Browsing by Author "Kashyap, Neha"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Exploiting the CRISPR/Cas9 PAM Constraint for Single-Nucleotide Resolution Interventions(2016-01-20) Li, Yi; Mendiratta, Saurabh; Ehrhardt, Kristina; Kashyap, Neha; White, Michael A.; Bleris, Leonidas; 0000 0001 2535 9739 (Bleris, L)CRISPR/Cas9 is an enabling RNA-guided technology for genome targeting and engineering. An acute DNA binding constraint of the Cas9 protein is the Protospacer Adjacent Motif (PAM). Here we demonstrate that the PAM requirement can be exploited to specifically target single-nucleotide heterozygous mutations while exerting no aberrant effects on the wildtype alleles. Specifically, we target the heterozygous G13A activating mutation of KRAS in colorectal cancer cells and we show reversal of drug resistance to a MEK small-molecule inhibitor. Our study introduces a new paradigm in genome editing and therapeutic targeting via the use of gRNA to guide Cas9 to a desired protospacer adjacent motif.Item Transcripts for Combined Synthetic MicroRNA and Gene Delivery(2013-06-26) Kashyap, Neha; Pham, Bich; Xie, Zhen; Bleris, Leonidas; 0000 0001 2535 9739 (Bleris, L)MicroRNAs (miRNAs) are a class of short noncoding RNAs which are endogenously expressed in many organisms and regulate gene expression by binding to messenger RNA (mRNA). MicroRNAs are either produced from their independent transcription units in intergenic regions or lie in intragenic regions. Intragenic miRNAs and their host mRNAs are produced from the same transcript by the microprocessor and the spliceosome protein complex respectively. The details and exact timing of the processing events have implications for downstream RNA interference (RNAi) efficiency and mRNA stability. Here we engineer and study in mammalian cells a range of synthetic intragenic miRNAs co-expressed with their host genes. Furthermore, we study transcripts which carry the target of the miRNA, thereby emulating a common regulation mechanism. We perform fluorescence microscopy and flow cytometry to characterize the engineered transcripts and investigate the properties of the underlying biological processes. Our results shed additional light on miRNA and pre-mRNA processing but importantly provide insight into engineering transcripts customized for combined delivery and use in synthetic gene circuits.;