dependencies

among the attributes and relations of related objects. One of the key operations inside most, if not

all, algorithms is counting the satisfied groundings (instances) of a partially instantiated relational

rule (a first-order clause). For instance, when learning the parameters or structure of a Markov

Logic Network (MLN) (Domingos and Lowd, 2009; Khot et al., 2011), or when performing lifted

inference (Poole, 2003) one has to compute the expected/true counts in the model/data and inside

a given cluster of objects.

Counting is a hard combinatorial search problem (#P -complete). Consequently, algorithms

for fast, approximate counting have been developed (Das et al., 2016; Sarkhel et al., 2016). The

key observation is that computing exact counts is not essential, particularly when the number of

groundings for an object/relation is high. For instance, knowing whether a Professor published 300

papers or 319 papers does not significantly change the belief over the popularity of the Professor.

48



While reasonably successful, they make a few assumptions – including MLN-specific formulation

and lack of support for partial groundings (Sarkhel et al., 2016) or restricted arity of relations (Das

et al., 2016).

We relax these assumptions and present a general approximate counting technique that trans-

forms the problem of counting partially instantiated clauses to motif-matching in equivalent hyper-

graph. Provably, counting in the original data corresponds to computing the expected counts of

the motif occurrences in the transformed hypergraph: When this expectation is computed exactly,

one can retrieve the true counts. In large data sets, this motivates the approximation of the expecta-

tion using summary statistics on the hypergraph. Our experimental results across several domains

on both learning and inference tasks demonstrate clearly that this approximation indeed relaxes

the assumptions of the previous methods and results in more efficient counting while exhibiting

on-par performance to exact counting.

This chapter makes the following contributions - (1) We present a method for converting struc-

tured data and relational/logic clauses to hypergraphs and motifs, respectively, and pose the prob-

lem of counting the number of groundings as counting over motifs-matches in the hypergraph.

(2) We present and justify an approximation technique and outline the algorithm for counting the

number of motifs based on the order of the variables that appear in the clauses. (3) Finally, we

demonstrate the efficiency of the proposed approach without sacrificing the effectiveness on stan-

dard domains against state-of-the-art baselines on these tasks.

The rest of the chapter is organized as follows - we introduce the necessary notations, explain

the conversion process and outline our proposed algorithm. We then present our empirical evalua-

tions before concluding the chapter by outlining the areas of future research.

4.2 Motif-based Approximate Counting via Hypergraphs

Our goal is to compute the counts of a potentially partially instantiated clause given a database of

ground assertions. We proceed by transforming a SRL model into a directed graph notation. Trivial
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Teaches(Amy, AI, Fa17),
Teaches(Amy, ML, Fa17)
Teaches(Amy, AI, Sp18),
Teaches(Amy, Opt, Sp18)
TA(Ben, AI, Fa17),
TA(Ena, ML, Fa17)
TA(Cam, AI, Sp18),
TA(Deb, Opt, Sp18)
AdvisedBy(Ben, Amy),
AdvisedBy(Deb, Amy),
AdvisedBy(Fei, Amy)

Figure 4.1: (left) MotifM1 for C1; (center) Facts used to groundM1; (right) Ground graph, G1.
Ternary predicates Teaches and TA are represented as hyperedges in bothM1 and G1. The edges
AdvisedBy(Deb, Amy) and AdvisedBy(Fei, Amy) also appear in the grounding of C2 (Fig. 4.2).

conversion from a logic statement (essentially a conjunctive rule) to a simple directed graph has

an important limitation of assumimng binary relations. Such graphs, however, cannot represent

n-ary relations, which are very common. We employ hypergraphs (Berge and Minieka, 1973),

generalization of graphs in which a hyperedge joins an arbitrary number of nodes/vertices, in

contrast to a graph in which an edge joins two vertices. Formally, a hypergraph is a pair of sets

of vertices and hyperedges: G ≡ (VG, EG). Since a hypergraph has hyperedges that connect an

arbitrary number of nodes, a hyperedge itself is a set of nodes (making EG a set of sets of nodes).

Our problem is.
Given: A set of grounded assertions (facts) F , a conjunctive rule/clause C from a SRL model

and a (possibly partial) substitution (instantiations) θ of variables C,

To Do: Return the counts of true groundings #(C | θ) of the clause C,

Construct: A partially grounded structural hypergraph motif, M ≡ (VM, EM) representing

clause C and fully grounded hypergraph, G ≡ (VG, EG) representing grounded assertions (F) -

count instances ofM in G yields an approximation to #(C | θ).

Example 4. A university domain has entity types (variables) Professor (p), Student (s),

Course (c), Term (t), ResearchProject (r) and Year (y). We consider two conjunc-
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WorksIn(Amy, MLNs, 2017),
WorksIn(Amy, PRMs, 2017)
WorksIn(Hal, MLNs, 2018)
WorksIn(Ben, PRMs, 2017),
WorksIn(Fei, PRMs, 2017)
WorksIn(Fei, MLNs, 2018),
AdvisedBy(Ben, Amy),
AdvisedBy(Deb, Amy),
AdvisedBy(Fei, Amy),
AdvisedBy(Fei, Hal),

Figure 4.2: (left) MotifM2 for C2; (center) Facts for grounding M2; (right) Ground graph, G.
Ternary predicate WorksIn are hyperedges in M2 and G2. The edges AdvisedBy(Deb, Amy)
Deb→ Amy and AdvisedBy(Fei, Amy) Fei→ Amy also appear in the grounding of C1 (Fig. 4.1).

tive rules in this domain:

AdvisedBy(s, p) ∧ Teaches(p, c, t) ∧ TA(s, c, t) (C1)

AdvisedBy(s, p) ∧ WorksIn(p, r, y) ∧ WorksIn(s, r, y) (C2)

The first clause states that s is advised by p and is a TA for c that =p teaches in t. The second

states that s advised by p works on r in a y. In SRL they are soft statements.

A full grounding refers to a total substitution of values (t) to a set of variables (v), denoted

θ = { v1/t1, . . . , vn/tn }. A partial grounding is an incomplete substitution of values to some

variables. With a slight abuse of notation, we do not distinguish between a partial and full ground-

ing, denoting both by θ. A partial grounding will contain a mixture of constants and variables.

It must be mentioned that while we present conjunctive rules from a parameterized logical

notation perspective, the same ideas can be easily extended to relational walks/paths in a

relational database. Our approach can easily be extended to clauses of any form by logical trans-

formation. They can be used in discriminative models that use definite clauses (if-then rules), the

coverage of the body ( a conjunction) of the clause.
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Definition 4 (Counts). For Relation(v1, . . . , vt), the predicate counts are the number of true

instances of that predicate due to the assertions/facts F , given the (partial) grounding θ of the its

variables. We denote the predicate counts of Relation (R) as nR = #(R | θ).

For a clause C, the clause counts are the number of true instances of C in database F , given

the partial groundings θ of the variables in the clause. We denote the clause counts for a clause C

as nC = #(C | θ).

Example 5 (continued). Consider the facts in Figure 4.1 (center), where Amy teaches 3 courses

{AI, ML, Opt}, teaching AI twice in the Fa17 and Sp18 terms. Ben, is a TA for AI, then the count

for clause C1 given a partial grounding θ1 = { p/Amy, s/Ben } is #(C1 | θ1) = 1, since Ben is

a TA for only one class. The count for C1 given a partial grounding θ2 = { P/Amy, T/Fa17 } is

#(C1 | θ2) = 1.

Das et al. (2016) addressed a similar problem but they were restricted to binary (and unary)

predicates. But, predicates in C1 and C2 are ternary, an issue that we can handle. Our approach has

3 steps – (i) convert the ground assertions (F) to a hypergraph G, (ii) convert a partially-grounded

clause to a partially-grounded structural motif (M), and (iii) count the number of subgraphs match-

ingM in G.

Definition 5 (Partially Grounded Structural Motif). A motifM is a Partially Grounded Struc-

tural Motif (PGSM) if it is a hypergraph representation of a clause C, where some of the nodes

are parameterized, while others are instantiated to their respective values. That is, a PGSM is a

structural motif arising from a partial grounding.

4.2.1 Conversion to Hypergraphs

Given a clause C, we construct a hypergraph motifM as follows. Each variable in every predicate

of C is added as a vertex to VM, the vertex set ofM. Next, all the arguments of a predicate are

connected by a hyperedge, which is added to EM, the edge set of M. Directed edges connect
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variables appearing in binary predicates in the order in which they appear, while an n-hyperedge

connects the n variables appearing in a n-ary predicate. The nodes ofM correspond to the vari-

ables in C (which can be partially grounded) and the edges correspond to the predicates that contain

the respective variables. Given facts (F), a fully-grounded hypergraph G is similarly constructed.

Each constant in F is added as a vertex to VG , vertex set of G. Then, all constants appearing in

a fact in F are connected by a hyperedge, and added to EG , the edge set of G. The construction

of G essentially amounts to parsing assertions (in predicate logic), indexing and insertion into a

hypergraph database (Iordanov et al., 2010).

Example 6 (continued). Figs. 4.1 and 4.2 (left) show motifsM1 andM2 for C1 and C2 respec-

tively. Amy advises three students: Deb, who is a teaching assistant, Fei, who is a research

assistant and Ben who is both. Thus, G1, the ground graph for the given assertions (Fig. 4.1,

middle & right) Similarly, G2 (Fig. 4.2) based on the given assertions. Note that, Ben is both

a teaching and a research assistant and appears in both G1 and G2. Also, a student may have

more than one advisors (Ex: Fei – 2 advisors: Amy and Hal). This highlights various complex

interactions among entities and attributes; counting these is critical in inference and learning.

An important aspect of our work is that, we exploit the notion of ‘Partially-Ordered’ Hyper-

graphs (Feng et al., 2018). In SRL, relations can be interpreted to have an implicit directionality

based on the argument order. While translation from argument ordering to normal directed graphs

is conceptually straightforward, it is non-trivial in the case of hypergraphs. In directed graphs with

loops, unary/binary relations are represented as directed loops/edges from the vertex denoting the

first argument to the vertex denoting the second one. Naively, directed hyperedge may be con-

ceived based on the strict ordering of the arguments of an N-ary relation. But, semantically, it is

hard to justify. In some domains such strict ordering may make sense while in others it may not.

Example 7. In the ternary relation ‘teaches(Amy, AI, FA17)’ the ordering professor(p) ≺

course(c) ≺ term(t) seems most intuitive, considering “Amy teaches the course AI in term
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FA17”. However, the statement “The course that Amy teaches in FA17 is AI” is equally valid,

hence the ordering: p ≺ t ≺ c. A relation such as CoAuthorIn(p, student(s), paper(pa))

is even more ambiguous. Here the orderings, (1) p ≺ s ≺ pa, (2) s ≺ p ≺ pa, (3) p ≺ pa ≺ s

etc., are all semantically similar. Thus strict total ordering is not reasonable.

A completely undirected representation is also not advantageous since directions allow us to

leverage certain properties in our formulation. Thus, we use ‘partially-ordered hypergraphs’,

where the loops and binary edges have the same protocols as a normal directed graphs. How-

ever, for a hyperedge with n nodes (x1, . . . , xn), where the argument order in the original n-ary

predicate is 1 ≺ 2 ≺ . . . ≺ n, we assume the last node xn to be the sink node (i.e., hyperedge ends

here) and all others as source nodes (hyperedge starts here). It is partial-ordered since ordering

exist only between the sink node and a source node and not among the source nodes themselves

(x\n ≺ xn). It applies to both the ground hypergraph of assertions as well as the PGSMs.

4.2.2 Approximate Counting via Partially Grounded Structural Motif(s)

We consider the case of counts of conjunctive clauses. Partial grounding in a clause C has 2

scenarios based on number of substitutions. Let number of variables in C be `C.

(Case 1) When |θ| = `C, that is, when the clause is fully grounded, #(C | θ) = 1 ifM ∈ G else

0. Thus counting, here, is equivalent to checking that the grounded motifM is a subgraph of G.

(Case 2) When 0 ≤ |θ| < `C, that is, when the clause is either fully lifted (`C = 0) or is partially

grounded (|θ| < `C), counting is considerably harder. This is the case we address in the rest of

this chapter.

Now, for clause C with `C variables, we assume thatmC of these variables are not grounded, and

`C−mC variables are grounded. Then, the task is to count the number of groundings of mC, termed

as query variables, given assignments (θ) to the `C − mC ground variables. Ex: For clause C1,
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Figure 4.3: The motifM ≡ ra(v1, v3) ∧ rb(v2, v3) ∧ rc(v3, v4) ∧ rd(v4, v5, v6). Note that rd is a
hyperedge for the ternary relation rd(v4, v5, v6).

`C1 = 4 and given a partial grounding θ = { p/Amy, s/Ben }, we have mC1 = 2 lifted variables

(courses c and terms t) which we want to count over.

Without loss of generality, let the first mC variables in C be the the ungrounded or query vari-

ables; that is, vi, i = 1, . . . ,mC. Given a motifM constructed from C, the maximum number of

possible subgraphs that matchM in G is
∏mC

i=1 ni, where ni is the number of possible groundings

for query variable vi. Let P (e | G) denote the probability of a hyperedge being present in G, then

the count of the number of matches ofM in G is also the clause count, #(C | θ):

P (M)
∏

v ∈VM

nv =

[ ∏
e∈EM

P (e | G)

]
·

[ ∏
v ∈VM

nv

]
(1)

Intuitively, P (e | G) is the fractional predicate count that is the ratio of the predicate count given

the partial substitutions, to number of groundings of non-substituted variables.

Example 8. The probability P (Teaches(Amy, c, t) | G) can be computed as the number of courses

that Amy has taught across all terms divided by the cross-product of the free variables (c and t)

(total number of possible courses times the number of possible terms). Using the partial substitu-

tion θ = { p/Amy } we have, P (Teaches(Amy, c, t) | G) = #(Teaches(p,c,t)|θ)
#(c)·#(t)

. In Fig. 4.1, this is

4/(3 · 2) = 2/3.

Expression (1) presents the expected count. If P (M) is computed exactly, we retrieve the true

counts. Since that is intractable we find an approximation.

To understand the intuition behind approximating P , consider the motif in Figure 4.3. The

maximum number of times this motif can be present in the ground graph is
∏

v ∈VM nv. The
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presence of each hyperedge e ∈ G is a Boolean concept (i.e., present or absent in G). Without loss

of generality, the joint distribution P (ra, rb, rc, rd) for Fig 4.3 is,

∏
e∈M

P (e | G) = P (ra) · P (rb) · P (rc | ra, rb) · P (rd | rc).

Thus, we now view identifying a motif in a graph as a search in a directed model with Boolean

variables, where finding an edge depends on the previous edge being found. Note that when any of

the edges is absent, the motif will not be present in the grounded graph, and this joint probability

is automatically driven to 0. The above expression resembles estimating local models, which is

commonly done in standard graphical model estimation. In our case, we further approximate each

of these conditional distributions using summary statistics.

Reverting to (1), the first term is the product of the individual edge distributions conditioned

on the incoming edge, and the second term is the cross-product of the total number of ground-

ings of the query (ungrounded) variables in the motif. The second term is computed a single

pre-processing step, followed by caching. For the first term, we employ summary statistics to

approximate this distribution.

4.2.3 Approximation of clause probability (P)

Summary Computation

In order to approximate the joint distribution P , we employ graph summaries similar to the ones

used in relational database query engines for cardinality estimation (Schiefer et al., 1998; Neumann

and Moerkotte, 2011; Seputis, 2000). Note that these summaries must be selected at the appropriate

level of granularity. For instance, finely-grained summaries will correspond to searching the entire

database, while highly-aggregated summaries, on the other hand, such as average in-degree and

out-degree can lead to poor approximations. Thus, we compute three summaries: (1) node and

edge frequencies, (2) node in- and out-degrees, and (3) dependency summaries from hypergraph

G = (VG, EG):
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TYPESUM: The type summary captures frequencies of node and edge types. Recall that every

node in G corresponds to an entity type, and every edge to a relation type (edge label or predicate

name). Let T be the set of entity types, andR the set of predicate types. With the TypeOf(·), which

returns the node (variable) and edge (relation) types, type summaries ∀ Ti ∈ T and ∀ Rj ∈ R are:

#(Ti) = # { v | v ∈ VG, TypeOf(v) = Ti } , (2)

#(Rj) = # { e | e ∈ EG, TypeOf(e) = Ri } . (3)

DEGREESUM: Degree summaries are the frequencies of incoming and outgoing edges of every

node grouped by edge labels. IncomingEdgesG(v) and OutgoingEdgesG(v) represent the sets of

incoming and outgoing edges of v in G. The degree summaries ∀ v ∈ VG and ∀ Rj ∈ R are:

InG(v | Rj) = # { e | e ∈ IncomingEdgesG(v), TypeOf(e) = Rj } , (4)

OutG(v | Rj) = # { e | e ∈ OutgoingEdgesG(v), TypeOf(e) = Rj } . (5)

DEPENDENCYSUM: Most broadly, we seek to summarize all the possible dependencies for a

relation Rj: P (Rj | R \ Rj), that is, the dependency of a Rj on all other relations R \ Rj , which

is computationally expensive. Given z relation types in R, we instead construct a z × z pairwise

dependency matrix, ∆, whose (i, j)-th element is δij = P (Ri | Rj), ∀ i, j = 1, . . . , z. For a pair

of relations Ri and Rj , P (Ri | Rj) is estimated by sampling paths of length 2 from Rj → Rk. We use

these paiwise dependency values for approximation. This matrix is not symmetric, since P (Ri | Rj)

will not be the same as P (Rj | Ri), except under some specific circumstances.

The summary statistics (S) are pre-computed for a ground hypergraph G, and approximate the

local distributions:

S = [{#(Ti)}Ti∈T , #(Rj)}Rj∈R,

{ InG(v | Rj) }Rj∈R, {OutG(v | Rj) }Rj∈R,

∆ ≡ {P (Ri | Rj) }zi,j= 1].
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The computation of S is performed once as a pre-processing step. The counts for any subsequent

query motif M are computed by estimating local edge distributions using S, without explicitly

searching through G. We now explain these cases.

(a) Unary/Loop (b) Binary/Edge

(c) Ternary/Hyperedge

Figure 4.4: Partial grounding in (hyper)edges. Shaded nodes indicate that they are grounded.

Computation of local distributions

The local distribution P (e) of an edge e with no dependencies in a motifM, is computed based

on grounding of the nodes connected by the edge. For a unary relation or a directed loop such as

in Fig. 4.4(a), we have P (e) = #(Re)
#(Tx)

when fully lifted. Here, Tx = TypeOf(x), the entity-class

of node x, and

P (e | θx) =

 1, if e ∈ G, when θx = {Tx/x},

0, otherwise.
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For the binary case, fully lifted and fully grounded scenarios are computed similarly, with P (e) =

#(Re)
#(Tx)·#(Ty)

, and

P (e | θxy) =

 1, if e ∈ G, when θxy = {Tx/x, Ty/y},

0, otherwise.

Partial groundings, as shown in Fig. 4.4(b) (bottom), are computed via degree summaries:

P (e | θy) =
InG(y | e)
#(Tx) · 1

, when θy = {Ty/y},

P (e | θx) =
OutG(y | e)
1 ·#(Ty)

, when θx = {Tx/x}.

While the above distributions can be computed exactly, it is not as straightforward for n-ary re-

lations, which result in hyperedges as shown in Fig. 4.4(c). The fully lifted and fully grounded

scenarios are similar to the above cases, but handling partial grounding needs several assumptions:

1. Since, edge directions in an n-hyperedge are not always intuitively clear and may be domain

dependent, we follow a partial ordering protocol described earlier.

2. Since for n > 2 there can be multiple combinations of partial grounding (shown in Fig. 4.4(c))

and it is intractable to summarize wrt. each, we assume independence among distributions

with respect to each grounded node.

When one or more source nodes are grounded θx,y = {Tx/x, Ty/y} (bottom middle in Fig. 4.4(c))

P (e | θx,y) =

(
OutG(x | e)
1 · 1 ·#(Tz)

)
·
(

OutG(y | e)
1 · 1 ·#(Tz)

)
.

However, if the sink node is grounded θZ = {Z/z}, as show bottom right in Figure 4.4(c): [P (e |

θz) = InG(z | e)/ (#(Tx) ·#(Ty) · 1)]. The conditional distribution of an edge preceded by other

incoming edges is accessed directly from the conditional dependency matrix, ∆.

Assumptions and Properties

Note that ∆ only captures pairwise dependencies and computation of arbitrary dependencies can

happen under certain assumptions and properties as outlined below,
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Algorithm 4 MACH: Motif-based Approximate Counting via Hypergraphs
1: procedure MACH(Clause C, Hypergraph G, Substitution θ, Summary statistics S)
2: M(VM, EM)← CONSTRUCTMOTIF(C | θ)
3: for v ∈ VM do . Count node groundings, nv
4: if v ∈ θ then . v is grounded in θ
5: nv ← 1
6: else . v is a variable in θ
7: nv ← #(TypeOf(v)) . All values of v
8: end if
9: end for

10: χ(M)←
∏
v∈VM nv . Cartesian product

11: P (M)← APPROXJOINT(M, θ,G,S) . See Alg 5
12: return χ(M) · P (M) . As given by Eqn (1)
13: end procedure

[Independence among incoming edges on same source]. In the motifM, if multiple incoming

edges R1, . . . , Rj are incident on the source node v of the edge Rk, then the dependency P (Rk |

R1, . . . , Rj) factorizes into
∏j

i=1 P (Rk | Ri), making the effect of all preceding edges independent

of each other. This assumption is justified, from a database perspective where relational joins

using the join same attribute are processed independently.

[Independence due to grounded node]. Two edges in a PGSM sharing a common node are

rendered independent of each other when the shared node is already instantiated.

[Independence among incoming on different source]. For an n-ary hyperedge, where multiple

incoming edges are incident on different source nodes, we assume a similar factorization though

the independence property no longer holds, since, constructing summaries for arbitrary dependen-

cies is intractable. While this is a strong assumption, in many practical domains, this leads to

significant efficiency gains while preserving performance (see experiments).

[Incoming edge to sink is not considered for conditional dependency]. Figure 4.3 clearly

shows, that rb being incoming on the sink node v3 of ra P (ra | rb). However, rc considers both ra

and rb as incoming, resulting in P (rc | ra, rb). Note that, the idea generalizes to any arity.
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4.2.4 The MACH Algorithm

Algorithm 4 presents MACH: Motif-based Approximate Counting via Hypergraphs. As pre-

processing, grounded hypergraphs are constructed and summarized (TYPESUM, DEGREESUM,

DEPENDENCYSUM). Subsequently, for every clause, a motif is constructed and counted (using

the detailed procedure APPROXJOINT presented in Algorithm 5; last page of current chapter).

Algorithm 5 outlines the computation of the joint distribution P (M) for a given PGSM M.

The APPROXJOINT procedure accepts a motifM, the partial substitution θ of the motif, the ground

hypergraph of assertions/facts G and the summaries S constructed in the pre-processing step as the

arguments and then iteratively analyzes each (hyper)edge inM (∀e ∈ EM) [lines 3-38]. At any

iteration with respect to a given (hyper)edge e, containersQ and V store the nodes (of e) which are

lifted/query or instantiated/grounded, respectively, based on θ [lines 4-5].

The 3 important cases of partial grounding in a hyperedge e in a motif, namely – (1) fully

grounded, (2) fully lifted or (3) partially grounded, are handled explicitly in this procedure.
[CASE 1:] When e is fully grounded (i.e. container Q is empty), probability of edge P (e) is

set to 0/1 based on whether e|θ ∈ EG [lines 7-12].

[CASE 2:] When e is fully lifted (i.e. container V is empty), P (e) is computed as a ratio

of summarized frequency of the relation type Re and the Cartesian product of the query/lifted

nodes in Q, if e has no dependencies.

The frequency estimates are accessible from TYPESUM. In case there are dependencies (in-

coming edges on nodes ofQ) conditionals are accessed from DEPENDENCYSUM ∀v ∈ Q and mul-

tiplied together1,
∏

f∈EM\e P (Re | Rf ), [lines 13-18]. Finally, CASE 3, e being partially grounded

(Q 6= ∅ & V 6= ∅), requires a more involved analysis [lines 20-35]. Determining the partial-order

of the nodes of e is important when computing probability of the partially-grounded (hyper)edge

e. O and i maintains the index over all source nodes and sink node respectively [line 20]. First we

1Due to properties and assumptions on independence among pairwise conditionals detailed earlier.
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inspect all grounded nodes of e (i.e. V). Since a grounded node nullifies any possible dependency,

we need not worry about conditionals. If a grounded node v ∈ V is a source node v ∈ O, tem-

porary distribution p w.r.t. v is given by the ratio of the out-degree of v, OutG(v), to the Cartesian

product of the type frequencies of all the lifted/query nodes. In case of a sink node, v ∈ i, the

ratio is with the in-degree of the node, since the (hyper)edge e is assumed to be partially directed

from the source nodes to the sink node. Note that v here is grounded, i.e. and actual entity is in

G and the degree estimates are accessible from S, specifically DEGREESUM. P (e) is then updated

with the product of the temporary distribution of all v ∈ V [lines 21-28]. Finally, we inspect all

lifted/query nodes of e (q ∈ Q). For any query node q, iff it is a source node (refer to properties

& assumptions), the temporary distribution p is computed as the product of the conditionals with

respect to all incoming edges on q (
∏

f ∈Eq P (Re | Rf ), where f ∈ Eq is an incoming edge on q and

Rf is its relation type). Again, P (e) is updated with the product of temporary distributions of all

q ∈ Q [lines 29-35]. P (M) is thus the product of all the factors i.e. the edge distributions.

Theoretical properties of MACH algorithm

MACH is aimed at efficient and performance-preserving count approximations of satisfied ground-

ings of logical clauses in Statistical Relational models. Efficiency is the key aspect of the approxi-

mation strategy. Note, there are two distinct phases in our approach - (1) Pre-processing phase in-

cluding construction of the ground hypergraph of assertions G and summary S, and (2) Computing

APPROXJOINT phase. While, pre-processing has an asymptotic time complexity ofO(n2. |R|+n),

where n is the number of assertions/facts given and |R| is the number of distinct relation types in

the domain, it is computed only once for a data set and is thus inconsequential.

Complexity of APPROXJOINT, however, is crucial since it is called arbitrary number of times

during structure / parameter learning and inference. Assuming that the summary statistics S can

be accessed efficiently, if we denote the maximum length of a conjunctive clause/motif as k, max-

imum arity of the clause/motif as A and maximum in-degree of a node in the motif as d, then the
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asymptotic time complexity of APPROXJOINT for any given motif M is O(k.A.d). Most SRL

systems work with reasonably small clause lengths for tractability, making k a constant. Hence,

the effective complexity reduces to O(A.d). Cartesian product of the nodes inM (
∏

v ∈VM nv) is

a single operation requiring constant time and is inconsequential.

Performance-preserving approximation requires that there should be negligible change (dete-

rioration) in the predictive performance of an SRL model compared to its original performance

with exact counts. Our evaluation results in the following section show how MACH adheres to our

claim. A PAC analysis for approximation error bounds is an interesting future research direction.

4.3 Experimental Evaluation

We investigate the following questions:

(Q1:) Is MACH effective and efficient in full model learning with n-ary relations compared to a

robust baseline?

(Q2:) Is modeling n-ary relations faithfully crucial when learning relational model? and

(Q3:) How does MACH compare (scaling vs. performance) to a state-of-the-art database-centric

MLN system?

4.3.1 Experimental design

System: We implemented MACH2 using Java-based HypergraphDB architecture (Iordanov et al.,

2010), which facilitates construction, operations and persistence of hypergraphs. All database op-

erations related to MACH are done via carefully designed Java methods using the APIs. MACH

is a pluggable independent module that can be seamlessly integrated with any Java-based SRL

system that uses counts.

2Code available @ https://github.com/mayukhdas/MACH
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Baselines: To evaluate the effectiveness and efficiency of MACH on full structure and parame-

ter learning of MLNs, we compared against the following baselines: (1) FACT (Das et al., 2016),

which approximates counts via message-passing on normal multi-graphs, integrated with MLN-

Boost and (2) basic MLN-Boost, the vanilla implementation of boosted structure and parameter

learner for MLNs (Khot et al., 2011), the state-of-the-art in MLN (full) model learning with-

out count approximations. It is reasonable to expect comparison against scalable learning of

MLNs (Venugopal et al., 2015; Sarkhel et al., 2016). However, they cannot handle partial ground-

ings without an exponential blow-up in model / database size since they resort to creating new

predicates for every grounding in a clause.

Data Sets: We used three standard SRL data sets: UW-CSE, Citeseer and WebKB, a biomed-

ical data set Carcinogenesis (Srinivasan et al., 1997), and an NLP/Information-Extraction(IE)

data set NELL-Sports for evaluation. UWCSE is a relation-extraction/link-prediction task over

an anonymized representation of staff, students and faculty of 5 different computer science depart-

ments; the target is to predict the AdvisedBy relation between faculty and students. Citeseer is

a citation data set for IE, where the target is to predict which field a paper belongs to based on the

title. WebKB is a consolidated data set of links among the departmental web pages of 4 universities,

and the target is to predict if a web page is a faculty page. Carcinogenesis is biomedical data set of

the structures of chemical compounds (drugs), and the task is to predict if they are carcinogenic.

NELL (Carlson et al., 2010) is a system that extracts information from online text, and converts

them into a probabilistic knowledge base. NELL-Sports is NELL data from the sports domain

consisting of information about players and teams. The task is to predict whether a team plays a

particular sport.

Measures: We computed AUC-ROC, AUC-PR, CLL, F1 and running times averaged over 5

random train/test splits.
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Table 4.1: Results: Performance vs. Efficiency (running time for Learning and Inference in sec-
onds). ** indicates n-ary predicates.

Performance Efficiency
Data Sets Methods AUC–ROC AUC–PR CLL F1 L-Time [s] I-Time [s]

UWCSE∗∗
MACH 0.981 0.337 -0.133 0.217 13.2 5.1
FACT 0.500 0.0068 -0.061 NaN 7.48 2.8

MLN-Boost 0.998 0.361 -0.134 0.227 27.5 9.4

Citeseer**
MACH 0.998 0.989 -0.173 0.973 10837 12.52
FACT 0.97 0.92 -0.256 0.934 11042 12.45

MLN-Boost 0.999 0.998 -0.059 0.977 42499 27.42

Carcinogenesis**
MACH 0.525 0.568 -0.811 0.328 108.48 1.8
FACT 0.500 0.550 -0.704 NaN 102.5 1.5

MLN-Boost 0.587 0.572 -0.902 0.489 153.84 2.37

WebKB
MACH 1.0 1.0 -0.049 1.0 5.8 0.757
FACT 1.0 1.0 -0.076 1.0 5.97 0.797

MLN-Boost 1.0 1.0 -0.075 1.0 8.13 0.896

NELL-Sports
MACH 0.78 0.65 -1.43 0.65 253.92 1.03
FACT 0.76 0.64 -1.38 0.65 238.07 2.01

MLN-Boost 0.78 0.66 -0.55 0.68 396.24 2.20

4.3.2 Experimental Results

(Q1: full model learning) Table 4.1 summarizes the performance and efficiency results of

MACH against the baselines for structure and parameter learning of MLNs. It is clearly evi-

dent that there is no real deterioration in predictive performance due to count approximation in

MACH (across all data sets) compared to MLN-Boost. However, MACH substantially beats the

baselines on efficiency (learning time), especially on larger data sets such as Citeseer, where it is

about 4 times faster. Even on smaller data sets such as UW-CSE and WebKB, the difference in

learning times, though not as large, is still sizable. This answers (Q1) affirmatively.

(Q2: n-ary relations) All data sets except WebKB and NELL-Sports contain several ternary

relations. On such data sets we run FACT by decomposing n-ary relations into
(
n
2

)
binary relations

with the order of the arguments aligned with the order in the original relation. We decompose a

relation R(v1, . . . , vn), n > 2 as {Rij(vi, vj)}, (i < j), that is i ∈ [1, n), j ∈ (i, n]. We modify

the assertions based on the new relations as well. Observe that, though the efficiency gain is

equivalent to (and at times better than) MACH, there is a significant deterioration in performance,
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Table 4.2: Performance vs. Efficiency (running time for Inference) compared against Tuffy.

Data Sets System AUC-ROC I-Time [s]

UW-CSE
MACH 0.892 20.06
Tuffy 0.877 37.11

Carcinogenesis
MACH 0.524 199.8
Tuffy 0.560 944.98

especially on the relatively smaller data sets. In the case of a large data set such as Citeseer,

the performances are relatively similar since the number of spurious assertions introduced by the

decomposition of n-ary relations are negligible compared to the sheer size of the original data

set. In contrast, this size difference is not prevalent in smaller data sets, which results in worse

predictive performance compared to MLN-Boost and MACH. Thus, it is critical that n-ary relations

are represented faithfully, which answers (Q2) affirmatively.

(Q3: HypergraphDB versus DB) In order to evaluate against a database-centric MLN system,

we compared MACH with Tuffy (Niu et al., 2011). While Tuffy is a robust MLN engine inte-

grated with PostgreSQL RDBMS, an unbiased comparison with our system is challenging. This

is because, although Tuffy has no restrictions on the type (discriminative vs. generative) of MLNs

(unlike MLN-Boost which can only represent discriminative MLNs via Horn clauses), it does

not support structure learning (which MLN-Boost can perform, simultaneously with parameter

learning). In order to keep the comparison fair, we learn MLNs via MLN-Boost, convert it into

Tuffy format, and then compare the inference performance and efficiency with MACH. MACH

was integrated with the inference engine of MLN-Boost directly. Table 4.2 summarizes the re-

sults. Observe how MACH shows significant gain in efficiency, while being at par with Tuffy’s

performance. Since Tuffy reports time inclusive of setup and post-processing, we did the same for

MACH. Note that inference time of MACH for UW-CSE is 20.06 sec., which is almost twice as

fast as Tuffy, includes the setup and hypergraph construction and summarization time of 13.26 sec.

On Carcinogenesis we observe that MACH is approximately 5 times as fast (w/ 192.2 s. setup

time). The performances are almost equivalent, though the inference algorithms are different. This
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allows us to answer (Q3) affirmatively. Finally, note that Tuffy infers on all possible instances of

the target. For fair comparison we deactivate sub-sampling of negative examples in MLN-Boost.

4.4 Conclusion

We present a generalized method for approximating counts of logical rules in SRL models via

transforming both the clauses and the full set of assertions into a hypergraph. We showed how

counting the number of subgraphs in these hypergraphs correspond to counting the number of

groundings in the SRL model. We presented the use of summary statistics, similar to the idea

outlined in Chapter 3, coupled with an intelligent factorization of the motif distribution, to approx-

imate such counts significantly fast.
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Algorithm 5 Product of local distributions
1: procedure APPROXJOINT(MotifM, Substitution θ, Hypergraph G, Summary statistics S)
2: P (M)← 1.0 . Initialize joint distribution
3: for e ∈ EM do . For each edge in the motif
4: Q ← QUERYNODESOF(e | θ)
5: V ← GROUNDNODESOF(e | θ)
6: P (e)← 1 . Initialize edge probability
7: if Q = ∅ then . e | θ is fully grounded
8: if e ∈ EG then
9: P (e)← 1 . e exists in bothM and G

10: else
11: P (e)← 0 . e does not exist in G
12: end if
13: else if V = ∅ then . e | θ is fully lifted
14: if EQ = IncomingEdgesM(v) = ∅ then

. v ∈ Q
15: P (e)← #(Re)/

∏
v∈Q nv . From S

16: else
17: P (e)←

∏
Q
∏
f∈EQ P (Re | Rf ) . From S

18: end if
19: else . e | θ is partially grounded
20: O, i← ORDER(V ∪ Q, θ)
21: for v ∈ V do . For each grounded node
22: if v ∈ O then . Source nodes, O
23: p← OutG(v)/

∏
v∈Q nv . From S

24: else . Sink node, i
25: p← InG(v)/

∏
v∈Q nv . From S

26: end if
27: P (e)← P (e) · p
28: end for
29: for q ∈ Q do . For each query node
30: Eq ← IncomingEdgesM(q)
31: if Eq 6= ∅and q ∈ O then

. Source nodes, O
32: p←

∏
f ∈Eq P (Re | Rf ) . From S

33: end if
34: P (e)← P (e) · p
35: end for
36: end if
37: P (M)← P (M) · P (e)
38: end for
39: return P (M)

40: end procedure
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PART II

OBSERVATION QUALITY: DATA-SCARCE ENVIRONMENTS
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CHAPTER 5

HUMAN-GUIDED DEEP LEARNING IN SPARSE DATA

Knowledge-augmented learning is a vital component of our envisioned Human-AI collaborative

framework, and, that too, across varied levels of representation. For instance, the treatment plan-

ning scenario in Example 1 will require the AI agent to learn and reason with low-level signals

such as ECG plots or MRI images and so on. Connectionist models, being universal function ap-

proximators, are the most likely choices for modeling from such data in low-level representation.

Consequently deep learning has re-gained a lot of attention especially for several tasks involving

low-level signals. However, as we have noted earlier, faithfully capturing the implicit structure

in the domain is equally important. For instance, relationships ECG history of patients sharing

kinship etc. Column Networks, a deep architecture, can succinctly capture domain structure and

interactions, but may still be prone to sub-optimal learning from sparse and noisy samples. In-

spired by the success of human-advice guided learning in AI, especially in data-scarce domains, in

this chapter, we present Knowledge-augmented Column Networks (Das et al., 2019), that leverage

human advice/knowledge for better learning with noisy/sparse samples.

5.1 Introduction

The re-emergence of Deep Learning (Goodfellow et al., 2016) has found significant and success-

ful applications in difficult real-world domains such as image (Krizhevsky et al., 2012), audio (Lee

et al., 2009) and video processing.However, the combinatorial complexity of reasoning in relational

domains over a large number of relations and objects has remained a significant bottleneck to over-

come. Recent work in relational deep learning has sought to address this particular issue(Kazemi

and Poole, 2018; Šourek et al., 2015; Kaur et al., 2017; França et al., 2014). We consider Column

Networks (CLNs) (Pham et al., 2017) that are composed of several (feedforward) mini-columns

each of which represents an entity in the domain. CNs are attractive for a few reasons (1) hidden
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layers of a CLN share parameters, which means that making the network deeper does not introduce

more parameters, (2) as the depth increases, the CLN can begin to model feature interactions of

considerable complexity, which is especially attractive for relational learning, and (3) learning and

inference are linear in the size of the network and the number of relations, which makes CLNs

highly efficient. However, like other deep learning approaches, CLNs rely on vast amounts of data

and incorporate little to no knowledge about the problem domain.

It is well known that biasing learners is necessary in order to allow them to inductively leap

from training instances to true generalization over new instances (Mitchell, 1980). While deep

learning does incorporate one such bias in the form of domain knowledge (for example, through

parameter tying or convolution, which exploits neighborhood information), we are motivated to de-

velop systems that can incorporate richer and more general forms of domain knowledge. One way

in which a human can guide learning is by providing rules over training examples and features.

The earliest such approaches combined explanation-based learning (EBL-NN, (Shavlik and Tow-

ell, 1989)) or symbolic domain rules with ANNs (KBANN, (Towell and Shavlik, 1994)). Another

natural way a human could guide learning is by expressing preferences and has been studied exten-

sively within the preference-elicitation framework due to Boutilier et al. (2006). We are inspired

by this form of advice as they have been successful within the context of inverse reinforcement

learning (Kunapuli et al., 2013), imitation learning (Odom et al., 2015) and planning (Das et al.,

2018a).

These approaches span diverse machine learning formalisms, and they all exhibit the same re-

markable behavior: better generalization with fewer training examples because they effectively

exploit and incorporate domain knowledge as an inductive bias. This is the prevailing motiva-

tion for our approach: to develop a framework that allows a human to guide deep learning by

incorporating rules and constraints that define the domain and its aspects. Incorporation of prior

knowledge into deep learning has begun to receive interest recently, for instance, the recent work

on incorporating prior knowledge of color and scene information into deep learning for image
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classification (Ding et al., 2018). However, in many such approaches, the guidance is not through

a human, but rather through a pre-processing algorithm to generate guidance. Our framework is

much more general in that a human provides guidance during learning. Furthermore, the human

providing the domain advice is not an AI/ML expert but rather a domain expert who provides rules

naturally. We exploit the rich representation power of relational methods to capture, represent and

incorporate such rules into relational deep learning models. Note that our focus is not combin-

ing logic and deep networks as several others have explored this connection for decades since the

origin of neuro-symbolic reasoning to more recent ILP-based neural models (Kaur et al., 2017;

Kazemi and Poole, 2018) . In our work we use first-order logic as a representation language for

human advice and employ it in the context of CLNs.

We make the following contributions: (1) we propose the formalism of Knowledge-augmented

Column Networks, (2) we present, inspired by previous work (such as KBANN), an approach to

inject generalized domain knowledge in a CLN and develop the learning strategy that exploits this

knowledge, and (3) we demonstrate, across four real problems in some of which CLNs have been

previously employed, the effectiveness and efficiency of injecting domain knowledge. Specifically,

our results across the domains clearly show statistically superior performance with small amounts

of data. As far as we are aware, this is the first work on human-guided CLNs.

5.2 Knowledge-augmented Column Networks

Column Networks (Pham et al., 2017) allow for encoding interactions/relations between entities

as well as the attributes of such entities in a principled manner without explicit relational fea-

ture construction or vector embedding. This enables us to seamlessly transform a multi-relational

knowledge graph into a deep architecture making them one of the robust relational deep models.

Figure 5.1 illustrates an example column network, with respect to the knowledge graph on the left.

Note how each entity forms its own column and relations are captured via the sparse inter-column

connectors.
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Figure 5.1: Original Column network architecture [diagram source: (Pham et al., 2017)]

Consider a graph G = (V,A), where V = {ei}|V |i=1 is the set of vertices/entities. Without loss

of generality, we assume only one entity type. A is the set of arcs/edges between two entities ei

and ej denoted as r(ei, ej). Note that the graph is multi-relational, i.e., r ∈ R where R is the

set of relation types in the domain. To obtain the equivalent Column Network C from G, let xi

be the feature vector representing the attributes of an entity ei and yi its label predicted by the

model1. hti denotes a hidden node w.r.t. entity ei at the hidden layer t (t = 1, . . . , T is the index

of the hidden layers). The context between 2 consecutive layers captures the dependency of the

immediate neighborhood (based on edges/inter-column connectors). For entity ei, the context w.r.t.

r and hidden nodes are computed as,

ctir =
1

|Nr(i)|
∑

j∈Nr(i)

ht−1
j ; (5.1)

hti = g

(
bt +W tht−1

i +
1

z

∑
r∈R

V t
r c

t
ir

)
(5.2)

where Nr(i) are all the neighbors of ei w.r.t. r in the knowledge graph G. Note the absence of

context connectors between ht2 and ht4 (Figure 5.1, right) since there does not exist any relation

between e2 and e4 (Figure 5.1, left). The activation of the hidden nodes is computed as the sum

of the bias, the weighted output of the previous hidden layer and the weighted contexts where

1Note that since in our formulation every entity is uniquely indexed by i, we use ei and i interchangeably
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W t ∈ RKt×Kt1 and V t
r ∈ RKt×Kt1 are weight parameters and bt is a bias for some activation

function g. z is a pre-defined constant that controls the parameterized contexts from growing

too large for complex relations. Setting z to the average number of neighbors of an entity is a

reasonable assumption. The final output layer is a softmax over the last hidden layer, P (yi =

`|hTi ) = softmax
(
bl +Wlh

T
i

)
where ` ∈ L is the label (L is the set of labels) and T is the index

of the last hidden layer.

Example 9. Consider a problem of classifying whether a published article is about carcinoid

metastasisor is irrelevant, from a citation network, and textual features extracted from the articles

themselves. There are several challenges: (1) Data is implicitly sparse due to rarity of studied

cases and experimental findings, (2) Some articles may cite other articles related to carcinoid

metastasis and contain a subset of the textual features, but address another topic and (3) Finally,

the presence of systematic noise, where some important citations were not extracted properly by

some citation parser and/or the abstracts are not informative enough.

The above cases may lead to the model not being able to effectively capture certain depen-

dencies, or converge slower, even if they are captured somewhere in the advanced layers of the

deep network. Our approach attempts to alleviate this problem via augmented learning of Col-

umn Networks using human advice/knowledge. We formally define our problem in the following

manner,
Given: A sparse multi-relational graph G, attributes xi of each entity (sparse or noisy) in G,

equivalent Column-Network C and access to a Human-expert

To Do: More effective and efficient collective classification by knowledge augmented training

of C(θ), where θ = 〈{W t}T1 , {V t
r }t=Tr∈R;t=1, {W`}`∈L〉 is the set of all the network parameters of

C.
We develop Knowledge-augmented CoLumn Networks (K-CLN), that incorporates human-

knowledge, for more effective and efficient learning from relational data (Figure 5.2 illustrates

the overall architecture). While knowledge-based connectionist models are not entirely new, our
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Figure 5.2: K-CLN architecture

formulation provides - (1) a principled approach for incorporating advice specified in an intuitive

logic-based encoding/language (2) a deep model for collective classification in relational data.

5.2.1 Knowledge Representation

Any model specific encoding of domain knowledge, such as numeric constraints or modified loss

functions etc., has limitations, namely (1) counter-intuitive to the humans since they are domain

expert (2) the resulting framework is brittle and not generalizable. Consequently, we employ pref-

erences (akin to IF-THEN statements) to capture human knowledge.

Definition 6. A preference is a modified Horn clause, ∧k,xAttrk(Ex) ∧ . . . ∧r∈R,x,y r(Ex, Ey) ⇒

[label(Ez, `1) ↑; label(Ek, `2) ↓] where `1, `2 ∈ L and the Ex are variables over entities, Attrk(Ex)

are attributes of Ex and r is a relation. ↑ and ↓ indicate the preferred non-preferred labels respec-

tively. Quantification is implicitly ∀ and hence dropped. We denote a set of preference rules as

P.

Note that we can always, either have just the preferred label in head of the clause and assume

all others as non-preferred, or assume the entire expression as a single literal. Intuitively a rule can
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be interpreted as conditional rule, IF [conditions hold] THEN label ` is preferred. A preference

rule can be partially instantiated as well, i.e., or more of the variables may be substituted with

constants.

Example 10. For the prediction task mentioned in Example 9, a possible preference rule could be,

hasWord(E1, “AI”) ∧ hasWord(E2, “domain”) ∧ cites(E2, E1)⇒ label(E2, “irrelevant”) ↑

Intuitively, this rule denotes that an article is not a relevant clinical work to carcinoid metastasis

if it cites an ‘AI’ article and contains the word “domain”, since it is likely to be another AI article

that uses carcinoid metastatis as an evaluation domain.

5.2.2 Knowledge Injection

Given that knowledge is provided as partially-instantiated preference rules P, more than one en-

tity may satisfy a preference rule. Also, more than one preference rules may be applicable for a

single entity. The main intuition is that we aim to consider the error of the trained model w.r.t.

both the data and the advice. Consequently, in addition to the “data gradient” as with original

CLNs, there is a “advice gradient”. This gradient acts a feedback to augment the learned weight

parameters (both column and context weights) towards the direction of the advice gradient. It must

be mentioned that not all parameters will be augmented. Only the parameters w.r.t. the entities and

relations (contexts) that satisfy P should be affected. Let P be the set of entities and relations that

satisfy the set of preference rules P. The hidden nodes (equation 5.1) can now be expressed as,

hti = g

(
bt +W tht−1

i Γ
(W )
i +

1

z

∑
r∈R

V t
r c

t
irΓ

(c)
ir

)

s.t. Γi,Γi,r =


1 if i, r /∈ P

F(α∇P
i ) if i, r ∈ P

(5.3)

where i ∈ P and Γ
(W )
i and Γ

(c)
ir are advice-based soft gates with respect to a hidden node and

its context respectively. F() is some gating function, ∇P
i is the “advice gradient” and α is the
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trade-off parameter explained later. The key aspect of soft gates is that they attempt to enhance or

decrease the contribution of particular edges in the column network aligned with the direction of the

“advice gradient”. We choose the gating functionF() as an exponential [F(α∇P
i ) = exp (α∇P

i )].

The intuition is that soft gates are natural, as they are multiplicative and a positive gradient will

result in exp (α∇P
i ) > 1 increasing the value/contribution of the respective term, while a negative

gradient results in exp (α∇P
i ) < 1 pushing them down. We now present the “advice gradient”

(the gradient with respect to preferred labels).

Proposition 1. Under the assumption that the loss function with respect to advice / preferred

labels is a log-likelihood, of the form LP = logP (y
(P)
i |hTi ), then the advice gradient is, ∇P

i =

I(y
(P)
i )−P (yi), where y(P)

i is the preferred label of entity and i ∈ P and I is an indicator function

over the preferred label. For binary classification, the indicator is inconsequential but for multi-

class scenarios it is essential (I = 1 for preferred label ` and I = 0 for L \ `).

Since an entity can satisfy multiple advice rules we take the most preferred label, i.e., we take

the label y(P)
i = ` to the preferred label if ` is given by most of the advice rules that ej satisfies. In

case of conflicting advice (i.e. different labels are equally advised), we simply set the advice label

to be the label given by the data, y(P)
i = yi.

Proof Sketch for Proposition 1 Most advice based learning methods formulate the effect of

advice as a constraint on the parameters or a regularization term on the loss function. We consider

a regularization term based on the advice loss L(P) = logP (yi = y
(P)
i |hTi ) and we know that

P (yi|hTi ) = softmax(b` + W`h
T
i ). We consider b` + W`h

T
i = Ψ(yi,hTi ) in its functional form

following prior non-parametric boosting approaches (Odom et al., 2015). Thus P (yi = y
(P)
i |hTi ) =

exp (Ψ
(y

(P)
i ,hTi )

)/
∑

y′∈L exp (Ψ(y′,hTi )). A functional gradient w.r.t. Ψ of L(P) yields,

∇P
i =

∂ logP (yi = y
(P)
i |hTi )

∂Ψ
(y

(P)
i ,hTi )

= I(y
(P)
i )− P (yi) (5.4)
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Alternatively, assuming a squared loss such as (y
(P)
i − P (yi))

2, would result in an advice gradient

of the form 2(y
(P)
i − P (yi))(1 − P (yi))P (yi). We observe that in a functional form the advice

gradient is the difference between the true label distribution and the predicted distribution (or

some function of that difference), irrespective of the the type of loss we choose to optimize. As

illustrated in the K-CLN architecture, at the end of every epoch of training the advice gradients are

computed and soft gates are used to augment the value of the hidden units as shown in the main

section,

Γi,Γi,r =


1 if i, r /∈ P

F(α∇P
i ) if i, r ∈ P

As illustrated in the K-CLN architecture (Figure 5.2), at the end of every epoch of training the

advice gradients are computed and soft gates are used to augment the value of the hidden units as

shown in Equation 5.3.

Proposition 2. Given that the loss functionHi of original CLN is cross-entropy (binary or sparse-

categorical for the binary and multi-class prediction cases respectively) and the objective w.r.t.

advice is log-likelihood, the functional gradient of the modified objective is,

∇(H′i) = (1− α)
(
yiI − P (yi|hT )

)
+ α

(
IPi − P (yPi |hT )

)
= (1− α)∇i + α∇P

i (5.5)

where 0 ≤ α ≤ 1 is the trade-off parameter between the effect of data and effect of advice, Ii and

IPi are the indicator functions on the label w.r.t. the data and the advice respectively and ∇i and

∇P
i are the gradients, similarly, w.r.t. data and advice respectively (Proof in appendix).

Proof for Proposition 2: The original objective function (w.r.t. data) of CLNs is cross-entropy.

For clarity, let us consider the binary prediction case, where the objective function is now a binary

cross-entropy of the form, H = − 1
N

∑N
i=1 yi log(P (yi)) + (1 − yi) log(1 − P (yi)). Ignoring the
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summation for brevity, for every entity i,Hi = yi log(P (yi)) + (1− yi)log(1− P (yi)). Extension

to the multi-label prediction case with a sparse categorical cross-entropy is straightforward and is

an algebraic manipulation task. Now, from Proposition 1, the loss function w.r.t. advice is the log

likelihood of the form, LP = logP (yPi |hT ). Thus the modified objective is expressed as,

H′i =(1− α) [yi log (P (yi)) + (1− yi)log (1− P (yi))] + α log(P (yPi ))

where α is the trade-off parameter. P (y) = P (y|hT ) can be implicitly understood. Now we

know from Proposition 1 that the distributions, P (yi) and P (yPi ), can be expressed in their func-

tional forms, given that the activation function of the output layer is a softmax, as P (yi) =

exp (Ψ(yi,hTi ))/
∑

y′∈L exp (Ψ(y′,hTi )). Taking the functional (partial) gradients (w.r.t. Ψ(yi,hTi ) and

Ψ(yPi ,h
T
i )) of the modified objective function (Equation From Equation 5.5), followed by some al-

gebraic manipulation we get,

∇(H′i) =(1− α)[yiIi − yiP (yi)− P (xi) + yiP (yi)] + α(IPi − P (yPi ))

=(1− α) (yiI − P (yi)) + α
(
IPi − P (yPi )

)
(From Equation 5.5)

Hence, it follows from Proposition 2 that the data and the advice balances the training of the

K-CLN network parameters θP via the trade-off hyperparameter α. When data is noisy (or sparse

with negligible examples for a region of the parameter space) the advice (if correct) induces a bias

on the output distribution towards the correct label. Even if the advice is incorrect, the network still

tries to learn the correct distribution to some extent from the data (if not noisy). The contribution

of the effect of data versus the effect of advice will primarily depend on α. If both data and human

advice are sub-optimal, correct label distribution is not learnable.

5.2.3 The K-CLN Algorithm

Algorithm 6 outlines all the key steps. KCLN(), the main procedure [lines: 1-14], trains a Column

Network using both the data (the knowledge graph G) and the human advice (set of preference
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Algorithm 6 K-CLN: Knowledge-augmented CoLumn Networks
1: procedure KCLN(Knowledge graph G, Column network C(θ), Advice P, Trade-off α)
2: K-CLN CP(θP)← C(θ) . modified hidden units Eqn 5.3
3: Initialize θP ← {0} . initialize parameters of K-CLN
4: MP = 〈MW ,Mc,Mlabel〉 ← CREATEMASK(G,P)

. mask ∀ entities/relations/labels ∈ P
5: Initial gradients ∀i∇P

i,0 = 0; i ∈ P
6: for epochs k=1 to convergence do

. convergence criteria same as original CLN
7: Get advice gradients∇P

i,(k−1) for prev. epoch k − 1

8: Gates ΓP
i ,Γ

P
i,r ← exp (α∇P

i ×MPi )

9: Train CP using Equation 5.3; Update θP

10: Compute ∀i P (yi) from CP . for current epoch k
11: Store ∀i∇P

i,k ← I(y
(P)
i )− P (yi)

. Obtain I(y
(P)
i )⇐Mlabel

12: end for
13: return K-CLN CP

14: end procedure

15: procedure CREATEMASK(Knowledge graph G,Advice P)
16: MW [D × |O|]← ∅

. D: feature length; |O|: # entities where G = (O,R)
17: Mc[|O| × |O|]← ∅;Mlabel[|O| × L]← ∅

.MW : entity;Mc: context &Mlabel: label mask
18: for each preference p ∈ P do
19: if ∀i ∈ O ∧ ∀r ∈ R : i and r satisfies p then
20: MW [x, i]← 1 . x is the feature affected by p
21: Mc[i, j]← 1 . r = 〈i, j〉 ∈ R; j 6= i; j ∈ O
22: Mlabel[i, `]← 1; s.t. LABELOF(i|p) = `
23: end if
24: end for
25: return 〈MW ,Mc,Mlabel〉
26: end procedure

rules P). It returns a K-CLN CP where θP are the network parameters, which are initialized to

any arbitrary value (0 in our case; [line: 3]). Our gating functions are piece-wise/non-smooth and

apply only to the subspace entities, features and relations that satisfy the preference rules. So,

as a pre-processing step, we create tensor masks that compactly encode such a subspace via the

procedure CREATEMASK() [line: 4].
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The network CP(θP) is then trained through multiple epochs till convergence [lines: 6-12].

At the end of every epoch the output probabilities and the gradients are computed and stored in

a shared data structure [line: 11] to be accessed in the next epoch. Training is largely similar to

original CLN with two key modifications [line: 9] - (1) Equation 5.3 is the modified expression

for hidden units. (2) The data trade-off 1 − α augments the original loss and the advice trade-off

α, is used to compute the gates. Procedure CREATEMASK() [lines: 15-27] constructs the ten-

sor mask(s) over the space of entities, features and relations/contexts that are required to compute

the gates (as seen in line: 8). There are 3 key components of the advice mask. They are - (1)

Entity mask MW (#entities × #features), indicates entities and relevant features are affected by

the advice, (2) Context mask Mc (#entities × #entities), indicates the contexts that are affected

(relations are directed, so it is asymmetric), (3) Label maskMlabel, indicates the preferred label of

the affected entities, in a one-hot encoding. The masks are iteratively computed for every prefer-

ence [lines: 19-25]. This includes satisfiability checking, p ∈ P [line: 20], which is achieved via

subgraph matching on the knowledge graph G (preference rule ≡ subgraph template) (Das et al.,

2016, 2019b). The componentsMW andMc are used in gate computation in main procedure and

Mlabel is used for the indicator IPi in the advice gradient.

5.3 Experimental Evaluation

We investigate the following questions as part of our experiments, -

(Q1) Can K-CLNs learn efficiently with noisy sparse samples i.e., performance?

(Q2) Can K-CLNs learn effectively with noisy sparse samples i.e., speed of learning?

(Q3) How does quality of advice affect performance of K-CLN i.e., reliance on robust advice?

We compare against the original Column Networks architecture with no advice (Vanilla CLN indi-

cates the original Column Network architecture (Pham et al., 2017)) as a baseline. Our intention
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Table 5.1: Evaluation domains and their properties

Domains #Entities #Relations #Features Target type
Pubmed 19717 44, 338 500 Multi-class
Corporate 3119 ∼ 1, 000, 000 750 Multi-class
Debates 6662 ∼ 25000 500 Binary
Disaster 8000 35000 504 Binary

is to show how advice/knowledge can guide model learning towards better predictive performance

and efficiency, in the context of collective classification using Column Networks. Also, recall that

our problem setting is distinct from most existing noise robust deep learning approaches. Thus, we

restrict our comparisons to the original work.

5.3.1 Experimental Setup

System: K-CLN extends original CLN architecture, which uses Keras as the functional deep

learning API with a Theano backend for tensor manipulation. We extend this system to include:

(1) advice gradient feedback at the end of every epoch, (2) modified hidden layer computations

and (3) a pre-processing wrapper to parse the advice/preference rules and create appropriate tensor

masks. Since it is not straightforward to access final layer output probabilities from inside any

hidden layer using keras, we use Callbacks to write/update the predicted probabilities to a shared

data structure at the end of every epoch. This data structure is then fed via inputs to the hidden

layers. Each mini-column with respect to an entity is a dense network of 10 hidden layers with 40

hidden nodes in each layer (similar to the most effective settings outlined in (Pham et al., 2017)).

The advice masks encode P , i.e., the set of entities and contexts where the gates are applicable

(Algorithm 6).

Domains: We evaluate our approach on four relational domains – Pubmed Diabetes and Cor-

porate Messages, (multi-class), and Internet Social Debates and Social Network Disaster Rele-

vance (binary). Pubmed Diabetes2 is a citation network for predicting whether a peer-reviewed

2https://linqs.soe.ucsc.edu/data

82

https://linqs.soe.ucsc.edu/data


article is about Diabetes Type 1, Type 2 or none, using textual features (TF-IDF vectors) from

19717 pubmed abstracts and 44, 338 citation relationships among them. Here articles are entities

with 500 bag-of-words features (TF-IDF word vectors). Internet Social Debates3 is for predicting

stance (‘for’/‘against’) about a debate topic from online posts on social debates. It contains 6662

posts (entities) characterized by TF-IDF vectors and ∼ 25000 relations of 2 types, ‘sameAuthor’

and ‘sameThread’. Corporate Messages4 is an intention prediction data set of 3119 flier messages

sent by corporate groups in the finance domain, with 1, 000, 000 sameSourceGroup relations. We

predict the intention of the message (Information, Action or Dialogue). Finally, Social Network

Disaster Relevance is a relevance prediction data set of 8000 Twitter posts, curated and annotated

by crowd with relevance scores. Besides textual ones, we use score features and 35k relations

among tweets (‘same author’ and ‘same location’). Table 5.1 outlines their important aspects.

Metrics: Following (Pham et al., 2017), we report macro-F1 and micro-F1 scores for the multi-

class problems, and F1 scores and AUC-PR for the binary ones. Macro-F1 computes the F1 score

independently for each class and takes the average whereas a micro-F1 aggregates the contributions

of all classes to compute the average F1 score. Due to space limitation, we show only the Micro-F1

and the AUC-PR results (complete set of plots - in supplementary appendix). For all experiments

we use 10 hidden layers and 40 hidden units per column in each layer. All results are averaged

over 5 runs.

Human Advice: K-CLN is designed to handle arbitrarily complex expert advice encoded as

preference rules. However, even with some relatively simple preference rules K-CLN is more ef-

fective in sparse samples. Eg: In Pubmed, the most complex preference rule is, HasWord(e1, ‘fat
′)

∧ HasWord(e1, ‘obese
′) ∧ Cites(e2, e1) ⇒ label(e2, type2) ↑. Note how a simple rule, indi-

cating an article citing another one discussing obesity is likely to be about Type2 diabetes, proved

3http://nldslab.soe.ucsc.edu/iac/v2/

4https://www.figure-eight.com/data-for-everyone/
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Figure 5.3: Performance w.r.t. epochs. Left to Right - Pubmed, Corporate Messages, Debates and
Social Disaster. Leftmost 2 show Micro-F1, (multi-class) & Rightmost 2 show AUC-PR (binary)

to be effective. Knowledge from real physicians can thus, be extremely effective. Sub-optimal

advice may lead to a wrong direction of the Advice Gradient. The trade-off parameter α balances

the effect of advice and data during training.

5.3.2 Evaluation Results

Efficiency (Q1): We present the aforementioned metrics with varying sample size and with

increasing epochs and compare our model against Vanilla CLN. We split the data sets into a

training set and a hold-out test set with 60%-40% ratio. For varying epochs we only learn on

40% of our pre-split training set (i.e., 24% of the complete data) to train the model and test on

the hold-out test set. Figure 5.3 shows that, although both K-CLN and Vanilla CLN converge to

the same predictive performance (Micro-F1 for PubMed & Corporate and AUC-PR for the rest),

K-CLN converges significantly faster (less epochs). Also. for the corporate and the debate, K-

CLN not only converges faster but also has a better predictive performance than Vanilla CLN

(Figure 5.3- 2nd, 3rd). We have similar observations in Macro-F1 results (see appendix) These

results show that K-CLNs learn more efficiently with noisy sparse samples thereby answering (Q1)

affirmatively.

Effectiveness (Q2): The intuition is, domain knowledge should guide the model to learn better

when the training data is sparse. Thus they are trained on gradually varying sample sizes from 5%
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Figure 5.4: Performance w.r.t. varying samples. Left to Right - Pubmed, Corporate, Debates and
Social Disaster. Leftmost 2 show Micro-F1 & Rightmost 2 show AUC-PR

of the training data (3% of the complete data) till 80% of the training data (48% of complete data)

and tested on the hold-out test set. Figure 5.4 presents the performance results with varying sample

sizes for all data sets (again Micro-F1 for PubMed & Corporate and AUC-PR for Internet Debate

and Social Disaster). It can be seen that K-CLN outperforms Vanilla CLN across all sample sizes,

on both metrics, which suggests that the advice is relevant throughout the training phase with vary-

ing sample sizes. For Corporate Messages, K-CLN outperforms with small number of samples,

gradually converging to a similar prediction performance with larger samples. However, we have

observed that, for Macro-F1 (see appendix), the performance is similar for both, although K-CLN

performs better with very small samples. This could happen, in multi-class prediction, when the

advice may not apply to some of the classes, while it does apply to the rest, effectively averaging

out in Macro-F1. Thus K-CLN outperforms the Vanilla CLN, especially in small samples. Thus,

K-CLNs learn effectively with noisy sparse samples [(Q2)].

Robustness (Q3): An obvious question that will arise is – how robust is our learning system

to that of noisy/incorrect advice? Conversely, how does the choice of α affect the quality of the

learned model? To answer these, we consider the Internet Social Debates domain by augment-

ing the learner with incorrect advice. This incorrect advice is essentially created by changing the

preferred label of the advice rules to incorrect values (based on our understating). Also, recall
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Figure 5.5: Performance, F1 (Left) and AUC-PR (Right) on Debates w/ varying sample sizes & w/ varying
trade-off parameter α (on advice grad.). Note, advice here is incorrect/sub-optimal. α = 0 has the identical
performance Vanilla CLN [best viewed in color].

that the contribution of advice is dependent on the trade-off parameter α, which controls the ro-

bustness of K-CLN to advice quality. Consequently, we experimented with different values of α

(0.2, 0.4, . . . , 1.0), across varying sample sizes. Figure 5.5 shows how with higher α values the

performance deteriorates due to the effect of noisy advice. α = 0 is not plotted since the perfor-

mance is same as no-advice/Vanilla CLN. Note that with reasonably low values of α = 0.2, 0.4,

the performance does not deteriorate and better in some samples. Thus with reasonably low values

of α K-CLN is robust to quality of advice (Q3). We picked one domain to present robustness but

have observed similar behavior in all the domains.

5.4 Discussion

It is difficult to quantify correctness or quality of human advice unless, absolute ground truth is

accessible in some manner. We evaluate on sparse samples of real data sets with no availability of

gold standard labels. We have provided the most relevant/useful advice in the experiments aimed
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at answering (Q1) and (Q2) as indicated in the experimental setup. We emulate noisy advice (for

Q3) by flipping/altering the preferred labels of advice rules in the original set of preferences. We

have shown theoretically, in Proposition 1 and 2, that the robustness of K-CLN depends on the

advice trade-off parameter α. We illustrated how it can control the contribution of the data versus

the advice towards effective training. We postulate that even in presence of noisy advice, the data

(if not noisy) is expected to contribute towards effective learning with a weight of (1 − α). Of

course, if both the data and advice are noisy the concept is not learnable (as with any algorithm).

The experiments w.r.t. Q3 (Figure 5.5) empirically support our theoretical analysis. We found

that when α ≤ 0.5, K-CLN performs well even with noisy advice. In the earlier experiments

where we use potentially good advice, we report the results with α = 1, since the advice gradient

is piecewise (affects only a subset of entities/relations). So it is reasonable to assign higher weight

to the advice and the contribution of the entities and relations/contexts affected by it, given the

advice is noise-free. Also, note that the drop in performance towards very low sample sizes (in

Figure 5.5) highlights how learning is challenging in the noisy-data and noisy-advice scenario and

aligns with our general understanding of most human-in-the-loop/advice-based approaches in AI.

Trade-off between data and advice via a weighted combination of both is a well studied solution

(Odom and Natarajan, 2018) and, hence, we adapt the same.
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CHAPTER 6

GUIDED SEQUENTIAL DECISION MAKING

The primary objective of the AI agent we envisioned in Example 1 (Chapter 1) is to facilitate the

decision making process. Thus we aim to develop a Human-AI collaborative sequential decision

making framework that is robust to systematic noise. Robust predictive modeling is merely a

component of that framework. For instance, the clinical decision support agent must be able to

facilitate with treatment planning as well as healthcare resource planning, which are sequential

decision making scenarios. As described in Example 3, a treatment planning scenario for a patient

with metastasized carcinoid tumors is challenging, both due to that lack of clinical trials in drug

side effect prediction as well as dearth or absence of demonstrations to learn policies from.

This chapter aims to describe our progress towards a collaborative sequential decision mak-

ing framework (Das et al., 2018a,b), where we enable the planning (a sequential decison making

paradigm) agent to actively seek help from a human collaborator (preferably a domain expert) via

a bi-directional interaction and acquire additional knowledge to generate better plans.

6.1 Introduction

Planning under uncertainty has exploited human (domain) expertise in several different direc-

tions (Tan and Pearl, 1994; Myers, 1996; Huang et al., 1999; Allen and Ferguson, 2002; Brafman

and Chernyavsky, 2005; Sohrabi and McIlraith, 2008). This contrasts with traditional learning

techniques that require large amount of labeled data and treat the human as a “mere labeler”. One

key research thrust in this direction is that of specifying preferences as advice to the planner in

order to constrain the search over the space of plans. While successful, most of the preference

specification approaches require that the human input be provided in advance before planning

commences. There are at least two main issues with this approach: (1) the human sometimes pro-

vides the most “obvious” advice that can be potentially inferred by calculating the uncertainty in

the plan space, and (2) the planner may not reach the part of the space where the preferences apply.
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We propose a framework in which the planner actively solicits preferences as needed. More

specifically, our proposed planning approach computes the uncertainty in the plan explicitly and

then queries the human expert for advice as needed. This approach not only alleviates the burden,

of specifying all the advice upfront, on the human expert but also allows the learning algorithm

to focus on the most uncertain regions of the plan space and query accordingly. Thus, it avoids

human effort on trivial regions and improves the relevance of the preferences.

We present an algorithm for active preference elicitation in planning called the Preference-

Guided Planner (PGPLANNER) where the agent treats the human advice as soft preferences and

solicits these preferences as needed. Such preferences guide the search process towards, poten-

tially, better quality plans.We consider a Hierarchical Task Network (HTN) planner for this task as

it allows for seamless natural interaction with humans who solve problems by decomposing them

into smaller problems. HTN planners can facilitate humans in providing knowledge at varying lev-

els of generality. We evaluate our algorithm on several standard domains and a novel blocksworld

domain against several baselines. Our results show that this collaborative approach allows for more

efficient and effective problem solving compared to both standard planning techniques as well as

preference-based counterparts with all preferences provided in advance.

Contributions: Our key contributions include: (1) We introduce active preference elicitation for

HTN planning; (2) Our framework treats the human input as soft preferences and allows for a

trade-off between potentially a sub-optimal expert and a complex plan space; and (3) We evaluate

our algorithm on several tasks and demonstrate its efficacy against other baselines. Unlike active

advice-seeking (Odom and Natarajan, 2016a), planning does not have training examples from

which to generalize. Instead, we select points to query during the planning process based on

estimated quality of the available options. We show that even when learning without examples,

an active learning framework can guide the learner towards effective and efficient communication

with domain experts.
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6.2 Active Preference-Guided Planning

Preference-guided planning employs preferences to guide the search through the space of possible

plans, sequence of primitive actions. We make use of HTNs to search through these plans by

recursively breaking a higher-level task into sub-tasks until every task can be solved using primitive

actions. We briefly discuss the HTN planning framework before elaborating our approach further.

HTN Planning An HTN planner (Ghallab et al., 2004; Erol et al., 1994), one of the well-known

neo-classical planners, searches for valid plans in the space of task decompositions. It recursively

decomposes the current task into sub-tasks based on pre-defined control knowledge, called meth-

ods, and adds the new sub-tasks into the current set. If a primitive task is solvable by an atomic

action, it is removed from the set of tasks; the corresponding action is then added to the plan, and

the state is updated. Remaining non-primitive tasks are then decomposed further. The resultant

network of decompositions is a task network (Ghallab et al., 2004). Formally,

Definition 7. A task network is directed acyclic graph W = (N,E). A directed edge e =

〈τ, τ (sub)〉, where τ, τ (sub) ∈ N and e ∈ E, is always from a task τ to one of its sub-tasks τ (sub) (

i.e. τ (sub) ∈ subtasks(τ)).

Definition 8. A method is a tuple mτ = (τ,F(a, s), {τj}kj=1) where τ is the task for which mτ

is applicable, F(a, s) ensures mτ is admissible (when s satisfies a) in current state s (a is some

admissibility criteria) and {τj}kj=1 is the set of sub-tasks to which the task τ will be decomposed

on application of mτ .

Note that, the above definition formalizes admissibility1 of methods in a generalized fashion,

independent of representational syntax. In HTN domain descriptions, however, admissibility of

methods are represented as preconditions or conjunctive formulas in predicate logic that the current

state ‘s’ must satisfy.

1Not to be confused with admissible heuristics.
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Definition 9. A hierarchical task network problem is defined as P = (s0, w0, O,M) where s0 is

the initial state, w0 is the initial task network, O is the set of operators (atomic actions) and M is

the set of decomposition methods.

As an intuitive example of how HTNs facilitate human experts in specifying knowledge/feedback,

consider the problem of building a house. The primary task is “Build House” which can be de-

composed into subtasks: “Build House”→ [“Build Foundation”, “Build Walls”, “Build Roof”]1.

Again the subtask “Build Foundation” can be decomposed further: “Build Foundation”→ [“Dig x

feet”, “Reinforcement Bars”, “Pour Concrete”]2 (subscripts indicate decomposition level). Meth-

ods guide how such tasks need to be decomposed. Clearly, the varying levels of task abstraction

allow humans to provide feedback at different levels of generality. For instance, a human could

say “Base needs to be deeper than 10 feet” at the “Dig x ft” level (level 2) or the human could

also say “Foundation must be 1/3rd the height of the house” at the higher “Build Foundation” task

level (level 1). As we explain the formalism and evaluation of our approach through the following

sections it will be clearer that the strength of PGPLANNER essentially lies in its ability to identify

the most appropriate level of generality for preference elicitation.

Problem Setting Our work differs from prior research on preference-based planning (Sohrabi

and McIlraith, 2008; Sohrabi et al., 2009) in two distinct ways: 1) Our preferences are not used to

define the best plan. Instead, they guide the decomposition of the network to efficiently find high-

quality plans; and 2) We aim to actively acquire preferences as needed during the search process

as opposed to requiring the preferences upfront. Our preferences are formally defined as:

Definition 10. A user-defined preference is a tuple P = (∧fi, τj,M+
τj
,M−

τj
), where ∧fi corre-

sponds to conditions of the current state under which the preference should be applied2, τj is

the relevant task, M+
τj

is the set of methods (Definition 8 in section 6.2) which are in the user’s

preferred set and M−
τj

is the set of methods which are in the user’s non-preferred set.

2We use ∧fi to denote that this could be a set of multiple conditions
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A preference can be considered an IF-THEN rule where ∧fi corresponds to the conditions

which the current state should satisfy for preference to apply to a particular task, τj , and M+
τj
/M−

τj

represents the method(s) preferred/non-preferred by the user. It is important to note that a pref-

erence may be defined for (1) all instances of a particular task (∧fi = true), (2) only a single

instance of a task or, (3) any level of abstraction in-between.

Our approach uses these preferences to guide the search through the space of possible decom-

positions in the HTN. Consider the network shown in Figure 6.1. Each node in the network is

labeled by the current state - the current configuration of the blocks - and task. For example, the

root node represents the task τ1 of clearing block B in the state where block F is on A, A is on B,

etc. Note that we use predicate notation internally to represent the states. The edges in the network

represent decompositions and are labeled with the method name. Method m1 breaks task τ1 into

the operator PutOnTable(F ) and, recursively, the task clear(B).

Example 11. Figure 6.1 represents a preference in Blocks World.

P = (Space(Table), Clear(B), {PutOnTable}, {StackonE})

Shaded green areas represent preferred decomposition while shaded red areas represent non-

preferred decompositions.

The preference represents the intuition that it is easier to build arbitrary towers when all the

blocks are on the table as they can be positioned quickly. As specified, this single preference can

apply at multiple points during the search. The effect of the preferences is to update the distribution

that increases the probability of the methods M+ and decreases the probability of the methods

M−. The subtree for M+ is highlighted in green while the subtree for M− is shown in red. While

a similar preference can be given upfront, our active approach evaluates whether this preference is

necessary by estimating the quality of each method. Therefore, our approach increases the value

of each preferences by reducing redundancy that may be present in upfront preferences.
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Figure 6.1: Preference guided search in a Blocks world problem. Rectangular nodes signify a
set of task(s) to be solved. Admissible methods for decomposing a task τ1 are m1, m2 and m3.
Note, in the lower sub-tree we have an additional admissible method m4. Block configuration
pictures signify current state. The green and red shaded areas denote preferred and non-preferred
decompositions (best viewed in color).

In the context of acquiring preferences from the expert, although we assume availability of

the expert throughout the planning process, we aim to rely on him/her only when necessary. This

setting is similar to stream-based active learning (Freund et al., 1997) where examples are shown

online and the algorithm must decide whether to query for a label for the example or ignore it. In

contrast to an acquired label, our preferences are more general allowing the expert to prefer/non-

prefer methods for decomposition. A query is solicited over the current state sn and the current

task tn,

Definition 11. A query is defined over an HTN node n as a tuple qn = (sn, τn).

An expert’s response to a query is a preference. As HTNs are hierarchical, the expert is not

restricted to providing preferences only over the current state/task. It could also be defined over any

subset of the state space that contains sn. The expert selects the proper generality of the preference.

When the space is factored, this involves removing features or introducing variables in description

of sn.
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Example 12. In Figure 6.1, Clear(B) at the root has 3 different decomposition choices all of

which may seem equally valuable to PGPLANNER and generate the query:

q = (< Space(Table), On(A,B), On(F,A), ... >, τ = Clear(B))

. The expert may provide the preference specified in Example 11. Note that in that case, the expert

gives a general advice that applies to any state in which there is space on the table.

Figure 6.2 illustrates the overall architecture of the PGPLANNER framework. Briefly, at every

step (when a task τ needs to be decomposed), PGPLANNER performs a bounded-depth roll-out

(simulation of the subsequent decompositions) to evaluate the quality of each method. This allows

for estimating a distribution over all methods that can decompose τ (Mτ ). If the uncertainty

in this distribution is too high (above ε) PGPLANNER decides to seek human guidance via the

interface. Human input (preference rule P) is used to update the distribution. The best method is

then selected for proceeding with the decomposition, based on the distribution. The illustration,

essentially depicts a snapshot of the decision making pipeline of PGPLANNER. This process

occurs at every HTN node that is processed. Subsequent sections elaborate the theory and the

functionality of the components of this framework.

6.2.1 Problem Overview

PGPLANNER finds a plan given an HTN problem, defining the initial state/goal task(s), and access

to an expert. The goal of PGPLANNER is to find the policy π, a distribution over the methods for

each HTN node n, such that the best plan is reached:

arg min
π

(J(π) = TEn∼dπCπ(n)) (6.1)

J(π) is the total expected cost of finding a plan. If π is used to select decompositions, dπ represents

the distribution of HTN nodes reached. T is the depth of the decomposition. Cπ(n) is the expected

cost at node n. Cπ(n) = Em∼πnC(n,m) where C(n,m) is the immediate cost of selecting m at
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Figure 6.2: Overall architecture of PGPLANNER. At an HTN node, τ represents the task,
Mτ = {m1,m2, . . . ,mk} are the methods that can decompose τ . Roll-out allows for estimating
distribution over methods and uncertainty (P (Mtau), U(Mτ )). Acceptable uncertainty threshold is
ε. Preference from human expert is used to update the distribution. Method distribution is used to
choose the best method.

node n. If the planner aims to find the shortest plan, then the immediate cost C is the number of

actions added to the current plan. PGPLANNER’s objective is find the best method distribution

(with expert guidance) for any task such that the total expected cost is optimized.

PGPLANNER, Algorithm 7 (along with the called procedures 8 & 9), recursively searches

through the space of possible HTN decompositions to reach a valid plan. Each node n in the

HTN with task τn could potentially decompose in several ways according to the available methods

(Mτn). The cost of selecting a method m ∈ Mτn (Cπ(n)) is estimated by rolling out the current

plan and then approximating the distance to the goal. The methods are also scored according to

the current set of preferences. The overall cost estimate of a method m (Ĉ(m)) is a combination of

this preference score and the estimated cost function. Finally, this is converted into a probability
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Algorithm 7 Preference-Guided Planning
1: procedure PGPLANNER(s0, w0, O,M )
2: Frontier ← all nodes in w0, Plans = ∅,P = ∅ . P denotes preference set
3: while Plans == ∅ and Frontier 6= ∅ do
4: currP lan← RECURSEARCH(∅, F rontier)
5: if currP lan 6= ∅ and currP lan 6= NULL then
6: Plans← Plans ∪ currP lan
7: end if
8: end while
9: return Plans

10: end procedure

distribution (π) over the methods Mτn . If this distribution has a high-level of uncertainty (entropy

in our case), the expert is queried about the current set of possible methods.

6.2.2 The PGPLANNER Algorithm

The PGPLANNER maintains a Frontier, the set of all HTN nodes that have to be explored. It is

initialized with 1 or more nodes containing the goal task(s). PGPLANNER proceeds by recursively

decomposing the task τn of the node n at the head of the frontier and inserting new nodes for

the sub-tasks of τn. The methods of non-primitive tasks are recursively selected based on Ĉ(m)

(RECURSEARCH, Alg 8, lines 11-20). Primitive tasks are solved by adding the operator to the

current plan (Alg 8, line 22). This apply step updates the plan for all ancestors of the current node.

When evaluating a node n of the HTN (EVALNODE), the methods m ∈ Mτn represent the set

of possible choices. We estimate the cost Ĉ(m) for each method by rolling out for d steps. Lm

represents the estimated cost of the roll-out on method m. In our case it corresponds to the plan

length. Dm approximates cost to reach the goal state from the state after the roll-out is completed

(EVALNODE, Alg 9, line 4). This distance, denoted as δ, is the number of unsatisfied goal atoms

in the current state. Along with the estimated cost, methods are also evaluated with respect to the

set of preferences by the adherence score (Am). This score (Alg 9, line 7) is determined by the

number of preferences applying to the current node n (P(sn)). The number of preferences which
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Algorithm 8 Recursive Search
1: procedure RECURSEARCH(currP lan, Frontier)
2: if Frontier 6= ∅ then
3: n = POP(Frontier)
4: if τn is non-primitive then
5: π(Mτn), U(Mτn)← EVALNODE(n,P)
6: if Not ACCEPTABLEUNCERTAINTY(U ,n) then
7: P← P ∪ QUERYEXPERT(m, s) . Generate query and acquire preference
8: π(Mτn), U(Mτn)← EVALNODE(n,P)
9: end if

10: Mcur = Mτn

11: while Mcur 6= ∅ do
12: M∗ ← arg maxm π(Mcur) . m ∈Mcurr

13: {n′} ← DECOMPOSE(τn,M∗)
14: NewFrontier ←PUSH(Frontier, {n′}) . Temporary frontier stack
15: retV al← RECURSEARCH(currP lan, NewFrontier) . Recursive call
16: if retV al 6= NULL then
17: return retVal . Backtracking
18: end if
19: Mcur ←Mcur −M∗
20: end while
21: else
22: if Success (apply(currP lan, sn, aτn)) then . Applying primitive action
23: return currP lan
24: end if
25: end if
26: end if
27: return NULL . Backtracking
28: end procedure

Algorithm 9 Evaluate Node
1: procedure EVALNODE(HTN node n, Preference P)
2: Ĉ = ∅ . Set of scores ∀m : m ∈Mτn

3: for each m ∈Mτn do
4: Node rm ← ROLLOUT(m,n, d) . rollout depth d is set to a constant
5: Lm ← cost(plrm), Dm ← δ(srm , goal),
6: P(sn)← ∀p∈P (sn � ∧f ji ) ∧ (τp = τn) . applicable & state satisfies conditions
7: Am ← N+

m(P(sn))−N−m(P(sn))
8: Ĉ ← Ĉ ∪ 〈m, ((D)−1 + (L)−1 +A)〉 . Maximize adherence & minimize cost
9: end for

10: Compute π(Mτn) then U(Mτn)←
∑

m∈Mτn
p(m). log(1/p(m)) . Entropy from π

11: return π(Mτn), U(Mτn)

12: end procedure

97



prefer method m is represented by N+
m while N−m represents the number of preferences which non-

prefer it. Notice that this formulation could allow conflicting preferences on a single method and

task. The final score (Ĉ(m)) is a combination of the estimated cost (Lm, Dm) and the adherence

score (line 8). We convert this score into a distribution (π(n)) over the methods using a Boltzmann

softmax, p(m) = eĈ(m)/
∑

x∈Mτn
eĈ(x) where m ∈ Mτn and p(m) = π(n,m). This distribution

is used in 2 ways: (1) to select the exploration order of the methods and (2) to decide whether a

query is necessary.

The query decision is based on the uncertainty over the set of possible methods (RECURSEARCH,

Alg 8, lines 6-9). Inspired by the success of Active Learning(Settles, 2010), we use the uncertainty

measure to query the expert. However, one could replace this with any function that needs to be

optimized - cost to goal, depth from the start state or a domain specific utility function etc. to

name a few. PGPLANNER uses entropy computed from π(n) as the measure of uncertainty. Our

framework uses a threshold on the entropy, the Not ACCEPTABLEUNCERTAINTY (> ε), to initiate

a query. The expert can either provide decomposition preferences over all tasks of a given type,

or specify preferences over a single instance of a task, or even provide a partial plan to solve a

particular subtask. This establishes an expressive framework for the expert to interact with the

planner. The interaction is driven by the planner, allowing it to only ask as and when needed.

Overall, PGPLANNER interacts with the expert to guide the search through the space of possi-

ble plans. In an HTN setting, our approach transforms the problem of search of possible plans to

sequential decision making problem in the space of possible task decompositions . This facilitates

the expert to specify preference in varying levels of generality. The active elicitation formulation

ensures that expert knowledge is obtained at the correct and most relevant level of generality al-

lowing our algorithm to learn potentially better plans in a more efficient manner. We now briefly

analyze some of the properties of our formulation.
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6.2.3 Properties of PGPLANNER

Difference in obtaining preference at various steps

First, we aim to quantify getting preference in earlier steps when compared to getting preference

at later steps. Let us denote the probability of choosing a method according to the optimal plan

as po(m) given by the Boltzmann distribution. Recall that the cost of selecting method m at HTN

node n as C(n,m) and the cost of a policy π is Cπ(n) = Em∼πnC(n,m). Now if we use a

boolean error function that is set when the method at node n is not chosen according to the policy

(e(n,m) = I(m 6= π∗(n)), then the error of the policy is eπ(n) = Em∼πne(n,m).

Our goal is to minimize the total expected cost of a policy π, J(π) = TEn∼dπCπ(n). Ross and

Bagnell (Ross and Bagnell, 2010) have shown for any policy π, J(π) ≤ J(π∗) + kT ε̄, where π∗

is the optimal policy, T is the task horizon, k is the number of steps to the goal, and ε̄ = 1
T

∑
i εi,

where εi = En∼dπ∗eπ(ni) is the expected error at node i.

A natural question is, does it benefit to ask the query early or should the planning algorithm

wait to query the expert. This can be analyzed using the regret framework. Let πi and πj denote

the policy π when asking the query at steps i and j respectively (j > i). Now, rearranging terms,

we can show that Jπi − Jπj = ∆(j − i), where ∆ denotes the expected change in error, if assumed

to be the same in both the steps i and j. Thus, the difference between the two choices to solicit

preference is linear in the time difference between the two steps, and linear in the change in error

in the two steps. Here it is clear that soliciting advice early can reduce the expected total cost.

Benefit of Preference over rollout

We now consider briefly analyzing the value of PGPlanner vs a simple rollout based planning. Let

us denote the distribution over methods of optimal policy, PGPlanner, and rollout as πo, πA and

πR respectively, where pi(m) = πi(n,m) where m ∈ Mτn is the posterior of choosing a partic-

ular method according to the policy. Suppose we compute the KL divergence of the probability
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distribution of methods of PGPlanner and rollout with the optimal distribution,

DR = DKL(πo||πR) =
∑

m∈M(T )

po(m). ln

(
po(m)

pR(m)

)

DA = DKL(πo||πA) =
∑

m∈M(T )

po(m). ln

(
po(m)

pA(m)

)

obtaining the difference between DR & DA as DR − DA =
∑

m∈M(T ) p
o(m).log p

A(m)
pR(m)

, which is

simply a weighted sum of the log odds of the probability of choosing a method. It is possible to

find the best πA that maximizes this difference by setting
∑

m p
A(m) = 1 as a constraint, but this

requires having access to the optimal distribution. Since that is unknown in many cases, one can

simply observe that when the preferences drive the distribution over methods towards the optimal

one, i.e., choose a method that is close to the optimal, the difference is ≥ 0 indicating that the

preference is more useful than the simple rollout. We next show empirically, this is indeed the case

in many planning problems.

Performance analysis

While PGPLANNER may have an overhead with respect to space and time, owing to the roll-out for

evaluating the quality of every method, the incurred cost is not unbounded and is practically much

lower. The roll-out depth is limited to a pre-defined constant d (which is typically reasonably low),

and if the worst-case search depth for the actually planning process is ∆ then the roll-out overhead

(wrt. time) is bounded at O(∆.d). The space overhead is also nominal since all data-structures are

re-initialized after each roll-out. The worst-case space complexity of the recursive plan search in

PGPLANNER is no worse than the original HTN planning system, SHOP2 (Nau et al., 2003), used

as the core planner.

Most importantly, the overhead cost becomes inconsequential on large problems where the

combination of search depth and branching factor is very high. In such cases, actively acquired
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preferences are highly likely to guide the PGPLANNER away from deeper subtrees, whenever pos-

sible. Naturally, it will depend on the quality of human inputs which we assume to be reasonable.

Note that the human is treated as an imperfect teacher and not as an adversary. In large problems,

guidance provided by preference results in substantial pruning of the search space and, hence, gain

in efficiency and performance. Additionally, as upfront preferences are provided by the expert

without visibility into the current state, they may not be as effective as actively acquired ones in

pruning out low quality decompositions.

6.3 Experimental Evaluation

Our PGPLANNER is built on top of the SHOP2 (Nau et al., 2003) architecture (called JSHOP),

an HTN planner. We have extended the base planner to: (1) perform a roll-out to evaluate all

admissible methods for decomposing the task, (2) elicit human feedback/preferences based on our

evaluation, and (3) utilize the preferences to guide the search.

6.3.1 Experimental Design

Our experiments aim to answer the following questions:

Q1: Does PGPLANNER generate plans efficiently?

Q2: How effective are the generated plans?

Q3: Does active preference elicitation improve the interaction with the expert?

We compared PGPLANNER against several alternate approaches for preference elicitation includ-

ing (1) Upfront Preferences - where all the preferences are specified before planning, similar

to (Sohrabi and McIlraith, 2008; Sohrabi et al., 2009), (2) Random Query - selecting whether

to query randomly (for each step), and (3) No Preferences - planning without preferences. In all
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of the experiments, we perform the role of the experts in providing preferences. Performing user

studies is an interesting future direction.

Figure 6.3: Blocks World Apparatus

Table 6.1: Experimental domains

Domains #[Relations] #[Objects] #[Problems]

Freecell 5 52 20

Rovers 27 50 20

Trucks 10 32 20

Depots 6 45 20

Satellite 8 69 20

TidyBot 24 100 10

Towers of Hanoi 10 9 20

Barman 8 50 10

Mystery 12 35 10

Assembly 10 15 10

Rockets 6 15 10

Blocks World 3 40 20

We evaluate PGPLANNER on several standard planning domains as well as a novel Blocks

World domain, listed in Table 6.1 (Number of relations, maximum number of objects and number

of problems considered in each domain). There is no straightforward way to succinctly describe

the complexity of the domains. However, the maximum number of objects and relations in each

of them should provide a fair idea of its complexity. Experiments for the Blocks World were

performed using a surrogate real-world environment, an apparatus (Figure 6.3) that can detect

block configurations of actual named blocks via sensors. State encoding is then generated by

processing the sensor data.

For all experiments, we set ACCEPTABLEUNCERTAINTY to entropy ≤ ε (= 0.5). We also

performed line search on the value space, however, a threshold of 0.5 worked well throughout and

we report results with that. Preferences were provided by the person designing and conducting

the experiments. We avoid experimental bias in the quality of preferences given across all the

preference-based approaches. We verify this experimentally by storing all the actively elicited
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Figure 6.4: Efficiency comparison of all approaches across 12 domains. Percent problems solved
in 10 minutes, higher is better. (best viewed in color)

preference statements in a log file and using those as the set of input preferences in the Upfront ap-

proach and observing how they affect the decision making process in both cases (see Discussion).

We have developed an interface that facilitates the interaction between the expert and the plan-

ner. The interface has three main components: the state module, the partial plan module and the

interaction module to visually render the current state, to expose the presently selected set of primi-

tives and to provide a console for the human-agent interaction respectively. The interaction module

allows the planner to query the user and the user to respond to the query with a preference.

6.3.2 Experimental Results

In each domain, the planners were executed for 10 minutes. This allows for validating the ability

of the expert to guide the algorithm to efficient solutions (as well as accommodating the limited

time and attention of the expert). Figure 6.4 shows the percentage of problems where a plan was

found. We evaluate the quality of the learned plans separately.

(Efficiency) In most domains, every planner using preferences is able to outperform standard

planning (no preferences). This indicates that preferences have a positive impact during planning.
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Figure 6.5: Performance comparison of all approaches across 12 domains. Compares the ratio of
average plan lengths for every approach to the longest average plan length, lower implies better
(best viewed in color)

Planning with upfront preference outperforms randomly querying for preferences in 9 out of 12

domains. A disadvantage of random querying is that it may not query at points in planning where

the preferences could have the most impact. Specifying preference upfront can take advantage of

preferences at these crucial decisions at the cost of placing additional responsibility on the expert

to give useful preferences. Across all domains, PGPLANNER outperforms all of the baselines.

This answers Q1 affirmatively in that actively eliciting preferences guides the planner to solutions

more efficiently

(Effectiveness) Next, we investigate the generated plans. In every domain, we only compare

problems where all planning methods are able to generate a plan (in the given time constraint).

Figure 6.5 illustrates the ratio of the average plan length of each planning method compared to the

average of plans generated without preferences3. Planning with preferences generates shorter plans

in all the domains. Since, as evident, no preference always results in higher average plan lengths.

The ratios for all methods with preferences are less than 1. However, PGPLANNER has the lowest

3The value for No Preference case is always 1, since the ratio is taken with itself.
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(a) Freecell (b) Blocks World (c) Barman

(d) Rovers (e) Depots (f) Mystery

Figure 6.6: Learning Curves in 3 construction (top) and 3 route-finding/ordered-assignment (bot-
tom) domains. Performance: % of problems solved, vs. the # queries. (best viewed in color).

ratio across all domains. Thus, PGPLANNER is able to produce shorter plans on an average than

all of the baselines, thus answering Q2 affirmatively as well.

(Effect of query budget) Finally, we investigate how our method performs relative to the num-

ber of queries solicited. Figure 6.6 shows learning curves, in 3 construction oriented domains

(Freecell, Blocks World and Barman) and 3 route-finding and ordered-assignment problem solv-

ing type domains (Rovers, Depots & Mystery), respectively. Note that learning with no preferences

and learning with upfront preferences are constant as the number of preferences never changes. In

each domain, the x-axis represents the number of preferences given by the expert. The vertical line

denotes the point in the curve where the number of preferences given upfront equals the number

of queries. Our method outperforms learning with upfront preferences using the same number of

preferences in all domains. This suggests that actively eliciting preferences succeeds in generating

queries at important stages during the search process, improving the interaction with the expert (af-
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firmatively answering Q3). Note that, the curves clearly illustrate how the performance varies with

the query budget. Interestingly, the rise is gradual. A sharp rise would have indicated that most

of the performance gain is achieved via first few preferences towards the early stages of planning

(favoring the upfront case). Instead, we observe that PGPLANNER identifies the correct junctures

throughout the entire planning process at which expert guidance is most useful, allowing it to pose

the optimal set of queries to the human.

6.3.3 Discussion

PGPLANNER is effective, since the framework elicits preferences when and where they are neces-

sary as well as relevant. The expert can provide informative preferences to steer the search process

towards more useful parts of the search space. On the other hand, upfront preferences may not al-

ways be relevant, because the preferences might be about unreachable regions, or may not alter the

decision that the planner would have taken. We verify this by measuring the number of times the

preferences were used during the search and how many of those alter the decision of the planner.

Applicability of preferences We observe that on an average, across all domains, upfront pref-

erences are used/applied at least 20% fewer times (corresponding to 2.04 fewer uses) than pref-

erences elicited by PGPLANNER. We evaluated how PGPLANNER queries for (uses) preference

across different stages/depths of plan search. Figure 6.7 shows how total average preferences used

varies with relative depth. Since planning depth is different for every problem in every domain,

’depth ratio’ denotes a standardized scale computed by considering equidistant fractions of the to-

tal planing depth. Similarly, as total number of preferences used varies across domains, they were

normalized and averaged over all domains, and their cumulative values were plotted. We observe

how PGPLANNER acquires 80% of the preferences by 60% of the planning depth as compared to

the upfront case which uses preferences uniformly till completion. This empirical result corrobo-

rates the earlier discussion on theoretical properties that showed the relationship between impact
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of the preference and the relative depth. Note, however, that PGPLANNER does elicit/use some

preferences at higher depths. So it cannot be claimed acquiring early would be a valid alternative.

It is necessary to identify the right situations where guidance is needed, as done by our approach.

Figure 6.7: Preference used (cumulative) against

relative depth (best viewed in color)

Table 6.2: Average % of applica-

ble prefs. that influence decisions.

Domains PGPLANNER Upfront Preference

Freecell 91.875 70.625

Rovers 88.125 72.5

Trucks 89 73

Depots 86.25 75.625

Satellite 95.5 84

TidyBot 89 80

Blocks World 89.1 74.28

Towers of Hanoi 84.74 74

Barman 84 80

Mystery 87 86

Assembly 84 83

Rockets 74 73

Average 86.88 77.17

Influence on decision making Furthermore, actively acquired preferences influence the deci-

sions in 86.88% of the cases where the preference applies, compared to 77.17% for upfront pref-

erences. Table 6.2 shows the the statistics of every domain. Notice that, while the measures for

planning with upfront preferences are almost always less than PGPLANNER across all domains,

the difference is negligible in the ‘Mystery’ and ‘Rockets’ domains which aligns with what we

observe in terms of performance and efficiency. In the ‘Depots’ domain, however, the difference

in percentage of decision impacting preference is around 11% (row 4) but the difference in average

plan length is substantially high (Figure 6.5). On closer inspection we observed that in 2 particular

problems in the Depots domain, upfront preferences, though applicable, lead to sub-optimal plans,

particularly with substantially high plan length. While it is difficult to discover the exact reason for

this behavior, we realized that the 2 particular problems had less ‘crates’ than ‘packages’ unlike

all other problems which had greater or equal creates as packages. Since this domain essentially
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solves ordered-assignment problems, suggestion/preference at the right point is crucial especially

in problems where assignment slots are less than the assigned objects, emphasizing the value of

our active approach.

We observe exactly the opposite scenario in the ‘Towers of Hanoi’ domain. Here the difference

is around 10%, but we observe that difference in performance (average plan length) is not signif-

icantly large. This suggests that we have not compromised on the quality of preferences provided

upfront. Particularly the upfront preference, “If possible then avoid empty pegs”, seemed to be

effective in influencing the planner towards that part of the search space which mostly resulted in

better (shorter) plans. A similar, more prominent case, is the ‘Freecell’ card game domain. The

upfront preference “If possible Then prefer decompositions that allow for immediately finishing a

card compared to other choices” led to shorter plans, even though this preference altered the deci-

sions at only a few points. Clearly, both Towers of Hanoi and Freecell are intuitive domains and a

little practice allows us to formulate high quality upfront preferences. But other domains are more

challenging and it is difficult for an expert to imagine all possible scenarios and formulate useful

preferences without knowing the current stage and task. Also, planning with upfront preferences

performs better than random querying in most domains, indicating that the preferences provided

were reasonable. However, PGPLANNER is able to elicit more relevant preferences and use them

to find more effective plans efficiently.

Challenges One natural question that arises is that the planner assumes that the human prefer-

ences are close to optimal (or at least non sub-optimal). This is indeed a correct observation that is

true in many human-in-the-loop systems. In inverse RL (Odom and Natarajan, 2016a) and proba-

bilistic learning (Odom and Natarajan, 2016b), the expert’s preferences can be explicitly traded-off

with trajectories or labeled data respectively. In such cases, the expert’s preferences serve to reduce

the effect of targeted noise. However, in planning we do not assume access to such trajectories and

instead rely on rollout. Thus, an explicit trade-off is not quite sufficient and warrants a deeper in-

vestigation which is beyond the scope of the current work. We note that querying a set of different
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experts based on their expertise level on certain sub-tasks remains an interesting and challenging

future direction.

6.4 Conclusion

We present a novel method for preference-guided planning where preferences are actively elicited

from human experts. PGPLANNER allows for the planner to query only as needed and reduces the

burden on the expert to understand the planning process to suggest useful advice. We empirically

validate the efficiency and effectiveness of PGPLANNER across several domains and demonstrate

that it outperforms the baselines even with fewer preferences. Our formulation transforms plan

search into a sequential decision making process in the space of task decompositions, based on

estimated distribution and uncertainty. In essence, PGPLANNER is able to infer what-it-knows (or

does not know) and pose the optimal set of queries to the expert. This not only effectively prunes

the sub-optimal regions of the search space but also generates better plans.
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CHAPTER 7

CONCEPT INDUCTION FROM SPARSE OBSERVATIONS

Figure 7.1: Humans teaching new concept “Divert” to hospital resource planner agent.

Planning with active preference elicitation, while an effective strategy for an agent to collab-

oratively acquire additional knowledge, does not address all the challenges of a true human-AI

collaborative framework as we envisioned. It is important for the agent to be able to learn novel

concepts and progressively enhance its knowledge base (KB) through the course of interaction

with human(s). Humans have implicit cognitive and intuitive understanding of varied tangible and

intangible concepts. Thus, human collaborators when interacting with the agent will naturally tend

to provide additional knowledge in terms of concepts that may not be encoded as part of the agent’s

KB. Human collaborators would expect the agent to understand that concept seamlessly in subse-

quent interactions, even if it failed to do so in the beginning. In fact, that is one of the expected

outcomes of a Human-AI collaborative framework.

For instance, Figure 7.1 shows an example interaction in the hospital resource planning sce-

nario. Note how the agent is unaware of the concept of divert and the human collaborator provides

a single demonstration/instance for that concept of ‘divert’. The agent is expected to learn a gener-

alized principle of what ‘divert’ is, such that it can apply or understand the same in other contexts

(such as other wards, other types of resources etc.) as well. In most cases the human collaborator
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will provide a single demonstration to convey the idea and the agent should be able to induce a gen-

eral representation of the concept. In this chapter we present a novel approach to induce concepts

in structured spaces from a single (or few) demonstrations (Under review).

7.1 Introduction

We consider the problem of learning generalized representations of concepts using a small num-

ber of examples. More specifically, we study the case of learning from one example, which is

traditionally called one-shot learning. This problem has received much attention from ML com-

munity (Lake et al., 2011; Khan and Madden, 2014). We consider a challenging setting inside

one-shot learning, that of learning explainable and generalizable (first-order) concepts. These con-

cepts can then be particularly reused for learning compositional concepts, for instance, plans. In

our concept learning setting, plan induction becomes a special case where a generalizable plan is

induced from a single (noise-free) demonstration. As an example, consider building a tower that

requires learning L-shapes as a primitive. In our formulation, the goal is to learn a L-shape from a

single demonstration. Subsequently, using this concept, the agent can learn to build a rectangular

base (with 2 L-shapes) from another single demonstration and so on till the tower is fully built.

Concept learning has been addressed previously in several ways: problem solving by reflec-

tion (Stroulia and Goel, 1994), mechanical compositional concepts (Wilson and Latombe, 1994),

learning probabilistic programs (Lake et al., 2015), etc. However, all these methods require a

significant number of examples. Concept learning as one-class classification has been considered

previously where no negative examples are explicitly created. As one would expect, they are con-

sidered while learning an SVM or Nearest Neighbor (Tax, 2001), or with a neural network (Koz-

erawski and Turk, 2018).

While these methods are closely-related, our work has two key differences. First, we aim to

learn an easily interpretable, explainable, and generalizable concept representation that can then

be compounded to learn more complex concepts. To this effect, we focus on learning first-order
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horn clause (Horn, 1951)(If Then Else statements). Second, and perhaps most important, we do not

assume the existence of a simulator (for plans) or employ a closed-world assumption to generate

negative examples. Inspired by Mitchell’s observation of futility of bias-free learning (Mitchell,

1997), we develop an approach that employs domain expertise as inductive bias. The principle

of structural risk minimization (Vapnik, 1999) shows how optimal generalization from extremely

sparse observations is quite hard. The problem is even more critical in structured domains (most

relations are false in the world). Thus, one-shot induction of generalized logical concepts is chal-

lenging. We aim to solve this problem via an iterative revision of first-order horn clause theories

using a novel scoring metric and guidance from a human. In essence, we emulate a ‘student’ who

learns a generalized concept from an example demonstration provided by the ‘teacher’, by both

reflecting as well as, occasionally, asking relevant questions.

We propose a novel approach referred as Guided One-shot Concept Induction (GOCI) for one-

shot concept learning that learns generalized first-order rules. GOCI builds upon an inductive

logic program (ILP) learner (Muggleton, 1991) and introduces two key algorithmic steps. First,

a modified scoring function that allows for explicitly computing distances between concept rep-

resentations. We show that this distance corresponds to the well known Normalized Compression

Distance (NCD) in the case of plan induction. Based on this observation, we demonstrate that the

proposed scoring function is indeed a valid distance metric. Second, the use of domain knowledge

from human expert as an inductive bias. Unlike many advice taking systems that employ domain

knowledge before training, our GOCI algorithm identifies the relevant regions of the concept rep-

resentation space and actively solicits guidance from the human expert to find the target concept in

a sample-efficient manner. Overall, these two algorithmic modifications allow for more effective

and efficient learning using GOCI that we demonstrate both theoretically and empirically.

Contributions. We make a few important contributions: (1) We derive a new distance-penalized

scoring function inside an ILP learner that allows for computing distances between concepts during

guided one-shot concept induction. (2) We treat the human-advice as an inductive bias to accelerate
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learning. Our ILP learner actively solicits richer information from the human experts than mere

labels. (3) We analyze the theoretical properties of GOCI. This includes the validity of the distance

metric, showing that NCD between plans is a special case of our metric; and deriving a PAC

bound based on Kolmogorov complexity. (4) Finally, we demonstrate the exponential gains in

both sample efficiency and effectiveness of the algorithm over standard concept learners on diverse

concept induction tasks.

7.2 Background discussion

Concept Learning: Concept learning has previously been studied from several perspectives.

Our approach is closely related to Stroulia & Goel (1994)’s work which proposes an approach for

inducing logical problem-solving concepts by reflection. While our scoring metric in GOCI is sim-

ilar to ‘reflection’, its scope is much broader (problem-solving is a special case) and can be used

to learn from sparse observations. Wilson (1994) models concepts about continuous geometric

shapes by reasoning with two-dimensional bounding boxes. While we use discrete spatial struc-

tures as motivating examples, GOCI is not limited to discrete spaces. GOCI is also related in spirit

to probabilistic (bayesian) program induction for learning decomposable visual concepts (Lake

et al., 2015) which illustrates how exploiting decomposability is more effective than deep learning

frameworks. Our approach leverages not only decomposability but implicit relational structure as

well, via a logical representation, allowing for generalized concept classes, including plan induc-

tion. Tom Mitchell defines concept learning as inferring a boolean-valued function from training

examples of its inputs and outputs (Mitchell, 1997), which has inspired its treatment as a standard

classification/regression problem as well. Our treatment of the problem is slightly different and

requires a brief discussion on the notion of concept itself.

Philosophical perspective of concepts: Fodor (1998), holistically outlines the notion of what

a ‘concept’ is and how all other restricted views of the theory of concepts are insufficient. In
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summary there is some fundamental desiderata of the notion of a concept as per its cognitive

understanding:

P1. Concepts are mental particulars - Any representation of a concept must satisfy the mental

ontology of cause and effect.

P2. Concepts are categories - All things in the universe fall into conceptual categories.

P3. Concepts are compositional - Mental representation of concepts derive their contents from

the contents of their constituents.

P4. Most concepts need to be learned - only a small fraction of possible concepts exist as innate

knowledge that conscious beings are born with.

This work further states how the ‘Standard Argument’ of concept acquisition assumes that it is an

inductive process of creation and testing of candidate hypotheses of a concept (in some represen-

tation) against the one or more ‘experiences’ of that concept.

Our approach is inspired by such a holistic notion of concept and its acquisition. Following

(P3) we propose a problem setting for learning decomposabe concepts (formally defined later).

Additionally, since some concepts are assumed to be innate knowledge of conscious beings (P4),

we emulate that as a pre-defined knowledge-base of known fluents that the AI agent possesses

before it starts learning. P2 states the notion of concepts as categories which inspires our treatment

of the learning problem as a discriminative one.

As per ‘Standard Argument’ concept acquisition is different from the traditional setting of

merely learning linear/non-linear decision boundaries in traditional machine learning context, since

such learning paradigms fail to align with all the desiderata. Consequently in our learning paradigm,

in fact even in ILP, we attempt to induce hypothesis by testing against one or more experiences.

The logical structure in our candidate hypotheses is a property of the representational choice and

comes as an additional benefit that allows us to adhere to all the desiderata outlined above. Our
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problem setting can alternatively be viewed as plan induction, where we induce a plan (ordering is

inconsequential) at an higher level abstraction as a representation of the ‘mental particular’ (P1).

In our learning context the experiences we aim to test our candidate hypothesis against, may be

very sparse experiences (even a single one).

One/few-Shot Learning: All traditional concept-learning approaches described above require

a significant number of examples. Our problem setting requires learning from sparse examples

(possibly one). Lake et al., (2011) propose a one-shot version of bayesian program induction of

visual concepts. There is also substantial work on one/few-shot learning (both deep and shallow)

in a traditional classification setting (Bart and Ullman, 2005; Vinyals et al., 2016; Wang et al.,

2018), most of which either pre-train with gold-standard support example set or sample synthetic

observations under certain assumptions. We make no such assumptions about synthetic examples.

Theory Induction: Our concept learning approach, aligned with the Standard Argument aims

to induce and test candidate hypotheses and we choose to represent such hypotheses via logical

constructs (aligned with the desiderata of the notion of concepts). ILP (Muggleton, 1991; Mug-

gleton and De Raedt, 1994) inductively learns a logical program (first-order theory) that aims to

cover most of the positive examples and none of the negative examples. With ILP, goal is to gen-

eralize over instances using background knowledge as search bias by building valid hypotheses

about unseen examples. In concept learning, generalization is search through space of candidate

inductive hypotheses where induction of single theory requires (1) structuring, (2) searching and

(3) constraining space of theories (Lisi, 2008). Research in this area has usually focused on one

or more of these dimensions. FOIL (Quinlan, 1990) is an early non-interactive learner with the

disadvantage that it occasionally prunes some uncovered hypotheses. This is alleviated in systems

like FOCL by introducing language-bias in form of user-defined constraints (Pazzani, 1992).

Top-down relational ILP systems such as PROGOL (Muggleton, 1995) & ALEPH (Srinivasan,

2007) employ inverse entailment to restrict search space. Later with Interactive ILP, learner could
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pose questions and elicit expert advice which allows pruning large parts of search space (Sammut

and Banerji, 1986; Rouveirol, 1992, 1990). To incorporate new incoming information, ILP sys-

tems with theory revision, incrementally refine and correct the induced theory (Muggleton, 1988;

Sammut and Banerji, 1986). While GOCI is conceptually similar to ALEPH (uses different search

strategies and evaluation functions), it additionally acquires domain knowledge by interacting with

human expert incrementally. We extend this to one-shot setting. In our setting one-shot necessitates

testing candidate hypothesis against one experience, which is extremely difficult. This requires the

use of additional knowledge for guiding the induction process towards the optimal generalization.

Knowledge-Guided Learning: Background knowledge in ILP is primarily used as search bias.

Strong inductive biases in the form of domain knowledge are required to accelerate learning.

Mitchell (1980) proved that biasing learners is necessary to achieve true generalization over new

instances. Although earliest form of knowledge injection can be found in explanation-based ap-

proaches (Shavlik and Towell, 1989; Towell and Shavlik, 1994), our work relates to preference-

elicitation framework (Braziunas and Boutilier, 2006) which guides learning via human prefer-

ences. Augmented learning with domain knowledge as an inductive bias has long been explored

across various modeling formalisms, including SVMs, ANNs (Fung et al., 2002; Towell and Shav-

lik, 1994), probabilistic logic (Odom et al., 2015), and planning (Das et al., 2018a,b). Our human-

guided GOCI learner aims to extend these directions in the context of learning complex concepts

(including plans).

7.3 Guided One-shot Concept Induction

We are inspired by a teacher (human) and student (machine) setting in which a small number of

demonstrations are used to learn generalized concepts (Chick, 2007). Intuitively, the description

provided by a human teacher tends to be modular (can have distinct logical partitions), structured
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Figure 7.2: Highlevel overview of our GOCI framework.

(entities and relations between them), and in terms of known concepts. Hence, a vectorized repre-

sentation of examples is insufficient. We choose a logical representation, specifically a function-

free restricted form of first-order logic (FOL) that models structured spaces faithfully.

Our approach GOCI (Figure 7.2) consists of an ILP learner that induces horn clauses from data.

Typical ILP learners use coverage to score candidate clauses. However, this cannot be used with

one-shot learning. Hence, we introduce a penalty function. Specifically, this penalty function is

the conceptual distance between the induced theory at the current iteration and the demonstration

provided by the “teacher” (Conceptual distance calculator; top-right in Figure 7.2). Moreover, the

search space of FOL theories is intractable and hence, ILP resorts to employing “mode” definitions

as search bias. However, we need stronger inductive biases in our setting. We allow for a stronger

inductive bias by enabling the teacher to provide constraints as advice that can be directly added to

the clausal theory. To find the most relevant constraints, GOCI queries the expert to choose among

a sampled set of constraints (as first-order predicates) and uses the selected constraint to revise the
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theory. This is analogous to a student asking relevant questions. Formally, we are investigating the

following problem.

Given: A set of ground predicates (or trajectories) describing one (or few) instance(s) and expert

guidance

To Do: Induction of first-order logic representation of a concept that generalizes the given

example(s) effectively.

Difference in Learning/Evaluation Paradigms: Our evaluation paradigm is distinct from that

of ILP as well as traditional machine learning in general. Empirical evaluation, in traditional

machine learning setting, happens by computing the predicted value of the target feature ŷX for

a test instance X represented as a feature vector of fixed length N . Similarly in case of ILP,

we predict ŷX for a test instance X , which here is represented as a arbitrary length vector. In

GOCI, however, the notion of evaluation is quite different. A test instance X is represented as

a planning task/goal and we evaluate it by testing if a valid plan πX can be generated for the

same (Figure 7.3). Consequently in learning, both traditional machine learning as well as ILP

Figure 7.3: Differences between evaluation paradigm of our method GOCI and that of Traditional
Machine Learning as well as ILP.

aim to maximize coverage of positive instances E+ (maxP (ŷx = true|yx ∈ E+)) and minimize

coverage of negatives E−, (i.e. minP (ŷx = true|yx ∈ E−)). GOCI evaluates a candidate concept

representation by allowing the agent to realize that concept, for instance by computing a valid plan
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for the goal/task implied by the instance x. Hence this is akin to plan induction, since we are

learning parameterized plan for realizing the concept as a surrogate for the concept itself.

However, for the sake of theoretical analysis, we assume a traditional evaluation paradigm.

Similar to ILP, we assume that the final/candidate theory representing a desired concept, learned

by GOCI, is evaluated by predicting the outcome of a response variable ŷ, whose positive outcome

implies that a given test instance X is indeed an instance of the desired concept. This allows us

to derive algorithmic bounds on query budget, subject to a pre-defined error margin, under a PAC

learning assumption.

7.3.1 Input

The input to GOCI is the description of the instances(s) of a concept that the human teacher pro-

vides. An input example of a concept is, thus, conjunction of a set of ground literals (assertions).

Example 13. An instance of a concept in the domain of spatial structures, can be a structure L

with dimensions height = 5, base = 4 (as shown in Figure 7.4). L(S), Height(S, 5), Base(S, 4),

s is the concept identifier and may be described as conjunction of ground literals,

Row(A)∧ Tower(B)∧ Width(A, 4)∧ Height(S, 5)∧ Base(S, 4)∧ Contains(S, A)∧
Contains(S, B)∧ Height(B, 4)∧ SpRel(B, A,′ NWTop′);

which denotes L as composition of a ‘Row’ of w = 4 and a ‘Tower’ of h = 4 with appropriate

literals describing the scenario (Figure 7.4 left). As a special case, under partial or total ordering

assumptions among the ground literals, an input instance can represent a plan demonstration.

7.3.2 Output

GOCI induces a least general generalization (LGG) horn clause from the input example(s).

Definition 12. Concept in our setting is represented as disjunctive horn clause theory.

T = C(sk . . .) : −
∨
k∈K

[
∧Ni=1f

k
i (t1, . . . , tj)

]
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Figure 7.4: Concept L (base = 4, height = 5), described as composition of a Tower and a Row

where the body ∧Ni=1fi(t1, . . . , tj) is a conjunction of literals indicating known concepts, the head

C(sk . . .) identifies a target concept, and the terms {sk} are logical variables that denote the pa-

rameters of the concept. Since a concept can be described in multiple ways (Figure 7.4), the final

theory will be a disjunction over clauses with the same head. A (partial) instantiation of a theory

T is denoted as T/θ.

Note that these definitions allow for the reuse of concepts induced earlier, potentially in a

hierarchical fashion. We believe that this is crucial in achieving human-agent collaboration in

complex domains.

Example 14. Figure 7.4 illustrates an instance of the concept L which can be described in multiple

ways. A possible disjunction could be,

L(s) : −[Height(s, hs), Base(s, ws), Contains(s, a),Contains(s, b), Row(a), Tower(b),

Width(a, wa), Height(b, hb), Equal(ws, wa),Sub(hb, hs, 1), SpRel(b, a, “NWTop”)]∨
[Height(s, hs), Base(s, ws), Contains(s, a),Contains(s, b), Row(a), Tower(b),

Width(a, wa), Height(b, hb), Equal(hs, hb),Sub(wa, ws, 1), SpRel(b, s, “W”)]
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The generalization must be clearly noted. The last argument of the SpRel() is a constant

and not variable, since only this particular spatial alignment is appropriate for the concept of the

L structure. Although the input is a single instance described in one way (Example 13), GOCI

should learn a generalized representation such as Example 14. Another interesting aspect are

the additional constraints: Equal(X,Y) and Sub(X,Y,N). While such predicates are a part

of the language, they are not typically described directly in the input examples. However, they

are essential in appropriate generalization, since they can express complex interactions between

numerical (non-numerical) parameters.

Note that we describe concepts in a generalized manner as horn clause theories. A specific

instantiation could be plan induction from sparse demonstrations. In our approach, we can specify

the time index as the last argument of both the state and action predicates. Following this definition,

we can allow plan induction as shown in our experiments. Our novel conceptual distance is clearer

and more intuitive in the case of plans as can be seen later.

Definition 13 (Decomposable:). A concept C is Decomposable iff it is expressed as a conjunction

of other concepts, and one or more additional literals to model the interactions. C ⇐ (
∧
i C ′i) ∧

(
∧
j Bj). Here C ′i are literals that represent other concepts andBj are literals that, either describe

the attributes of C ′i or connect them.

Decomposable means that the concept (currently unknown) can be described as a composition

of other known concepts. GOCI learns the class of decomposable concepts since it is intuitive for

the “human teacher” to describe. Decomposable concepts faithfully capture the modular and struc-

tured aspect of how humans would understand and describe instances of concepts in the universe.

It also connects to the decomposable nature of planning tasks which can be normally partitioned

into sub-tasks that yield sub-plans.
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7.3.3 Methodology

Search: Given the definition of the input and output spaces, we now describe the search process.

ILP systems perform a greedy search through the space of possible theories. Space is typically

defined, declaratively, by a set of mode definitions to guide the search process. Following most

well-known ILP systems (Srinivasan, 2007), we also start with the most specific clause (known

as a bottom clause) from the ground assertions and successively add/modify literals that might

improve a rule that best explains the domain. Typically, the best theory is the one which most

accurately explains positive example(s) provided while minimizing negative example coverage.

Thus, it optimizes the likelihood of a theory T based on the data (D = E+ ∪ E−).

We start with a bottom clause, we variablize the ground statements via anti-substitution. Vari-

abilization of theory T is denoted by θ−1 = {a/x} where a ∈ consts(T ), x /∈ vars(T ). That is,

inductive substitution θ−1, is a mapping from occurrences of ground terms in theory T to variables.

Evaluation Score: To score a candidate theory, it is necessary to modify the coverage-based

ILP scoring (e.g., ALEPH’s compression heuristics) for the following reasons.

• To use as much of the user-provided advice as possible, we learn long theory, hence the

search space can be exponentially large. Thus, modes alone aren’t enough to guide our

search strategy in this situation.

• There is only one (a few) positive training example(s) to learn from and many possible rules

can accurately match the training example. Coverage based scores clearly fail here to iden-

tify the best theory.

Most inductive learners optimize some adaptation of likelihood. For a candidate theory T , like-

lihood given data D is, LL(T ) = logP (D|T ), which is essentially its coverage. In our GOCI

framework, we have one (at most few) positive example(s). Clearly coverage will not suffice.

Hence, we define a modified objective as follows.

T ∗ = arg min
T∈τ

(−LL(T ) +D(T/θX , X)) (7.1)
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where T ∗ is the optimal theory, τ is the set of all candidate theories, and D is the conceptual

distance between the instantiated candidate theory T/θX and the original exampleX . As explained

earlier, a theory T is a disjunction of horn clauses with the target concept as the head.

Distance metric: Conceptual distance, D(T/θX , X)), is a penalty in our objective. The key idea

is that any learned first-order horn clause theory must recover the given instance by equivalent

substitution. However, syntactic measures, such as edit distance, are not sufficient since changing

even a single literal, especially, literals that indicate inter-concept relations, could potentially result

in a completely different concept. For instance, in blocks-world, the difference between a block

being in the middle of a row and one at the end of the row can be encoded by changing one literal.

Hence, a more sophisticated semantic distance such as conceptual distance is necessary (Friend

et al., 2018). However, such distances are difficult to compute without a deeper understanding of

the domain and its structure.

Our solution is to employ inter-plan distances. As discussed earlier, the class of concepts

GOCI can induce, are decomposable and, hence, are equivalent to parameterized planning tasks.

One of the key contributions of this work is to exploit this equivalence by using a domain-

independent planner to find grounded plans for both the theory learned at a particular iter-

ation i, Ti and the instance given as input, X . We then compute the Normalized Compression

Distance (NCD) between the plans.

NCD for Plans: Goldman & Kuter (2015) proved that NCD is arguably the most robust inter-plan

distance metric. NCD is a reasonable approximation of Normalized Information Distance, which

by itself is not computable (Vitányi et al., 2009). Let the plans for Ti/θX and X be πT and πX . To

obtain NCD, we execute string compression (lossy or lossless) on each of the plans as well as the

concatenation of the two plans to recover the compressed strings CT , CX , and CT,X respectively.

NCD between the plans can be computed as,

NCD(πT , πX) =
CT,X −min(CT , CX)

max(CT , CX)
(7.2)
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The conceptual distance between a theory T and X is the NCD between the respective plans,

D(T/θX , X) = NCD(πT , πX). This entire computation is performed by the Conceptual distance

calculator as shown in Figure 7.2.

Observations about NCD: (1) Conceptual distance as a penalty term for negative log-likelihood

in the scoring function ensures that the learned theory will correctly recover the given exam-

ple/demonstration. (2) D(T/θX , X) generalizes to the Kolmogorov-Smirnov statistic between two

target distributions if we induce probabilistic logic theories. We prove these insights theoretically

in the next section.

Human Guidance: As outlined earlier, the search space in ILP is provably infinite. Typically

language-bias (modes) and model assumptions (closed world) are used to prune the search space.

However, it is still intractable with one (or few) examples. Hence, we employ human expert

guidance as constraints that can be directly used to refine an induced theory, acting as a strong

inductive bias. Also, we are learning decomposable concepts (see Definition 13). This allows

us to exploit another interesting property. Constraints can now be applied over the attributes of

the known concepts that compose the target concept, or over the relations between them. Thus,

GOCI directly includes such constraints in the clauses as literals (see Example 14). Though such

constraint literals come from the pre-declared language, they are not directly observed in the input

example(s). So an ILP learner will fail to include such literals in the induced clauses.

If the human inputs (constraints) are provided upfront before learning commences, it turns out

to be wasteful/irrelevant. More importantly, it places the burden on the human consider all possible

scenarios where advice could be needed. To alleviate this, our framework explicitly queries for hu-

man advice on the relevant constraint literals, which are most useful. Let U be a predefined library

of constraint predicates in the language, and let U() ∈ U be a relevant constraint literal. Human

advice A can essentially be viewed as a preference over the set of relevant constraints {U()}. If

UA denotes the preferred set of constraints, then we denote the theory having a preferred constraint
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literal in the body of a clause as τA. (For instance, based on Example 14 GOCI could query which

of the two sampled constraints Sub(hb, hs, 1) & Greater(hb, hs) is more useful. Human could

prefer Sub(hb, hs, 1), since it clearly subsumes the other.) Scoring function now becomes:

T ∗ = arg min
T∈τ

(−LL(T ) +D(T/θX , X)) : τ ⊆ {τA}

Thus, we are optimizing the constrained form of the same objective as Equation 7.1 which aims

to prune the search space. This is inspired by advice elicitation approaches (Odom et al., 2015).

While our framework can incorporate different forms of advice, we focus on preference over con-

straints on the logical variables, in our one-shot setting. This relates to the work on learning with

qualitative constraints by Yang et al.,(2013). The formal algorithm, described next, illustrates how

we achieve this via an iterative greedy refinement (Figure 7.2, query-advice loop shown in left part

of the image).

7.3.4 The GOCI Algorithm

Algorithm 10 outlines the GOCI framework. It initializes a theory T0, by variablizing the ‘bot-

tom clause’ obtained from X and background knowledge [lines 3 & 5]. Then it performs a

standard ILP search (described earlier) to propose a candidate theory [line 6]. This is followed

by the guided refinement steps, where constraint literals are sampled (parameter tying guides the

sampling) and the human teacher is queried for preference over them, such that the candidate the-

ory can be modified using preferred constraints [lines 7-9]. The function NCD() performs the

computation of the conceptual distance, by first grounding the current modified candidate theory T ′

with the same parameter values as the input exampleX , then generating grounded plans and finally

calculating the normalized compression distance between the plan strings (as shown in Figure 7.2

and Equation 7.2) [line 10]. Distance-penalized negative log-likelihood score is estimated and

minimized to find the best theory at the current iteration [lines 11-14], which is then used as

the initial model in the next iteration. This process is repeated either until convergence (no change

in induced theory) or maximum iteration bound (L).
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Algorithm 10 Guided One-shot Concept Induction
1: procedure GOCI(Instance X)
2: Initialize: Set Iteration `← 1
3: Initialize: Bootstrap theory T0 ← X/θ−1

4: repeat
5: Use T`−1 as initial model
6: Candidate theory T` ← SEARCH(T ∈ τ |T`−1)
7: Sample applicable constraints U ∈ U
8: UA ← QUERY(human,U)
9: T ′ ← T` ⊕ UA . ∀ UA ∈ A

10: D`(T
′/θX , X)← NCD(πT ′/θX , πX)

11: Score S` ← (−LL(T ′) +D(T ′/θX , X))
12: if S` < S`−1 then . minimize
13: Retain T ′: Update T` = T ′

14: end if
15: until ` ≤ L OR T` = T`−1

16: end procedure

7.3.5 Theoretical analysis

Validity of Distance Metric:

Normalized information distance δ(x, y) between 2 strings x and y is provably a valid distance

metric (Vitányi et al., 2009) (under reasonable assumptions),

δ(x, y) =
maxK(x|y), K(y|x)

maxK(x), K(y)

where K(x) is the Kolmogorov complexity of a string x and K(x|y) is the conditional Kol-

mogorov complexity of x given another string y. NCD is a computable approximation of the

same [D(x, y) ≈ δ(x, y)]. Thus, we just verify if δ is a correct conceptual distance measure.

Consider two theories TY and TZ , with same parameterizations (i.e., same heads). Let TY /θ

and TZ/θ be their grounded theories with identical parameter values θ. Our learned theories are

equivalent to planning tasks. Assuming access to a planner Π() which returns Y = Π(TY /θ) and

Z = Π(TZ/θ), the two plan strings w.r.t the instantiations of concepts represented by TY and TZ

respectively.
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Proposition 3 (Valid Conceptual Distance). Normalized information distance δ(Y, Z) is a valid

and sound conceptual distance measure between TY and TZ , i.e., δ(Y, Z) = 0 iff the concepts

represented by TY and TZ are equivalent.

(δ(Y, Z) = 0) ⇐⇒ (TY ≡ TZ)

Proof Sketch for Proposition 3: Let TY and TZ be 2 induced consistent first-order Horn clause

theories, that may or may not represent the same concept. Let θ be some substitution. Now let

TY /θ and TZ/θ be the grounded theories under the same substitution. This is valid since we are

learning horn clause theories with the same head, that indicates the target concept being learned.

As explained in the the manuscript a theory is equivalent to a planning task. We assume access to

a planner Π(), we get plan strings Y = Π(TY /θ) and Z = Π(TZ/θ) with respect to the planing

tasks TY /θ and TZ/θ.

Friend et al.,(2018) proved that Conceptual Distance is the step distance between 2 consistent

theories in a cluster network (T,�,∼), where T is the class of consistent theories,� is the def-

initional equivalence relation (equivalence over bidirectional concept extensions) and ∼ implies

symmetry relation. We have shown in the paper that, given the class of concepts we focus on, a

concept is a planning task.

Let there be a theory T ∗, which represents the optimal generalization of a concept C. If step

distance 〈TY , T ∗〉 = 0 in a cluster network and 〈TZ , T ∗〉 = 0 then 〈TY , TZ〉 = 0, i.e. they represent

the same concept C and they are definitionally equivalent TY � TZ . Thus both TY /θ and TZ/θ

will generate the same set of plans as T ∗, since they will denote the same planning tasks (By

structural induction). Thus,

TY � TZ ⇐⇒ [Π(Y ) ∩ Π(Z) = Π(Y ) = Π(Z)] (7.3)

upto equivalence of partial ordering in planning. let π∗() be a minimum length plan in a set of

plans Π(). Let y and z be strings indicating plans π∗(Y ) and π∗(z) ignoring partial order. If

Π(Y ) = Π(Z) then π∗(Y ) = π∗(z).
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So, conditional Kolmogorov complexities K(y|z) = 0 and K(z|y) = 0, if the strings are

equivalent ignoring partial ordering since a universal prefix truing machine will recover one string

given the other in 0 steps.

∴
max (K(y|z), K(z|y))

max (K(y), K(z))
= 0 = δ(Y, Z)

Proposition 4 (Generalization to Kolmogorov-Smirnov statistic). In generalized probabilistic logic,

following Vitányi (2013), δ(Y, Z) corresponds to two-sample Kolmogorov-Smirnov statistic be-

tween two random variables TY /θ and TZ/θ with distributions PTY and PTZ respectively. v(TY , TZ) =

supθ∈F |FTY (θ)− FTZ (θ)|, where FTY () is the cumulative distribution function for PTY and supθ∈F

is the supremum operator. In deterministic setting, δ is a special case of v, δ(Y, Z) � v(FTY , FTZ ).

Proof Sketch for Proposition 4: This can be proved by considering the connection between

NID and the distributions induced by the concept classes we are learning. NID is defined as

δ(x, y) = maxK(x|y),K(y|x)
maxK(x),K(y)

, where, K(a|b) is the conditional Kolmogorov complexity of a string a,

given b. There is no provable equivalence between Kolmogorov complexity and traditional notions

of probability distributions.

However, if we consider a reference universal semi-computable semi-probability mass func-

tion m(x), then there is a provable equivalence − logm(x) = K(x) ± O(1). Similarly for con-

ditional Kolmogorov complexity, by Conditional Coding Theorem, − logm(y|x) = K(y|x) ±

O(1) (Vitányi, 2013). By definition,

m(y|x) =
∑
j≥1

2−K(j)−cjPj(y|x)

where cj > 0 are constants and Pj(y|x) is the lower semi-computable conditional. A lower semi-

computable semi-probability conditional mass function is based on the string generating com-

plexity of a universal prefix Turing machine. Thus m(y|x) is greater than all the lower semi-

computable. Note that our compressed plans are equivalent to a string generated by Universal
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Turing Machines. The conditional case implies, if a compressed plan string x is given as an auxil-

iary prefix tape, how complex it is to generate compressed string y = θ.

Given 2 grounded theories TY /θ and TZ/θ, let PTY /θ, PTX/θ be the respective distributions

when learning probabilistic logic rules. Now let us define the semantics of a distribution PT/θ in

our case: PT/θ = P (π(T/θ)), i.e. distribution over the plan strings, which can be considered as

lower semi-computable probability based on coding theory. We know,∑
j≥1

2−K(j)−cjPj(y) ≈ F (y|x) (7.4)

where F (y) is the cumulative distribution So, NID δ(Y, Z) now becomes,

δ(Y, Z) =
max (K(y|z), K(z|y))

max (K(y), K(z))

We know that max (K(y), K(z)) is a normalizer. Thus, δ(Y, Z) < max (K(y|z), K(z|y))

max (K(y|z), K(z|y)) = max (−logm(y|z),−logm(z|y))

= max

(
−logm(y, z)

m(z)
,−logm(y, z)

m(y)

)
= max ([− logm(y, z) + logm(z)] , [− logm(y, z) + logm(y)])

Under partial ordering max yields supremum

≈ sup |logm(y)− logm(z)|

≈ sup |logF (y)− logF (z)|

≈ sup |F (y)− F (z)| [log is monotonic]

PAC Learnability:

To analyze the theoretical properties of GOCI, we build on the PAC analysis for recursive rlgg

(relative least general generalization) in GOLEM for function-free horn clause induction due to
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Muggleton & Feng (1990). Let n denote the sample size and H denote the hypothesis space. As

shown earlier, GOCI learns the final theory by iterative refinement after inducing an initial theory.

Denote the initial hypothesis space asH0 and hypothesis space of the final theory asH∗ (such that

T ∗ ∈ H∗).

Proposition 5 (Sample complexity). Following Valiant (1984) and Mooney (1994), with probabil-

ity (1− δ), the sample complexity of inducing the optimal theory T ∗ is:

n∗ = O
(

1

ε

[
dL ln(|H0|+ d+m) + ln(

1

δ
)

])
(7.5)

where ε is the regret, n∗ - sample complexity of H∗, m - number of distinct predicates, d is the

distance of the current revision from the last known consistent theory, and L is the upper bound on

the number of refinement steps (iterations).

ILP induces ij-Determinate clauses (Muggleton and Feng, 1990), where i is the maximum

depth of the clause & j is the maximum arity. Thus, in our problem setting, |H0| = O((tpm)j
i
),

where t is the number of terms, and p is the place (Muggleton and Feng, 1990). Hence, (if j & i

is bounded : ji = c) Equation 7.5 can be reformulated as:

n∗ = O
(

1

ε

[
dL ln (((tfm)c) + d+m) + ln(

1

δ
)

])
(7.6)

Mooney (1994) defines distance d to be the number of single literal changes in a single refine-

ment step. In Algorithm 10, we observe that at each iteration ` ≤ L, updates are w.r.t. the preferred

constraint predicates UA ∈ U.

Proposition 6 (Refinement distance). d is upper bounded by the expected number of literals that

can be constructed out of the library of constraint predicates with human advice E∼A [|U|] and

lower bounded by the conceptual distance between theory learned at two consecutive iterations

since we adopt a greedy approach. If PrA(U) denotes the probability of a constraint predicate be-

ing preferred then, |D` −D`−1| ≤ d ≤
∑2(|U|−1)×tPq

i=1 PrA(Ui) where 2(|U|−1) × tPq is the maximum

possible number of constraint literals and q is the maximum arity of the constraints. If we use only

pairwise constraints, then q =2.
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Our input is sparse (one or few instances). GOCI elicits advice over constraints to acquire

additional information. Let |X| be the number of input examples.

Proposition 7 (Advice complexity). From Equations 7.5 and 7.6, at convergence ` = L, we get

n∗−|X|
L

examples, on an average, for a concept C to be PAC learnable using GOCI.

7.4 Experimental Evaluation

We next aim to answer the following questions explicitly:

(Q1) Is GOCI effective in one-shot concept induction?

(Q2) How sample efficient is GOCI compared to baselines?

(Q3) What is the relative contribution of the novel scoring function vs. human guidance towards

performance?

We developed our framework by extending Wisconsin Inductive Logic Learner (Natarajan et al.,

2009). We modified the scoring function with NCD penalty and integrated a customized SHOP2

planner (Nau et al., 2003) for inter-plan NCD computation. We added constraint sampling and

human guidance in iterative fashion as outlined in Algorithm 10.

7.4.1 Experimental Setup

We compare GOCI with a standard ILP system with no enhancements. We focus on the specific

task of “one-shot concept induction”, with a single input example for each of the several types of

concepts and report aggregated precision. We consider precision because preference queries are

meant to eliminate false positives in our case. To demonstrate the robustness of GOCI w.r.t sample

complexity, beyond one-shot case, we conducted experiments with varying sample sizes for each

concept type across all domains and show learning curves for the same. We also evaluate the

relative contribution of two important components of our proposed framework: (a) novel scoring
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Figure 7.5: Instances of spatial concepts in Minecraft. (Left) Upright Tee, (Right) Upright L

metric and (b) human guidance; i.e., we compare against two more baselines (ILP+Score and

ILP+Guidance). For every domain, we consider ten different types of concepts (ten targets). All

the results are aggregated over five different runs.

Domains We employ 3 domains with varying complexity:

1. Minecraft (Spatial Structures): The goal is to learn discrete spatial concepts in a cus-

tomized (Narayan-Chen et al., 2019) Project Malmo platform for Minecraft. Dialogue data in

Malmo is available online, and we converted them into a logical representation. All structures are

in terms of discrete atomic unit blocks (cubes). Figure 7.5 shows examples of some simple spatial

structures that GOCI was able to learn. The representation language is similar to the Example 14,

with some pre-existing concepts in knowledge base such as Row, Tower, Cube etc.

2. Assembly (a planning domain): Generalized concepts are equivalent to parameterized plan-

ning tasks. Assembly is a well-known planning domain, where different mechanical structures

(machines) are constructed using different parts and resources. Input is a conjunction of ground

literals indicating ground plan demonstration (assuming total ordering).

3. Chemical Entities of Biological Interest (ChEBI): ChEBI is a compound database which

contains some important structural features and activity-based information for classification of
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(a) Minecraft domain
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(b) Assembly domain
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(c) ChEBI

Figure 7.6: Learning curves for varying sample size comparing sample-efficiency of GOCI and
ILP (best viewed in color).

chemicals. Core information ChEBI provides are (1) Molecular structure, (2) Biological role,

(3) Application, and (4) Subatomic particle, which may be suitable for the prediction of various

attributes of compounds. We model the Benzene molecule prediction task following the description

in ChEBI. It has predicates such as Carbon, SingleBond, DoubleBond, HasAtom etc.

7.4.2 Experimental Results

[Effective One-shot (Q1)] Table 7.1 shows the performance of GOCI on one-shot concept learning

tasks as compared to standard ILP. GOCI significantly outperforms ILP across all domains answer-
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Figure 7.7: Results of ablation study on Minecraft domain. Relative contribution of our distance-
penalized score vs. human guidance (best viewed in color).

Table 7.1: Results for one-shot concept learning.

Domain Approach Avg. Precision #Queries

Minecraft
GOCI 0.85 5.5± 3
ILP 0.35 -

Assembly
GOCI 0.65 16.5± 4
ILP 0.2 -

ChEBI
GOCI 0.615 13.1± 2.13
ILP 0.45 -

ing (Q1) affirmatively. Also, note that GOCI is very ‘query’ efficient as observed from the small

average number of queries posed in the case of each domain.

[Sample Efficiency (Q2)] In figure 7.6, we observe that GOCI converges within significantly

smaller sample size across all domains, thus, supporting our theoretical claims in Section 7.3.5.

In ChEBI, though, quality of planning domain encoding might explain mildly lower-precision yet

GOCI does perform significantly better than vanilla ILP learner.

[Relative contribution (Q3)] Figure 7.7 validates our intuition that both components (scoring

function and human-guidance) together make GOCI a robust one-shot (sample-efficient) concept

induction framework. Though human guidance, alone, is able to enhance the performance of a
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vanilla ILP learner in sparse samples, yet it is not sufficient for optimal performance. In con-

trast, although the advantage of our novel distance-penalized scoring metric is marginal in sparse

samples, it is essential for optimal performance at convergence.

The most important conclusion from the experiments is that when available, the guidance along

with the score leads to a jump-start, better slope and in some cases, asymptotically sample

efficient with a fraction of the number of instances needed than merely learning from data. This

clearly demonstrates the need for the injection of human guidance as knowledge when learning

complex concepts.

7.5 Conclusions

We developed a human-in-the-loop one-shot concept learning framework in which the agent learns

a generalized representation of a concept as FOL rules, from a single (or a few) positive exam-

ple(s). We make two specific contributions – deriving a new distance measure between concepts

and allowing for richer human inputs than mere labels to be solicited actively by the agent. Our

theoretical and experimental analyses showed the promise of GOCI method.
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CHAPTER 8

ADDITIONAL EXPLORATION

This chapter presents some additional research work in which I made significant contributions. All

of these are closely connected to the primary objectives of this dissertation. Setion 8.1 presents

GMC (Hayes et al., 2017), an intuitive interactive visual interface for automatic elicitation of back-

ground knowledge from domain experts. Such an interface could potentially prove to be a crucial

component of a true HAAI framework. Section 8.2 describes the SKID3 (Dhami et al., 2018) a

framework that addresses the important real-world problem of effectively identifying and discover-

ing adverse effects due to interaction of multiple drugs administered simultaneously. This is critical

in a treatment planning scenario (Example 1 in Chapter 1). Our novel approximation techniques

have also been utilized for efficient grounding in this work. Section 8.3 outlines DACBOOST (Ra-

manan et al., 2019) that proposes a gradient-boosted non-parametric learning approach for learning

tractable probabilistic models, such as Arithmetic Circuits. Tractable modeling is crucial for scal-

ing in data-dense environments. Finally, Section 8.4 briefly outlines all the other frameworks that

adopt our count approximation approaches (FACT and MACH) for efficiency.

8.1 Automatic Construction of Background Knowledge

As we have discussed in the earlier chapters, ILP systems (Srinivasan, 2004) can effectively induce

generalized compact patterns from data in the form of FOL clauses. They search through the space

of candidate clauses, scoring and modifying them in a greedy fashion. For instance, Aleph (Srini-

vasan, 2004) generates clauses bottom-up by constructing the most specific explanation of exam-

ples and then generalizing while TILDE (Blockeel, 1999) constructs clauses top-down. However,

the search space in ILP is extremely large and essentially intractable. This problem is alleviated

by use of background knowledge, known as ‘modes’, based on the given domain. Modes can be

considered as additional directives that can prune, constrain or characterize the search space mak-
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ing efficient search possible. But the effective design of modes is not trivial and requires a domain

expert to have ILP expertise as well.

Guided Mode Construction (GMC) by Hayes et al., (2017), relaxes the assumption of ILP

expertise, and develops a user-friendly framework for a domain expert to provide relevant domain

knowledge which is then automatically transformed into accurate mode definitions. One of the

key contribution of this framework is the intuitive graphical user interface that allows a domain

expert to visualize the domain structure via Entity-Relationship Diagrams (ERD) and use visual

annotations to convey knowledge. It also proposes a novel approach to transform such visual

annotations into mode definitions via path-finding on the annotated ERDs.

This work is very important in the context of SRL as well since search strategies in SRL are

inspired from ILP (Natarajan et al., 2015, 2010). Modes, like in ILP, restrict the search space

making the learning of probabilistic clauses efficient. It has been observed that many real users of

these systems, especially those who fail to learn good models with these algorithms, may not able

to select the correct modes to guide the search and are, thus, unable to effectively use such models

in real tasks. Integrating databases underneath the learner to improve the search speed (Malec

et al., 2016; Zeng et al., 2014; Niu et al., 2011) is one of the ways that people have addressed

this challenge. While these systems have certainly improved the search, recent work by Malec et

al. (Malec et al., 2016) clearly demonstrated the need for modes to achieve effective learning even

when using databases. Hayes et al., (2017) instead automatically converts the user annotated ER

diagrams to mode definitions that are then later employed to guide the search. It closely relates to

the work of Walker et al. (2011) where a UI was designed to provide advice for a PLM learner.

Their UI was domain-specific, whereas the approach showed in Hayes et al., 2017 is a generalized

one to utilize ER diagrams to automatically construct modes for logic-based learners.

The Entity-Relational Model: The entity-relationship model (Chen, 1976) allows for intu-

itively expressing and visualizing the structure and semantics of a database at an abstract level
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Figure 8.1: An ER-Diagram illustrating 3 entities, Professors, Students, and Courses, their at-
tributes (ovals) and the relationships (diamonds) among them.

as objects and classes of objects (entities and entity classes), attributes of such entities, and rela-

tionships that exist between such entity classes in the form of a graphical diagram (Garcia-Molina

et al., 2009). Figure 8.1 illustrates an ER diagram for an example university domain involving

professors, students and courses and the relationships they share.

One key intuition behind this work is the connection between constrained logical clause search

and SQL (Structured Query Language) query augmentation. For instance, “Hints,” in SQL queries,

are special symbolic tools to guide the query evaluation engine to prioritize some database oper-

ation over the others to enhance efficiency (Lohman et al., 2000; Diab et al., 2009; Bruno et al.,

2012). Thus, they are akin to soft directives/constraints (modes) on the search space.

Modes in ILP: Modes in ILP allows us to describe the underlying domain structure as well

as constrain the search space and is hence a key aspect of effective learning in SRL. A mode for

predicate pred with n arguments is defined as,

pred ([+/− /#]type1, [+/− /#]type2, ..., [+/− /#]typen)

. Each type indicates the entity class which can appear as that argument. The preceding symbols

indicate if it can be tied with an input variable (+), an output variable (-), or a constant (#). Input
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variables must be previously defined in the model. Output variables are free variables that have not

been defined, essentially serving the purpose of constraining the search space. Hayes at al., 2017

automatically constructs such modes and can be adapted to any ILP/PLM systems.

8.1.1 Automatic Human-Guided Mode Construction

In the (GMC framework, the human is assumed to be a domain expert and not an ILP expert. It

has the following key steps:

1. The GUI module provides the expert an interactive visualization of the domain structure with

an ER diagram. The expert can select and annotate any component of this ERD, including the

target entity/relation (about which the model is to be learned), as well as the entities/attributes

that are supposed to be relevant to modeling the target.

2. Then it discovers directed paths on the annotated ERD between the target entity/relations

and the other entities/attributes that has been marked relevant by the user.

3. Te discovered paths are used to construct modes. The edges in paths due to the Relations

and attributes are encoded as predicates, the involved entity classes become the arguments of

those predicates, thus defining the types. The indicators for variable tying/sharing is obtained

from the ordering in the directed paths. The arguments in the target predicate are always set

as closed/input (+). Following that, as we move along a path starting from when an entity

class is encountered for the first time it is set to open/output (-) encouraging the learner to

use assign new variables during search. Any subsequent occurrence of the same entity class

along the path leads to it being assigned a closed (+) indicator, forcing a previous variable to

be used during search. An attribute it will be assigned the # mode.

Figure 8.2(a) shows such an annotated ERD (Step 1), for our example university domain, where

Grade (marked in red) was identified by an expert as being an important attribute for predicting
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(a) Target: ‘Tenure’. Informative/important: ‘Grade’,
selected by user.

(b) The equidistant shortest paths between Tenure and
Grade.

Figure 8.2: Illustrative example showing knowledge guided walks on the ERD, given in Figure 8.1,
for mode construction.

Table 8.1: Each step of a path and corresponding modes generated by GMC.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
Path 1 Tenure Professor Advises Student Takes Grade

Modes 1 Tenure(+ Prof ) Advises(+ Prof ,− Stud ) Takes(+ Stud ,−Course,# Grade )

Clause 1 Tenure(p) ∧ Advises(p, s) ∧ Takes(s, c, A+)

Tenure (marked in blue). GMC first connects the target concept to the related concepts by finding

paths from one to another in the ER diagram. Figure 8.2(b) shows two paths that connect Tenure

to Grade.

Consider the example domain involving professors, students and courses, shown earlier. Fig-

ure 8.2(a) shows an annotated ERD where Grade (marked in red) was identified by an expert as

being an important attribute for predicting the target attribute Tenure (marked in blue). GMC first

connects the target concept to the related concepts by finding paths from one to another in the ER

diagram. Figure 8.2(b) shows two paths that connect Tenure to Grade (Step 2).

Table 8.1 shows each step in one of the paths and how the corresponding modes are constructed

from the same (Step 3). Entities and attributes are highlighted in different colors to show which

arguments have the same type. The first time a type (Student, Course) is introduced along the

path, the mode is set to− allowing a free variable to be introduced and all subsequent appearances

of the same are set to +. Clause 1 in Table 8.1 gives an example of a clause that could be generated

by an ILP system with the specified modes. The English interpretation of this rule is that tenure
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depends on the grades of students who are advised by a professor (For further details about the

GMC algorithm please refer to Hayes et al.,2017)

8.1.2 Experimental Evaluation

Hayes et al., (2017) shows, through substantial empirical evaluations, how (GMC) can effectively

generate modes that are comparable to or better than the optimal modes provided by an ILP expert

or modes generated by random paths without expert annotation. We have used the state-of-the-art

ILP structure/parameter learning framework Relational Functional Gradient Boosting (Natarajan

et al., 2010) as the test-bed for evaluating the quality of automatically constructed modes.

Domains: While, Hayes et al., (2017) use four standard ILP/PLM datasets, namely CiteSeer (Poon

and Domingos, 2007), WebKB (Mihalkova and Mooney, 2007), Cora (Poon and Domingos, 2007),

and IMDB (Mihalkova and Mooney, 2007) for empirical evaluation, I present the results on 2 of

them (Citeseer and WebKB) in this chapter. GMC framework itself has two different settings,

Walk All Paths for walking all paths on the graph from the user-specified target to each

selected feature, and Walk Shortest Path for finding only a shortest path from the target to

each selected feature. In the experimental results (Figures 8.3), the x-axis represents the number

of concepts (entity classes/relations/attributes) marked as relevant/important towards modeling the

target concept, in the order that they were marked by the user. This shows how inclusion each

additional relevant predicate influences performance/training time.

Figure 8.3 presents the experimental results (on two of the domains). We can make the follow-

ing observations from the training time and performance plots:

1. Effective: Both settings of GMC outperforms the baseline modes set by Random Walk.

The difference is more significant earlier in the learning curve when fewer paths are being

found. Additionally, both settings of GMC exhibit comparable performance against ILP-

expert defined modes. This, GMC generates modes that leads to effective search.
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(a) CiteSeer Avg. Training Time (b) CiteSeer Avg. AUC ROC (c) CiteSeer Avg. AUC PR

(d) WebKB Avg. Training Time (e) WekKB Avg. AUC ROC (f) WebKB Avg. AUC PR

Figure 8.3: Results for CiteSeer and WebKB Datasets; Top row: Citeseer, Bottom row: WebKB.
Left: Efficiency - Training time (lower is better), Middle & Right: Performance - Average AUC
ROC and AUC PR respectively (higher is better).

2. Efficiency: GMC, can significantly constrain the search space which allows for efficient

modeling. Figures 8.3(a) & 8.3(d) show the average training time in the two domains.

Clearly, GMC exhibits significantly lower training time than ILP-expert modes as well as

Rendom Walks in Citeseer, especially with higher number of relevant predicates. In WebKB,

although Random Walks take less time, we should note that the respective performance is

significantly worse, showing the Random Walks are not generating optimal modes.

3. Significance of Human Guidance: The empirical results illustrate that, there exists a con-

vergence point where including additional guidance (annotations of important predicates)

no longer leads to better performance. The domain expert is essential for identifying and

annotating what the most important features/nodes are.

142



Thus GMC represents one significant step towards developing a visual intuitive interface that

will allow of seamless bidirectional communication between human(s) and the AI agent(s) in our

envisioned HAAI framework.

8.2 Drug-Drug Interaction prediction and discovery

Drug-drug interactions (DDIs) occur when multiple medications are co-administered and can po-

tentially cause adverse effects on the patients. DDIs have emerged, around the world, as a major

cause of hospital admissions, rehospitalizations, emergency room visits, and even death (Becker

et al., 2007). Controlled clinical trials are labor-intensive, time-consuming, expensive and at times

fail to discover possible interactions. Another critical factor is that, many drugs are prescribed (or

consumed without prescription) on a daily basis for chronic ailments and it is difficult to track their

consumption, making DDIs a highly impactful as well as challenging problem.

Most AI and machine learning based approaches for DDI can be categorized on basis of the

type of features used (such as text-based, which involves analysis of medical abstracts and EHRs or

structure-based, which involves chemical/molecular properties of drugs) or on the basis of algorith-

mic properties (such as supervised prediction or unsupervised clustering). Similarity-based Kernel

for Identifying Drug-Drug interaction & Discovery (SKID3) framework (Dhami et al., 2018), is a

hybrid approach that uses structure-based features.

The problem setting in SKID3 (Dhami et al., 2018) differs from related approaches in the

following ways– (a) As opposed to, majority of current work that leverages information extraction

through text mining, SKID3 focuses on structured sources of information to discover interactions,

(b) Several approaches do utilize structural information, but in a vectorized representation which

leads to loss of critical information; SKID3 instead analyses similarities in structural patterns, and

lastly, (c) Unlike most existing solutions, SKID3 (Dhami et al., 2018) provides a general and

extensible framework that admits heterogeneous characterizations arising from varied sources.
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Thus the major contributions of the SKID3 framework can be summarized as follows: (I) It

identifies chemical interaction potential between two drugs, through a reachability measure using

knowledge-refined random walks between them, (II) It provides a novel framework that combines

multiple similarity measures into a unified kernel that exploits and fuses their potentials including

measures that capture molecular and chemical similarities through SMILES strings and MACCS

fingerprints, consequently posing the problem as a heterogenuous kernel-learning task. (III) It

formulates the learning task as a bilinear program, which is a non-convex optimization problem

and solves it via an alternating minimization approach, and (IV) Dhami et al., (2018), shows how

it can identify DDIs, missing from DrugBank, but existing in other independent sources clearly

demonstrating the potential for DDI discovery. The complete pipeline of SKID3 is shown in

figure 8.4.

Figure 8.4: Complete pipeline for creation of SKID3

Drug-Drug Interactions: The study of DDIs involve several biochemical entities and their re-

lationships. For instance, the target or drug target is the protein modified by the drug in order to

achieve the desired effect once the drug is administered to the body. Enzymes are catalysts that

accelerate biological reactions, while transporters are proteins that help drugs reach the intended

target (Nigam, 2015), and also help in determining whether the drug will be absorbed, distributed

or eliminated. Additionally, DDIs can be either synergistic (positive, and help increase the effect of

the drugs) or antagonistic (negative, cause serious side effects). August et al., (1997) categorizes
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(multiple) drug metabolism as, (1) Pharmacokinetic: the effect that drugs goes through when

administered, for example, it is absorbed or metabolized, when administered simultaneously, and

(2) Pharmacodynamic: the effect that body goes through when a drug is administered which, in

case of DDIs, implies the effect of one drug on another drug when they are operating on the same

target or even different targets. Inspired by that, SKID3 postulates that there should exist a “path

of relationships” describing the molecular and structural properties of the drugs, especially when

there is an interaction.

8.2.1 Kernel Learning for Drug Drug Interactions

SKID3 (Dhami et al., 2018) formulates the DDI problem as a multiple-kernel learning task (Bach

et al., 2004; Lanckriet et al., 2004), over several heterogeneous similarity-based kernels that are

constructed from 5 different association measures, (1) The chemical reactivity path based “Reach-

ability” measure, and 4 structural similarity measures (2) Feature Similarity (FS), (3) SMILES

String Similarity (SS), (4) Molecular Fingerprint (FP) and (5) Molecular ACCess System. Lets

us look deeper into these measures.

(a) Parameterized Walk ‘W’ (b) Network of reactions ‘G’ (c) Identified paths/instances in the
graph

Figure 8.5: Instantiation process of a parameterized random walk W (left) is equivalent to sub-
graph matching for a given motif. The graph G (middle) shows a part of the chemical reaction
network (Dx, Cx & Tx indicate drugs, enzymes and transporters resp.). The rightmost figure shows
how 3 different instances/paths (marked in red) have been identified that satisfy W.
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Reachability

A key component describing drug-drug interactions is the charaterization of how two drugs chemi-

cally react with each other. This is captured using a directed graph of known chemical reactions be-

tween drugs and enzymes, transporters etc. using ADMET (absorption, distribution, metabolism,

excretion and toxicity) features. The idea of reachability follows from the intuition that two drugs

are likely to interact with one another if one is reachable from the other via one or more paths

in an ADMET knowledge graph. Graph theoretic approaches for reachability analysis (Lü and

Zhou, 2011; Taskar et al., 2004) are insufficient in this problem setting since ADMET networks

are multi-relational, directed and relatively sparse involving several thousands of entities/nodes

representing drugs, enzymes, targets etc. An iterative search within such a large graph may be

intractable. Hence, for this task, Dhami et al., (2018) adapts the the path ranking algorithm (PRA)

(Lao and Cohen, 2010) which has been provably successful in generating robust predictive models

for relation extraction and reachability analysis. Reachability measure is obtained by first con-

structing a knowledge graph for known chemical reactions using the ADMET features followed

by a Guided (Parameterized) Random Walk Generation (which performs walks of varying length,

constrained by expert domain knowledge, on the relational schema) and instantiation (finding paths

in the knowledge graph that satisfy the parameterized random walks) and finally, generating the

reachability score by obtaining the cardinality (count) of the path instances for a given drug pair.

Each random walk W is equivalent to a conjunctive First Order Logic formula. Thus the instantia-

tion and cardinality based scoring is equivalent to satisfiability counting problem in logic which is

a combinatorially hard problem (#P -complete). It adapts FACT (Chapter 3) for efficiency.

Structural similarities measures based on SMILES and SMARTS strings

The simplified molecular-input line-entry system (SMILES) is a commonly-used specification for

describing chemical and molecular structure using ASCII strings. The SMILES arbitrary target

specification (SMARTS) is an extension of SMILES that is also commonly used for specifying
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molecular sub-structures precisely. Four similarity measures are extracted from molecular and

chemical properties of the drug (specified by SMILES and SMARTS strings),

(S1) Molecular Feature Similarity (FS) compares the chemical properties of two drugs using 19

features extracted from their SMILES strings.

(S2) SMILES String Similarity (SS) is the similarity between the SMILES strings themselves,

which is calculated using edit distance between the strings.

(S3) Molecular Fingerprint (FP) similarity is computed between the fingerprints, which are bit-

string representations of the molecular structure.

(S4) Molecular ACCess System (MACCS) keys are a particular type of fingerprint generated

from SMARTS strings. Similarities on MACCS are commonly used in the drug discovery domain,

though they have been proven to be useful on the DDI domain as well (Vilar et al., 2014).

SKID3 addresses kernel learning at an element-wise, local and global level, enabling us to learn

robust models for discovery of new drug-drug interactions.

Given: For N drugs, M interaction similarities Sm, a small subset of known interactions yij for

pairs ij ∈ L ⊂ P ,

Learn: A fused kernel Z � 0, and combination weights αm ≥ 0,
∑M

m=1 αm = 1,

Predict/Discover: Previously unknown pairwise drug-drug interactions ŷij = sign(zij), for

pairs ij ∈ U = P \ L.

Neighborhood-preserving Kernel Fusion

Intuitively, each interaction/similarity measure is a graph that provides a different view of the neigh-

borhood of a drug. That is, each similarity matrix Sm represents a fully-connected graph with sijm

representing the edge weight between drugs di and dj . Since each Sm measures similarities differ-

ently, the neighborhood of a drugNm(di) with respect to different Sm will be different. In order to

effectively incorporate this multi-view neighborhood information, we construct graph Laplacians

Lm = (1 + δ)IN − D−
1
2SmD

− 1
2 , m = 1, . . . , M , for each similarity, where IN is an N × N
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Figure 8.6: We learn a positive semi-definite kernel Z and combination weights αm for various
similarity measures. These similarities represent interaction scores, which help determine how
likely two drugs are to interact. The similarity measures are expressed through Laplacians, which
view the interactions as a neighborhood graph. In this manner, we can incorporate local informa-
tion into the kernel. Z is element-wise consistent with the labels.

identity matrix and D is a diagonal matrix with entries dii =
∑N

j=1 s
m
ij (the row sum of the sim-

ilarity matrix Sm). The target is to learn a kernel that fuses neighborhood information Nm from

multiple interaction types,

SKID3 formulates the following kernel learning problem that maximizes the decision margin:

minimize
L,Z,α

alignment︷ ︸︸ ︷
〈L, Z〉 + 〈L, Y 〉 +

regularization︷ ︸︸ ︷
λ1r(α)

λ2 (`1(Z, Y ) + `2(L, Y ))︸ ︷︷ ︸
loss functions

subject to L =
M∑
m=1

αmLm, α ≥ 0, e′α = 1, Z � 0.

(8.1)

The variable L =
∑M

m=1 αmLm is a convex combination of the Laplacians Lm. The alignment

terms imply alignment-based regularization for kernel learning (Cortes et al., 2012) and incorpo-

rates local neighborhood information encoded in the different Laplacians as well as the labels into

learning α (the combination weights) and Z (the fused kernel, s.t. Z � 0). Specifically, 〈L, Y 〉
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encourages the weights on the Laplacians α to be consistent with the labels Y . The impact of la-

bels is also propagated into Z by the 〈Z, Y 〉 term. The entries of the fused kernel zij ∈ Z directly

provide a unified interaction score for prediction, ŷij = sign(zij). To maximize interaction margin

is maximized a hinge loss (for `1 in Equation 8.1) is used to ensure that yijzij ≥ 1 holds. A L2

regularizer is used over the combination weights, r(α) = 1
2
‖α‖2

2.

The learning problem is solved using alternating minimization (Csiszár and Tusnády, 1984)

between the α and Z. Both sub-problems of alternating minimization were solved using SDPT3

(Toh et al., 1999). For further details refer to Dhami et al., (2018)

8.2.2 Evaluation

Evaluations are conducted with a data set of 78 drugs obtained from DrugBank1. This gives rise

to 3003 possible interactions2 in which 603 drug pairs were kept as the holdout test set. Different

methods were trained with increasing number of drug pairs ranging from 400 to 2400, chosen

randomly for each run.

Effectiveness: Figure 8.7(b) shows that the individual kernels learned from each individual sim-

ilarity measure (described in Sec. 8.2.1) are able to perform reasonably well on the DDI prediction

task. However, our observations also confirm our hypothesis that a fused single kernel over molec-

ular structural similarities and chemical reaction pathways could combine the advantages of of both

showing a more stable performance. Figure 8.7(c) shows the change of the learned weights as the

number of training drug pairs increases. A key observation is that the influence of the random walk

(RW) similarity decreases, while the weight of the molecular structure similarities increases with

increasing training pairs. This suggests that RW similarities are particularly effective in smaller

1https://www.drugbank.ca/

2Given n drugs, there will be a total of
(
n
2

)
= n(n−1)

2 interactions.
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(a) Recall, averaged over 5 runs on a hold-out test set (b) F1-score, averaged over 5 runs on a hold-out test set

(c) Similarity matrix weights, α (d) Training Time for learning the combined kernel,
SKID3

Figure 8.7: Experimental results, with kernels learned using All similarity measures (SKID3),
random-walk reachability (RW), SMILES string similarity (SS), molecular feature similarity (FS),
molecular fingerprint similarity (FP) and MACCS fingerprint similarity (MACCS). (a)–(b) Clas-
sification performance of each kernel with increasing training sets; (e) Change in weights of each
individual kernel; (f) Training time for learning the combined kernel (SKID3).

databases, for targeted identification of interactions. This could have a positive impact on the

challenges of sparse low-quality data in treatment planning (Chapter 1, Section 1.2, Example 3).

Discovery: Another key objective in this work was to see if SKID3 is able to discover new

interactions not annotated in DrugBank. Table 8.2 presents a few drug pairs that are supposedly

“incorrectly classified” by our method using the DrugBank ground truth. Instance of Drugbank

150



database dated April 2017 (used as ground truth) shows absence of such interactions whereas in

the instance dated February 2018 they were added. Table 8.2 also shows that the interactions

discovered by our approach can be supported by independent sources or research proving the

potential for SKID3 for discovery. This is crucial for drug surveillance database updates as well as

effective treatment planning with in our envisioned HAAI framework.

Table 8.2: Table depicting example drug pairs where the prediction does not match the ground
truth (DrugBank). However, we additionally cite sources (last column) that support our prediction.

Drug 1 Drug 2 Ground Truth Predicted Class Independent Source
Amitriptyline Tamsulosin Not interacting Interacting Drugs.com (Multiple, a)
Omeprazole Metformin Not interacting Interacting Nies et al. (Nies et al., 2011), rxlist.com (Multiple, c)
Salbutamol Clonidine Not interacting Interacting Thoolen et al. (Thoolen et al., 1984)
Cephalexin Diclofenac Not interacting Interacting Ali et al. (Ali et al., 2015)
Amoxicillin Metronidazole Not interacting Interacting Pavicic et al. (Pavicić et al., 1991)

Amphetamine Salbutamol Not interacting Interacting DrugBank??

Cephalexin Methadone Interacting Not interacting Drugs.com (Multiple, b)

Finally, Figure 8.7(d) shows the time taken by our method. The training time increases linearly

with the number of drug pairs, making it potentially scalable. Possible challenges in scaling, due

to the hard problem of instantiation in reachability metric, can be overcome by our approximation

techniques (FACT and MACH) outlined in Chapters 3 & 4.

8.3 Boosted Arithmetic Circuits

WE have discussed in earlier chapters how, probabilistic inference can become intractable in large

parameter spaces. This is especially critical in inference tasks with SRL models. Lifted infer-

ence techniques (Poole, 2003; de Salvo Braz et al., 2005; Milch et al., 2008; Kersting et al., 2009;

Singla and Domingos, 2008) attempt to address this challenge by exploiting symmetry and group-

ing indistinguishable patterns and inferring over such groups as a whole. However, as the amount

of evidence grows a probabilistic graphical model becomes increasingly asymmetric. While ap-

proximate lifting can alleviate the need for exact symmetries it is an open research area. Another

perspective of tractable inference is via compilation to alternate structures (such as Arithmetic

Circuits (Darwiche, 2003)) which facilitate tractable inference (complexity is polynomial in the
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size of the parameter space). Consequently, Arithmetic Circuits (AC) and Sum-Product Networks

(SPN) have recently gained significant interest by virtue of being tractable deep probabilistic mod-

els. Most previous work on learning AC structures, however, hinges on inducing a tree-structured

AC and, hence, may potentially break loops that may exist in the true generative model. To repair

such broken loops, Ramanan et al., (2019) propose a novel gradient-boosted method for structure

learning of discriminative ACs (DACs), called DACBOOST. Since, in discrete domains, ACs are

essentially equivalent to mixtures of trees, DACBOOST decomposes a large AC into smaller tree-

structured ACs and learns them in a sequential, additive manner. The resulting non-parametric

manner of learning the DACs results in a model with very few tuning parameters making the

learned model significantly more efficient (as demonstrated via the empirical evalutions).

Rooshenas and Lowd (Rooshenas and Lowd, 2016), proposed a discriminative learning method

for ACs that greedily searches through the space of features. While successful, their work has two

limitations: (1) a large number of parameters that must be tuned and (2) the ACs are typically

limited to being tree-structured and, hence, may break loops. Inspired by the intuition that many

weak learners, in our case tree-structured ACs, could be more successful in learning a conditional

distribution, DACBOOST (Ramanan et al., 2019) proposes a non-parametric learning method for

discriminative ACs (DACs) based on gradient-boosting.

8.3.1 Arithmetic Circuits

In traditional probabilistic graphical models inference is a function of the tree-width and hence

complex (Chandrasekaran et al., 2008). The problem of tractability in the presence of large

amounts of evidence has been explored from multiple directions. One of them is via compil-

ing models into representations suitable for efficient inference such as (deep) probabilistic ar-

chitectures like Arithmetic Circuits (ACs) (Darwiche, 2003; Lowd and Domingos, 2008; Lowd

and Rooshenas, 2013) and Sum-Product Networks (SPNs) (Poon and Domingos, 2011; Gens and
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(a) Arithmetic Circuit (AC) (b) Conditional AC

+
×

X1 X2

+
×

X1 X2

+
×

X1 X2

= w1 + w2 + w3

+
× × ×

X1 X1 X2 X2

w1 w3w2

(c) Decomposable AC, as a mixture of trees.

Figure 8.8: Left: Example arithmetic circuit that represents a markov random field over two vari-
ables x1 and x2 and having potentials w1 and w2 for the 2 features x1 ∧ x2 and x2. Middle:
Conditional AC that represents the distribution P (y|x1) where y is a query variable and x1 is an
evidence variable. Right: A complete and decomposable AC, here actually an SPN, is a mixture
of trees (Zhao et al., 2016).

Domingos, 2013; Rooshenas and Lowd, 2014). The probability distribution induced by a proba-

bilistic graphical model can be represented by a multilinear function called a network polynomial

that consists of sum of product of indicator variables λ and the parameters w of the network (Dar-

wiche, 2003). ACs can be used to compactly represent the network polynomial.

An Arithmetic Circuit AC(X ) is a rooted, directed acyclic graph over the variables X . It

contains + or ∗ as internal nodes and its leaf nodes are labeled with either a non negative parameter

w or an indicator variable λ. Then for any instantiation x, the value of the circuit AC(X ) is

computed by assigning indicator λx the value 1 if X is compatible with instantiation x and 0

otherwise. Figure 8.8(a) shows an AC over two binary random variables x1 and x2 which is are

generative and hence model a joint distribution by definition (Figure 8.8(b) shows a conditional

AC). The network polynomial for the AC, which is multilinear in the λ and w variables, can be

written as; λx1λx2w1w2 + λx1λ¬x2 + λ¬x1λx2w2 + λ¬x1λ¬x2 . The complexity of evaluating an AC

is linear in the size of the circuit. The two properties that lead to tractable ACs are Decomposibility

and smoothness, as discussed in (Darwiche, 2003; Lowd and Rooshenas, 2013). Zhao et al. (2016)

have shown that ACs can be viewed as mixtures of trees as illustrated in Fig. 8.8(c).
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8.3.2 Boosted Learning of Discriminative ACs

In most prediction tasks, we are interested in computing the conditional distribution of a pre-

determined set of response variables given their parents. Thus, modeling such a conditional via a

DAC, where we can treat the entire set of parents as evidence variables, is sufficient. Rooshenas

and Lowd (Rooshenas and Lowd, 2016) proposed DACLEARN and showed how it can learn the

structure of a DAC by optimizing the penalized conditional log-likelihood (CLL) and is consider-

ably more tractable even for large tree-width models, as opposed to generative training of a typical

AC.

Functional Gradient Boosting (FGB) (Friedman, 2001) postulates that lea111rning conditional

probabilistic models can be transformed into learning a sequence of function approximation prob-

lems such that a conditional probability distribution can be represented as a weighted sum of re-

gression models learned sequentially via a stage-wise optimization (Dietterich et al., 2004; Natara-

jan et al., 2012; Khot et al., 2011). Thus for a particular example yi its conditional distribution

given its parents xi can be learned by fitting a model P (y|x) ∝ eψ(y,x), and can be expressed

non-parametrically in terms of a potential function ψ(yi; xi): P (yi |xi) =
eψ(yi;xi)∑
y′ e

ψ(y′;xi)
. Instead

of learning in the parameter space (P ), gradient can be obtained in the functional-space ψ and

successively approximate ψ as a sum of weak learners, which are typically regression trees. The

functional gradient after m iterations is expressed as,

∆m = ηm · Ex,y

[
∂

∂ψm−1

log P (y | x; ψm−1)

]
where ηm is the learning rate. Fitting a regression tree hm on the training examples [(xi, yi),∆m(yi;xi)]

is a close and reasonable approximation of the desired ∆m. Ramanan et al., (2019) proposes

a learning algorithm based on gradient-boosting for full model learning (structure + parameter

learning) of DACs (Fig. 8.9).
Given a data set D(X ,Y), where Y is a set of query variables, and X is a set of evidence

variables, find the structure and parameters of a discriminative arithmetic circuit (DAC), i.e.,

the distribution P (Y|X )).
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Figure 8.9: Learning of Discriminative Arithmetic Circuits via boosting. As can be seen, at each
iteration a small weak DAC is learned for each query variable. Once a DAC is learned at each
iteration, the weights of the examples are computed and a new AC is learned. These are then
added to the model and the process continues until convergence.

Gradient Boosting for Conditional ACs

Following DACLearn (Lowd et al. 2016) that optimizes conditional log-likelihood of train data

set D by finding the best set of features f , where, y = Y(p) ⊆ Y and x ⊆ X , CLL(D) is defined

as,CLL(D) =
∑

(y,x)∈D logP (y|x) Since functional-gradient boosting obtains point-wise gradient

for each example separately the log-likelihood for a specific example i and a specific query variable

y (we drop the superscript for brevity),

logP (yi = 1|xi) =
∑
j

wjf j(yi = 1|xi)− logZ(xi)

=
∑
j

wjf j(yi = 1|xi)− log
∑
y′

exp
(∑

j

wjf j(yi = y′|xi)
)

where Z denotes the normalization constant (partition function), i denotes the ith example, j de-

notes the jth feature of the evidence set and (p) denotes the pth query variable. Like CRFs, the

definition of DACs, the functional representation. ψ for i-th example is directly the potential,
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ψ(yi|xi) =
∑

j w
jf j . Thus the pointwise gradient of CLL w.r.t ψ ∀i is;

∂P (yi|xi)
∂ψ(yi|xi)

= I(yi|xi)−
exp(ψ(yi = 1|xi))∑
y′ exp(ψ(yi = y′|xi))

= I(yi|xi)− P (yi = 1|xi)

At every iteration a weak learner (DAC in our case) is learned to fit these pointwise gradients due

to the previous iteration. The score of the structure using the set of candidate features F can be

rewritten as, score(F) = ∆cll(F), where ∆cll denotes the change in CLL. The goal is to identify

the features that maximize this change in CLL. Explicit model complexity penalty is not necessary

since learning weak models automatically takes care of regularization by controlling the depth of

the learned ACs.

At any given iteration DACBOOST learns a small, tree-structured AC by searching through

the space of potential features to add next by minimizing the weighted variance of the conditional

distribution according to the current model. Once the AC is constructed the weights wj at the

leaves of the DAC are estimated by maximizing the increment in CLL function:

∆cll(F) =
∑

(y,x)∈D

∑
j

wjP̂ (f j|x)−∆ logZ(x)

where P̂ is the new empirical probability distribution after introducing the new candidate fea-

tures. Figure 8.9 presents the overall architecture for our DACBOOST approach. Please refer to

Ramanan et al.,(2019) for a detailed discussion of the algorithm. Note that, While DACLEARN

induces tree structured ACs, DACBOOST is capable of learning DAGs.

8.3.3 Evaluation

DACBOOST is evaluated on four novel clinical/medical data sets, a network traffic for DDoS

attack detection data set and some standard data sets, against the state-of-the-art discriminative

structure learning algorithm for ACs, DACLearn.

The novel domains include - Alzheimer’s: The Alzheimer’s Disease NeuroIntiative (ADNI3)

which is designed to verify whether MRI and PET images, genetics, cognitive tests and blood

3www.loni.ucla.edu/ADNI
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biomarkers can be used for early prediction Alzheimers disease; Drug-Drug interactions (DDI),

which consists of 78 drugs and pairwise interactions based on chemical reaction pathways (Dhami

et al., 2018); DDoS attack detection (DDoS): which was employed in the work of Ricks et

al. (Ricks et al., 2018), benign and large-scale botnet network traffic is captured for use in DDoS

attack detection and our goal is to learn a CAC model for attack modeling given benign and botnet

network traffic. Post-Partum Depression (PPD): inspired from Natarajan et al (Natarajan et al.,

2017), the goal is to model post-partum depression diagnosis based on online questionnaire data

including demographics, family history (relationship), social support, economic status, infant be-

havior and CDC questions; and finally, Parkinson’s: Parkinson’s Progression Markers Initiative

(PPMI4 (Dhami et al., 2017)) is a study designed to identify biomarkers that impact Parkinson’s

progression in a subject. In addition, the benchmark data sets included the ones that were exten-

sively used in prior work on learning SPNs and ACs (Rahman et al., 2014; Davis and Domingos,

2010; Gens and Domingos, 2013; Rooshenas and Lowd, 2014, 2016).

Effectiveness and Efficiency: The predictive performances and running times on the 5 novel

data sets are presented in Table 8.3. As can be seen, it is fairly clear that DACBOOST is at least as

good as or better than DACLearn in several of these data sets (4/5) demonstrating the effectiveness

of DACBOOST . The lower performance observed in DDI data set is possibly caused by sparsity.

The values w.r.t. several features were 0 uniformly across all the examples rendering them useless

for constructing weak ACs and hence boosting does not perform as well as DACLearn (though

not significantly worse). In DDoS data set, large number of repeated examples paired with sub-

sampling of negatives in DACBOOST may have resulting in slower convergence.

Results on benchmarks 8.4, leads to a key observation that DACBOOST is significantly faster

than the state-of-the-art in most cases. In some domains such as MSNBC and Plants, the learning

4www.loni.ucla.edu/PPMI
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Table 8.3: Evaluation results of DACBOOST on real domains (data sets). Conditional log-
likelihood, CLL, illustrates the effectiveness (higher⇒ better), while the running time, Time(Sec.)
shows the efficiency (lower ⇒ better). Speedup is the ratio of the running time of DACLearn to
that of DACBOOST.

Data sets
DACBOOST DACLearn

Speedup
CLL Time (Sec.) CLL Time (Sec.)

ADNI -0.178 0.950 -0.180 1.90 2.000
DDI -0.264 133.87 -0.245 158.86 1.186
DDoS -0.018 133.52 -0.019 121.11 0.907
PPD -0.411 12.19 -0.785 13.83 1.134
PPMI -0.163 353.74 -0.188 522.99 1.478

Table 8.4: Results of DACBOOST on benchmark data sets that have been used and reported in
DACLEARN (Rooshenas and Lowd, 2016). Conditional log-likelihood, CLL, shows the effective-
ness (higher⇒ better), while the running time, Time(Sec.) shows the efficiency (lower⇒ better).
Speedup is the ratio of the running time of DACLearn to that of DACBOOST.

Data sets
DACBOOST DACLearn

Speedup
CLL Time (Sec.) CLL Time (Sec.)

Jester -0.409 481.06 -0.665 9851.41 20.478
KDDCup -0.073 756.68 -0.073 1248.77 1.650
Kosarek -0.011 1355.84 -0.021 3778.92 2.787
MSNBC -0.108 76.61 -0.110 12153.90 158.640
NLTCS -0.148 17.01 -0.152 40.35 2.372
Plants -0.298 467.60 -0.255 13077.74 27.967
WebKB -0.178 6154.40 -0.293 17840.81 2.900

time of DACBOOST is order-of-magnitude smaller. Thus boosted learning of tractable models

such as DACs will lead to efficient learning.

In summary, the empirical evaluations on novel and established benchmark data sets appear

to clearly demonstrate the potential for learning DACs in a stage-wise manner. Even in domains

where there is a small loss in performance, the learning time is significantly faster than learning a

full DAC. Hence, boosted deep tractable models paired with our approximation techniques could

provide new avenues for scalable learning with dense data in structured spaces.

158



8.4 Adaptations of Count Approximation Frameworks

Our novel approaches, outlined in the earlier chapters, to address the key challenges considered by

this dissertation have also been successfully adapted in related research.

8.4.1 Relational Restricted Boltzmann Machines

Our approximate counting technique, have been successfully adapted for efficient learning/inference

in relational deep models specifically in Relation Restricted Boltzmann Machines (RRBM) (Kaur

et al., 2017) for counting inside relational random walks. Restricted Boltzmann Machines (Ackley

et al., 1985) provide us with the key principle behind deep architectures. Like other techniques in

its class, it uses vectorized feature space representation of the domain.

Consequently, Kaur et al., (2017) extended it to the relational setting by incorporating parame-

terized features. Such features are constructed by performing “lifted” (relational) random walks on

the data. The key idea is that, if the random walk discovers a path between one entity to another in

a knowledge graph, then that path could indicate existence some target relationship between those

two entities. Thus, in a classification setting, a relational random walk can be posed as a definite

clause whose body is the generalized pattern discovered by the walk, and the head is the target rela-

tion between the two entities between whom the walk was performed. For instance, in the example

MLN for our hospital resource forecasting scenario in Chapter 2, the body of the clause C1 can

be discovered by walking on the relational schema going between the hospital entity and disease

entity going via <Neighborhood:Nb()>, <In-Neighborhood:In()>, <Contact()>

to a Confirmed case of disease d. The importance or contribution of a lifted walk in the final

predictive task is a matter of parameter estimation (akin to the weights in MLN).

In RRBM, instead of explicitly computing the weights of walks and including them in the final

model in a greedy fashion, they are passed as input features into a Restricted Boltzmann Machine

(RBM). However, there is a key step involved in this approach. RBM’s input layer is designed
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to work with vectorized input. Relational features are incorporated by propositionalizing, i.e.

passing the count vector where each element of the vector is the satisfiability count of a relational

random walk. If N lifted random walks are generated (by an extended version of PRA (Lao and

Cohen, 2010)), then the input vector is of size N , where value at position i is the satisfiability

count of the random walk Ri/θ (θ is the partial substitution for target entities similar to Chapter

2, Section 2.2): #[Ri/θ]. Now we are already aware that computing such counts in an exact

fashion is hard (#P-complete). Hence the authors use our count approximation strategies. The

reported results in this work are with respect to FACT since all tasks involved relationships of

at most binary arity. However, for any task that must characterize relationships of arbitrary arity

(such as LabTest(person, hospital, testname)), MACH can be seamlessly integrated into the

propositionalization step for count vector approximation.

8.4.2 Drug-Drug Interaction and Discovery

Our count approximation techniques have also been adapted for efficient predictive modeling in

a real-world pharmaco-vigilance task in one of our recent work (Dhami et al., 2018). This work

has been described in detail earlier in Section 8.2. This work aims to predict/discover drug pairs

that are likely to react with each other (possibly adversely) when taken together. Our model used

a combination of several kernels, one of which is a reachability kernel that represents likelihood

of reactivity between twp given drugs based on chemical pathways. This requires counting such

pathways in chemical reaction networks involving ADMET features such as enzymes, transporters

and so on. Such pathways, similar to the RRBM case described earlier, are discovered by perform-

ing lifted random walks based on PRA (Lao and Cohen, 2010). To pose it as a metric for kernel

construction, satisfiability counts are computed. The intuition is that, we are trying to estimate the

actual number of ground paths in the ADMET knowledge graph that satisfy the ‘shape’ given by a

lifted random walk. Naturally for efficient learning our techniques (FACT and MACH) were used

for approximating these counts.
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8.4.3 Relational Logistic Regression

Our approximate counting technique, have been successfully adapted for efficient learning/inference

in several probabilistic logic models including structure learning in Relational Logistic Regres-

sion (Ramanan et al., 2018) which considers the problem of learning a directed SRL model of

Relational Logistic Regression (RLR) (Kazemi et al., 2014; Fatemi et al., 2016). One of the

key advantages of RLR is that they scale well with population size unlike other methods such as

MLNs (Poon et al., 2008) and hence can potentially be used as a powerful modeling tool for many

tasks. Th population invariance property of RLRs arise due to the fact that they factor in the neg-

ative (unsatisfied) instances of clauses in their formulation. As we will see later this makes RLRs

an interesting case for adaptation of our count approximation techniques.

A straightforward solution to learning these models could be to learn the rules separately us-

ing a logic learner and then employ the parameter learning strategies (Huynh and Mooney, 2008).

While reasonably easy to implement, the key issue is that the disconnect between rule and parame-

ter learning can result in poor predictive performance as shown repeatedly in the literature (Natara-

jan et al., 2012; Richardson and Domingos, 2006). Inspired by the success of non-parametric learn-

ing methods for SRL models, Ramanan et al., (2018) propose a gradient boosted learning method

for full model learning of RLR models.

Let us take a brief look at the formulation of RLR due to Ramanan et al., (2014). For a query

vector Q(XX) it probability given its parents is given by,

P (Q(X) = 1 | J) = σ

(
w0 +

∑
f,wT ,wF∈F

wT · nT (f/θJ) + wF · nF (f/θJ)

)
(8.2)

where nT and nF are counts with respect to satisfied and unsatisfied groundings of formula f and

wT and wF are the respective weights. θJ , similar to earlier definitions, indicate partial grounding

of the formula f with respect to the example J . Naturally for efficient computation nT is approx-

imated using our techniques. However, one important aspect here is the use of nF that renders

RLRs population invariant. Counting unsatisfied groundings logically is a challenging tasks. With
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our (hyper)graph based techniques it becomes comparatively easier. Counting unstatisfied ground-

ings is is equivalent to enumerating non-existent edges or existing egdes that is not connected to

the entities that does not satisfy the clause. Hence nF can be transformed as follows,

nF = n(Vf )− nT

where V is the set of all logical variables in formula f . n(Vf ) is thus the Cartesian product of the

domain sizes of all the logical variables in f (n(Vf ) =
∏

v∈Vf #[v]). Clearly #[v] can be obtained

directly from the summary statistics we estimate both in FACT and MACH. Approximate value of

nT is also computed by out methods.
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CHAPTER 9

CONCLUSION

Developing learning and decision making agents which are robust to both observation quality as

well as density is a challenging task. We have viewed this problem as conjunction of several sub-

tasks that needs to be addressed to achieve our vision. We identified that statisfiability counting,

being a hard problem, as a key factor in scalability issues with dense observations in SRL. In

Chapters 3 and 4 we presented our (hyper)graph-based formalisms for approximating such counts.

Empirical evaluations on several benchmark domains validated some of our primary intuitions:

a.) Counting indeed affects efficiency (Poyrekar et al., 2014), and fast approximation can lead

to promising scalable SRL systems capable of handling web-scale data and efficient function

approximation for sequential decision making in structured noisy environments.

b.) In dense data sets, approximation error has no statistically significant effect on estimated

values (marginals, posteriors, likelihood scores etc.).

One key advantage of our approach is that we build it as a pluggable module and can be applied

on any SRL formalism that uses counting. It may be possible to scale such systems even further

by integrating our approximation with model reduction techniques (Shavlik and Natarajan, 2009).

To address the challenge of robustness to observation quality, we envisioned a Human-Allied

AI framework, where a human and an AI agent would solve problems together, interchange ideas in

order learn and develop together. With such a framework, we aim to exploit the idea of asymmetry

of knowledge, such that the agent can generalize better in low quality observations. Knowledge-

based learning and acting have been well studied in existing literature and they show us how

additional knowledge can provide an inductive bias which enables better modeling in presence

of systematic noise. Our vision of human-AI collaboration transcends beyond just knowledge-

based systems. We wish to establish bidirectional interaction and exchange of ideas between the
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human and the agent across varied levels of domain representation. To develop this framework, we

identified several sub-problems and proposed novel solutions such as KCLN, PGPLANNER and

GOCI through Chapters 5, 6 and 7 respectively. We have clearly observed their advantages and

potential impact compared to related alternate formalisms. For instance, PGPLANNER has shown

significant positive outcome in terms of effectiveness, efficiency as well as advice complexity.

GOCI has also demonstrated its effectiveness in inducing novel concepts from extremely sparse

descriptions/demonstrations provided by a human collaborator. While this makes a substantial

contribution towards our goal, some sub-problems still remain to be addressed. We outline them

along with our ideas on potential solution approaches in the following section.

9.1 Future Directions

9.1.1 Guarantees of Count Approximation

We have presented principled formulations for count approximation in Chapters 3 and 4 based

on (hyper)graph summary statistics with empirical validation of its effectiveness in scaling SRL

on several benchmark domains. However, theoretical guarantees on the approximation bounds

remains an open problem. We will investigate this through a PAC analysis approach (Valiant,

1984) to obtain tight error margins as a function of the size of data. We have already observed from

our empirical evaluations how our approximation causes no change in performance in reasonably

large samples. Thus PAC bounds on the error dependent on the sample complexity (size) will help

corroborate our findings.

An alternate way to approach this challenge would be by analyzing the variance of the probabil-

ity distribution of a given clause, since the expected count decomposes into the clause distribution

and the Cartesian product. Chung et al., (2017) shows us how for a restricted class of unimodal

distributions, variance bounds can be estimated as a function of differential entropy.

e2h(p)

2πe
≤ V ar(X) ≤ ce2h(p)

2πe

164



for some constant c ≥ 1, where V ar(X) is the variance of random variable X , p(x) is its proba-

bility density and h(p) is the differential entropy of p(x).

Investigating, if the clause distribution can be mapped into the class of unimodal distributions

outlined by Chung et al. (2017), under certain assumptions, allowing us to propose a variance

bound, is an interesting future research direction.

Algorithmic and Empirical extensions: There are several possible directions to extend our

work - first is more rigorous evaluation on massive data sets across other models. Second is that

is while in our work we consider only conjunctions, extending the idea to count over arbitrary

clauses. Finally, combining our method with grounding reduction methods such as FROG (Shav-

lik and Natarajan, 2009) that eliminates trivial groundings of clauses can potentially allow our

algorithm to be employed in real web-scale tasks. Finally, a comparison to theta-subsumption

(Maloberti and Sebag, 2004) could be interesting.

9.1.2 Generating explanations

Explainable decision-making/learning one of most critical aspects of closing the loop notion of

intelligent agents. While there has been extensive work on the human-to-agent aspect of collabo-

rative learning decision making, the reverse aspect of agent-to-human communication (for knowl-

edge sharing or inconsequential dialogue) have been studied from a relatively narrow perspective.

Active learning and active advice/preference elicitation frameworks (Odom and Natarajan, 2018;

Das et al., 2018a) focus on generating the most useful set of queries for acquiring labels or knowl-

edge, mixed-initiative planning works a negotiation about sub-goals and control sharing between

the human and the agent. But true collaboration is subject to more effective and natural communi-

cation from the agent to the human.

Example 15. Consider the hospital resource planning scenario presented in Example 1 and Fig-

ure 7.1 in Chapters 1 and 7 respectively. Note how in the hospital administration case, it is
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necessary for the agent to explain its inference and subsequent suggested action of more resources

for the ID ward. Without the explanation offered by the agent, the administrators and physicians

or the administrators may not realize the critical nature of the situation. In that case the human

collaborators may not think of suggesting or teaching the agent the concepts of ‘divert’.

Problem Definition

We aim to build a robust explanation framework which allows for explaining why certain decisions,

suggestions, queries etc. were made as well as the reason behind specific inferred values. As a re-

search question this is not new and some of the early explanation based systems were adapted for

real-world rule-based clinical assistant AI systems (Shortliffe, 1974b). Such systems, however was

restricted to exposing to the human feature values and the logic programs that were used during

inference. More recent literature (Elizalde et al., 2007, 2008; Callaway and Lester, 1997; Molin-

eaux and Aha, 2015, 2014; Chakraborti et al., 2018) study different approaches for Explanation

generation in both learning and sequential decision making and planning contexts. Most of these

approaches adhere to one of the following fundamental routes,

(A.) Reasoning paths over graph of explanation templates

(B.) Discourse planning in a state space of explanations

(C.) Expose change in state variables of factored MDPs.

We aim to consider an explanation framework that takes step further and provides explanations

- (1) at multiple levels of generality, (2) as partial plans when needed and (3) traditional forms

such as change in environment variables. Additionally, the notion of learning-to-explain, posed

as a decision making problem in the explanation space and learn a policy in order to generate the

most optimal explanation is an extremely interesting and promising further research direction.
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Given: Learning or sequential decision making agent(s) A, Human collaborator(s) H , Predic-

tive or decision-making model M

To Do: A should generate explanation(s) for (1) The model itself or (2) about a decision (or

marginal/MAP of query variable) given the model. The explanations should be at appropriate

level of generality. Finally, Amust learn to generate the best explanation that captures appro-

priate generality, is optimally comprehensible to humans and justifies the decision/prediction.

Explanations with Hierarchical Decision Making Systems

We aim to build upon our earlier work, PGPLANNER (Das et al., 2018a), for active preference

elicitation in hierarchical planning. Hierarchical planners succinctly represent state and plan space

at multiple levels of generality/abstraction (tasks and sub-tasks). While PGPLANNER exposes the

state and the current task when querying an expert which can arguably be regarded as some form of

explanation, it is far from our objective of robust explanation generation. We generate explanations

based on how state literals change via action/control models at varied level of decomposition. We

may also expose entire sub-trees (the sequence of all the leaves in the sub-tree results in a partial

plan) or we could transfer explanations from other planning tasks.

We can pose the problem of ‘learning-to-explain’ as a concurrent sequential decision mak-

ing problem and use a hierarchical/abstract MDPs to solve it. Such a framework will require

us to capture the usefulness of an explanation as the reward signal. For instance, Rexplain =

F(Renv, Rhuman) is a combination of the reward signal from the environment and a reward com-

puted via some metric to express user’s feedback about usefulness of the explanations. Such a

quantity Rhuman may be estimated using #clarifications asked for by the human after the explana-

tion was given. Though we set the problem up in the context of probabilistic hierarchical planning,

we intend to investigate generalized solutions that can seamlessly work with imitation learning and

predictive modeling.
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9.1.3 Deep Understanding of Domains

To realize our objective of intelligent systems being truly robust to density and quality of observa-

tions, one of the primary capabilities our AI agent needs, is domain agnosticism. Re-iterating to

McCarthy’s vision of AI agents having human-like ‘common sense’ - we want an agent to leverage

human suggestions/advice obtained in some context or domain in other tasks with sparse observa-

tions in some other domain(s), similar to how humans use common sense. Similarly, cross-domain

adaptation of learned higher level concepts is also essential for the agent to fully comprehend

advice/knowledge given by the human collaborators. However, if AI agents need extensive engi-

neering and effort from the system designer in order to adapt to different domains, then the purpose

and vision of robust agents is defeated.

Domain adaptation and knowledge sharing across different tasks and domains (Higgins et al.,

2017; Sener et al., 2016; Wang and Yang, 2011; Gupta et al., 2017; Blitzer et al., 2006; Daume III

and Marcu, 2006; Natarajan et al., 2013; Kumaraswamy et al., 2015; Pan et al., 2010) has have

studied extensively in the context of sequential decision making (reinforcement learning, plan-

ning, imitation learning etc.), statistical learning, probabilistic logic learning, robotics, natural

language processing and so on. Most such approaches, though successfully applied to the problem

they are designed solve, focus on pair-wise adaptations. That is, given a source domain/task and

target domain/task, in some way they estimate some aspect of pairwise distance, be it structural

(Kumaraswamy et al., 2015), meta-models (Kang and Feng, 2018), vector space (Higgins et al.,

2017; Sener et al., 2016; Wang and Yang, 2011) or some other metric (Dhillon et al., 2012) and

then somehow augment the knowledge in the source task such that it fits the syntax and semantics

of the target task. The same approach is repeated for any pair of domains encountered. Some

leverage the notion of learning with advice/knowledge, human advice is used either to construct

a mapping function between the languages in source and target, or effectively identify structural

patterns that fit the target domain. In all cases discussed so far, a mapping between the source and

target languages/encoding is necessary, which either given apriori, obtained as advice, estimated
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Figure 9.1: Hierarchy/Ontology of domains

via structurally similar components or manifold learning, and that hinders the efficiency of most

domain adaptation/transfer approaches which agents cannot afford.

We propose to construct a rich ontology/hierarchy of domains such that the following (no

implicit order) becomes naturally achievable without extensive effort or engineering,

• Learning distance metric in a domain space

• Transfer learning in planning/problem-solving, (soft transfer)

• Inducing abstract knowledge from multiple domains

• Domain-based expert selection in multi-expert collaborative learning and decision making

• Cross domain analogical reasoning (Cognitive AI) - akin to common sense

• More effective evaluation of learning/decision algorithms
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For instance, in a fire rescue planning context the agent can use the concept of ‘divert’ learned

in hospital resource planning. But if the agent has to spend a lot of time on learning the mapping

between two domains and then suggest the ’divert’ action in fire rescue, it will be disastrous.

Instead, if there is a knowledge ontology/hierarchy and domain adaptation is just a look-up fol-

lowed efficient reasoning then it achieves the true purpose of a rescue planner. Figure 9.1 shows

an example hierarchy among several domains including path planning, job scheduling, logistics,

mechanical assembly, rover missions etc. Notice how a domain can be a direct derivative of one

or more domains or can be minor modifications of such as well. Example: logistics is a direct

derivative of path finding and job scheduling.

Domains, when they are designed and encoded for use with AI algorithms have two main

aspects, (1) the problem class and (2) the language a domain is encoded in. Our proposed approach

will be based on two main ideas,

i. Automated transformation (reduction) to a known or already learned problem class(es) (Ex:

logistics inherits spaces of both to path finding and job scheduling problems; trucks is sub-

sumed by logistics) (Smith, 1983; Hamfelt et al., 2001; Knoblock, 1991; Creus et al., 2014)

ii. Automated (albeit approximate) mapping between the semantics and syntax of the languages

in which different domains are encoded (Russell, 1986; Sarajlić et al., 2016; Shimada et al.,

2016; Todorov et al., 2011; Dhillon et al., 2012)

The aim is to investigate the problem from the above mentioned perspectives and learn a progres-

sively growing right knowledge graph of domain concepts (akin to Figure 9.1).
Given: Encoded representation of 2 or more domains {d1, . . . , dn} : n ≥ 2, An initial domain

ontology O (may be empty)

To Do: Perform the following tasks - (1) Determine if the problem space ρ(di) can be trans-

formed into the problem space of an existing domain dx v O, (2) If there exists such dx, find a

mapping between the languages L(di),L(dx), and (3) Update ontology O′ = O ∪mapped(di)
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9.1.4 Closing Remarks

The frameworks that we have already developed in conjunction with the ones we plan to investi-

gate, are a first step in building out envisioned robust intelligent agent that can learn and act in a

complex, structured and noisy world. However, there does exist other aspects beyond the scope of

this dissertation that will contribute to making intelligent agents robust to quality and density and

we plan to focus on them in future, as we make substantial progress with the objectives outlined

here. One key aspect of exploiting asymmetry of knowledge (Chapter 1) is the capability of uni-

fied knowledge enrichment which includes learning and adding new concepts through dialog and

domain space estimation (domain hierarchy/ontology) for which we outline our proposed exten-

sions. Another aspect is bidirectional exchange of ideas. Currently, our HAAI framework (both

in sequential decision making as well as knowledge-augmented deep learning) does not validate

the preferences, but rather assumes the user is an expert. While the active elicitation framework

does pose relevant queries and we know queries communicate ideas to some extent, this disser-

tation does not investigate richer ‘suggestions’ that the AI agent may give to the humans. We

could extend the framework to recommend improvements to the set of preferences and give other

suggestions as well. Also, tracking the expertise of humans to infer advice quality, incorporating

other types of advice including feature importance, qualitative constraints, privileged information,

etc. as well as investigation of other ideas such as obtaining preferences including crowd of ex-

perts, transfer across subtasks and adapting from other domains are potentially impactful future

research directions. Finally, our knowledge-augmented deep architecture builds upon CLNs. Ex-

tending the idea to other deep models remains an interesting direction for future research. A robust

HAAI agent unifying all the ideas presented here will truly be a significant foot forward towards

McCarthy’s vision of AI with common sense.

171



REFERENCES

Ackley, D. H., G. E. Hinton, and T. J. Sejnowski (1985). A learning algorithm for boltzmann
machines. Cognitive science.

Ai-Chang, M., J. Bresina, L. Charest, A. Chase, J.-J. Hsu, A. Jonsson, B. Kanefsky, P. Morris,
K. Rajan, J. Yglesias, et al. (2004). Mapgen: Mixed-initiative planning and scheduling for the
mars exploration rover mission. IEEE Intelligent Systems 19(1), 8–12.

Ali, S. M., N. S. Hadad, and A. M. Jawad (2015). Effect of amoxicillin and cefalexin on the
pharmacokinetics of diclofenac sodium in healthy volunteers. The Medical J Basrah University.

Allen, J. and G. Ferguson (2002). Human-machine collaborative planning. In International NASA
Workshop on Planning and Scheduling for Space.

Angles, R. and C. Gutierrez (2008). Survey of graph database models. ACM Computing Surveys
(CSUR).

August, J. T., F. Murad, M. Anders, J. T. Coyle, and A. P. Li (1997). Drug-Drug interactions:
scientific and regulatory perspectives, Volume 43. Academic Press.

Bacchus, F. and F. Kabanza (2000). Using temporal logics to express search control knowledge
for planning. Artificial Intelligence 116.

Bach, F. R., G. R. Lanckriet, and M. I. Jordan (2004). Multiple kernel learning, conic duality, and
the smo algorithm. In ICML.

Barber, B. M., T. Odean, and N. Zhu (2009). Systematic noise. Journal of Financial Markets.

Bart, E. and S. Ullman (2005). Single-example learning of novel classes using representation by
similarity. In BMVC.

Battaglia, P., R. Pascanu, M. Lai, D. J. Rezende, et al. (2016). Interaction networks for learning
about objects, relations and physics. In NIPS.

Becker, M. L. et al. (2007). Hospitalisations and emergency department visits due to drugdrug
interactions: a literature review. Pharmacoepidemiology and Drug Safety 16.

Berge, C. and E. Minieka (1973). Graphs and hypergraphs. North-Holland Publishing Company
Amsterdam.

Bhaskara, A., M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan (2010). Detecting high
log-densities: An O(N 1

4
) approximation for densest K-subgraph. In SOTC.

172



Blitzer, J., R. McDonald, and F. Pereira (2006). Domain adaptation with structural correspondence
learning. In Proceedings of the 2006 conference on empirical methods in natural language
processing, pp. 120–128. Association for Computational Linguistics.

Blockeel, H. (1999). Top-down induction of first order logical decision trees. AI Commun. 12(1-2).

Blum, A. L. and M. L. Furst (1997). Fast planning through planning graph analysis. Artificial
intelligence 90(1), 281–300.

Boutilier, C., R. Brafman, C. Geib, and D. Poole (1997). A constraint-based approach to preference
elicitation and decision making. In AAAI Spring Symposium on qualitative decision theory.

Brafman, R. I. and Y. Chernyavsky (2005). Planning with goal preferences and constraints. In
ICAPS, pp. 182–191.

Braziunas, D. and C. Boutilier (2006). Preference elicitation and generalized additive utility. In
AAAI.

Bruno, N., R. Ramamurthy, and S. Chaudhuri (2012, May 29). Flexible query hints in a relational
database. US Patent 8,190,595.

Bylander, T. (1991). Complexity results for planning. In IJCAI.

Callaway, C. B. and J. C. Lester (1997). Dynamically improving explanations: A revision-based
approach to explanation generation. In IJCAI (2), pp. 952–958. Citeseer.

Carlson, A., J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr, and T. Mitchell (2010). Toward an
architecture for never-ending language learning. In AAAI.

Castellana, V. G., A. Morari, J. Weaver, A. Tumeo, D. Haglin, O. Villa, and J. Feo (2015). In-
memory graph databases for web-scale data. Computer (3), 24–35.

Chakraborti, T., S. Sreedharan, and S. Kambhampati (2018). Balancing explicability and explana-
tions. In AAMAS.

Chandrasekaran, V., N. Srebro, and P. Harsha (2008). Complexity of inference in graphical models.
In UAI.

Chen, P. P.-S. (1976). The Entity-Relationship Model–Toward a Unified View of Data. ACM
Transactions on Database Systems (TODS) 1(1), 9–36.

Chick, H. L. (2007). Teaching and learning by example. Mathematics: Essential research, essen-
tial practice.

Chung, H. W., B. M. Sadler, and A. O. Hero (2017). Bounds on variance for unimodal distributions.
IEEE Transactions on Information Theory.

173
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ings in (3,3)-hypergraphs. In Algorithm Theory – SWAT 2014.
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