Show simple item record

dc.contributor.authorBrowning, Matten_US
dc.contributor.authorFerguson, Johnen_US
dc.contributor.authorMcMechan, George A.en_US
dc.date.accessioned2017-11-29T22:07:34Z
dc.date.available2017-11-29T22:07:34Z
dc.date.created2016-02-22en_US
dc.date.issued2016-02-22en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.urihttp://hdl.handle.net/10735.1/5593
dc.description.abstractA new method for finding solutions to ordinary differential equation boundary value problems is introduced, in which Sobolev gradient steepest descent is used to determine eigenfunctions and eigenvalues simultaneously in an iterative scheme. The technique is then applied to the 1-D Love wave problem. The algorithm has several advantages when computing dispersion curves. It avoids the problem of mode skipping, and can handle arbitrary Earth structure profiles in depth. For a given frequency range, computation times scale approximately as the square root of the number of frequencies, and the computation of dispersion curves can be implemented in a fully parallel manner over the modes involved. The steepest descent solutions are within a fraction of a per cent of the analytic solutions for the first 25 modes for a two-layer model. Since all corresponding eigenfunctions are computed along with the dispersion curves, the impact on group and phase velocity of the displacement behaviour with depth is thoroughly examined. The dispersion curves are used to compute synthetic Love wave seismograms that include many higher order modes. An example includes addition of attenuation to a model with a low-velocity zone, with values as low as Q = 20. Finally, a confirming comparison is made with a layer matrix method on the upper 700 km of a whole Earth model.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.relation.urihttp://dx.doi.org/10.1093/gji/ggw059
dc.rights©2016 The Authors. Published by Oxford University Press on behalf of the authors. All rights reserved.en_US
dc.sourceGeophysical Journal International
dc.subjectEquations--Numerical solutionsen_US
dc.subjectSurface waves (Seismology)en_US
dc.subjectFree earth oscillationsen_US
dc.subjectSeismic wave propagationen_US
dc.subjectBoundary value problemsen_US
dc.subjectDifferential equationsen_US
dc.subjectEigenvaluesen_US
dc.subjectEigenfunctionsen_US
dc.subjectIterative methods (Mathematics)en_US
dc.subjectMethod of steepest descent (Numerical analysis)en_US
dc.subjectSobolev gradientsen_US
dc.titleEfficient Love Wave Modelling via Sobolev Gradient Steepest Descenten_US
dc.type.genrearticleen_US
dc.identifier.bibliographicCitationBrowning, M., J. Ferguson, and G. McMechan. 2016. "Efficient Love wave modelling via Sobolev gradient steepest descent." Geophysical Journal International 205(2), doi:10.1093/gji/ggw059en_US
dc.identifier.volume205en_US
dc.identifier.issue2en_US
dc.contributor.utdAuthorMcMechan, George A.en_US
dc.contributor.VIAF103911551 (McMechan, GA)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record