Staff Research

Permanent URI for this collectionhttps://hdl.handle.net/10735.1/6570

Browse

Recent Submissions

Now showing 1 - 2 of 2
  • Item
    Vagus Nerve Stimulation Reverses the Extinction Impairments in a Model of PTSD with Prolonged and Repeated Trauma
    (Taylor and Francis Ltd, 2019-04-23) Souza, Rimenez R.; Robertson, Nicole M.; Pruitt, David T.; Gonzales, Phillip A.; Hays, Seth A.; Rennaker, Robert L.; Kilgard, Michael P.; McIntyre, Crista K.; 0000-0003-4225-241X (Hays, SA); 13146094343400332984 (Hays, SA); Souza, Rimenez R.; Robertson, Nicole M.; Pruitt, David T.; Gonzales, Phillip A.; Hays, Seth A.; Rennaker, Robert L.; Kilgard, Michael P.; McIntyre, Crista K.
    We have shown that vagus nerve stimulation (VNS) enhances extinction of conditioned fear and reduces anxiety in rat models of PTSD using moderate stress. However, it is still unclear if VNS can be effective in enhancing extinction of severe fear after prolonged and repeated trauma. Severe fear was induced in adult male rats by combining single prolonged stress (SPS) and protracted aversive conditioning (PAC). After SPS and PAC procedures, rats were implanted with stimulating cuff electrodes, exposed to five days of extinction training with or without VNS, and then tested for extinction retention, return of fear in a new context and reinstatement. The elevated plus maze, open field and startle were used to test anxiety. Sham rats showed no reduction of fear during extensive extinction training. VNS-paired with extinction training reduced freezing at the last extinction session by 70% compared to sham rats. VNS rats exhibited half as much fear as shams, as well as less fear renewal. Sham rats exhibited significantly more anxiety than naive controls, whereas VNS rats did not. These results demonstrate that VNS enhances extinction and reduces anxiety in a severe model of PTSD that combined SPS and a conditioning procedure that is 30 times more intense than the conditioning procedures in previous VNS studies. The broad utility of VNS in enhancing extinction learning in rats and the strong clinical safety record of VNS suggest that VNS holds promise as an adjuvant to exposure-based therapy in people with PTSD and other complex forms of this condition. ©2019 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Cortical Map Plasticity as a Function of Vagus Nerve Stimulation Rate
    (Elsevier Inc.) Buell, Elizabeth P.; Loerwald, Kristofer W.; Engineer, Crystal T.; Borland, Michael S .; Buell, John M.; Kelly, C. A.; Khan, I. I.; Hays, Seth A.; Kilgard, Michael P.; Buell, Elizabeth P.; Loerwald, Kristofer W.; Engineer, Crystal T.; Borland, Michael S .; Buell, John M.; Kelly, C. A.; Khan, I. I.; Hays, Seth A.; Kilgard, Michael P.
    Background: Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an external event can reorganize the sensory or motor cortex. A 30 Hz train of sixteen VNS pulses paired with a tone significantly increases the number of neurons in primary auditory cortex (A1) that respond to tones near the paired tone frequency. The effective range of VNS pulse rates for driving cortical map plasticity has not been defined. Objective/Hypothesis: This project investigated the effects of VNS rate on cortical plasticity. We expected that VNS pulse rate would affect the degree of plasticity caused by VNS-tone pairing. Methods: Rats received sixteen pulses of VNS delivered at a low (7.5 Hz), moderate (30 Hz), or high (120 Hz) rate paired with 9 kHz tones 300 times per day over a 20 day period. Results: More A1 neurons responded to the paired tone frequency in rats from the moderate rate VNS group compared to naïve controls. The response strength was also increased in these rats. In contrast, rats that received high or low rate VNS failed to exhibit a significant increase in the number of neurons tuned to sounds near 9 kHz. Conclusion: Our results demonstrate that the degree of cortical plasticity caused by VNS-tone pairing is an inverted-U function of VNS pulse rate. The apparent high temporal precision of VNS-tone pairing helps identify optimal VNS parameters to achieve the beneficial effects from restoration of sensory or motor function.