Show simple item record

dc.contributor.advisorThuraisingham, Bhavani
dc.contributor.advisorKhan, Latifur
dc.creatorSahs, Justin C.
dc.date.accessioned2019-04-26T02:18:37Z
dc.date.available2019-04-26T02:18:37Z
dc.date.created2018-12
dc.date.issued2018-12
dc.date.submittedDecember 2018
dc.identifier.urihttps://hdl.handle.net/10735.1/6394
dc.description.abstractMany aspects of modern science, business and engineering have become data-centric, relying on tools from Artificial Intelligence and Machine Learning. Practitioners and researchers in these fields need tools that can incorporate observed data into rich models of uncertainty to make discoveries and predictions. One area of study that provides such models is the field of Bayesian Nonparametrics. This dissertation is focused on furthering the development of this field. After reviewing the relevant background and surveying the field, we consider two areas of structured data: - We first consider relational data that takes the form of a 2-dimensional array—such as social network data. We introduce a novel nonparametric model that takes advantage of a representation theorem about arrays whose column and row order is unimportant. We then develop an inference algorithm for this model and evaluate it experimentally. - Second, we consider the classification of streaming data whose distribution evolves over time. We introduce a novel nonparametric model that finds and exploits a dynamic hierarchical structure underlying the data. We present an algorithm for inference in this model and show experimental results. We then extend our streaming model to handle the emergence of novel and recurrent classes, and evaluate the extended model experimentally.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectMachine learning
dc.subjectBayesian statistical decision theory
dc.subjectNonparametric statistics—Data processing
dc.subjectData mining
dc.subjectArtificial intelligence—Data processing
dc.titleBayesian Nonparametric Probabilistic Methods in Machine Learning
dc.typeDissertation
dc.date.updated2019-04-26T02:20:46Z
dc.type.materialtext
thesis.degree.grantorThe University of Texas at Dallas
thesis.degree.departmentComputer Science
thesis.degree.levelDoctoral
thesis.degree.namePHD


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record