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NUMERICAL SOLUTIONS FOR A CLASS OF SINGULAR NEUTRAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

Pedro Perez-Nagera, PhD
The University of Texas at Dallas, 2017

Supervising Professor: Janos Turi, Chair

In this dissertation we study numerical solutions for certain classes of singular neutral func-

tional differential equations (SNFDEs). We begin with an approximation scheme based on

piecewise linear approximating spline functions which is used to find numerical solutions for

a class of scalar singular neutral equations. The weakly singular kernel that appears in the

equation leads to a degradation in the numerical rate of convergence of the approximate

solution to the true solution. By modifying the scheme using a graded mesh adapted to the

kernel the rate of convergence is restored. Numerical examples and a supporting lemma on

the discretization error provide evidence that this is achieved. The approximation scheme

is then extended to a SNFDE system. We show that the scheme is convergent provided the

mesh is uniform and that there is sufficient smoothness in the true solution. The particular

system considered here is a simplified version of an SNFDE that describes the dynamics of

a two-dimensional thin airfoil in uniform flow. We provide a numerical example and discuss

numerical difficulties. As an application of the approximation scheme we construct a simple

forcing function to stabilize the SNFDE.
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CHAPTER 1

INTRODUCTION

A retarded functional differential equation (RFDE) is a differential equation in which the

derivative of the current state can depend on its past values as well. In various realistic

models describing natural phenomena the derivative of the current state also depends on

past values of its derivative. Such equations are known as neutral functional differential

equations (NFDE). NFDEs arise naturally in various disciplines including biology, economics,

and engineering, see for example [10]. As an example, we can consider the scalar equation

d

dt
[x(t)− a1x(t− 1)] = a2x(t) + a3x(t− 1) + f(t),

t ≥ 0, where a1, a2, and a3 are given constants, f(t) is a given function, and x(t) is the

unknown function. From this example it is clear that RFDEs and ordinary differential

equations are special cases of neutral functional differential equations. Additionally, as in

the retarded case, it is clear that the initial data required to advance the solution is a function

defined on the interval [−1, 0]. An extensive study of a broad class of retarded and neutral

functional differential equations was done by Hale and Lunel in [14]. A less understood

class of equations are those known as singular NFDEs (SNFDEs). A typical SNFDE is an

equation in which x(t) does not appear explicitly on the left hand side of the equation. As

an example, we can consider the scalar SNFDE

d

dt

(∫ 0

−1

|θ|−1/2x(t+ θ)dθ

)
= f(t),

t ≥ 0, f(t) is a given function, and x(t) is the unknown function. We can again observe

that we need an initial function defined on the interval [−1, 0] to advance the solution.

Additionally, from the form of the equation we can observe that there exists a connection

between certain SNFDEs and integral equations with a weakly singular kernel.
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Numerical approximation methods for NFDEs are well developed and typically they are

extensions from numerical approximation methods for RFDEs (compare [2] and [21]). In

this dissertation we will study approximate solutions and their convergence properties to

SNFDEs.

1.1 Statement of Problem

For certain scalar SNFDEs it was observed in [19] that the rate of convergence of the ap-

proximate solution to the true solution was less than the expected second-order convergence.

Furthermore, it was conjectured to be directly related to the strength of the singularity in

the kernel. We want to restore this degraded rate of convergence to the expected rate of

convergence by employing a mesh that is adapted to the particular SNFDE being considered.

We will consider approximation schemes for certain SNFDEs which contain a neutral

component coupled with a singular neutral component. The form of this equation is mo-

tivated by an application that appears in certain aeroelastic systems described in [5]. We

want to establish convergence of the approximation scheme. Lastly, we want to present a

preliminary numerical study on the stabilization of the associated finite-dimensional system.

1.2 Contribution

By employing a graded mesh (as an alternative to the uniform mesh) that arises naturally

from the SNFDE itself we restore the expected rate of convergence. We provide numerical

examples and a supporting lemma on the minimality of the discretization error. To conclude,

we explore the flexibility of the approximation scheme by applying it to equations of neutral

type.

We consider approximate solutions for the SNFDE system mentioned above and we

prove directly the convergence of an approximation scheme previously discussed in [16].
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We also present a preliminary numerical study on the stabilization of the associated finite-

dimensional system. As an application of the approximation scheme we construct a simple

forcing function to stabilize the SNFDE.

1.3 Outline

This dissertation is organized as follows. In Chapter 2 we provide an introduction to neutral

and singular neutral functional differential equations. We introduce atomic, non-atomic,

and weakly atomic difference operators and discuss their connection to well-posedness. We

also discuss the stabilizability and approximation of certain neutral differential equations.

In Chapter 3 we consider an approximation scheme for a class of scalar singular neutral

differential equations. We introduce graded meshes as a substitute for the uniform mesh

with the goal of restoring the lost rate of convergence. We provide numerical case studies to

observe the dependence of the rate of convergence on the kernel and we give a supporting

lemma. In Chapter 4 we extend the approximation scheme to the singular neutral system

case. We discuss the convergence and we give a preliminary numerical study of this system

concerning the stabilization of the discretized system. We also discuss numerical difficulties

and provide sample Matlab code used in the computation of solutions. In Chapter 5 we

provide a summary of this dissertation and discuss possible future work.

1.4 Notation

We now introduce the notation to be used in the following chapter. The space of con-

tinuous Rn-valued functions defined on the interval [a, b] will be denoted by C([a, b];Rn).

L2([a, b];Rn) will denote the Lebesgue space of Rn-valued (classes of) functions defined on

[a, b] whose components are square-integrable. W 1,2([a, b];Rn) denotes the space of Rn-valued

absolutely continuous functions which have a derivative in L2([a, b];Rn). For the case when

a = −r and b = 0, then we will simply write C := C([−r, 0];Rn), L2 := L2([−r, 0];Rn),

3



and W 1,2 := W 1,2([a, b];Rn). The weighted L2 space with weight function g is denoted by

L2
g = L2

g([a, b];Rn). Letting r > 0 the function xt : [−r, 0] −→ Rn, for 0 ≤ t < ∞, will be

defined by xt(s) := x(t+ s), −r ≤ s < 0.

4



CHAPTER 2

PRELIMINARIES

In this chapter we introduce the notion of neutral and singular neutral functional differential

equations. We discuss atomic and weakly atomic operators and discuss their relationship to

well-posedness. Namely, we discuss that a sufficient condition for well-posedness of certain

neutral differential equations is that the difference operator be atomic at zero. In the case of

certain singular neutral differential equations, we will discuss that a necessary condition for

well-posedness is that the difference operator be weakly atomic. In [5] an aeroelastic system

was derived which describes the motion of a two-dimensional airfoil in uniform flow. This

system was given in the form of a singular neutral equation and thus it is a motivating appli-

cation for this study. We conclude this chapter with a discussion on previous approximation

methods for neutral differential equations.

2.1 Neutral Functional Differential Equations

In this section we introduce the concept of a neutral functional differential equation and give

a summary of known existence and uniqueness results.

A typical problem can be stated as follows: find a function x : [−r,∞] −→ Rn such that

d

dt
Dxt = Lxt + f(t), t ≥ 0, (2.1.1)

x0(s) = ρ(s),−r ≤ s ≤ 0, (2.1.2)

where ρ is a function and the maps L and D are Rn-valued bounded linear operators.

Equation (2.1.1) is called a neutral functional differential equation (NFDE) and the operator

D is called the difference operator. This operator plays an important role in the well-

posedness, stability, and state feedback control of a problem. By a solution here we mean a

continuous function x such that Dxt is continuously differentiable for t > 0 with a continuous
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right-hand derivative at t = 0, and (2.1.1)–(2.1.2) are satisfied. A problem is said to be well-

posed if there exists a unique solution to the problem that depends on the initial data in a

continuous way. From an approximation perspective it is important for the problem to be

well-posed. This is because, for ill-posed problems, small changes in the initial data may

result in innacurate or unstable numerical solutions. By state space selection we mean the

choice of state space where the initial function belongs to. In the case of NFDEs the usual

state spaces considered are C and the product space Z := Rn×L2. Typically, well-posedness

depends on the state space that is being considered.

Consider the case where D and L are restricted to C, i.e., D,L : C −→ Rn and ρ ∈ C. By

extending the Reisz representation theorem for linear functionals to the vector case we have

that there exists a n×n matrix-valued function η whose entries are of bounded variation on

[−r, 0] such that

Lϕ =

∫ 0

−r
dη(s)ϕ(s) (2.1.3)

where η is a function of bounded variation. Similarly for D, there exists a n×n matrix-valued

function u whose entries are of bounded variation on [−r, 0] such that

Dϕ =

∫ 0

−r
du(s)ϕ(s) (2.1.4)

where ϕ ∈ C. Thus we have general representations of D and L in the form of a Riemann-

Stieltjes integrals where dη(·) and du(·) are n×n matrices and ϕ(·) a vector-valued function

(hence the switched notation inside the integral). We will assume that u(s) = u(−r) = 0 for

s ≤ −r, u(s) = u(0) for s ≥ 0 and that u is right-continuous on (−r, 0). The operator D is

said to be atomic at s = 0 if the jump u(0) − u(0−) is non-singular. In the case that D is

atomic at s = 0 we note that D can be written as

Dϕ = Hϕ(0) +

∫ 0

−r
dµ(s)ϕ(s) (2.1.5)

6



for ϕ ∈ C where H := u(0)− u(0−) and µ is a function of bounded variation on [−r, 0] such

that

lim
ε→0

Var[−ε,0](µ) = 0. (2.1.6)

We note that in (2.1.5), if µ is constant, Dϕ = Hϕ(0) and so equation (2.1.1) becomes an

RFDE. On the other hand, if H ≡ 0, then the equation becomes an advanced functional

differential equation. In the atomic case, without loss of generality we can assume that

H is the n × n identity matrix since it is nonsingular. If the difference operator D is not

atomic, it is said to be non-atomic. If L and D have the representations (2.1.3) and (2.1.5),

respectively, it was shown in [14] that the problem (2.1.1)–(2.1.2) is a well-posed problem. In

some applications, it may be more beneficial to use the product space Z. Let L and D have

the same representations. Assume we have initial data Dx0 = η and x0 = ϕ for (η, ϕ) ∈ Z

and ϕ ∈ W 1,2. In this case, a solution is a function xt ∈ W 1,2 such that Dxt is continuously

differentiable, and x satisfies the NFDE (2.1.1)–(2.1.2). It was shown in [6] that atomicity of

the D operator is a sufficient condition for well-posedness of the NFDE on product spaces of

the type Z. For NFDEs with atomic difference operator, the theory is well-developed. See

[14] for an extensive general treatment of NFDEs.

In [21], the special case when D and L have the representations

Dψ = ψ(0)−
m∑
j=1

Bjψ(−rj)−
∫ 0

−r
B(s)ψ(s)ds, (2.1.7)

and

Lψ =
m∑
j=1

Ajψ(−rj) +

∫ 0

−r
A(s)ψ(s)ds, (2.1.8)

was studied. Here, 0 = r0 < r1 < · · · < rm = r and A(·), B(·) are in L2([−r, 0];Rn×n),

i.e., A(·) and B(·) are matrix functions with square-integrable components. Note that D is

atomic at zero. The following coupled initial value integral problem was considered:

y(t) = η +

∫ t

0

Lxsds+ g(t),

Dxt = y(t),

(2.1.9)

7



for almost all t ≥ 0, g ∈ L2
loc(0,∞;Rn), with initial data x0 = ρ ∈ L2 and η ∈ Rn. It was

shown that this problem has a unique pair of solutions x(t) = x(t; η, ρ, g) defined on [−r,∞)

and y(t) = y(t; η, ρ, g) defined on [0,∞) and that x(t) and y(t) depend continuously on the

initial data η, ρ, and g, i.e., the map

(η, ρ, g) 7→ (y(·; η, ρ, g), x(·; η, ρ, g))

is a continuous map from

Rn × L2 × L2(0, t1;Rn) −→ L2(0, t1;Rn)× L2(−r, t1;Rn)

for any t1 > 0. The existence and uniqueness of solutions largely depends on the regularity

and consistency of the initial data given. We will say that the initial data η and ρ are

consistent if Dρ = η. From a practical perspective, D and L are sufficiently general to

encompass many applications. For this reason, it is worthy to summarize the following

results on existence and uniqueness (see [14] and [21]).

Let D and L have the representations (2.1.7) and (2.1.8), respectively.

Proposition 2.1.1. (see [21])

1. ) If g is a continuous function for t ≥ 0 and ϕ ∈ C, η = Dρ − g(0), then y(t) =

y(t; η, ρ, g), x(t) = x(t; η, ρ, g) are continuous on t ≥ 0 and t ≥ −r, respectively,

y(t) = Dxt for all t ≥ 0 and Dxt − g(t) is continuously differentiable on t ≥ 0 with

d

dt
(Dxt − g(t)) = Lxt, t ≥ 0,

x0 = ρ, ρ ∈ C.

2. ) If g(t) =
∫ t

0
f(s)ds, t ≥ 0, with f ∈ L2

loc(0,∞;Rn), and ρ in C, η = Dρ, then x(t) is

continuous for t ≥ −r, y(t) = Dxt ∈ W 1,2
loc (0,∞;Rn) and

d

dt
Dxt = Lxt + f(t)

8



a.e. for t ≥ 0, with

x0 = ρ, ρ ∈ C.

3. ) If g is as in 2 (above) and ρ ∈ W 1,2, η = Dρ, then y(t) = Dxt ∈ W 1,2
loc (0,∞;Rn),

x ∈ W 1,2
loc (−r,∞;Rn), and x is the unique solution of

d

dt
Dxt = Lxt + f(t)

a.e. on t ≥ 0, with

x0 = ρ, ρ ∈ W 1,2.

4. ) If L = 0 and η = 0 then x is the unique solution of the non-homogeneous difference

equation

Dxt = g(t)

a.e. on t ≥ 0, with

x0 = ρ, ρ ∈ L2.

Remark 2.1.1. Recall that for RFDEs as the solution is advanced forward it becomes

smoother. This can be observed when we utilize the so called “method of steps” to find the

solution. More general NFDEs need not have this property. To see this consider the scalar

NFDE

d

dt
[x(t)− x(t− r)] = 0, t ≥ 0,

with initial data x(θ) = ρ(θ), −r ≤ θ ≤ 0. Using the initial data we have that x(t)−x(t−r) =

η, where η := ρ(0) − ρ(−r). By the method of steps we have that x(t) = ρ(t − r) + η

for 0 ≤ t ≤ r, x(t) = ρ(t − 2r) + 2η for r ≤ t ≤ 2r, and so on. Suppose that ρ is a

continuously differentiable function on [−r, 0] and ρ̇(0) 6= ρ̇(−r). We can see that there

exists a discontinuity in the derivative of the solution at all points rk, k = 0, 1, 2, . . ., and

so the solution x(t) is continuously differentiable for t ≥ 0 except at these indicated points.

Hence, the solution will not be smoother than the initial function. �
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In this section we observed that atomicity of the difference operator at s = 0 is a sufficient

condition for well-posedness. Equations with a non-atomic difference operator will be referred

to as singular NFDEs (SNFDEs). In the next section we discuss the well-posedness of such

equations.

2.2 Singular Neutral Functional Differential Equations

In [6] it was established that atomicity in the difference operator was sufficient for the well-

posedness of class of NFDEs. In the same paper, the authors also gave an example of an

NFDE with a non-atomic D operator that yielded a well-posed problem. We consider this

example next.

Let D be the scalar valued operator Dψ :=
∫ 0

−r |s|
−pψ(s)ds, 0 < p < 1, and consider the

scalar SNFDE

d

dt
Dxt = 0, t > 0,

x0 = ϕ.

Integrating both sides of the equation yields the initial value problem

Dxt = η, t ≥ 0,

x0 = ϕ.

(2.2.1)

If p > 1−1/q and (η, ϕ) ∈ R×Lq then the initial value problem (2.2.1) has a unique solution

x(·;ϕ) defined for almost all t in [0,∞). In particular, if ϕ ∈ C and η ∈ R then we have that

the problem has the unique integrable solution (see [6])

x(t) = β

∫ 0

−1

1

t− s

∣∣∣∣ ts
∣∣∣∣p ϕ(s)ds+ β

∫ t

0

(t− s)p−1

(t− s) + 1
ϕ(s− 1)ds+ β[η −Dϕ]tp−1,

where β := sin(pπ)/π, for t ∈ (0, 1]. We can see that if Dϕ = η then the solution will also

be continuous. We note that the problem (2.2.1) can be reformulated as an Abel integral

equation (see [17]) from which the above solution representation follows. It is important to
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notice that in the case of p = 1/2 then q < 1/(1− 1/2) = 2. Thus the problem is not shown

to be well-posed in the product space R × L2, i.e., in a Hilbert space. This is important

since it implies that we do not have the approximation benefits granted by a Hilbert space

setting. The case when p = 1/2 and q = 2 is of particular interest since it would apply to

the aerodynamics problem discussed below. To remedy this setback the weighted L2 space,

L2
g, was suggested in [7]. We say that f ∈ L2

g := L2
g([−r, 0];Rn) if(∫ 0

−r
g(s)|f(s)|2ds

)1/2

<∞,

where g is a weighting function. Using a weighted L2 space of this type, an approximation

scheme was introduced in [19] for a class of SNFDEs of the form

d

dt
Dxt = Lxt + f(t), t > 0,

x(s) = ϕ(s),−r ≤ s < 0,

where Dϕ =
∫ 0

−r g(s)ϕ(s)ds and Lϕ = a0ϕ(0)+
∫ 0

−r a(θ)ϕ(t+θ)dθ+a1ϕ(−r). Here a0 and a1

are constants and a(·) is an integrable function. The kernel g has the following properties: g

is positive, monotonically increasing, and integrable on [−r, 0), with g(s) −→∞ as s −→ 0−.

Note that the kernel g is more general than the Abel kernel considered in [6]. The numerical

feasibility of using a weighted L2 space for non-atomic neutral equations was observed in [19]

and so a Hilbert space setting was recovered for the SNFDE case. A particular drawback of

a weighted space is that the weighting function will change with every equation.

The SNFDE example given in [6] motivated the search for necessary and (weaker) suffi-

cient conditions required for well-posedness. In [22], a partial result to this question is given

in the form of a necessary condition on the difference operator. Consider the scalar initial

value problem

Dxt = Dϕ, t ≥ 0, (2.2.2)

x0 = ϕ, (2.2.3)

11



where D is non-atomic at s = 0 and ϕ ∈ C. In [22] the authors introduce the notion of a

weakly atomic operator and show that this condition is necessary for well-posedness for a

general class of scalar SNFDEs.

Assume that Dψ :=
∫ 0

−r ψ(s)dµ(s) where µ is a function of bounded variation on [−r, 0]

such that µ(s) = 0 for s ≥ 0, µ(s) = µ(−r) for s ≤ −r, and µ is left-hand continuous on

(−r, 0). The operator D is called weakly atomic if

lim
λ−→∞

|λ40(λ)| =∞

(for λ ∈ R), where

40(λ) :=

∫ 0

−r
eλsdµ(s).

The necessary condition can now be stated as follows: if the problem (2.2.2)–(2.2.3) has a

unique continuous solution x(t;ϕ) on [−r,∞) for each ϕ ∈ C that also depends continuously

on ϕ, then D must be weakly atomic. Note that if D is atomic, i.e., D has the form

Dϕ = ϕ(0) +
∫ 0

−r dµ(s)ϕ(s), then it is also weakly atomic. This follows from

40(λ) = 1 +

∫ 0

−r
eλsdµ(s)

and

lim
λ−→∞

∫ 0

−r
eλsdµ(s) = 0.

Consider the special case when the D operator is of Abel type, i.e.,

Dϕ :=

∫ 0

−r
g(s)ϕ(s)ds,

where g is a generalized Abel kernel and 0 < r < ∞. We assume that g has the following

properties: g is positive, monotonically increasing, and integrable on [−r, 0), with g(s) −→∞

as s −→ 0−. It is helpful to keep in mind the so-called Abel kernel |s|−p on [−r, 0), with

0 < p < 1, which represents a possible choice for g. In this case we have that

12



40(λ) =

∫ 0

−r
eλsg(s)ds,

and therefore

40(λ) =

∫ 0

−r
eλsg(s)ds ≥

∫ 0

−1/λ

eλsg(s)ds ≥ g(−1/λ)

∫ 0

−1/λ

eλsds ≥ g(−1/λ)
1

λ

(
1− 1

e

)
.

It follows that λ40(λ) −→∞ as λ −→∞ and so D is weakly atomic.

In [18] an example of an ill-posed problem in the state space C was given. Let g be as

above and consider the problem

d

dt

(∫ 0

−r
g(θ)x(t+ θ)dθ + x(t− r)

)
= 0, t ≥ 0,

x(t) = ρ(t),−r ≤ t ≤ 0.

The difference operator here is Dψ = ψ(−r) +
∫ 0

−r g(θ)ψ(θ)dθ and note that it is atomic at

θ = −r. Letting

41(λ) = e−λr +

∫ 0

−r
eλθg(θ)dθ, λ ∈ C,

the authors were able to show that there exists a sequence of real-valued roots λk, k =

1, 2, . . . , for 41(λ) such that limk−→∞ λk =∞ implying ill-posedness.

In this section we discussed weakly atomic difference operators and the role they play

in well-posedness. In next section we discuss an application that motivated the study of

SNFDEs in this dissertation.

2.3 A Motivating Application

In this section we give a brief description of the aeroelastic system that motivates this study

(see also [5]). Consider the system

d

dt

(
A0x(t) +

∫ 0

−r
A1(s)x(t+ s)ds

)
= B0x(t) +

∫ 0

−r
B1(s)x(t+ s)ds+Gu(t), (2.3.1)
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0 < r ≤ ∞, where A0 and B0 are 8 × 8 matrices and A1(s) and B1(s) are 8 × 8 integrable

matrix functions. This system describes the dynamics of a two-dimensional airfoil in incom-

pressible flow. From a practical perspective, this airfoil can be interpreted as a cross-section

of a wing of an aircraft. Here, x(t) ∈ R8 is given by

x(t) :=
(
z(t)T , z′(t)T ,Γ(t),Γ′(t)

)T
,

where z(t) := (h(t), θ(t), β(t)), h(t) is the plunge, θ(t) is the pitch angle, β(t) is the trailing

flap angle, Γ(t) is the airfoil circulation function, and u(t) is a possible control for a trailing

flap. What makes this system interesting is that the last row of the system is an equation

of the form ∫ 0

−r
A188(s)x

′
8(t+ s)ds = B8x(t)

where A188(s) = ((Us − 2)/Us)1/2, −∞ < s < 0, and U is a constant. Studies of this

system have been primarily focused on the finite-delay version, i.e., 0 < r < ∞. From a

control perspective, the initial data could represent small disturbances in the system and we

would like to bring the system back to the origin. More explicitly, we are concerned with

the stabilizability of the system. In the aeroelastic system (2.3.1) one would like to apply

an appropriate control u(t) to the trailing flap to bring the system to rest after vibrations

begin. This is commonly referred to as a flutter suppression problem.

In the following section we consider a system of equations that is composed of an NFDE

coupled with an SNFDE. For computational simplicity we will consider a simpler system

that retains the “partial atomicity”.

2.4 A Partially Atomic System

Consider the following equation on the weighted product space R×L2
g(−r, 0) with kernel g:

d

dt

(
x(t) +

∫ 0

−r
a12(s)yt(s)ds

)
= b11x(t) + b12yt(0) +

∫ 0

−r
b12(s)yt(s)ds+ f(t)
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d

dt

(∫ 0

−r
g(s)yt(s)ds

)
= b21x(t)

with initial data

x(0) = η, y0 = ϕ,

where yt(s) := y(t + s) for s ∈ [−r, 0] and t ≥ 0. This is a 2 × 2 system where a12(s)

and b12(s) are integrable functions and b11 and b12 are scalars. Furthermore, we will assume

that the function g in the second equation satisfies the following conditions: g is positive,

monotonically increasing, integrable on [−r, 0], with g(s) −→ ∞ as s −→ 0−. As before, it

is helpful to keep in mind the so-called Abel kernel |s|−p on [−r, 0) with 0 < p < 1. The

right-hand side function, f , is an integrable function that may be thought of as a control. If

in the above system we make the following definitions:

D1(η, ϕ) := Iη +

∫ 0

−r
a12(s)ϕ(s)ds,

L1(η, ϕ) := b11η + b12ϕ(0) +

∫ 0

−r
b12(s)ϕ(s)ds,

D2ϕ :=

∫ 0

−r
g(s)ϕ(s)ds, and L2ϕ := b21η,

we can now rewrite the above problem as

d

dt
D1(x(t), yt) = L1(x(t), yt) + f(t) (2.4.1)

d

dt
D2yt = L2x(t) (2.4.2)

x(0) = η, y0 = ϕ (2.4.3)

with η ∈ R and ϕ ∈ C([−r, 0];R).

Note that although the coupled system (2.4.1)-(2.4.2) is simpler than (2.3.1), the inter-

esting relationship where one equation is atomic and the other equation is non-atomic, i.e.,

singular, still remains. The well-posedness of the system for the particular choice of kernel
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g̃(s) = (1 − 1/s)1/2, −r ≤ s < 0, was established in [16] in the state space R7 × L2
g̃(−r, 0).

The result can be restricted to the scalar case considered here, i.e., R× L2
g̃(−r, 0). We note

that well-posedness of an infinite-delay version of the SNFDE above was established in [15]

on the state space R7 × L2
k(−∞, 0), where k(s) = ews(1 − 2/(Us))1/2, −∞ < s < 0, U is a

positive constant, and w > 0 is chosen in a particular way.

2.5 Approximate solutions for NFDEs

Methods for solving NFDEs numerically typically involve approximating the original prob-

lem by a sequence of finite-dimensional ordinary differential equations. The fact that we are

approximating an infinite-dimensional problem by a finite-dimensional problem is important

for computational purposes. A satisfactory method is one which produces a numerical solu-

tion that converges to the solution of the original problem as we increase the dimension of

the approximating subspace. We recall the following scheme to introduce the reader to the

commonly used method of “averaging projections” and to put the approximation scheme in

the following chapters in perspective. The averaging projection method has been used for

RFDEs and NFDEs, see for example, [1] and [21], respectively. We provide [21] and [36] as

references for a more general treatment of the following scheme.

Consider the scalar NFDE

d

dt
Dxt = Lxt + f(t), t ≥ 0,

x0 = ρ, ρ ∈ C,

where r > 0, f is a locally integrable function, and the operators D and L are defined by

Dϕ := ϕ(0) + Aϕ(−r) and Lϕ := Bϕ(0) + Cϕ(−r).

The NFDE is first reformulated into an abstract Cauchy problem. To this end we define

z(t) = (Dxt, xt) and the operator A by

D(A) := {(η, ϕ) ∈ Z = R× L2 : ϕ ∈ W 1,2, η = ϕ(0) + Aϕ(−r)},
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A(η, ϕ) := (Lϕ, ϕ̇) = (Bϕ(0) + Cϕ(−r), ϕ̇).

By direct computation we can see that

d

dt
z(t) = Az(t) + (f(t), 0),

z(0) = (η, ρ),

for (η, ϕ) ∈ D(A). Once the problem is reformulated we can construct a sequence of ap-

proximating ordinary differential equations that yield a sequence of approximating solutions

that will converge to z(t). We now define the approximation scheme.

Let Z := R × L2, N be a positive integer, and define τNj = −j r
N

, j = 0, 1, 2, . . . N , i.e.,

the interval [−r, 0] is partitioned into N subintervals. This partition is used to define the

subspace ZN ⊂ Z by

ZN := {(η, ϕ) ∈ Z : ϕ =
N∑
j=1

ϕNj χ
N
j , ϕ

N
j ∈ Rn},

where χNj is the characteristic function on [τNj , t
N
j−1). Define the orthogonal projection PN :

Z −→ ZN by

PN(η, ρ) = (η, ρN),

where

ρN =
N∑
j=1

ρNj χ
N
j , and ρNj =

1

τj−1 − τj

∫ τNj−1

τNj

ρ(θ)dθ.

By the domain condition of A we have that η = Dρ = Bρ(0) + Cρ(−r). Substituting

ρN into this equation we get ρN0 = η − AρNN . Thus, we define the approximating operator

AN : Z −→ ZN by

AN(η, ρ) = ANPN(η, ρ) = (BρN0 + CρNN ,

N∑
j=1

ψNj χ
N
j ),

where

ψNj =
N

r
(ρNj−1 − ρNj ), j = 1, 2, . . . , N.
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Together, the set ZN , PN , and AN is referred to as the averaging projections approx-

imation scheme. Spline approximations have also been studied exensively for RFDEs and

NFDEs in [1] and [2], respectively. This approximation scheme induces a sequence of N + 1-

dimensional differential equations of the form

d

dt
zN(t) = ANzN(t) + PN(f(t), 0), t ≥ 0,

zN(0) = PN(η, ρ) ∈ ZN .

Under certain conditions (dissipativity and density) on the sequence of operators AN , one

can argue that the sequence of solutions for the finite-dimensional problems, zN(t) for N =

1, 2, . . ., converges to the solution of the orignal problem, z(t), i.e., zN(t) −→ z(t) as N −→

∞. A detailed explanation of these conditions requires introducing the concept of linear

operator semigroups, which is peripheral to this dissertation. Hence, we will only refer the

interested reader to the references [2], [21], and [31]. From a computational perspective, we

need to define a basis for ZN . For example, since ZN is a Euclidean space, we can define

the basis eN0 := (1, σ) and eNj := (0, χNj ), j = 1, 2, . . . , N, where σ is the zero function.

Let wNj (t) be time dependent coefficients such that
∑N

j=0w
N
j (t)eNj = zN(t). The reader will

notice that this a step function representation of zN(t). Substituting this representation into

the approximating system, we arrive at

ẇN0 (t) = B(wN0 (t)− AwNN (t)) + CwNN (t) + f(t)

with

ẇNj (t) =
N

r
(wNj−1(t)− wNj (t)),

j = 1, 2, . . . , N . We can see that this is equivalent to an ordinary differential equation system

of the form ẇN(t) = ANwN(t) + FN(t), where wN(t) = (wN0 (t), wN1 (t), . . . , wNN (t))N , AN is
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an appropriate (N+1)×(N+1) matrix (see [21]), and FN(t) = (f(t), 0, . . . , 0)N . The initial

data is provided by

wN(0) = (η, ρN1 , ρ
N
2 , . . . , ρ

N
N)T .

In the case of RFDEs, it is under this formulation that an optimal control framework has

been well developed, see for instance [1]. This is important in applications where one needs to

stabilize a system, e.g., the aeroelastic system presented above. The forthcoming numerical

scheme for SNFDEs is similar in spirit, however, for SNFDEs a weighted L2 space was

considered in place of a product space. To the author’s knowledge, an optimal control

formulation for SNFDEs is yet to be developed.

We now turn our attention to constructing a numerical scheme for scalar SNFDEs and

we discuss the numerical issues induced by the weakly atomic difference operator.
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CHAPTER 3

APPROXIMATIONS FOR SCALAR SINGULAR NEUTRAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

In this chapter we present case studies to illustrate the dependence of the rate of convergence

of numerical schemes for singular neutral equations (SNFDEs) on the particular mesh em-

ployed in the computation. The numerical experiments in [19] demonstrated a “degradation”

of the expected rate of convergence when uniform meshes were considered. In particular, it

was observed numerically that the degradation of the rate of convergence was related to the

strength of the singularity in the kernel of the SNFDE. Following the idea used for Volterra

equations with weakly singular kernels (see e.g., [3] and [4]) we investigate graded meshes

associated with the kernel of the SNFDE in attempting to restore convergence rates. We

give an estimate for the global rate of convergence for on a fixed time interval. Finally, to

illustrate the flexibility of the scheme presented we present numerical examples of the scheme

applied to equations that are not of singular type.

3.1 Introduction

Consider the following SNFDE in the state space L2
g(−r, 0), a weighted L2-space with kernel

g:

d

dt

(∫ 0

−r
g(θ)x(t+ θ)dθ

)
= f(t), t > 0, 0 < r <∞, (3.1.1)

with initial condition

x(θ) = ρ(θ) for −r ≤ θ < 0 (3.1.2)

where ρ is in L2
g(−r, 0). The kernel g appearing in (3.1.1) is positive and nondecreasing on

(−r, 0) and weakly singular at zero. More precisely, g(s) > 0 and g′(s) ≥ 0 on (−r, 0) with

g(s)→∞ as s→ 0− but still integrable, i.e., g ∈ L1(−r, 0). The right-hand side function , f ,

is an integrable function. We note that an equation of this type occurs in certain aeroelastic
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systems (see [5]). Using the notation for neutral functional differential equations (NFDE),

(3.1.1) could be rewritten as

d

dt
Dxt = f(t), (3.1.3)

where the difference operator D is the bounded linear operator Dϕ :=
∫ 0

−r g(s)ϕ(s)ds and

recall that xt is the solution segment, i.e., xt(θ) = x(t + θ), θ ∈ [−r, 0]. It was shown in

[7, 19] that (3.1.1)–(3.1.2) is well-posed on a weighted L2-space.

This chapter is organized as follows. In Section 3.2 we introduce finite dimensional

approximations for the SNFDE (3.1.1)–(3.1.2). We also discuss graded discretizations of

the interval [−r, 0] in the construction of numerical schemes. In Section 3.3 we explore

the degradation of the convergence rate in the scheme discussed in Section 3.2. In Section

3.4 we present case studies to illustrate the dependence of the numerically observed rate of

convergence on mesh selection. We make concluding remarks in Section 3.5.

3.2 Numerical Approximations

To construct numerical schemes, we proceed as in [19] and convert the SNFDE (3.1.1)-(3.1.2)

into a first order hyperbolic partial differential equation (PDE) with nonlocal boundary

conditions. The initial data at t = 0 is given by the initial function ρ(θ), −r ≤ θ ≤ 0

and the boundary is generated by the neutral equation itself. Define ϕ(t, θ) := x(t + θ) for

−r < θ < 0 and t ≥ 0. Assuming that ϕ is differentiable it satisfies the PDE

∂

∂t
ϕ(t, θ) =

∂

∂θ
ϕ(t, θ), (3.2.1)

for t > 0, −r < θ < 0. Furthermore, it follows from (3.2.1) that the boundary condition for

t > 0 can be written as

∫ 0

−r
g(θ)

∂

∂θ
ϕ(t, θ)dθ = f(t). (3.2.2)
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Remark 3.2.1. In the (t, θ)-plane, ϕ(t, θ) along (0, θ), −r ≤ θ < 0, is given by the initial

condition ρ(θ). For t > 0, the right boundary, i.e., ϕ(t, 0), can be obtained from (3.2.2)

and then ϕ(t, θ), t > 0,−r ≤ θ < 0 is determined along the characteristic lines. Using this

perspective one may construct other numerical schemes similar to the one presented here. �

We begin by constructing the approximating function. Let N be a positive integer and

introduce the partition of the interval [−r, 0] as −r =: τNN < τNN−1 < · · · < τN1 < τN0 := 0

and let δNj := τNj−1 − τNj > 0 for 1 ≤ j ≤ N . We define

ϕN(t, θ) :=
N∑
j=0

αNj (t)BN
j (θ) for t ≥ 0,−r ≤ θ ≤ 0,

where the piecewise linear functions, BN
j , j = 0, 1, 2, ..., N are given as

BN
j (θ) :=


(θ − τNj+1)/δNj+1 θ ∈ [τNj+1, τ

N
j ],

(τNj−1 − θ)/δNj θ ∈ [τNj , τ
N
j−1],

0 otherwise

for j = 1, 2, ..., N − 1, (3.2.3)

BN
0 (θ) :=


(θ − τN1 )/δN1 θ ∈ [τN1 , τ

N
0 ],

0 otherwise

, (3.2.4)

and

BN
N (θ) :=


(τNN−1 − θ)/δNN θ ∈ [τNN , τ

N
N−1],

0 otherwise

, (3.2.5)

and αNj (t), j = 0, 1, 2, ..., N are time dependent coefficients. One option is to use uniform

mesh in space, i.e., to select δj = δ = r
N

. A more involved option is to use a graded mesh,

that is, select δj, j = 1, 2, ..., N, specifically for the particular SNFDE under consideration.

Graded meshes were applied in a collocation scheme in [4] to solve Volterra integral equations

of the second kind with weakly singular kernels and results on attainable optimal rates
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of convergence were given. In this dissertation SNFDEs with weakly singular kernels are

considered including kernels of the type g(t) = t−p, with 0 < p < 1, and thus the results in

[4] served as a motivation to introduce graded meshes into the schemes presented here. In

particular, we choose the mesh such that the area of the integral of the kernel of the SNFDE

is the same on each subinterval, that is, we choose all τNj such that∫ τNj−1

τNj

g(θ)dθ =
1

N

∫ 0

−r
g(θ)dθ (3.2.6)

for 1 ≤ j ≤ N and where g(θ) is the kernel in equation (3.1.1). This mesh is applied for most

examples in Section 4 (note that in Example 3.4.5 it is somewhat modified to accommodate

a more complicated kernel). Throughout our computations we use uniform time steps of

size ∆t on the interval [0, T ], where T > 0 denotes the final time. To simplify notation, the

superscript N will be omitted during the remainder of this section.

Remark 3.2.2. While uniform meshes yield simpler schemes, especially when the space

(δ) and time (∆t) discretization is selected such that δ = ∆t, their application lead to a

degradation of the expected rate of convergence (see e.g., [19] for numerically observed rates

of convergence). The numerical findings in [19] indicated that the degradation of the rate

of convergence was directly related to the strength of the weak singularity in the kernel of

the SNFDE. A dependence on the kernel singularity was also noted in [11], [12] and [26],

in the context of numerical solutions of Abel integral equations, namely convergence rates

of 2 − p were obtained for the kernels t−p, 0 < p < 1 when using a midpoint method

with uniform mesh. Motivated by the analysis in [11] we present in this dissertation rate

of convergence estimates for numerical schemes for SNFDEs (see Lemma 3.3.1 below). In

particular, we arrive at a discretization error of order 2 − p in the uniform mesh case and

order 2 in the graded mesh case, respectively, when we consider the difference of the integral

in the boundary condition (3.2.2) and its fully discretized analog in equation (3.2.11). The

numerical case studies in Section 4 indicate that the graded mesh (3.2.6) is a viable candidate
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to prevent the ”degradation” of the expected convergence rate of 2 for the numerical schemes

(3.2.12) for SNFDEs with more general weakly singular kernels as well. �

Remark 3.2.3. See also [8] and [9] for related results on mesh selection. In [8], an alternative

method to solve a similar class of SNFDEs is given where the authors first convert the SNFDE

to a Volterra equation of second kind which is then solved using a hybrid collocation method.

�

Assume that a mesh is specified and consider a second-order space discretization to

equation (3.2.1) (see [19]):

d

dt

(
αj−1(t) + αj(t)

2

)
=

1

δj
(αj−1(t)− αj(t)) (3.2.7)

for 1 ≤ j ≤ N and substitute ϕN(t, θ) into the boundary condition (3.2.2) to advance the

solution to obtain
N∑
j=1

gj
δj

(αj−1(t)− αj(t)) = f(t), (3.2.8)

where gj :=
∫ τj−1

τj
g(θ)dθ. Equations (3.2.7)-(3.2.8) form the semi-discrete scheme.

Using the second-order implicit trapezoidal rule in time in (3.2.7), we get the fully dis-

cretized scheme

1

∆t

(
αk+1
j−1 + αk+1

j

2
−
αkj−1 + αkj

2

)
=

1

2δj

(
αk+1
j−1 − αk+1

j + αkj−1 − αkj
)
, (3.2.9)

or, equivalently,

αk+1
j−1Cj + αk+1

j = αkj−1 + αkjCj, (3.2.10)

where Cj =
(

1
∆t
− 1

δj

)
/
(

1
∆t

+ 1
δj

)
. The right boundary, αk+1

0 , is computed from the equation

N∑
j=1

gj
δj

(αk+1
j−1 − αk+1

j ) = f((k + 1)∆t). (3.2.11)
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Since we are considering the second-order discretization (3.2.7) in space and the second-order

discretization (3.2.9) in time for equation (3.2.1), it is reasonable to expect second-order

convergence to the true solution. We now have a system of linear equations to determine

αk+1
j , j = 0, 1, 2, ..., N , namely

K1a
k+1 = K2a

k + Fk+1, (3.2.12)

k ≥ 0, where

K1 :=



g1
δ1

(
g2
δ2
− g1

δ1

)
· · · · · ·

(
gN
δN
− gN−1

δN−1

)
−gN
δN

C1 1 0 ... 0 0

0 C2 1 ... 0 0

...
...

. . . . . . 0 0

0 0 ... CN−1 1 0

0 0 ... 0 CN 1


, ak :=



αk0

αk1

αk2
...

αkN−1

αkN


,

K2 :=



0 0 0 · · · 0 0

1 C1 0 ... 0 0

0 1 C2 ... 0 0

...
...

. . . . . . 0 0

0 0 ... 1 CN−1 0

0 0 ... 0 1 CN


, and Fk :=



f((k + 1)∆t)

0

0

...

0

0


.

Note that we have placed Fk+1 on the right side of the equation since it is assumed to be a

known quantity. If the mesh is uniform, i.e., δj = δ, j = 1, 2, ..., N and δ = ∆t, then Cj = 0

for all j and we get the particular scheme with uniform mesh considered in [19].

Remark 3.2.4. Note that the matrix K1 in (3.2.12) is nonsingular for all N for Abel-type

kernels considered in the forthcoming examples. �
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Remark 3.2.5. The convergence of both the semi-discrete (3.2.7)-(3.2.8) and fully-discrete

(3.2.10)-(3.2.11) schemes were established in [19]. �

We now give a few words to explain system (3.2.12). At time t = 0 we have that

α0
j = ρ(τj) for j = 1, ..., N and α0

0 can be computed from (3.2.11) (with k = −1). Thus the

vector (α0
0, α

0
1, ..., α

0
N−1, α

0
N)T is known and will be used to compute (α1

0, α
1
1, ..., α

1
N−1, α

1
N)T .

In a similar fashion the vector of unknowns at step (k+ 1)∆t , (αk+1
0 , αk+1

1 , ..., αk+1
N−1, α

k+1
N )T ,

will be computed using (αk0, α
k
1, ..., α

k
N−1, α

k
N)T for all remaining k ≥ 1. Assume we are

interested in approximating the true solution x(k∆t) up to time-step kT . Then, the solution

is approximated by ϕN(k∆t, 0) (since θ < 0 introduces a delay) and so the numerical solution

is continuously advanced by the αk0 component (the right boundary mentioned above) in each

newly computed vector up to step kT . That is, the numerical solution up to time-step kT is

given by the values α1
0, α

2
0, ..., α

kT−1
0 , and αkT0 .

In this section we introduced a family of fully-discrete schemes with uniform and graded

meshes for the numerical solution of SNFDEs with weakly singular kernels. In the next

section we establish error estimates for both cases for a special class of weakly singular

kernels.

3.3 On the rate of convergence

Recall that the approximate solution is computed using the nonlocal boundary condition

(3.2.2). For this reason, to study the convergence rate of the approximate solution to the

true solution, we should understand how fast the fully-discretized version of the integral

converges to the true value of the integral in (3.2.2). It is reasonable to expect that the global

rate of convergence of the scheme would most likely benefit from a better approximation of

the integral in (3.2.2) and therefore we make the characterization of this discretization error

the main objective of this section.
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At time tk+1 > 0, we want to establish a local consistency error bound between the

integral

J :=

∫ 0

−r
g(θ)

∂

∂θ
ϕ(tk+1, θ)dθ

and its fully-discretized analog given by

K :=
N∑
j=1

gj
δj

(ϕ(tk+1, τj−1)− ϕ(tk+1, τj)),

where ϕ is the true solution of (3.2.1)-(3.2.2). By a local consistency error we mean how

well the discretized version of the integral approximates the true integral. Consider a kernel

g of the form g(θ) = |θ|−p, 0 < p < 1, and assume ϕ(tk+1, ·) ∈ C3[−r, 0]. The smoothness

is assumed to accomodate a Taylor series appoach for the error analysis. First, we establish

the following global convergence rate confirming the global rate of convergence with uniform

mesh.

We have the following result (see [32]):

Lemma 3.3.1. Let N be a positive integer, tk+1 > 0, g(θ) = |θ|−p, 0 < p < 1 for θ ∈ [−r, 0),

r > 0, and assume that the solution of (3.2.1)-(3.2.2), ϕ(tk+1, ·) ∈ C3[−r, 0]. Then J −K =

O(N−(2−p)) with the uniform mesh, τj = −j r
N

, and J −K = O(N−2) with the graded mesh

generated by (3.2.6).

Proof. We shall use the notation τj/2 := (τj−1 + τj)/2. Define Kj :=
gj
δj

(ϕ(tk+1, τj−1) −

ϕ(tk+1, τj)) and Jj :=
∫ τj−1

τj
g(θ)ϕθ(tk+1, θ)dθ, j = 1, 2, . . ., where we switched to the alternate

notation ϕθ = ∂
∂θ
ϕ. Using straightforward calculations involving the Taylor series expansion

of ϕ(tk+1, θ) with respect to its second argument around τ j
2

we obtain the estimate∣∣∣∣ 1

δj
(ϕ(tk+1, τj−1)− ϕ(tk+1, τj))− ϕθ(tk+1, τj/2)

∣∣∣∣ ≤Mδ2
j ,

where M := max[−r,0] |ϕθθθ(tk+1, s)| and therefore
∣∣Kj − gjϕθ(tk+1, τj/2)

∣∣ ≤ Mδ2
j gj. Using

the Taylor expansion around τj/2 again, we have

Jj − gjϕθ(tk+1, τj/2) =

∫ τj−1

τj

(−θ)−p
(
ϕθ(tk+1, θ)− ϕθ(tk+1, τj/2)

)
dθ
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= ϕθθ(tk+1, τj/2)

∫ τj−1

τj

(−θ)−p
(
θ − τj/2

)
dθ +

∫ τj−1

τj

(−θ)−pE(θ)dθ,

where E(θ) = 1
2
ϕθθθ(tk+1, τ̃j/2)(θ− τj/2)2 is the error term and τ̃j/2 is between θ and τj/2. By

the mean value theorem for integrals we have that
∣∣∣∫ τj−1

τj
(−θ)−pE(θ)dθ

∣∣∣ = |E(θj)gj| ≤Mδ2
j gj

where θj ∈ (τj, τj−1). Denote ξj = τj−1/δj. In a fashion similar to Eggermont in [11], using

the change of variables y = (θ − τj−1)/(τj − τj−1) and repeated integration-by-parts we get

that ∫ τj−1

τj

(
θ − τj/2

)
(−θ)p

dθ = −δ2−p
j

∫ 1

0

y − 1/2

(y − ξj)p
dy

= δ2−p
j

(
p

12
(1− ξj)−p−1 +

∫ 1

0

p(p+ 1)(y − ξj)−p−2

(
y3

6
− y2

4

)
dy

)
= δ2−p

j O((1− ξj)−p−1)

as −ξj −→ ∞. Combining the previous two estimates we get |Jj − gjϕθ(tk+1, τj/2)| ≤

Cδ2−p
j (1− ξj)−p−1 + Mδ2

j gj for some constant C. Note that J −K =
∑N

j=1 Jj −Kj. Thus,

denoting hj := gjϕθ(tk+1, τj/2), we get

|J −K| ≤
N∑
j=1

|Jj − hj|+ |hj −Kj| ≤
N∑
j=1

Cδ2−p
j (1− ξj)−p−1 + 2Mδ2

j gj. (3.3.1)

If the mesh is uniform then δj = r/N and τj = −rj/N for all j. This gives that

(1 − ξj)−p−1 = j−p−1. Combining this with the fact that
∑N

j=1 j
−p−1 <

∑∞
j=1 j

−p−1 < ∞,

equation (3.3.1) gives that

|J −K| ≤ 2Mr2IN−2 + Cr2−pN−(2−p)
N∑
j=1

j−p−1 ≤ 2Mr2IN−2 + C ′N−(2−p),

where C ′ is some constant and I :=
∫ 0

−r g(θ)dθ. Thus J − K = O(N−(2−p)) if the mesh is

uniform.

If the mesh is graded then gj = I/N for all j and from this equation we get that

τj = −rj
1

1−pN
−1
1−p . For b ≥ −1 and ν ≥ 1 the inequality (1 + b)ν ≥ 1 + νb holds true. Since

0 < 1− p < 1, this inequality gives that(
1− 1

j

) 1
1−p

≥ 1− 1

(1− p)j
.
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From the inequality immediately above we have that

δj = r

(
j

N

) 1
1−p

[
1−

(
1− 1

j

) 1
1−p

]
≤ r

(
j

N

) 1
1−p 1

j(1− p)
= aj

p
1−pN

−1
1−p =: ∆j, (3.3.2)

where a := r/(1− p). Note that (1− ξj)−p−1 = δp+1
j (−τj)−p−1 and so

δ2−p
j (1− ξj)−p−1 = δ3

j (−τj)−p−1 ≤ ∆3
j(−τj)−p−1 = a′N−2− p

1−p j−1+ p
1−p , (3.3.3)

where a′ := r2−p/(1 − p)3. Recall that
∑N

j=1 j
q = O(N q+1) for q > −1 and note δj ≤ ∆j ≤

∆N = aN−1. Hence, from equations (3.3.1), (3.3.2), and (3.3.3), we get that

|J −K| ≤ 2MI∆2
N + Ca′N−2− p

1−p

N∑
j=1

j−1+ p
1−p ≤ 2MIa2N−2 + C ′′N−2− p

1−pN
p

1−p

for some constant C ′′. Thus J −K = O(N−2) if the mesh is graded.

Both claims in Lemma 3.3.1 are now established and show that the discretization error

of J − K converges to zero faster with the non-uniform graded mesh than with uniform

mesh. Note that we do not always have the smoothness assumed here and the examples to

follow will show that a discontinuity at zero in the derivatives of the true solution and the

forcing function will also affect the rate of convergence. Also, although we only considered

the case when g(θ) = |θ|−p, it is believed that the graded mesh (3.2.6) improves the rate of

convergence of the scheme even for more general kernels, e.g., g with the properties described

in Section 3.1.

With Lemma 3.3.1 established, the question now is: how the improvement in the dis-

cretization error J −K effects the actual (i.e., numerically observed) rate of convergence of

the numerical schemes (3.2.12)? The purpose of the next section is to give a partial answer

to this question by presenting case studies to illustrate the dependence of the actual rate of

convergence of the fully-discrete implicit scheme on mesh selection.
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3.4 Numerical examples

In this section we consider examples where we apply the aforementioned scheme (3.2.12)

using both uniform and graded meshs. We first give a few words on what we mean by

numerical rate of convergence.

We want to study the rate of convergence of the error function eN(t) := ϕN(t) − x(t)

to zero where t will be taken to be a time-step node point. That is, we want to estimate

a value m > 0 such that |eN(t)|≤cN−m as N → ∞ and where c > 0 is a constant. Tak-

ing the logarithm of this inequality (assuming it is defined) we have log(|eN(t)|)≤log(c) -

m log(N)=:`(N). We can see that log(eN(t)) lies below `(N) for all N after some N ′ and if

we plot log(eN(t)) against log(N) (where log(N) is on the horizontal axis) as N increases we

can conclude that the sequence log(eN(t)) decreases at a rate m′ that is at least as fast as

m. We can then use m′ as our approximate rate of convergence of |eN(t)| to zero. With this

idea in mind, in the examples to follow we will compute the approximate solution for N =

10, 20, 40, 80, 160, and 320 and plot the log of the errors against the log(N) to approximate the

rate of convergence. In Examples 3.4.3 and 3.4.6 we instead consider the rate of convergence

to zero of the maximum error |eN |∞ := max{|eN(t)| : t ∈ (0, 1] is a time-step node point} as

N increases and apply this same idea.

When it is not apparent what the numerical rate of convergence is, e.g. see Figures

3.5, 3.6, and 3.7 in Example 3.4.5, we provide least-squares lines to approximate the rate of

convergence. That is, for fixed t we provide a best fit function ms+b, where m and b are such

that
∑

N∈A[log(eN(t))− (m log(N) + b)]2, where A := {10, 20, 40, 80, 160, 320}, is minimized,

i.e., m and b are such that ms + b simultaneously minimizes the distance of each point

(log(N), log(eN(t)) to this line. This sum is a differentiable function of the two variables

m and b and can thus be found using minimization techniques from standard calculus. A

least-squares line will be considered to be the average numerical rate of convergence as the
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discretization in space is refined and it will itself be referred to as the numerical rate of

convergence. These lines will be denoted as “ – LS lines” in the figures.

Remark 3.4.1. In the examples to follow we take a weakly singular Volterra equation of

the first kind and reformulate it into an equation of the form (3.1.1). For example, consider

an equation of the form

∫ t

0

g(t− s)x(s)ds = f(t), (3.4.1)

where f(0) = 0, f ′(t) is locally integrable, and x is the unknown function to be determined.

Letting θ = −(t− s) we have that
∫ t

0
g(t− s)x(s)ds =

∫ 0

−t g(−θ)x(t+ θ)dθ and, in addition,

if we define x(u) = 0 for u ≤ 0 then∫ t

0

g(t− s)x(s)ds =

∫ −t
−r

g(−θ)x(t+ θ)dθ +

∫ 0

−t
g(−θ)x(t+ θ)dθ =

∫ 0

−r
g(−θ)x(t+ θ)dθ.

Thus, after differentiating, (3.4.1) can be reformulated to take the form

d

dt

(∫ 0

−r
g(−θ)x(t+ θ)dθ

)
= f ′(t) for t > 0, r > 0,

with x(θ) = 0 for − r ≤ θ ≤ 0.

(3.4.2)

We shall use T = 1 and r = 1 in the examples to follow. �

Example 3.4.1. Consider first the following example given in the text [37] on integral

equations by A.M. Wazwaz,

∫ t

0

x(s)

(t− s)1/4
ds =

128

231
t11/4.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/4
dθ

)
=

32

21
t7/4
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Table 3.1. Example 3.4.1. Graded error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.001013657 0.001353132 0.001610427 0.001854214
20 0.000272433 0.000357831 0.000423953 0.000479526
40 7.15E-05 9.33E-05 0.000110144 0.000124464
80 1.85E-05 2.41E-05 2.84E-05 3.20E-05
160 4.76E-06 6.16E-06 7.25E-06 8.17E-06
320 1.21E-06 1.57E-06 1.84E-06 2.08E-06

Table 3.2. Example 3.4.1. Uniform error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.002077632 0.002830702 0.003326358 0.003706897
20 0.000707676 0.000926724 0.001072235 0.001184404
40 0.000231681 0.000296101 0.00033911 0.000372326
80 7.40E-05 9.31E-05 0.000105834 0.000115691
160 2.33E-05 2.89E-05 3.27E-05 3.56E-05
320 7.23E-06 8.91E-06 1.00E-05 1.09E-05

for t > 0 and x(t) = 0 for t ≤ 0. The true solution is x(t) = t2. The graded mesh is given

by {τj} where ∫ τj−1

τj

|θ|−1/4dθ =
1

N

∫ 0

−1

|θ|−1/4dθ (3.4.3)

for j ≥ 1. In Figure 3.1, we plot log2(eN(t = 0.4)) against log2(N) with ∆t = 1/N as N

increases. We see that the convergence rate at t = 0.4 is approximately 1.9 for the graded

mesh and approximately 1.6 for the uniform mesh. Compare these to the expected rates of

2 and 1.75, for graded and uniform mesh, respectively. From Tables 3.1–3.2 we can see that

accuracy is also better with graded mesh under most mesh sizes.

Example 3.4.2. This example is given in [33] where Rahman et al. study numerical solu-

tions of first and second kind weakly singular Volterra equations using Laguerre polynomials,

∫ t

0

x(s)

(t− s)1/2
ds = t5.
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Figure 3.1. Example 3.4.1. Approximate rates of convergence for both meshes at t = 0.4.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/2
dθ

)
= 5t4

for t > 0 and x(t) = 0 for t ≤ 0. The true solution is x(t) = 1280
315π

t9/2.

From Tables 3.3–3.4 we can see that accuracy is increased at most time-steps shown for

the graded mesh. Furthermore, from Figure 3.2, we can see also see that at t = 0.6 the rate

of convergence is about 1.45 for uniform mesh and about 2 for graded mesh.

Example 3.4.3. The following example was also found in the text [37]. Consider

∫ t

0

x(s)

(t− s)1/2
ds =

8

3
t3/2 +

16

5
t5/2.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/2
dθ

)
= 4t1/2 + 8t3/2
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Table 3.3. Example 3.4.2. Graded error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.000170697 0.001140789 0.003566658 0.008178993
20 4.40E-05 0.000287571 0.000895002 0.002046136
40 1.11E-05 7.20E-05 0.000223952 0.000511856
80 2.78E-06 1.80E-05 5.60E-05 0.000127977
160 6.95E-07 4.51E-06 1.40E-05 3.20E-05
320 1.74E-07 1.13E-06 3.50E-06 8.00E-06

Table 3.4. Example 3.4.2. Uniform error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.000385704 0.003632379 0.01320325 0.032723612
20 0.00016053 0.001446193 0.00514585 0.012585171
40 6.39E-05 0.000556191 0.001947204 0.004715879
80 2.46E-05 0.000208414 0.000721241 0.00173485
160 9.21E-06 7.67E-05 0.000263218 0.000630195
320 3.39E-06 2.79E-05 9.51E-05 0.000226974

Figure 3.2. Example 3.4.2. Approximate rates of convergence for both meshes at t = 0.6.
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Figure 3.3. Example 3.4.3. Approximate rates of convergence in the max error on (0, 1].

for t > 0 and x(t) = 0 for t ≤ 0. The true solution is x(t) = 2t+ 3t2.

In this example, we look at the convergence to the true solution in the max error |eN |∞

as N increases. The max error was chosen here so that we can get an understanding of the

error on the whole interval and not only at a fixed time. From Figure 3.3 we can estimate

that the max error rate of convergence is about 1.5 for both uniform and graded mesh with

∆t = 1/N . Unlike the first two examples, note that the forcing function in the reformulated

equation has an unbounded derivative at zero. It seems that this discontinuity may have

compromised the expected rate of convergence of 2 for the graded mesh. From Tables 3.5–3.6

we can see that the accuracy appears to be better for the graded mesh.

Example 3.4.4. The following example was found in [20], where S. Jahanshahi et al. con-

sidered a numerical method to solve Abel integral equations of the first kind. Consider
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Table 3.5. Example 3.4.3. Graded error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.009505526 0.004760497 0.000962417 0.00126726
20 0.004514347 0.002602599 0.001423843 0.001190168
40 0.001852882 0.001142082 0.000758405 0.000998067
80 0.000711964 0.000457861 0.000329369 0.000379532
160 0.000264705 0.000175193 0.000131781 0.000138337
320 9.66E-05 6.52E-05 5.04E-05 4.77E-05

Table 3.6. Example 3.4.3. Uniform error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.016568542 0.026032073 0.033280012 0.039371411
20 0.006508018 0.009842853 0.012389938 0.014532092
40 0.002460713 0.003633023 0.004529736 0.00528466
80 0.000908256 0.001321165 0.001637446 0.00190389
160 0.000330291 0.000475972 0.000587655 0.000681773
320 0.000118993 0.000170443 0.000209904 0.000243164

∫ t

0

x(t)

(t− s)1/2
ds = et − 1.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/2
dθ

)
= et

for t > 0 and x(t) = 0 for t ≤ 0. The true solution is given by

x(t) =
et√
π
erf(
√
t),

where erf(u) = 2√
π

∫ u
0
e−t

2
dt is the error function.

At t = 0.4, Figure 3.4 shows that the uniform mesh and the graded mesh yield rates of

convergence of approximately 1 and 0.66, respectively, for the given range of mesh sizes. We

can see that uniform mesh performed better, however, both rates are slower than expected.

These slow rates of convergence are not surprising since the true solution has unbounded

derivatives at zero. Figure 3.4 and Tables 3.7–3.8 show that there is a significant increase in
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Figure 3.4. Example 3.4.4. Approximate rates of convergence for both meshes at t = 0.4.

Table 3.7. Example 3.4.4. Graded error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.000370818 0.002113945 0.003781737 0.00386041
20 0.002143661 0.00013414 0.000542405 0.003049412
40 0.001550951 0.000363341 7.40E-06 0.000872734
80 0.000890558 0.000254809 6.73E-05 0.000370849
160 0.00047324 0.000145548 4.96E-05 0.000116045
320 0.000243497 7.73E-05 2.88E-05 8.89E-06

accuracy with graded mesh.

Example 3.4.5. Now consider the following example found in [19],

1√
π

∫ t

0

e−(t−s)

(t− s)1/2
x(s)ds = e−t(t+ t3 + t5).
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Table 3.8. Example 3.4.4. Uniform error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.039093198 0.030079998 0.026815735 0.025626279
20 0.019228306 0.014461254 0.01263222 0.011821375
40 0.009444242 0.006989921 0.006006089 0.005521185
80 0.004651519 0.003401174 0.002884524 0.002613131
160 0.002298403 0.00166528 0.001398143 0.001252004
320 0.001138937 0.000819623 0.000682923 0.00060611

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

eθ

|θ|1/2
x(t+ θ)dθ

)
=
√
π(−e−t(t+ t3 + t5) + e−t(1 + 3t2 + 5t4))

for t > 0 and x(t) = 0 for t ≤ 0. The true solution is given by

x(t) = e−t
(

Γ(2)

Γ(3/2)
t1/2 +

Γ(4)

Γ(7/2)
t5/2 +

Γ(6)

Γ(11/2)
t9/2
)
.

Note that the true solution has unbounded derivatives at zero.

It is reasonable to expect the scheme to be more accurate as ∆t gets smaller. Hence, the

purpose of this example is to study how the rate of convergence at different times is affected

when we consider time-steps smaller than ∆t = 1/N . The size of system (3.2.12) does not

change when we decrease the step-size since the discretization of [−1, 0] remains fixed.

We note that the kernel gives difficulty in extracting a graded mesh tailored to this

particular equation. Instead we use the mesh we get by ignoring the exponential part, i.e.,

the mesh generated using kernel g(θ) = |θ|−1/2, since the strength of the singularity at zero

is similar for both kernels.

At t = 0.2, Figure 3.5 suggests that the rate of convergence is approximately 0.5 with

∆t = 1/N , and if we decrease the step-size to 1/(2N) the rate increases to approximately

2.1 and then decreases to approximately 1.96 for 1/(4N). Figure 3.6 shows the approximate

convergence rates at t = 0.6 to be 1.68, 1.86, and 1.66 for ∆t = 1/N, 1/(2N), and 1/(4N),

respectively. In Figure 3.7 we see that the rate does not improve when we decrease the

38



Figure 3.5. Example 3.4.5. Approximate rates of convergence with graded mesh at t = 0.2.

step-size at t = 0.8 where the convergence rates are approximately 1.95, 0.96, and 1.3 for

∆t = 1/N, 1/(2N), and 1/(4N), respectively. Although there were improvements at t = 0.2

and t = 0.6 with ∆t = 1/(2N), it was not as beneficial with ∆t = 1/(4N). There was no

such improvement at t = 0.8. We can conclude that decreasing the time step size can help

restore the rates of convergence, however, not uniformly on (0, 1]. The discontinuities in the

derivatives of the true solution at zero may have influenced the numerical results.

Example 3.4.6. We now give an example of a problem where the numerical solution per-

forms better with uniform mesh, see again [37]. Consider∫ t

0

x(s)

(t− s)1/2
ds =

4

3
t3/2.

Reformulated, this equation can be stated as

d

dt

(∫ 0

−1

x(t+ θ)

|θ|1/2
dθ

)
= 2t1/2
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Figure 3.6. Example 3.4.5. Approximate rates of convergence with graded mesh at t = 0.6.

Figure 3.7. Example 3.4.5. Approximate rates of convergence with graded mesh at t = 0.8.
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for t > 0 and x(t) = 0 for t ≤ 0. The true solution is x(t) = t.

From Table 3.9 note that the error for the uniform mesh is near zero at the times shown.

In fact, it seems that under the uniform mesh the scheme produces the exact solution. This

is suspected to be related to the slope of the characteristic lines (see Remark 3.2.1) being

the same as the (negative) slope of the true solution and the fact that the uniform mesh

scheme computes the numerical solution along these characteristic lines. For the graded

mesh, Figure 3.8 suggests that we get a convergence rate in the max error of about 1.5.

Table 3.9. Example 3.4.6. Uniform error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 2.78E-17 0 1.11E-16 0
20 0 0 1.11E-16 0
40 0 0 1.11E-16 2.22E-16
80 0 0 3.33E-16 4.44E-16
160 5.55E-17 1.67E-16 2.22E-16 1.11E-15
320 1.11E-16 4.44E-16 4.44E-16 0

Table 3.10. Example 3.4.6. Graded error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 0.006575578 0.004990873 0.003880048 0.004728787
20 0.002724213 0.001962718 0.001565912 0.000529
40 0.001045101 0.000738097 0.000593916 0.000751729
80 0.000386044 0.000271026 0.00021865 0.000254528

160 0.000139948 9.82E-05 7.94E-05 8.55E-05
320 5.02E-05 3.53E-05 2.86E-05 2.80E-05

Example 3.4.7. As a final application of graded meshes, we consider an example where the

dependent variable, x(t), also appears in the right side of the equation. Consider

d

dt

(∫ 0

−1

x(t+ s)

|s|1/2
ds

)
= x(t)− t6 +

1024

231
t11/2
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Figure 3.8. Example 3.4.6. Approximate rate of convergence in the max error on (0,1].

for t > 0 and x(u) = 0 for u ≤ 0. The true solution is x(t) = t6. This requires only a minor

modification in the discretization of the boundary condition. More explicitely, if we recall the

notation of Section 3.2, the discretized boundary condition (3.2.11) has the modified form

−αk+1
0 +

∑N
j=1 gj(α

k+1
j−1 − αk+1

j )/δj = fk+1. From Figure 3.9, we get a numerical convergence

rate of about 1.5 for uniform mesh and 2 for graded mesh at time t = 0.4.

Table 3.11. Example 3.4.7. Uniform error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 4.48E-05 0.001267769 0.008851268 0.035107414
20 1.86E-05 0.000504024 0.003454789 0.013542525
40 7.45E-06 0.000195381 0.001317837 0.005114189
80 2.89E-06 7.39E-05 0.000492225 0.001895588
160 1.10E-06 2.74E-05 0.000180854 0.000692665
320 4.07E-07 1.00E-05 6.57E-05 0.000250544

To conclude this section we illustrate the flexibility of this scheme by applying it to a

scalar delay differential equation.
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Table 3.12. Example 3.4.7. Graded error table. ∆t = 1/N.
mesh↓ time→ 0.2 0.4 0.6 0.8

10 2.28E-05 0.00046216 0.00271248 0.009714935
20 6.17E-06 0.00011739 0.000681765 0.002432978
40 1.57E-06 2.95E-05 0.000170666 0.000608517
80 3.94E-07 7.37E-06 4.27E-05 0.000152146

160 9.87E-08 1.84E-06 1.07E-05 3.80E-05
320 2.47E-08 4.61E-07 2.67E-06 9.51E-06

Figure 3.9. Example 3.4.7. Approximate rates of convergence for both meshes at t = 0.4.

Example 3.4.8. The following scalar delay differential equation was studied in [2]. Consider

ẋ(t) = 5x(t) + x(t− 1) (3.4.4)

with initial data

x(t) = 5, t ∈ [−1, 0].
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Figure 3.10. Example 3.4.8. Approximate solution for a scalar DDE.

The true solution on [0, 2] is given by

x(t) =


6e5t − 1 0 ≤ t ≤ 1

(x(1)− 1
5

+ 6(t− 1))e5(t−1) + 1
5

1 ≤ t ≤ 2

.

The associated scheme, with ∆t = δ, is given by

αk+1
j = αkj−1

for j = 1, 2, . . . , N . Substituting ϕN(t, θ), as defined above, into the delay equation yields

the boundary condition

αk+1
0 (

1

δ
− 5)− αk+1

1

1

δ
− αk+1

N = 0.

Figure 3.10 shows the numerical solution generated by this scheme.
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3.5 Conclusions

The “degradation” in rate of convergence for SNFDEs with weakly singular kernels was ob-

served in [19] (when using uniform meshes) and in this chapter we investigated possible fixes

of this phenomenon. In particular, we considered graded meshes (where grading was related

to the strength of the singularity of the kernel function in the SNFDE under considera-

tion) to improve on the rate of convergence. In Section 3.3, we established that the graded

mesh is a viable alternative to uniform mesh and in Section 3.4 we applied it to concrete

examples. Examples 3.4.1 and 3.4.2 indeed show that the expected rate of convergence of

2 can be recovered if the graded mesh is applied. However, Examples 3.4.3 and 3.4.4 show

that discontinuities in the derivatives of either the forcing function or the true solution may

compromise the expected rates of convergence. We note that in all the Examples 3.4.1–3.4.4

accuracy improved at most of the time-steps shown with graded mesh. Finally, we showed

the flexibility of the scheme by applying it to a delay differential equation.
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CHAPTER 4

APPROXIMATIONS FOR SINGULAR NEUTRAL FUNCTIONAL

DIFFERENTIAL EQUATION SYSTEMS

NFDEs and SNFDEs are inherently infinite-dimensional problems, i.e., we are looking for a

solution in an infinite-dimensional function space. Methods for solving NFDEs are typically

extensions from methods first developed to solve RFDEs. These methods typically involve

approximating the original NFDE by a sequence of finite-dimensional ordinary differential

equations. See, for example, [1], where the method of averaging projections is introduced to

solve RFDEs numerically. This method was then applied in the case of NFDEs and SNFDEs,

e.g., in [21] and [19], respectively. The fact that we are approximating an infinite-dimensional

problem by a finite-dimensional problem is important for computational purposes.

In the previous chapter we considered numerical approximations for certain scalar SNFDEs.

In this chapter we will consider the extension to the system case. Namely, we will consider

numerical approximations of the system (2.4.1)–(2.4.3) and provide a preliminary numerical

case study on its stabilizability.

4.1 A Numerical Scheme

We now construct a numerical scheme for the SNFDE

d

dt

(
x(t) +

∫ 0

−r
a12(s)yt(s)ds

)
= b11x(t) + b12yt(0) +

∫ 0

−r
b12(s)yt(s)ds+ f(t) (4.1.1)

d

dt

(∫ 0

−r
g(s)yt(s)ds

)
= b21x(t) (4.1.2)

with initial condition

x(0) = η, y0(s) = ρ(s),
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where yt(s) := y(t+ s) for s ∈ [−r, 0] and t ≥ 0. Here, a12(s) and b12(s) are integrable func-

tions and b11 and b12 are scalars. Also the kernel g(s), −r ≤ s < 0, is positive, monotonically

increasing, integrable on [−r, 0], with g(s) −→∞ as s −→ 0−.

We again proceed as in [16] and [19] and convert the SNFDE (4.1.1)-(4.1.2) into a first

order hyperbolic partial differential equation with nonlocal boundary conditions. The initial

data at t = 0 is given by the initial function ρ(s), −r ≤ s ≤ 0. Define ϕ(t, s) := y(t+ s) for

−r < s < 0 and t ≥ 0. Assuming that ϕ is differentiable it satisfies the PDE

∂

∂t
ϕ(t, s) =

∂

∂s
ϕ(t, s), (4.1.3)

for t ≥ 0, −r < s < 0. Furthermore, it follows from (4.1.3) that the system (4.1.1)–(4.1.2)

for t > 0 can be written as

d

dt
x(t) +

∫ 0

−r
a12(s)

∂

∂s
ϕ(t, s)ds = b11x(t) + b12ϕ(t, 0) +

∫ 0

−r
b12(s)ϕ(t, s)ds+ f(t) (4.1.4)

and ∫ 0

−r
g(θ)

∂

∂s
ϕ(t, θ)dθ = b21x(t). (4.1.5)

For convenience, we restate the approximating function. Let N be a positive integer and

introduce the partition of the interval [−r, 0] as −r =: τN < τN−1 < · · · < τ1 < τ0 := 0 and

let δj := τj−1 − τj > 0 for 1 ≤ j ≤ N . We again use the approximating function

ϕN(t, θ) :=
N∑
j=0

αj(t)Bj(θ) for t ≥ 0,−r ≤ θ ≤ 0, (4.1.6)

where the piecewise linear functions, BN
j , j = 0, 1, 2, ..., N are given as

BN
j (θ) :=


(θ − τNj+1)/δNj+1 θ ∈ [τNj+1, τ

N
j ],

(τNj−1 − θ)/δNj θ ∈ [τNj , τ
N
j−1],

0 otherwise

for j = 1, 2, ..., N − 1, (4.1.7)
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BN
0 (θ) :=


(θ − τN1 )/δN1 θ ∈ [τN1 , τ

N
0 ],

0 otherwise

, (4.1.8)

and

BN
N (θ) :=


(τNN−1 − θ)/δNN θ ∈ [τNN , τ

N
N−1],

0 otherwise

, (4.1.9)

and αNj (t), j = 0, 1, 2, ..., N are time dependent coefficients. Assume that a mesh is specified

and consider a second-order space discretization to equation (4.1.3) (see [19]):

d

dt

(
αj−1(t) + αj(t)

2

)
=

1

δj
(αj−1(t)− αj(t)) (4.1.10)

for 1 ≤ j ≤ N . Substituting ϕN(t, θ) into the equations (4.1.4)–(4.1.5) to advance the

solution, we obtain

d

dt
x(t) +

N∑
j=1

a12j

δj
(αj−1(t)− αj(t)) = b11x(t) + b12α0(t)

+
N∑
j=1

(
b12jαj(t) +

b̄12j

δj
(αj−1(t)− αj(t))

)
+ f(t),

(4.1.11)

and

N∑
j=1

gj
δj

(αj−1(t)− αj(t)) = b21x(t), (4.1.12)

where gj :=
∫ τj−1

τj
g(θ)dθ, a12j :=

∫ τj−1

τj
a12(s)ds, b12j :=

∫ τj−1

τj
b12(s)ds, and b̄12j :=

∫ τj−1

τj
sb12(s)ds.

Equations (4.1.10)-(4.1.12) form the semi-discrete scheme. Using the second-order implicit

trapezoidal rule in time in (4.1.10), we get the fully discretized scheme

1

∆t

(
αk+1
j−1 + αk+1

j

2
−
αkj−1 + αkj

2

)
=

1

2δj

(
αk+1
j−1 − αk+1

j + αkj−1 − αkj
)
, (4.1.13)

or, equivalently,

αk+1
j−1Cj + αk+1

j = αkj−1 + αkjCj, (4.1.14)
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where Cj :=
(

1
∆t
− 1

δj

)
/
(

1
∆t

+ 1
δj

)
. Define tk/2 := (tk + tk−1)/2. Expanding x(t) about tk/2

we arrive at

1

∆t
(x(tk+1)− x(tk)) = ẋ(tk/2) +O((∆t)2),

i.e., we a have the symmetric difference approximation for ẋ(t) at tk/2. Denote hj(t) :=

αj−1(t) − αj(t) and assume the coefficients αj(t) are twice continuously differentiable for

t > 0. Consider the Taylor expansions of hj(t) about tk/2

hk+1
j = h

k/2
j +

∆t

2
h
k/2
t,j +O((∆t)2)

and

hkj = h
k/2
j −

∆t

2
h
k/2
t,j +O((∆t)2).

Adding these two equations and rearranging the terms we arrive at

hk+1
j + hkj

2
= h

k/2
j +O((∆t)2).

Using these approximations in the numerical boundary condition (4.1.11) we have

1

∆t

(
xk+1 − xk

)
+

N∑
j=1

a12j

2δj

(
αk+1
j−1 − αk+1

j + αkj−1 − αkj
)

= b11x
k+1 + b12α

k+1
0

+
N∑
j=1

(
b12jα

k+1
j +

b̄12j

2δj

(
αk+1
j−1 − αk+1

j + αkj−1 − αkj
))

+ fk+1,

(4.1.15)

where xk is the approximation for x(tk). Finally, the fully discretized version of the equation

(4.1.12) is given by

N∑
j=1

gj
δj

(αk+1
j−1 − αk+1

j ) = b21x
k+1. (4.1.16)

In this section we stated an approximation scheme for the SNFDE (4.1.1)–(4.1.2). In the

next section we establish convergence of this scheme.
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4.2 Convergence

In this section we establish the convergence of the scheme directly. By convergence of {xk}

and {αkj}, we mean that

|x(tk)− xk| −→ 0

and

max
0≤j≤N

|αkj − ϕ(tk, τj)| −→ 0,

as ∆t, δj −→ 0, where x(t) and ϕ(t, s) (= y(t + s)) are the true solutions. For u ∈ RN+1

denote

‖u‖max := max
0≤j≤N

{|uj|}.

We will consider the convergence under a mesh dependent scaled norm. We will assume that

the true solutions are sufficiently differentiable to accomodate a Taylor series approach for

convergence. Define εk := x(tk) − xk, ekj := αkj − ϕkj , ek := (ek0, e
k
1, . . . , e

k
N)T , and let δj = δ

for all j. We will consider the special case where δ = ∆t.

Lemma 4.2.1. Let N be a positive integer, T > 0, g(θ) = |θ|−p, 0 < p < 1, for θ ∈ [−r, 0),

r > 0, f ∈ C1[0, T ], a12 and b12 are in C1[−r, 0], and assume that x(t) and ϕ(t, s) := yt(s),

−r ≤ s ≤ 0, are solutions to (4.1.4)–(4.1.5) with x ∈ C3[0, T ] and ϕ(t, ·) ∈ C3[−r, 0],

0 ≤ t ≤ T . Additionally, we assume that the mesh is uniform in both space and time with

∆t = δ. Then, for k+1 ≤ T/(∆t) and for some constant C > 0, e−CN
1−p

[|εk+1|+‖ek+1‖max] =

O(δ2−p).

Proof. For the function ϕ, define the discretization operators P k/2,∆t and Pj/2,δj as

P k/2,∆tϕ :=
1

2∆t

(
ϕk+1
j−1 + ϕk+1

j − ϕkj−1 − ϕkj
)

and

Pj/2,δjϕ :=
1

2δj

(
ϕk+1
j−1 − ϕk+1

j + ϕkj−1 − ϕkj
)
.
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Using Taylor series expansions centered about τ j
2

and t k
2

it can be shown (see (A.0.1)) that

P k/2,∆tϕ− Pj/2,δjϕ = O((∆t)2) +O(δ2
j ). (4.2.1)

Substituting ekj = αkj − ϕkj into equation (4.1.13) we arrive at

1

2∆t

(
ek+1
j−1 + ek+1

j − ekj−1 − ekj
)
+P k/2,∆tϕ =

1

2δj

(
ek+1
j−1 − ek+1

j + ekj−1 − ekj
)
+Pj/2,δjϕ. (4.2.2)

Using ∆t = δj = δ and equation (4.2.1), equation (4.2.2) simplifies to

ek+1
j = ekj−1 +O(δ3).

Then

|ek+1
j | ≤ |ekj−1|+Mjδ

3 ≤ ‖ek‖max +Mδ3, j ≥ 1,

where Mj := maxθ∈[τj ,τj−1] |ϕθθθ(tk+1, θ)| and M := maxθ∈[−r,0] |ϕθθθ(tk+1, θ)|. It is left to

estimate ek+1
0 . Substituting ekj and εkj into equation (4.1.16) we get

N∑
j=1

gj
δj

(ek+1
j−1 − ek+1

j ) +
N∑
j=1

gj
δj

(ϕk+1
j−1 − ϕk+1

j ) = b21x(tk+1)− b21ε
k+1. (4.2.3)

Subtracting (4.1.5) from the equation above we get
N∑
j=1

gj
δj

(ek+1
j−1 − ek+1

j ) = J −K − b21ε
k+1, (4.2.4)

where J :=
∫ 0

−r g(θ) ∂
∂θ
ϕ(tk+1, θ)dθ and K :=

∑N
j=1

gj
δj

(ϕk+1
j−1 − ϕk+1

j ). Rewriting the left side

of the equation and solving for ek+1
0 we have

g1e
k+1
0 =

N∑
j=1

ek+1
j (gj − gj+1) + δ(J −K)− δb21ε

k+1, (4.2.5)

where gN+1 = 0. Since gj − gj+1 > 0, j ≥ 1, and J −K = O(δ2−p) by Lemma 3.3.1 we have

g1|ek+1
0 | ≤

N∑
j=1

|ek+1
j | (gj − gj+1) + δ|J −K|+ δ|b21||εk+1|

≤ max
j≥1
{|ek+1

j |}
N∑
j=1

(gj − gj+1) + c1δ
3−p + δ|b21||εk+1|

≤ max
j≥1
{|ek+1

j |}g1 + c1δ
3−p + δ|b21||εk+1|

≤ ‖ek‖maxg1 +Mδ3g1 + c1δ
3−p + δ|b21||εk+1|,

(4.2.6)
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i.e.,

|ek+1
0 | ≤ ‖ek‖max + c3δ

3−p + c2δ
p|εk+1|

where c2 := (1− p)|b21| and some constants c1, c3. Thus

‖ek+1‖max ≤ ‖ek‖max + c3δ
3−p + c2δ

p|εk+1|. (4.2.7)

Consider

x(tk+1) = x(tk) + δẋ(tk/2) +
δ3

24
uk,

where uk := d3

dt3
x(t′k)− d3

dt3
x(t′′k) , t′k, t

′′
k ∈ (tk, tk+1). For simplicity we will assume b12(θ) ≡ 0

and let D12ψ :=
∫ 0

−r a12(θ) ∂
∂θ
ψ(θ)dθ. In (4.1.4), solving for ẋ(t), and substituting it in the

above equation we have

x(tk+1) = x(tk) + δb11x(tk/2) + δb12ytk/2(0) + δD12ϕ(tk/2, ·) + δfk/2 +
δ3

24
uk

= x(tk) + δb11x(tk+1)− δ2

2
b11ẋ(tk/2) + δb12ytk+1

(0)− δ2

2
b12ẏtk/2(0)

+δD12ϕ(tk/2, ·) + δfk+1 − δ2

2
f ′k+1 +O(δ3),

(4.2.8)

where we used Taylor approximations for x(t), yt(0), and f(t). Similarly, solving for xk+1 in

the discrete equation (4.1.15) we have

xk+1 = xk + δb11x
k+1 + δb12α

k+1
0 + δD̃ + δfk+1

= xk + δb11x
k+1 + δb12α

k+1
0 + δP̃ + δẼ + δfk+1,

(4.2.9)

where D̃ :=
∑N

j=1
a12j
2δj

(
αk+1
j−1 − αk+1

j + αkj−1 − αkj
)
, P̃ :=

∑N
j=1

a12j
2δj

(
ϕk+1
j−1 − ϕk+1

j + ϕkj−1 − ϕkj
)

and Ẽ :=
∑N

j=1
a12j
2δj

(
ek+1
j−1 − ek+1

j + ekj−1 − ekj
)
. Subtracting equation (4.2.9) from (4.2.8) we

have

εk+1 = εk + δb11ε
k+1 − δb12e

k+1
0 + δ(D12ϕ(tk/2, ·)− P̃ )− δẼ +O(δ2)

= εk + δb11ε
k+1 − δb12e

k+1
0 − δẼ +O(δ2),

since D12ϕ(tk/2, ·)− P̃ = O(δ) by (A.0.2). By (A.0.3) we have that

|Ẽ| ≤ A‖ek+1‖max + A‖ek‖max.
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Estimating εk+1, we have

|εk+1| ≤ |εk|+ δ|b11||εk+1|+ δ|b12||ek+1
0 |+ δ|Ẽ|+ c′1δ

2

≤ |εk|+ δ|b11||εk+1|+ δ|b12|‖ek+1‖max + δA‖ek+1‖max + δA‖ek‖max + c′1δ
2.

That is,

|εk+1| ≤ (1 + aδ)|εk|+ δc′1‖ek+1‖max + δc′2‖ek‖max + c′3δ
2, (4.2.10)

for some constants a, c′1, c′2, and c′3. Adding equations (4.2.7) and (4.2.10) and rearranging

the terms we have

(1− c2δ
p)|εk+1|+ (1− c′1δ)‖ek+1‖max ≤ (1 + aδ)|εk|+ (1 + c′2δ)‖ek‖max + c4δ

2,

for some constant c4. Let d ≥ max{c2, c
′
1}, d′ ≥ max{a, c′2}, and note −δp < −δ for

0 < δ < 1. Hence

(1− dδp)|εk+1|+ (1− dδp)‖ek+1‖max ≤ (1 + d′δ)|εk|+ (1 + d′δ)‖ek‖max + c4δ
2.

Denoting ξk := |εk|+ ‖ek‖max we have

ξk+1 ≤ 1 + d′δ

1− dδp
ξk + c̄δ2 ≤ (1 + d′δ)(1 + d′′δp)ξk + c̄δ2 ≤ (1 + d̄δp)ξk + c̄δ2. (4.2.11)

for some constants d′′, d̄, and c̄. By Lemma C.0.1 and noting that ξ0 = 0 (by the initial

data) we have that

ξk+1 ≤ (e(k+1)d̄δp − 1)C ′δ2−p = (etk+1(∆t)−1d̄δp − 1)C ′δ2−p ≤ (eCN
1−p − 1)C ′δ2−p, (4.2.12)

where C ′ := c̄(d̄)−1 and C := T d̄rp−1. Thus,

e−CN
1−p

ξk+1 ≤ (eCN
1−p − 1)e−CN

1−p

C ′δ2−p, (4.2.13)

and so e−CN
1−p

[|εk+1|+ ‖ek+1‖max] ≤ C ′δ2−p.

53



In the previous two sections we stated an approximation scheme for a certain SNFDE sys-

tem and we showed convergence of the approximate solutions directly. As in the scalar case,

this scheme yielded a finite-dimensional system. In the next section we discuss stabilization

for finite-dimensional systems.

4.3 Stabilizing The Finite-Dimensional System

In the previous chapter we saw that the approximation scheme yields a finite-dimensional

system and it is the same case here. In this section we give general comments on the

stabilizability of the finite-dimensional system.

For a continuous-time ODE system y′(t) = Ay(t), the zero solution is asymptotically

stable if all eigenvalues of the matrix A are on the left-hand side of the complex plane (see

[27]). The analogous result pertaining to the discrete-time system x(k + 1) = Kx(k) is that

the eigenvalues of the matrix K lie (strictly) inside the unit circle in the complex plane (see

[29]). Consider a general discrete-time system of the form

x(k + 1) = Kx(k) + Hu(k), (4.3.1)

k ≥ 0, where x(k) and H are N × 1, K is N × N , and u(k) is a scalar. By a stabilizing

state feedback control we mean the existence of a sequence of scalars u(k) of the form

u(k) = −Gx(k) where G is a matrix such that the system

x(k + 1) = (K−HG) x(k) (4.3.2)

is asympotically stable. It is known (see [29]) that the existence of a stabilizing feedback

control is gauranteed provided that the rank controllability condition

rank [H : KH : K2H : · · · : KN−1H] = N (4.3.3)
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is satisfied. Assume this property holds. The characteristic equation of system (4.3.2) is

given by

det[λI−K + HG] = λn + α1λ
n−1 + α2λ

n−2 + · · ·+ αn−1λ+ αn = 0, (4.3.4)

where I denotes the N × N identity matrix. Since the roots of this characteristic equation

are the eigenvalues of the matrix, it suffices to choose G such that the coefficients αi yield

a polynomial with roots inside the unit circle. In other words, this is now a pole placement

problem. For large N , this can be computationally intensive. Hence, it is important to

understand the stability of system (4.1.1)–(4.1.2) prior to discretization. This is a topic for

future work.

Consider again a general system (4.3.1) with H, K, and u(k) as before and assume that

the rank condition is satisfied. Let T := M∆t denote the final time. The optimal control

problem for the finite time process k = 1, 2, . . . ,M is stated as follows: find the optimal

control sequence u(0), u(1), . . . , u(M − 1) such that the quadratic performance index

J =
1

2
x∗(M)Sx(M) +

1

2

M−1∑
k=0

(x∗(k)Qx(k) + u∗(k)Ru(k))

is minimized subject to

x(k + 1) = Kx(k) + Hu(k).

Here, the * notation denotes the conjugate transpose. Q is a positive definite or positive

semidefinite Hermitian matrix (or real symmetric matrix), R is a positive definite Hermitian

matrix (or real symmetric matrix), and S is a positive definite or positive semidefinite Her-

mitian matrix (or real symmetric matrix). Typically, the matrices Q, R and S are chosen to

reflect the importance of the state vector, the control vector, and the final state, respectively.

Provided that the rank controllability condition (4.3.3) is satisfied, it is known (see [29]) that

the optimal control sequence is given in state feedback form by

u(k) = −K(k)x(k)
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where

K(k) = R−1H∗(K∗)−1 [P(k)−Q]

and P(k) is a N ×N Hermitian matrix (or N ×N real symmetric matrix). Moreover, P(k)

can be computed backwards from the following Riccati matrix equation

P(k) = Q + K∗P(k + 1)
[
I + HR−1H∗P(k + 1)

]−1
K

where P(M) = S. Furthermore, we also have that the minimum value of the performance

index is given by Jmin = 1
2
x∗(0)P(0)x(0). The interested reader is referred to [29] for a

detailed derivation of these results.

In the next section we apply the approximation scheme to an example. As an application

of the approximation scheme we construct a control candidate to stabilize the original system.

4.4 Numerical Example

We now provide a case study implementing the previously discussed approximation scheme.

As an application of the scheme we can construct a forcing function to stabilize the original

infinite dimensional problem.

Example 4.4.1

Consider the following 2× 2 singular neutral system given in [16].

d

dt

(
x(t) +

∫ 0

−1

y(t+ s)ds

)
= y(t) + u(t), (4.4.1)

d

dt

(∫ 0

−1

(−s)−1/2y(t+ s)ds

)
= x(t), (4.4.2)

with initial data

x(0) = 1, ϕ(s) = 0, s ∈ [−1, 0], (4.4.3)

and u(t) is a possible control term. In the case of u ≡ 0, the true solution is given by

x(t) =


1 0 < t ≤ 1

1 + 4
3π

(t− 1)3/2 1 < t ≤ 2

, (4.4.4)
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and

y(t) =


2
π
t1/2 0 < t ≤ 1

2
π

+ 4
π
(t1/2 − 1) + 1

2π
(t− 1)2 1 < t ≤ 2

. (4.4.5)

The associated fully-discrete system, with δj = δ = ∆t, and gj(s) :=
∫ τj−1

τj
(−s)−1/2ds, is

given by

αk+1
j = αkj−1, j = 1, 2, . . . , N,

−xk+1
1 +

N∑
j=1

gj
δ

(αk+1
j−1 − αk+1

j ) = 0,

and

1

∆t
xk+1

1 − 1

2
αk+1

0 − 1

2
αk+1
N =

1

∆t
xk1 −

1

2
αk0 +

1

2
αkN + uk+1.

To compute the numerical solution we will use the following system of linear equations to

determine xk+1 and αk+1
j , j = 0, 1, 2, ..., N .

K1y
k+1 = K2y

k + vk+1, (4.4.6)

K1 :=



1
∆t
−1

2
0 · · · · · · 0 −1

2

0 g1
δ1

(
g2
δ2
− g1

δ1

)
· · · · · ·

(
gN
δN
− gN−1

δN−1

)
−gN
δN

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0

...
...

. . . . . . . . .
...

...

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1



,yk :=



xk1

αk0

αk1

αk2
...

αkN−1

αkN



,
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K2 :=



1
∆t
−1

2
0 · · · 0 1

2

0 0 0 · · · 0 0

1 0 0 ... 0 0

0 1 0 ... 0 0

...
...

. . . . . . 0 0

0 0 ... 1 0 0

0 0 ... 0 1 0



, and vk :=



uk+1

0

0

...

0

0


.

Remark 4.4.1. The matrix K1 in (4.4.6) is nonsingular for all N considered in this chapter.

�

At time t = 0 we have that x0 = 1 and α0
j = 0 for j = 1, ..., N , by the initial data (4.4.3).

Hence, the vector y0 is known. As in the previous chapter, the vector of unknowns at step (k+

1)∆t, (xk+1, αk+1
0 , αk+1

1 , ..., αk+1
N−1, α

k+1
N )T , will be computed using (xk, αk0, α

k
1, ..., α

k
N−1, α

k
N)T

for k ≥ 1. The true solution y(k∆t) is approximated by ϕN(k∆t, 0) (since θ < 0 introduces

a delay) and so the numerical solution is continuously advanced by the αk0 component in

each newly computed vector. Thus, the numerical solution up to time-step k+ 1 is given by

the values x1, x2, . . . , xk+1 and α1
0, α

2
0, ..., α

k
0, α

k+1
0 .

The solution to this equation, with u ≡ 0, is shown in Figures 4.1–4.2 with N = 100.

Equation (4.4.6) can be rewritten as yk+1 = Kyk + Huk+1, where K := K−1
1 K2 and H :=

K−1
1 v. We can compute that

rank [H : KH : K2H : · · · : K101H] = 102,

i.e., the controllability matrix indicates that the system is stabilizable. To find a quadratic

optimal control sequence we will let S = Q = I and R = 1, where I is the identity matrix.

The results are shown in Figures 4.3–4.4.

We can see that the system is not stabilized. Through numerical experiments it was

observed that by scaling the vector H by δ, i.e., replacing H with δH, we achieve better
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Figure 4.1. Example 4.4.1. True and approximate solution for x(t).

Figure 4.2. Example 4.4.1. True and approximate solutions for y(t).
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Figure 4.3. Example 4.4.1. Quadratic optimal control for x(t).

Figure 4.4. Example 4.4.1. Quadratic optimal control for y(t).
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Figure 4.5. Example 4.4.1. Quadratic optimal control for x(t) with scaled H.

numerical results, see Figures 4.5–4.6. It is likely that this resolves numerical errors in

the computation in the feedback matrix. In the following section we will discuss numerical

considerations.

As an application of the approximation scheme we can construct a finite-dimensional

control as a candidate to stabilize the SNFDE (4.4.1)–(4.4.2). Using the sequence of feedback

matrices computed for a small mesh size we can construct a control for the original system.

More explicitly, for a mesh selection with N subintervals we can compute the control sequence

uk = −K(k)yk

for k = 1, 2, . . . , T/∆t, where

K(k) = [ηk : βk0 : · · · : βkN+1].

Thus

uk = −ηkxk − βk0αk0 − · · · − βkN+1α
k
N+1.
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Figure 4.6. Example 4.4.1. Quadratic optimal control for y(t) with scaled H.

This equation indicates the correspondence

ηk 7−→ xk and βkj 7−→ τ kj , j = 0, 1, . . . , N.

Using this correspondence we can construct the forcing function

uk(t) = −ηkx(t)− βk0yt(0)−
N∑
j=1

βkyt(τj), (4.4.7)

on the interval t ∈ (tk−1, tk]. Thus, we will consider this function as a feedback control to

bring the state to rest. To test the candidacy of this function we must be able to apply it

with a finer mesh. For a larger mesh {τ̃j}Ñj=0, where Ñ ≥ N and {τj}Nj=0 ⊆ {τ̃j}Ñj=0, we can

extend (4.4.7) to

uk(t) = −ηkx(t)− βk0yt(0)−
Ñ∑
j=1

β̃k(τ̃j)yt(τ̃j), (4.4.8)

62



for t ∈ (tk−1, tk], where

β̃k(θ) :=


βkj , θ ∈ [τNj , τ

N
j−1),

0, otherwise .

(4.4.9)

Thus, the control applied at time t ∈ (tk−1, tk] is a weighted sum where the weights, βkj , in

the delay terms are imposed on the subintervals [τj, τj−1), respectively. Recalling that we

defined ϕ(t, θ) = yt(θ) and substituting the approximating function

ϕÑ(t, θ) =
Ñ∑
j=0

αÑj (t)BÑ
j (θ) for t ≥ 0,−r ≤ θ ≤ 0,

as defined in (4.1.6), into (4.4.8) yields the approximate control

uk(t) = −ηkx(t)− βk0αÑ0 (t)−
Ñ∑
j=1

β̃k(τ̃j)α
Ñ
j (t), (4.4.10)

t ∈ (tk−1, tk]. We can now define the piecewise control

UN(t) :=


uk(t) t ∈ (tk−1, tk], k = 1, 2, . . . ,

0 otherwise,

(4.4.11)

where we again replace H with δH. We now construct a feedback control using N = 10

mesh points. The stabilized solution for N = 10 is shown in Figures 4.7–4.8. We want to

apply this feedback control to approximations with finer mesh.

In Figures 4.9–4.12 we compute the approximate solutions with Ñ = 100 and 1000.

We can see that as the mesh is refined, the state approaches zero. This indicates that

a simple control algorithm can be applied to stabilize the SNFDE. More importantly, this

indicates that attempts to develope a framework to find an optimal control for the SNFDEs

considered in this dissertation will have some benefit.

Remark 4.4.2. In the above example, it was required to test for controllability of the finite-

dimensional system via a rank condition. There was no indication that this condition would
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Figure 4.7. Example 4.4.1. Quadratic optimal control for x(t).

Figure 4.8. Example 4.4.1. Quadratic optimal control for y(t).
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Figure 4.9. Example 4.4.1. Quadratic optimal control for x(t) with control U10(t).

Figure 4.10. Example 4.4.1. Quadratic optimal control for y(t) with control U10(t).
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Figure 4.11. Example 4.4.1. Quadratic optimal control for x(t) with control U10(t).

Figure 4.12. Example 4.4.1. Quadratic optimal control for y(t) with control U10(t).
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be satisfied prior to discretization. It is unclear if stabilizability of the SNFDE is preserved

after discretization. For certain NFDEs, feedback stabilizability is possible provided the

difference operator is stable and a rank condition is satisfied (see [13], [14], [28], [30]). See

also Appendix B for an overview. To this author’s knowledge, similar conditions for SNFDEs

are not yet known. �

4.5 Numerical Considerations

In this section we review some computational issues related to the approximation scheme.

In the previous section we discussed the stabilizability of the finite dimensional system

induced by the approximation scheme. In the course of this example we observed numerical

difficulties related to the stabilizability. The spectrum of K is shown in Figure (4.13) for N =

100. We can observe that there exists a point in the spectrum near the origin. Additionally,

we can compute that the condition number of K is cond(K) ≈ 5.4805 E+03 for N = 100.

These observations are troubling since they indicate that K is nearly singular and that

computing its inverse may yield numerical errors. This seems to be the case in the numerical

Example 4.4.1 in Figures 4.3–4.4.

4.6 Conclusions

In this section we discussed approximation schemes for an SNFDE system. We presented

a lemma establishing convergence of the scheme under certain smoothness conditions. As

an application of the approximation scheme we found a control sequence for the associated

finite-dimensional system. From this control sequence we constructed a candidate function

to stabilize the SNFDE. This forcing function also stabilized the finite-dimensional system

as the dimension size is increased. These computations demonstrate that this candidate

function may also stabilize the SNFDE. Thus, it is worthwhile to search for results on the
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Figure 4.13. Example 4.4.1. Spectrum of K.

existence of an optimal control for SNFDEs analogous to the NFDE and RFDE case. This

is a topic for future work.

We now give sample Matlab code used in the computations.

4.7 Matlab Code

Sample code for Example (4.4.6).

1 f t =2 ;

2 N = 10 ; % used to precompute feedback matrix

3 r=1 ;

4 dt = r /N ;

5 T=round ( f t /dt ) ;

6 p=0.5 ;
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7

8 q = 2 ; % s i z e o f system i s Nˆq , a f t e r precomputing feedback

matrix

9

10 % approximation scheme

11 xr=−r ; x0=0 ; x=ze ro s (1 ,N+1) ; x (1 ) = x0 ;

12 f o r n=2:N+1

13 x (n) = x (n−1)+(r /N) ; % uniform

14 end

15 x mesh=− f l i p l r ( x ) ; g j=ze ro s (1 ,N) ; dj=ze ro s (1 ,N) ;

16 syms u

17 f o r m=1:N

18 g = abs (u)ˆ(−p) ;

19 g j (m) = i n t ( g , u , x mesh (m) , x mesh (m+1) ) ;

20 dj (m)= abs ( x mesh (m+1) − x mesh (m) ) ;

21 end

22 y 0 = 1 ; phi = x∗0 ; %i n i t i a l c o n d i t i o n s

23 K1=ze ro s (N+2,N+2) ; K2=ze ro s (N+2,N+2) ; %compute matr i ce s

24 f o r j =3:N+2

25 Aj=1+dt/ dj (N+2− j +1) ; Bj=1−dt/ dj (N+2− j +1) ; Cj=Bj/Aj ;

26 K1( j , j−1) = Cj ; K1( j , j ) = 1 ;

27 K2( j , j−1) = 1 ; K2( j , j ) = Cj ;

28 end

29 f o r j =2:N

30 K1(2 , j +1) = g j (N+1− j ) / dj (N+1− j ) − g j (N+1− j +1)/ dj (N+1− j +1) ;
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31 end

32 K1(1 , 1 ) = 1/ dt ; K1(1 , 2 )= −1/2 ; K1(1 ,N+2) = −1/2 ;

33 K1(2 , 1 ) = −1 ;

34 K1(2 , 2 ) = g j (N) / dj (N) ; K1(2 ,N+2) = −g j (1 ) / dj (1 ) ;

35 K2(1 , 1 ) = 1/ dt ; K2(1 , 2 ) = −1/2 ; K2(1 ,N+2) = 1/2 ; K2(2 , 1 ) =1;

36 % compute QOC

37 K = K1\K2 ;

38 S = eye (N+2) ;

39 Q = eye (N+2) ;

40 R = 1 ;

41 v=ze ro s (N+2 ,1) ; v (1 ) = 1 ;

42 H = dt∗K1\v ;

43 I = eye (N+2) ;

44 G = ze ro s ( T, N+2 ) ;

45 P = S ;

46 cont matr ix = ze ro s (N+2, N+2) ;

47 f o r k=1:N+2

48 cont matr ix ( : , k ) = Kˆ(k−1)∗H ;

49 end

50 rank cond = rank ( cont matr ix )

51 f o r k=1:T %precompute G matrix f o r QOC

52 P1 = H∗(R\H’ ) ∗P ;

53 P2 = ( I+P1)\K ;

54 P = Q + K’∗P∗P2 ;

55 G1 = R\H’ ;
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56 G2 = K’ \ (P−Q) ;

57 G( T−k+1 ,: ) = G1∗G2 ;

58 end

59

60 T 1 = T ;

61 N 1 = N ;

62

63 N = Nˆq ; % s i z e o f new l a r g e r system

64 dt = r /N ;

65 T=round ( f t /dt ) ;

66 p=0.5 ;

67

68 G big = ze ro s (T, N+2) ; % cons t ruc t feedback matrix f o r new l a r g e r

system

69

70 T 2 = N 1 ˆ(q−1) ;

71

72 f o r m=1:2

73 f o r i =1:T 1

74 G big ( 1 + T 2 ∗( i −1) : T 2∗ i , m) = G( i ,m) ;

75 end

76 end

77

78 f o r j =1:T 1

79 f o r m=1:N 1
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80 G big ( 1+ T 2 ∗( j−1) : T 2∗ j , 3+ N 1∗(m−1) : 2 + N 1∗(m) ) = G( j

,2+m) ;

81 end

82 end

83

84 % approximation scheme

85 xr=−r ; x0=0 ; x=ze ro s (1 ,N+1) ; x (1 ) = x0 ;

86 f o r n=2:N+1

87 x (n) = x (n−1)+(r /N) ; % uniform

88 end

89 x mesh=− f l i p l r ( x ) ; g j=ze ro s (1 ,N) ; dj=ze ro s (1 ,N) ;

90 syms u

91 f o r m=1:N

92 g = abs (u)ˆ(−p) ;

93 g j (m) = i n t ( g , u , x mesh (m) , x mesh (m+1) ) ;

94 dj (m)= abs ( x mesh (m+1) − x mesh (m) ) ;

95 end

96 y 0 = 1 ; phi = x∗0 ; %i n i t i a l c o n d i t i o n s

97 K1=ze ro s (N+2,N+2) ; K2=ze ro s (N+2,N+2) ; %compute matr i ce s

98 f o r j =3:N+2

99 Aj=1+dt/ dj (N+2− j +1) ; Bj=1−dt/ dj (N+2− j +1) ; Cj=Bj/Aj ;

100 K1( j , j−1) = Cj ; K1( j , j ) = 1 ;

101 K2( j , j−1) = 1 ; K2( j , j ) = Cj ;

102 end

103 f o r j =2:N
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104 K1(2 , j +1) = g j (N+1− j ) / dj (N+1− j ) − g j (N+1− j +1)/ dj (N+1− j +1) ;

105 end

106 K1(1 , 1 ) = 1/ dt ; K1(1 , 2 )= −1/2 ; K1(1 ,N+2) = −1/2 ;

107 K1(2 , 1 ) = −1 ;

108 K1(2 , 2 ) = g j (N) / dj (N) ; K1(2 ,N+2) = −g j (1 ) / dj (1 ) ;

109 K2(1 , 1 ) = 1/ dt ; K2(1 , 2 ) = −1/2 ; K2(1 ,N+2) = 1/2 ; K2(2 , 1 ) =1;

110 K=K1\K2 ;

111 v=ze ro s (N+2 ,1) ; v (1 ) = 1 ;

112 H = dt∗K1\v ;

113 v o ld =[ y 0 , phi ] ’ ;

114 v 0=v o ld ;

115 y = ze ro s (T+1 ,1) ;

116 a=ze ro s (T+1 ,1) ;

117 y (1 ) = y 0 ;

118 a (1 )=v o ld (2 ) ;

119 f o r k = 1 :T ; % compute approximate s o l u t i o n with QOC

120 v new = (K − H∗G big (k , : ) )∗ v o ld ;

121 v o ld = v new ;

122 y ( k+1) = v o ld (1 ) ;

123 a ( k+1) = v o ld (2 ) ;

124 end

125 w = l i n s p a c e (0 , f t , l ength ( a ) ) ;

126

127 f i g u r e

128 p lo t (w, a , ’b.− ’ ) ;
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129 g r id on ;

130 t i t l e ( [ ’ (d/dt ) [ x ( t ) + \ i n t {−r }ˆ{0}y ( t+s ) ds ] = y ( t )+f ( t ) , (d/dt )

[\ i n t {−1}ˆ{0}(− s ) ˆ{−1/2}y ( t+s ) ] = x ( t ) . ’ ] ) ;

131 x l a b e l ( [ ’ t . N=’ , num2str (N) ] ) ;

132 y l a b e l ( ’ y {qoc} ’ ) ;

133 l egend ( ’ Numerical s o l u t i o n ’ , ’ Locat ion ’ , ’ Northwest ’ ) ;

134

135 f i g u r e

136 p lo t (w, y , ’b.− ’ ) ;

137 g r id on ;

138 t i t l e ( [ ’ (d/dt ) [ x ( t ) + \ i n t {−r }ˆ{0}y ( t+s ) ds ] = y ( t )+f ( t ) , (d/dt )

[\ i n t {−1}ˆ{0}(− s ) ˆ{−1/2}y ( t+s ) ] = x ( t ) . ’ ] ) ;

139 x l a b e l ( [ ’ t . N=’ , num2str (N) ] ) ;

140 y l a b e l ( ’ x {qoc} ’ ) ;

141 l egend ( ’ Numerical s o l u t i o n ’ , ’ Locat ion ’ , ’ Northwest ’ ) ;
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation we discussed approximation schemes for certain classes of SNFDEs.

5.1 Conclusions

In the scalar case we observed that a degredation in the rate of convergence, under uniform

mesh, was related to the strength of the weakly singular kernel. This error phenomena was

also observed in approximation schemes for Volterra integral equations of second kind. To

recover the expected rate we modified the scheme by introducing a graded mesh tailored

to the particular SNFDE being considered. This mesh selection strategy was employed

in approximation schemes for Volterra equations of second kind and it was observed that

it indeed recovers lost convergence rates for such equations. In the case of certain scalar

SNFDEs, we presented a lemma and various numerical examples that indicate the graded

mesh restores the expected rate of convergence and therefore is a viable alternative to the

uniform mesh.

We also considered an approximation scheme for an SNFDE system composed of a neu-

tral equation coupled with a singular neutral equation. We recall that equations of this type

occur in certain aeroelastic systems. We established directly the convergence of the scheme

under certain smoothness assumptions. As an application of the approximation scheme we

constructed a simple feedback stabilizing forcing function using a control sequence for the

finite-dimensional system. It was observed that this function also stabilized the numeri-

cal solution when the mesh is refined. This indicated that the function also stabilizes the

SNFDE. The existence of such a function implies that the search for an optimal control for

SNFDEs is a reasonable endevour.
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5.2 Future Work

We now give a some brief comments on directions for future work.

In Chapter 3 we provided a suitable modification in the approximation scheme to restore

the expected rate of convergence. The results provide a motivation to develope a more

complete treatment of the dependence of numerical solutions on mesh selection. In particular,

we want to establish attainable optimal rates of convergence for uniform and graded meshes.

In Chapter 4, Remark 4.4.2, we briefly remarked on stabilizability. The theory for the

stabilizability of NFDEs is well-developed (see [13], [14], [28], [30]). However, to this authors

knowledge, there has not been much development for the case of SNFDEs. In particular, we

would like to investigate whether the stability of an SNFDE is preserved after discretization.

Without an understanding of the stabilizability of SNFDEs it may be difficult to develop a

suitable control framework for such equations. Developing an understanding of stabilizability

and optimal control for scalar SNFDEs analogous to NFDEs (see Appendix B) appears to

be a reasonable direction for future work.
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APPENDIX A

DISCRETIZATION ERRORS

Consistency Error: A

We establish that the discretization for the equation

∂

∂t
ϕ(t, θ) =

∂

∂s
ϕ(t, s)

is second-order in time (t) and second-order in space (s). We first introduce the following

discretization operators to simplify notation. Assume ϕ(t, s) is sufficiently differentiable to

allow for the Taylor expansions to follow. Let ϕkj := ϕ(tk, τj) and define

P k/2,∆tϕ :=
1

2∆t

(
ϕk+1
j−1 − ϕkj−1 + ϕk+1

j − ϕkj
)

and

Pj/2,∆j
ϕ :=

1

2∆j

(
ϕk+1
j−1 − ϕk+1

j + ϕkj−1 − ϕkj
)
.

We first consider the following expansions in space.

ϕ((k + 1)∆t, τj/2 −∆j/2) = ϕk+1
j = ϕk+1

j/2 −
∆j

2
ϕk+1
s,j/2 +

∆2
j

22 · 2
ϕk+1
ss,j/2 −

∆3
j

23 · 3!
ϕk+1
sss (ξ),

ξ ∈ (τj, τj−1). Expanding in the other direction we have

ϕk+1
j−1 = ϕk+1

j/2 +
∆j

2
ϕk+1
s,j/2 +

∆2
j

22 · 2
ϕk+1
ss,j/2 +O(∆3

j).

Subtracting these two equations we have

ϕk+1
j−1 − ϕk+1

j = ∆jϕ
k+1
s,j/2 +O(∆3

j)

In a similar fashion we also have that

ϕkj−1 − ϕkj = ∆jϕ
k
s,j/2 +O(∆3

j).
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We now expand in time.

ϕ((k + 1/2)∆t+ ∆t/2, τj−1) = ϕk+1
j−1 = ϕ

k/2
j−1 +

∆t

2
ϕ
k/2
t,j−1 +

(∆t)2

22 · 2!
ϕ
k/2
tt,j−1 +

(∆t)3

23 · 3!
ϕtt,j−1(η),

η ∈ (k∆t, (k + 1)∆t). Likewise, in the other direction we have

ϕ((k + 1/2)∆t−∆t/2, τj−1) = ϕkj−1 = ϕ
k/2
j−1 −

∆t

2
ϕ
k/2
t,j−1 +

(∆t)2

22 · 2!
ϕ
k/2
tt,j−1 +O((∆t)3).

Subtracting these two previous equations we have

ϕk+1
j−1 − ϕkj−1 = ∆tϕ

k/2
t,j−1 +O((∆t)3).

Similarly, we also have

ϕk+1
j − ϕkj = ∆tϕ

k/2
t,j +O((∆t)3).

Substituting these terms in the discretization operators we have

P k/2,∆tϕ− Pj/2,∆j
ϕ =

1

2
ϕ
k/2
t,j−1 +

1

2
ϕ
k/2
t,j −

1

2
ϕk+1
s,j/2 −

1

2
ϕks,j/2 +O((∆t)2) +O(∆2

j)

Note the mixed derivatives exists. Thus we have

ϕ
k/2
t,j = ϕ

k/2
t,j/2 −

∆j

2
ϕ
k/2
ts,j/2 +O(∆2

j)

and

ϕ
k/2
t,j−1 = ϕ

k/2
t,j/2 +

∆j

2
ϕ
k/2
ts,j/2 +O(∆2

j)

Adding these equations we have

ϕ
k/2
t,j + ϕ

k/2
t,j−1 = 2ϕ

k/2
t,j/2 +O(∆2

j).

Likewise, we have

ϕk+1
s,j/2 = ϕ

k/2
s,j/2 +

∆t

2
ϕ
k/2
st,j/2 +O((∆t)2)
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and

ϕks,j/2 = ϕ
k/2
s,j/2 −

∆t

2
ϕ
k/2
st,j/2 +O((∆t)2).

Adding these equations we have

ϕk+1
s,j/2 + ϕks,j/2 = 2ϕ

k/2
s,j/2 +O((∆t)2).

Thus we have

P k/2,∆tϕ− Pj/2,∆j
ϕ = ϕ

k/2
t,j/2 − ϕ

k/2
s,j/2 +O((∆t)2) +O(∆2

j) = O((∆t)2) +O(∆2
j), (A.0.1)

where ϕ
k/2
t,j/2 − ϕ

k/2
s,j/2 = 0 follows from the given equation ϕt(t, s) = ϕs(t, s). The consistency

error is now established.

Consistency Error: B

Let tk+1 := (k + 1)∆t > 0 and ϕ ∈ C3([−r, 0];R). We shall use the notation τj/2 :=

(τj−1 + τj)/2 and ϕkj = ϕ(tk, τj). Define the following discretization operators

Ãj :=
a12j

2δj
(ϕk+1

j−1 − ϕk+1
j + ϕkj−1 − ϕkj ),

Aj :=

∫ τj−1

τj

a12(θ)ϕθ(tk/2, θ)dθ,

j = 1, 2, . . . , N . Define

Ã :=
N∑
j=1

Ãj and A :=
N∑
j=1

Aj.

We want to establish the estimate

Ã− A = O(δ).

Using straightforward calculations involving the Taylor series expansion of ϕ(t, θ) with re-

spect to its both arguments around τ j
2

and t k
2

we obtain the estimate

1

2δj

(
ϕk+1
j−1 − ϕk+1

j + ϕkj−1 − ϕkj
)

= ϕ
k/2
θ,j/2 +O(δ2

j ) +O((∆t)2).
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From this equation we arrive at

|Ãj − a12jϕ
k/2
θ,j/2| ≤ |a12j|C1δ

2
j + |a12j|C2(∆t)2

for some constants C1 and C2. Note

Aj − a12jϕ
k/2
θ,j/2 =

∫ tj−1

tj

a12(θ)(ϕ
k/2
θ (θ)− ϕk/2θ,j/2)dθ = ϕ

k/2
θθ,j/2

∫ tj−1

tj

a12(θ)(θ − τj/2)dθ

+

∫ tj−1

tj

a12(θ)E(θ)dθ,

where E(θ) := 1
2
ϕ
k/2
θθθ(θj)(θ − τj/2)2, θj ∈ (τj, τj−1). Thus

|Aj − a12jϕ
k/2
θ,j/2| ≤Maδ2

j +M ′aδ2
j ,

where θj ∈ (τj, τj−1), a := maxθ∈[−r,0] |a12(θ)|, M := maxθ∈[−r,0] |ϕk/2θθ (θ)|, and

M ′ := maxθ∈[−r,0] |ϕk/2θθθ(θ)|. Let δj = δ for all j. From these estimates we have, with δ = ∆t,

|Ãj − Aj| ≤ |Ãj − a12jϕ
k/2
θ,j/2|+ |a12jϕ

k/2
θ,j/2 − Aj| ≤ |a12j|Cδ2 + C ′aδ2 ≤ a′Cδ2 + C ′aδ2

for some constants C and C ′, where a′ :=
∫ 0

−r |a12(θ)|dθ. Hence, we have

|Ã− A| ≤
N∑
j=1

|Ãj − Aj| = O(δ). (A.0.2)

Consistency Error: C

We can rewrite, with δ = δj for all j,

Ẽ :=
N∑
j=1

a12j

2δj

(
ek+1
j−1 − ek+1

j + ekj−1 − ekj
)

as
N∑
j=0

ek+1
j

2δ
(a12(j+1) − a12j) +

N∑
j=0

ekj
2δ

(a12(j+1) − a12j)

with a120 = a12(N+1) = 0. By the mean value theorem for integrals (see [23])

a12(j+1) − a12j = a12(ξj+1)

∫ τj

τj+1

dθ − a12(ξj)

∫ τj

τj+1

dθ = δ(a12(ξj+1)− a12(ξj))
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= δ(a′12(ξ̃j)εj) +O(δε2
j),

j = 1, 2, . . . , N − 1, for some ξj+1 ∈ (τj+1, τj), ξj ∈ (τj, τj−1), and ξ̃j ∈ (ξj+1, ξj). Hence,

|a12(j+1) − a12j| ≤ δ|a′12(ξ̃j)||εj|+ Cδε2
j ≤ 2δ2|a′12(ξ̃j)|+ 2Cδ3.

Similarly,

a121 = a12(ξ1)

∫ τ0

τ1

dθ = a12(ξ1)δ and a12N = a12(ξN)

∫ τN−1

τN

dθ = a12(ξN)δ

for some ξ1 ∈ (τ1, τ0) and ξN ∈ (τN , τN−1). Thus

|Ẽ| ≤
N∑
j=0

|ek+1
j |
2δ
|a12(j+1) − a12j|+

N∑
j=0

|ekj |
2δ
|a12(j+1) − a12j|

≤ A‖ek+1‖+ A‖ek‖ (A.0.3)

for some constant A such that

N∑
j=0

1

2δ
|a12(j+1) − a12j| ≤ A.
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APPENDIX B

STABILIZABILITY

The possible control application to the aeroelastic system (2.3.1) motivates an understanding

of stabilizability for SNFDEs. In the case of NFDEs with atomic difference operator, the

stabilizability is related to the characteristic equation associated with the NFDE.

Consider the following NFDE:

d

dt
Dxt = Lxt +Bu(t) (B.0.1)

with initial data x0 = ϕ, ϕ ∈ C, B an n×1 vector, u(t) is a scalar function defined on t ≥ 0,

and

Dϕ := ϕ(0) +

∫ 0

−r
dµ(s)ϕ(s) and Lϕ :=

∫ 0

−r
dη(s)ϕ(s).

Here, D and L are bounded linear operators where D is atomic at s = 0. We are interested

in the stability of the zero solution. The zero solution is said to be asymptotically stable

if x(t;ϕ) −→ 0 as t −→ 0 for all ϕ ∈ C in the sup norm. Additionally, we say the NFDE

(B.0.1) is stabilizable by state feedback if there is a linear operator K : C −→ R such that

the closed-loop system

d

dt
Dxt = Lxt +BK(xt)

is an NFDE and the zero solution is asymptotically stable. The possibility of feedback

stabilization is related to the stability of the difference operator D. See, for example, [13],[28]

and [30]. We discuss this next.

We will say that the operator D is stable if there exists a δ > 0 such that all roots of the

equation

det4D(λ) = 0

satisfy Re λ ≤ −δ, where

4D(λ) := In +

∫ 0

−r
eλsdµ(s)
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and In is the n× n identity matrix. An equation with a stable D operator has the following

property (see [13]): if D is stable, then there exists a constant aD < 0 such that for any

a > aD, there exist only a finite number of roots λ of the characteristic equation with Re

λ > a. This is important for the following reason: if D is stable and if there exist roots with

Re λ > 0 then there are only a finite number of them. In this case, it is known (see [30])

that feedback stabilization is possible if and only if rank[4(s) B] = n for Re λ ≥ 0, where

4(λ) := λIn + λ

∫ 0

−r
eλsdµ(s)−

∫ 0

−r
eλsdη(s).

Currently, a comprehensive study of feedback stabilizability for SNFDEs has not yet been

developed. A similar stability condition for a non-atomic difference operator would give in-

sight into whether stabilizabity of the SNFDE (2.4.1)–(2.4.3) is possible. A possible first step

to understanding the stabilizability of this SNFDE is through numerical experimentation.
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APPENDIX C

ANALYSIS

In this section we give a review of preliminary analysis concepts.

Definition C.0.1. A function f definied on an interval [a, b] is said to be of bounded

variation if there is a constant C > 0 such that

n∑
k=1

|f(xk)− f(xk−1)| ≤ C

for every partition

a = x0 < x1 < · · · < xn = b

of [a, b] by points of subdivision x0, x1, . . . , xn.

Definition C.0.2. Let f be a function of bounded variation. Then by the total variation

of f on [a, b], denoted by V[a,b](f), is meant the quantity

V[a,b](f) := sup
n∑
k=1

|f(xk)− f(xk−1)|,

where the least upper bound is taken over all (finite) partitions of the interval [a, b].

Theorem C.0.1. (See [24]) Every continuous linear functional ϕ on the space C[a, b] can

be represented in the form

ϕ(f) =

∫ b

a

f(x)dµ(x)

where µ is a function of bounded variation on [a, b], and moreover

‖ϕ‖ = Var[a,b](µ).

Definition C.0.3. A function f defined on an interval [a, b] is said to be absolutely contin-

uous on [a, b] if, given any ε > 0, there is a δ > 0 such that

n∑
k=1

|f(bk)− f(ak)| < ε

84



for every finite system of pairwise disjoint subintervals

(ak, bk) ⊂ [a, b],

k = 1, 2, . . . , n, of total length
n∑
k=1

(bk − ak) < δ.

We provide [24] and [25] as general references for real and functional analysis concepts.

Definition C.0.4. (See [35]) Let ‖·‖2 denote the usual Euclidean 2-norm. The zero solution

x0 = 0 is stable if for any ε > 0, there exists a number δ = δ(ε) > 0 such that, if ‖x(0)‖2 < δ,

then x(k) satisfies ‖x(k)‖2 < ε for all k > 0. The zero solution is asymptotically stable if it

is stable and if there exists a δ′ > 0 such that if ‖x(0)‖2 < δ′ then ‖x(k)‖ −→ 0 as k −→∞.

In practice, it is more desirable for the zero solution to be asymptotically stable.

Definition C.0.5. Let ξ(ε), ε > 0, be a real valued function. We say that ξ(ε) = O(εp) if

there exists a constant C, independent of ε, such that |ξ(ε)| ≤ Cεp as ε −→ 0.

Lemma C.0.1. If the numbers ξi satisfy estimates of the form

|ξi+1| ≤ (1 + δ)|ξi|+B, δ > 0, B ≥ 0, i = 0, 1, 2, . . . ,

then

|ξn| ≤ enδ|ξ0|+
enδ − 1

δ
B.

Proof. See [34], Section 7.2.2.
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