Show simple item record

dc.contributor.authorFischetti, Massimo V.en_US
dc.contributor.authorVandenberghe, William G.en_US
dc.date.accessioned2018-06-01T16:37:32Z
dc.date.available2018-06-01T16:37:32Z
dc.date.created2016-04-11
dc.date.issued2016-04-11en_US
dc.identifier.issn2469-9950en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/5823
dc.description.abstractWe show that the electron mobility in ideal, free-standing two-dimensional "buckled" crystals with broken horizontal mirror (σ_h) symmetry and Dirac-like dispersion (such as silicene and germanene) is dramatically affected by scattering with the acoustic flexural modes (ZA phonons). This is caused both by the broken σ_h symmetry and by the diverging number of long-wavelength ZA phonons, consistent with the Mermin-Wagner theorem. Non-{σ_h}-symmetric, "gapped" 2D crystals (such as semiconducting transition-metal dichalcogenides with a tetragonal crystal structure) are affected less severely by the broken σ_h symmetry, but equally seriously by the large population of the acoustic flexural modes. We speculate that reasonable long-wavelength cutoffs needed to stabilize the structure (finite sample size, grain size, wrinkles, defects) or the anharmonic coupling between flexural and in-plane acoustic modes (shown to be effective in mirror-symmetric crystals, like free-standing graphene) may not be sufficient to raise the electron mobility to satisfactory values. Additional effects (such as clamping and phonon stiffening by the substrate and/or gate insulator) may be required.en_US
dc.description.sponsorshipNanoelectronics Research Initiative/South West Academy of Nanoelectronics (SRC/NRI Theme 2400.011) granten_US
dc.language.isoenen_US
dc.publisherAmer Physical Socen_US
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevB.93.155413en_US
dc.rights©2016 American Physical Society. All Rights Reserved.en_US
dc.subjectField-effect transistorsen_US
dc.subjectQuantum wellsen_US
dc.subjectDimensionsen_US
dc.subjectSemiconductorsen_US
dc.subjectPhononsen_US
dc.titleMermin-Wagner Theorem, Flexural Modes, and Degraded Carrier Mobility in Two-Dimensional Crystals with Broken Horizontal Mirror Symmetryen_US
dc.type.genrearticleen_US
dc.identifier.bibliographicCitationFischetti, Massimo V., and William G. Vandenberghe. 2016. "Mermin-Wagner theorem, flexural modes, and degraded carrier mobility in two-dimensional crystals with broken horizontal mirror symmetry." Physical Review B 93(15), doi: 10.1103/PhysRevB.93.155413en_US
dc.source.journalPhysical Review Ben_US
dc.identifier.volume93en_US
dc.identifier.issue15en_US
dc.contributor.utdAuthorFischetti, Massimo V.
dc.contributor.utdAuthorVandenberghe, William G.
dc.contributor.VIAF21146635654041982414 (Vandenberghe, WG)en_US
dc.contributor.ORCID0000-0001-5926-0200 (Fischetti, MV)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record