Musselman, Inga H.

Permanent URI for this collectionhttps://hdl.handle.net/10735.1/3157

Inga H. Musselman serves as an Associate Provost of the university and a professor in the Department of Chemistry. She is also an affiliated faculty member in the Alan G. MacDiarmid NanoTech Institute. Dr. Musselman’s research interests include developing microscopy methods and applying them to the study of materials structure. She investigates the fundamentals of image contrast in scanning tunneling microscopy (STM) and applies scanning probe and electron microscopy techniques to the study of polymer microstructure. Her recent research has focused on:

  • Mechanisms of contrast and limits of contrast resolution in scanning tunneling microscopy (STM) images of molecular adsorbates
  • Peptide/single-walled carbon nanotube interactions explored using STM and atomic force microscopy (AFM)
  • Fabrication and testing of polymer-based mixed-matrix membranes for gas separations
  • Development and testing of high temperature proton exchange membranes for fuel cells

Learn more about Professor Musselman on her Expert at a Glance, NanoTech Institute Affiliated Faculty, Department of Chemistry, and Research Explorer pages.

Browse

Recent Submissions

Now showing 1 - 3 of 3
  • Item
    Fabrication and Characterization of Aging Resistant Carbon Molecular Sieve Membranes for C₃ Separation Using High Molecular Weight Crosslinkable Polyimide, 6FDA-DABA
    (Elsevier B.V.) Karunaweera, Chamaal; Musselman, Inga H.; Balkus, Kenneth J.; Ferraris, John P.; Karunaweera, C.; Musselman, Inga H.; Balkus, Kenneth J.; Ferraris, John P.
    Although propylene/propane separation remains a challenge for industrial processes, carbon molecular sieve membranes (CMSMs) have the potential to replace traditional separation methods. A high molecular weight crosslinkable polyimide was utilized to fabricate CMSMs, which showed pure gas permeabilities in excess of 400 barrers with propylene/propane selectivities as high as 25. Mixed gas (C₃H₈:C₃H₆ 50:50) measurements yielded a propylene permeability of 257 barrers and a selectivity of 20. CMSMs from thermally precrosslinked polymer precursors demonstrated a 98% propylene permeability retention after aging for 20 days under vacuum. Active gas flow conditions resulted in slightly lower permeability retention (92.5%) after 15 days of testing. ©2019 Elsevier B.V.
  • Item
    A Carbon Nanotube-based Raman-imaging Immunoassay For Evaluating Tumor Targeting Ligands
    (Royal Society of Chemistry, 2014-04-16) Bajaj, Pooja; Mikoryak, Carole; Wang, Ruhung; Bushdiecker II, David K.; Memon, Pauras; Draper, Rockford K.; Dieckmann, Gregg R.; Pantano, Paul; Musselman, Inga H.; Pantano, Paul; Musselman, Inga H.
    Herein, we describe a versatile immunoassay that uses biotinylated single-walled carbon nanotubes (SWNTs) as a Raman label, avidin-biotin chemistry to link targeting ligands to the label, and confocal Raman microscopy to image whole cells. Using a breast tumor cell model, we demonstrate the usefulness of the method to assess membrane receptor/ligand systems by evaluating a monoclonal antibody, Her-66, known to target the Her2 receptors that are overexpressed on these cells. We present two-dimensional Raman images of the cellular distribution of the SWNT labels corresponding to the distribution of the Her2 receptors in different focal planes through the cell with validation of the method using immunofluorescence microscopy, demonstrating that the Her-66-SWNT complexes were targeted to Her2 cell receptors.;
  • Item
    Modifying the Electronic Properties of Single-Walled Carbon Nanotubes using Designed Surfactant Peptides
    (2012-05-25) Samarajeewa, D. R.; Dieckmann, Gregg R.; Nielsen, Steven O.; Musselman, Inga H.; Nielsen, Steven O.; Musselman, Inga H.
    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine) 5(Lysine) 2, where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.

Works in Treasures @ UT Dallas are made available exclusively for educational purposes such as research or instruction. Literary rights, including copyright for published works held by the creator(s) or their heirs, or other third parties may apply. All rights are reserved unless otherwise indicated by the copyright owner(s).