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Brain on a bench top
Cortical neurons within a 3D printed
structure
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Tissue grafting and organ transplantation are common techni-

ques in modern medicine, but suffer from the widely-reported

limitations of constrained supply and the risk of rejection, neces-

sitating a lifetime of immunosuppressant medication [1]. The field

of tissue engineering has advanced markedly over the last decade,

and engineered tissues are under development for both regenera-

tive medicine applications as well as the formation of accurate in

vitro models for the study of fundamental tissue behaviours, dis-

ease states and drug discovery. Both biological and synthetic

materials have been formed into cell-supporting tissue scaffolds

[2,3]. In broad terms, biological materials and particularly extra-

cellular matrix (ECM) components offer superior cell interaction

properties, but are challenging to process [4]. Synthetic materials

are readily processed, but may lack specific or necessary cell

interaction motifs. The fabrication of truly biomimetic regenera-

tive scaffolds is an incredibly complex challenge, one that requires

an integrated approach to both biomaterials and biofabrication

technologies [5].

Recent advances in additive manufacturing and bioprinting

technologies have made it possible to combine a diverse array

of biomaterials and cells together into complex and functional 3D

tissues [6]. These technologies typically rely on ‘‘bio-inks’’, pro-

cessable solutions that support cells during printing and enhance

survival, proliferation and function of cells within the printed

scaffold [6,7]. Hydrogel forming biopolymers have shown partic-

ular promise as the major component of bioinks. The scaffolds

formed from such materials have adequate internal structure

(porosity) and diffusion rates to exchange nutrients and waste

materials with the surrounding medium, allowing cells to organize

in a tissue-like manner [8–12]. More importantly, their chemical,

optical and physical properties can be modified and tailored to

match printer and tissue requirements [13–15]. The ARC Centre of

Excellence for Electromaterials Science headquartered at the Uni-

versity of Wollongong is involved in the development of innova-

tive bio-inks and bioprinting technologies. This issue’s cover

image shows the results of some of this research: a 3D depth

profile showing cortical neurons within a 3D printed structure.

The print was obtained using a ‘‘bio-ink’’ composed of a polysac-

charide gellan gum (GG), purified according to methods detailed
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in Kirchmajer et al. [16] and RGD-modified using the protocol

detailed in Ferris et al. [17].

Prior to printing, we harvested cortical neurons from embryonic

mice (E15–E18) BALB/cArcAusb obtained from Australian BioRe-

sources (New South Wales) in accordance with the Animal Ethics

Committee (AEC, #13/04), University of Wollongong. Once isolat-

ed, cortical neurons were dispersed in DMEM and mixed 50:50 with

1% (w/v) RGD-GG in Milli-Q H2O at 37 8C. The biopolymer/cell

suspension was patterned using a novel hand-held bioprinting

technique developed by our group and reported in [5]. Printed

gel/cell composites were maintained in Neurobasal media (Gibco),

supplemented with 1% L-glutamine (Sigma), 2% B27 neural supple-

ment (Gibco) and 1% penicillin/streptomycin (Sigma) for 7 days.

Cells were then fixed and immunostained using rabbit anti-GFAP

(Millipore) and mouse anti-b-III-tubulin (Covance) antibodies and

secondary antibodies Alexa Fluor 488-conjugated donkey anti-

mouse, Alexa Fluor 594-conjugated goat anti-rabbit (Invitrogen)

alongside DAPI-labelled nuclei (Molecular probes). Images were

taken with Confocal microscope Leica TSC SP5 II (LAS AF version

2.6.0) using the XYZ acquisition mode and displayed using the 3D

projection tool of the b-III-tubulin channel. The resulting colour

coded images represent the fluorescence intensity of this channel

across the numerous z-stacked layers. Colour is assigned to each

layer based on z-position in the gel, and the highly colourful image

presented here demonstrates that the cortical neurons are distrib-

uted in three dimensions throughout the RGD-GG gel.

In conclusion, the survival and differentiation of primary cortical

neurons in 3D printed RGD-GG modified hydrogels has been dem-

onstrated. The large amounts of interconnected neurites that are

visible in the image demonstrate that the neuronal network is highly

developed. This indicates that the bio-ink is providing a highly

favourable environment for the development of a neural model.

The printing process therefore offers the opportunity to develop

more accurate in vitro brain models that could be applied to

study neuronal cell behaviour, leading to an understanding of brain
injuries and neurodegenerative diseases. The bench top printed

structures should also provide a tool for assessing the efficacy and

gaining insight into the mode of action of new therapies.
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