Show simple item record

dc.contributor.authorBereg, Sergeyen_US
dc.contributor.authorKano, Mikioen_US
dc.date.accessioned2013-08-01T19:16:07Z
dc.date.available2013-08-01T19:16:07Z
dc.date.created2012-02-07
dc.identifier.citationBereg, Sergey, and Mikio Kano. 2012. "Balanced Line for a 3-Colored Point Set in the Plane." Electronic Journal Of Combinatorics 19.en_US
dc.identifier.issn1077-8926en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/2798
dc.description.abstractIn this note we prove the following theorem. For any three sets of points in the plane, each of n ≥ 2 points such that any three points (from the union of three sets) are not collinear and the convex hull of 3n points is monochromatic, there exists an integer k ε {1, 2, ..., n-1} and an open half-plane containing exactly k points from each set.en_US
dc.rights© 2012 Sergey Bereg and Mikio Kanoen_US
dc.titleBalanced line for a 3-colored point set in the planeen_US
dc.typetexten_US
dc.type.genrearticleen_US
dc.source.journalElectronic Journal Of Combinatoricsen_US
dc.identifier.volume19en_US
dc.contributor.utdAuthorBereg, Sergey


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record