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Recent experimental breakthroughs in realizing spin-orbit (SO) coupling for cold atoms have spurred
considerable interest in the physics of two-dimensional SO coupled Fermi superfluids, especially
topological Majorana fermions (MFs) which were predicted to exist at zero temperature. However, it is
well known that long-range superfluid order is destroyed in two dimensions by phase fluctuations at finite
temperature, and the relevant physics is the BKTs transition. In this Letter, we examine finite temperature
effects on SO coupled Fermi gases and show that finite temperature is indeed necessary for the observation
of MFs. Majorana fermions are topologically protected by a quasiparticle energy gap which is found to be
much larger than the temperature. The restrictions to the parameter region for the observation of MFs have
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been obtained.
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A new research direction in low dimensional condensed
matter physics that has attracted much recent attention is
the study of two-dimensional (2D) topological quantum
states of matter (e.g., fractional quantum Hall effects,
chiral p-wave superfluids or superconductors, etc.) that
support exotic quasiparticle excitations (named anyons)
with Abelian or non-Abelian exchange statistics [1-8].
For instance, it has been shown recently that a topological
cold atom superfluid may emerge from an ordinary 2D
s-wave Fermi superfluid in the presence of two additional
ingredients: spin-orbit (SO) coupling and a Zeeman field
[9]. Such topological superfluids can host Majorana fermi-
ons (MFs), non-Abelian anyons which are their own
antiparticles, and may have potential applications in fault-
tolerant topological quantum computation [1].

On the experimental side, 2D degenerate s-wave Fermi
gases have been realized using a highly anisotropic
pancake-shaped trapping potential [10-13]. Furthermore,
the SO coupling and Zeeman field for cold atoms have
been generated in recent pioneering experiments through
the coupling between cold atoms and lasers [14—19]. It
seems, therefore, that MFs are tantalizingly close to ex-
perimental reach in degenerate Fermi gases. Inspired by
the experimental achievements, there have been extensive
theoretical efforts toward understanding the physics of SO
coupled Fermi gases, particularly the mean-field crossover
from Bardeen-Cooper-Schrieffer (BCS) superfluids to the
Bose-Einstein condensation (BEC) of molecules [20-33].
While the mean-field theory works qualitatively well in
three dimensions, it may not yield relevant physics in two
dimensions at finite temperature. For instance, differing
from the mean-field prediction, there is no long-range
superfluid order in two dimensions at finite temperature

0031-9007/12/109(10)/105302(6)

105302-1

PACS numbers: 67.85.Lm, 03.75.Lm, 03.75.Ss

due to phase fluctuations [34]. At finite temperature, the
relevant physics is the Berezinskii-Kosterlitz-Thoules
(BKT) transition [35,36] with a characteristic temperature
Tk, below which free vortex-antivortex (V-AV) pairs are
formed spontaneously. When the temperature is further
lowered below another critical temperature 7,,.y, the
system forms a square V-AV lattice [37,38]. Because
MFs only live in the cores of spatially well separated
vortices, it is crucial to study the dependence of Tykt
and T,oex On the SO coupling strength in 2D Fermi
superfluids.

In this Letter, by taking account of phase fluctuations in
finite temperature quantum field theory, we investigate the
finite temperature properties of SO coupled degenerate
Fermi gases en route to clarifying some crucial issues for
the experimental observation of MFs in such systems. Our
main results are the following. (i) We show that, quite
unexpectedly, the SO coupling reduces both T« and
Tk, despite enhancing the superfluid order parameter
A. (ii) In the pseudogap phase (T > Tgkr), the Fermi gas
lacks phase coherence. While in the vortex lattice phase
(T < Tyorex)» the short distance between neighboring vor-
tices may induce a large tunneling between vortices that
destroys the Majorana zero energy states [39]. Therefore
MFs can be observable only in the cores of naturally
present V-AV pairs [40] in the temperature region 7y <
T < Tgxr, instead of the intuitively expected zero tempera-
ture. (iii) The MF in a vortex core is protected by a
quasiparticle energy gap = A?/2Ep (Ep is the Fermi
energy), which is found to be much larger than the experi-
mental temperature. Such a large energy gap greatly re-
duces the occupation probability of nontopological excited
states in the vortex core due to finite temperature, and
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ensures the topological protection of MFs. (iv) The restric-
tions to the parameter region for the observation of MFs
have been obtained. We also propose a simple strategy for
finding the experimental parameters for the observation
of MFs.

We consider a 2D degenerate Fermi gas in the presence
of a Rashba-type SO coupling and a perpendicular Zeeman
field. In experiments, 2D degenerate Fermi gases can be
realized using a one-dimensional deep optical lattice with a
potential V,sin’(27z/a,,) along the third dimension,
where the tunneling between different layers is suppressed
completely [10—13]. The Rashba SO coupling and Zeeman
field can be realized using the adiabatic motion of atoms in
laser fields [14,15]. The Hamiltonian for this system can be
written as (h = Kg = 1)

H=HF+HSOC+HI! (1)

where the single atom Hamiltonian Hy = 3 , 1 (ex —
,ug)ClaCkm Cltg is the creation operator for a fermion
atom with momentum k and spin o, €, = k*/2m, m is the
atom mass, wy = g + h, ) = u — h, p is the chemical
potential, and £ is the Zeeman field. The Hamiltonian
for the Rashba-type SO coupling is Hg, = ad[(k, —
ikx)ClTCkl + (ky + ikx)ClthkT]. The interaction between
atoms is described by H;= —ngCikTCLCle_kT,
where the effective regularized interaction parameter
1/g =3k[1/Q2ex + E,)] for a 2D Fermi gas
[28,31,32,41]. In experiments, the binding energy E; can
be controlled by tuning the s-wave scattering length or
the barrier height V|, along the z direction. Small and large
E,, values correspond to the BCS and BEC limits, respec-
tively [42].

The finite temperature properties of the 2D Fermi gas are
obtained using finite temperature quantum field theory,
where the action for the Hamiltonian [Eq. (1)] is Sy =
[Fdr¥y ,Ct 8.Cc, + H] with B = 1/T. Introducing
the standard Hubbard-Stratonovich transformation with
the mean field superfluid order parameter ¢ =
82 k{Cx;C_kp) and integrating out the fermion degrees
of freedom, we have the partition function Z =
[ D$Dp* exp(—S.) with the effective action Se =

Bdr(g 'pl> + &) — 1Tr[InG™']. Here

0, + ¢ —ak 0 — ¢
B R S 0
0 d)* aT - gﬁ,k _ak+ ’
¢ 0 —ak 9, -l

is the inverse Nambu matrix under the Nambu basis
V(k) = (Cyy, Ckys Ctkl’ CikT)T, the symbol Tr denotes
the trace over momentum, imaginary time, and the
Nambu indices, k+ = (k, = ik,), and {4 = (ex — p) *
h = { £ h. The superfluid order parameter A is obtained
from the saddle point of the effective action (i.e.,
0Sett/ 9| s—a = 0), which yields the gap equation

1

Zmzz > [NE; ! tanh(BE;/2)]  (2)
k

k[=*

Here the quasiparticle energy spectrum E.j =

VEL + 2R+ 2224, A= |G+ PE, ). =
(1/2)(1 = h?*/A), Ex = ¢ + A%, and &2 = k3 + k3.

In 2D Fermi gases, it is well known that long-range
superfluid order can be destroyed by phase fluctuations
of the order parameter at any finite temperature [34]. To
study the phase fluctuations in SO coupled Fermi gases, we
set ¢ = Ae' following the standard procedure, where 6 is
the superfluid phase around the saddle point [determined
by Eq. (2)] that varies slowly in position and time spaces.
The superfluid phase can be decoupled from the original
Green’s function through a unitary transformation
UG 1 (0)Ut =G, ' —3, where U =exp(iM6/2),and M =
diag(1,1, —1, —1). X = 73{[(i9,0)/2] + [(V8)*/8m]} —
H[(iV?6)/4m] + [(iV6 -V)/2m]} + (a/2)(130,0,0 —
loy0,0) is the corresponding self-energy, o; and 7,
are Pauli matrices in the Nambu space, and G, is the
Green’s function at ¢ = A. The effective action can be
written as Sy = So(A) + Spue(V6, 9,0) [43], where
St (V0,0.0) = trY,—,(1/n)(Gy2)". Expanding 3 up to
the leading order (n = 2), we have

Stuc = % [d2r[J(V9)2 +P(9,0)* — 0(i9,0)],  (3)

where J = (1/4m)Y, (ny — X,;—+(J1; + T21)) repre-
sents the phase stiffness or superfluid density. n, =
1 =3, {[£00 + In)/2E;) Jtanh[(BE, )/ 2]}, J=
[((ma®)/QE (1 — (K a?&%)/24%) + H((A* + £2)/2A) +
R((A%+ &) + (K a*A%) 24N Hanh((BE 1) /2)], Ta1 =
{L&*B)/(32m)][1 + l(ma?€)/Alsech®[(BE ) /2]} m =
(> + Ba?)/A, P =3y (=& + D> + Ej, (1 +
A1 /A)/BE) ) Hsech[(BE ) /2]} + {[BE(n + 1)/
(16E7, ) IH[sech*(BE;x)/2]}), and Q = ¥y ny. We have
checked that the expressions for J, P and Q reduce to
previous results in different limits [41,44-46].

The phase 6 can be decomposed into a static vortex part
0,(r) and a time-dependent spin-wave part 6, (r, 7). As a
consequence, the action of the phase fluctuation
becomes Sque = Sy + Sg, with S, =(1/2) fd*rJ[VO(r)]?
and S, = (1/2) [ &r{J[V,(r, )P + P[3,0,(r, ) -
0[i9,0,,(x, Iy = 5, In[1 — exp(— By}, where ay =
c|k|, ¢ = 4/J/P is the speed of the spin wave [44]. Note
that Eq. (3) is exactly the same as the effective action for
the 2D Heisenberg XY model [35,36] with different J, P,
and Q; therefore, the BKT transition temperature

T
Tgkr = EJ(A’ w, Tpxr)- “4)

Across the BKT temperature, there is a transition from
the pseudogap phase (with finite pairing A but without
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phase coherence or superfluidity) to phase coherent V-AV
pairs (with both pairing and superfluidity). When the tem-
perature is lowered further, free V-AV pairs form a tightly
bounded V-AV lattice below another critical temperature
[37,38],

Tyortex = 0.3J(A, My Tvonex)- ()

The atom density equation can be obtained from the
total thermodynamic potential ) = T'S., yielding [47],

n==00/dp =Y — B oSy /opn. (O
k

where the atom density is n = mEp/m, and Ep =
h?K%/2m is the Fermi energy without SO coupling and a
Zeeman field. The length unit is chosen as the inverse of
the Fermi vector K !.

We numerically solve Egs. (2), (4), and (6) self-
consistently, and calculate various physical quantities. In
Fig. 1, we plot Tgkr with respect to the SO coupling
strength K, the Zeeman field /4, and the binding energy
E,. We find that, quite surprisingly, Tyt decreases with
increasing «, although the superfluid order parameter A is
enhanced [28]. The unexpected decrease of Tgkt has not
been found in the previous literature [41] and can be
understood as follows. For 7 =0 and aKp <1, the
superfluid density

Ja) = J(a=0)~-)

k

decreases with increasing «. Here E, :w/ﬁ + A2,

Physically, the increased density of states near the Fermi
surface dominates at small «, hence enhances the phase
fluctuation and reduces the superfluid density. Note that the
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FIG. 1 (color online). (Color online) The dependence of the
BKT temperature on (a) SO coupling, (b) Zeeman field, and
(c,d) binding energy. 2 =0 in (a) and (c). aKr = 1.0E; in
(b) and (d).

next leading term in Eq. (7) is ~a® for T = 0 and ~a* for
T # 0; therefore, the above analytical result is still valid
even for a K, ~ E. The Zeeman field is detrimental to the
superfluid order parameters, and thus further reduces the
superfluid density and the BKT temperature, as shown in
Figs. 1(b) and 1(d). Perturbation theory near # << 1 shows
that the change of Tggy is ~h?, with the coefficient
depending strongly on «. Similar features are also found
for Tvortex'

In the presence of both SO coupling and a Zeeman field,
a topological superfluid can emerge from a regular s-wave

interaction when £ is larger than a critical value h, =

vu? + A% [8,21]. Around h,, the minimum quasiparticle
energy gap occurs at k =0 (i.e., E, = E_;—(), which
first closes and then reopens across .., allowing the system
to change its topological order from a regular s-wave
superfluid to a topological superfluid where MFs exist in
vortex cores [8]. At finite temperature, the zero tempera-
ture topological phase transition becomes a phase cross-
over. In Fig. 2(a), we plot the line E, = T for a finite A,
which is obtained by solving Egs. (2) and (6), and E, = T
self-consistently. The gap closes at a critical Ej where
he =+u?+A2=h. When E,<(>)E, h>(<)h,,
and the region below the line E, = T corresponds to the
topological (nontopological) superfluid. Above the line
E, =T, the temperature is larger than the quasiparticle
energy gap and thermal excitations destroy the topological
superfluid. We emphasize that at finite temperature there is
no sharp phase transition, but only a phase crossover
between the topological and nontopological superfluids.
The line E, = T is plotted only as a guide and there is
no sharp boundary between the different phases.

The solid and dashed-dotted lines in Fig. 2(a) corre-
spond to Tgxr and T,oex, respectively. We see that
Tyorex quickly approaches a constant Ty ox = 3Ep/407
with increasing binding energy. In the pseudogap region

or2f@r ' I TS

010} Qc/ 06f __.

0.08 | v Tokr ~ | -
- TVortex |.\I.I’ 0.4
0.06 E=T9 ¢4
9 w
0.04
TS NTS 0.2
0.02 i — = — \
T 1
0.00 : : : 0 —Ye¥u e
0 0.2 0.4 0.6 0 02 04 06 08 1
E, (Ep) h (E;)

FIG. 2 (color online). (Color online). Parameter region for
topological superfluids. (a) QC: quantum critical region; TS:
topological superfluids; NTS: nontopological superfluids. The
shadow region is the possible parameter region for observing
MFs. h = 0.6Er, aKr = 1.5Ef. (b) Phase boundary between
TS and NTS at T = 0. The arrows mark the required minimum
Zeeman fields.
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(T > Tggr), free vortices may exist, but they are not suit-
able for the observation of MFs due to the lack of phase
coherence. Meanwhile, in the vortex lattice region (7 <
Tyortex)» the zero energy modes may break into two normal
states with energy splitting = Ae~R/¢ [39,48] because of
the large tunneling between neighboring vortices in the
lattice, where ¢ is the coherence length of the superfluid,
and R is the intervortex distance. In this region, strong
disorder in the tunneling may also lead to Majorana metals
[49]. Clearly, the required temperature for observing MFs
should be Tex < T < Tgkr, instead of the intuitive zero
temperature [31,32]. In Fig. 2(a), the shadow regime be-
tween Tgyr and T',qx gives the possible parameter range
for the experimental observation of MFs which exist in the
cores of the naturally present V-AV pairs in this region.
Note that the intervortex distance R is still essential for the
observation of MFs in this region. Such a distance may be
estimated using an analogy between V-AV pairs and the 2D
Coulomb gases. It has been shown [50] that the mean-
square radius (R?) ~ &[(wBJ — 1)/(wBJ — 2)], which
diverges at T = Tggr [see Eq. (4)], and the V-AV pair
breaks into free vortices. Therefore there should exist a
finite temperature regime below Tggr where R > ¢ and
the splitting of the zero energy Majorana states is vanish-
ingly small. Note here that our theory can only capture the
average behavior of V-AV pairs and a more delicate theory
is still needed to further understand the detailed structure of
V-AV pairs.

In Fig. 2(b), we plot the parameter region for the topo-
logical superfluids with respect to the Zeeman field and the
binding energy at the zero temperature. Generally, the
required critical Ej for the topological superfluids in-
creases when % increases. Note that here the phase bound-

ary is determined by i, = 4/u? + A at T = 0, but does
not shift much, even at finite temperature.

Because MFs can only be observed at finite temperature,
there exists a nonzero probability ~ exp(— ) for thermal
excitations to nontopological excited states in the vortex
core, where the ratio n = ¢,,/T, €, ~ A%?/(2Ey) is the
minimum energy gap (minigap) [51,52] in the vortex
core that protects zero energy MFs. For the observation
of MFs, it is crucially important to have 1 > 1, in addition
to the requirement of the temperature Tygqex < 7T < Tkt
(ie., 1> NBKT = Em/TBKT and N < Nvortex = Em/Tvonex)'
When E, > E, we have gggr = 8E,/Ep and 1yopex =
407E,/Ep, which means 7> 1 for a large E,.
Remarkably, 7 is also dramatically enhanced by the SO
coupling in the BCS side. In Fig. 3, we plot gkt and
Nvortex With respect to E,, for parameters & = 0.8Er and
aKr = 1.6Er. The vertical line at E, = 0.33E is the
boundary between the topological and nontopological
superfluids. There is a broad region in the BCS side with
gkt > 1 even at the highest temperature Tgyr. The region
can be much larger when the temperature is further
lowered to T = Tyonex- Lhe solid circle represents the

30 . . —
TS INTS -
LS Nekt
i /,/ === Nvortex
20r T T
17
f<—T=002E,
£
y |
1or s 1 T=005E, ]
o B

FIG. 3 (color online). (Color online) Plot of n = ¢,,/T as a
function of E,. h = 0.8Er and aKy = 1.6E. Dashed-dotted
line: Ej = 0.33EF as the corresponding boundary between to-
pological superfluids (TS) and nontopological superfluids (NTS)
[see the E, = T line in Fig. 2(a) for the determination of the
phase boundary]. Dotted line: = 1. Filled circle corresponds
ton at T = 0.05E. The shadow region is the possible parameter
region for observing MFs.

possible temperature 7 = 0.05Er that may be accessible
in experiments in the near future [12,53,54], yielding
n ~ 5.6 and a thermal excitation probability less than
0.4%. Such a small probability clearly demonstrates that
MFs can actually be observed at realistic temperatures in
experiments. Note that in the presence of SO coupling €,,
may be larger than A?/(2E) used for our estimate [52];
therefore, 1 could be even larger, which further suppresses
thermal excitations.

We illustrate how to find suitable parameters, in particu-
lar E,, for the observation of MFs. Because the topological

superfluids only exist in the region h >+ u® + A2, we
need |A|> > |u|*> to obtain a small 4 and a large A.
Clearly the BEC limit with large E;, does not work because
|l ~ |Ep — Ep /2| > A ~ \/2E,Er. While in the BCS
side, |A|> > |u|? can be achieved by choosing a suitable
SO coupling, Zeeman field, and binding energy [28]. To
obtain a large quasiparticle minigap in the vortex core (thus
a large n) for MFs, the binding energy should be set to be
close to the critical Ef (see Fig. 3). At the same time, the
bulk quasiparticle gap should also be chosen to be much
larger than the temperature. Note that in experiments the
bulk quasiparticle gap for the topological superfluid can be
detected using the recently experimentally demonstrated
momentum-resolved photoemission spectroscopy [55].
Finally we briefly compare the cold atomic gases [9]
with the semiconductor-superconductor nanostructure
where certain signatures of MFs have been observed in
experiments [56-59]. Both systems share the same ingre-
dients for MFs: SO coupling, Zeeman fields, and s-wave
pairing; in addition, the s-wave pairing is through an
intrinsic s-wave interaction in cold atoms, but is externally
induced in the nanostructure. Because of its high con-
trollability and freedom from disorder (lacking in the
corresponding solid state systems), the topological cold
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atomic superfluids provide an ideal and promising platform
for observing MFs and the associated non-Abelian statis-
tics, which are both fundamentally and technologically
important.

In summary, we study the BKT transition in 2D SO
coupled Fermi superfluids and find an unexpected decrease
of the BKT transition and vortex lattice melting tempera-
tures with increasing SO coupling. We characterize the
finite temperature phase diagram for the experimental
observation of MFs in this system. Our work not only
provides a basis for the future study of rich and exotic
2D SO coupled Fermi superfluid physics, but also yields
realistic parameter regions for experimentally realizing
nontrivial topological superfluid states from stable cold
atom s-wave superfluids.
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