Hays, Seth
Permanent URI for this collectionhttps://hdl.handle.net/10735.1/5103
Dr. Seth Hays is an Associate Professor in the Jonsson School's Department of Bioengineering. He is also the Principle Investigator of the Targeted Neuroplasticity Lab. His research is focused on enhancing neuroplasticity in order to treat neurological disease and also to investigate the cellular and molecular mechanisms that underlie any recovery from it. In 2015 he received the prestigious American Heart Association Robert G. Siekert New Investigator for Stroke Award.
Browse
Browsing Hays, Seth by Author "Ganzer, Patrick D."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Closed-Loop Neuromodulation Restores Network Connectivity and Motor Control After Spinal Cord Injury(eLife Sciences Publications Ltd) Ganzer, Patrick D.; Darrow, Michael J.; Meyers, Eric C.; Solorzano, Bleyda R.; Ruiz, Andrea D.; Robertson, Nicole M.; Adcock, Katherine S.; James, Justin T.; Jeong, Han S.; Becker, April M.; Goldberg, Mark P.; Pruitt, David T.; Hays, Seth A.; Kilgard, Michael P.; Rennaker, Robert L. II; Ganzer, Patrick D.; Darrow, Michael J.; Meyers, Eric C.; Solorzano, Bleyda R.; Ruiz, Andrea D.; Robertson, Nicole M.; Adcock, Katherine S.; James, Justin T.; Jeong, Han S.; Pruitt, David T.; Hays, Seth A.; Kilgard, Michael P.; Rennaker, Robert L. IIRecovery from serious neurological injury requires substantial rewiring of neural circuits. Precisely-timed electrical stimulation could be used to restore corrective feedback mechanisms and promote adaptive plasticity after neurological insult, such as spinal cord injury (SCI) or stroke. This study provides the first evidence that closed-loop vagus nerve stimulation (CLV) based on the synaptic eligibility trace leads to dramatic recovery from the most common forms of SCI. The addition of CLV to rehabilitation promoted substantially more recovery of forelimb function compared to rehabilitation alone following chronic unilateral or bilateral cervical SCI in a rat model. Triggering stimulation on the most successful movements is critical to maximize recovery. CLV enhances recovery by strengthening synaptic connectivity from remaining motor networks to the grasping muscles in the forelimb. The benefits of CLV persist long after the end of stimulation because connectivity in critical neural circuits has been restored.Item Enhancing Plasticity in Central Networks Improves Motor and Sensory Recovery after Nerve Damage(Springer Nature, 2019-12-19) Meyers, Eric C.; Kasliwal, Nimit; Solorzano, Bleyda R.; Lai, Elaine; Bendale, Geetanjali; Berry, Abigail; Ganzer, Patrick D.; Romero-Ortega, Mario; Rennaker, Robert L.; Kilgard, Michael P.; Hays, Seth A.; 0000-0002-2013-5450 (Meyers, EC); 0000-0001-6314-9062 (Kasliwal, N); 0000-0003-2576-2629 (Romero-Ortega, M); 0000-0003-4225-241X (Hays, SA); Meyers, Eric C.; Kasliwal, Nimit; Solorzano, Bleyda R.; Lai, Elaine; Bendale, Geetanjali; Berry, Abigail; Ganzer, Patrick D.; Romero-Ortega, Mario; Rennaker, Robert L.; Kilgard, Michael P.; Hays, Seth A.Nerve damage can cause chronic, debilitating problems including loss of motor control and paresthesia, and generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. However, it remains unclear if this is a critical feature responsible for the expression of symptoms. Here, we use brief bursts of closed-loop vagus nerve stimulation (CL-VNS) delivered during rehabilitation to reverse the aberrant central plasticity resulting from forelimb nerve transection. CL-VNS therapy drives extensive synaptic reorganization in central networks paralleled by improved sensorimotor recovery without any observable changes in the nerve or muscle. Depleting cortical acetylcholine blocks the plasticity-enhancing effects of CL-VNS and consequently eliminates recovery, indicating a critical role for brain circuits in recovery. These findings demonstrate that manipulations to enhance central plasticity can improve sensorimotor recovery and define CL-VNS as a readily translatable therapy to restore function after nerve damage.