Joseph Friedman is Assistant Professor of Electrical and Computer Engineering. He also serves as the Director of the NeuroSpinCompute Laboratory. His research objective is to "invent, design, and analyze novel logical and neuromorphic computing paradigms that exploit nanoscale phenomena to achieve greater capabilities than conventional CMOS architectures." His research projects have included:

  • All-Carbon Spin Logic
  • Magnetic Domain Wall Neuron
  • Complementary Magnetic Tunnel Junction Logic (CMAT)
  • Spin-Diode Logic
  • Four-Gate FET Threshold Logic
  • Stochastic Bayesian Inference
  • Spin-Transfer Torque Logic with Ferromagnetic Nanowires
  • Efficient Carbon Nanotube Logic Circuits
  • Novel Techniques for Stateful Memristor Logic
  • Skyrmion Logic
  • Spintronic FPGA

Works in Treasures @ UT Dallas are made available exclusively for educational purposes such as research or instruction. Literary rights, including copyright for published works held by the creator(s) or their heirs, or other third parties may apply. All rights are reserved unless otherwise indicated by the copyright owner(s).

Recent Submissions

  • Overhead Requirements for Stateful Memristor Logic 

    Hu, Xuan; Schultis, Michael J.; Kramer, Matthew; Bagla, Archit; Shetty, Akshay; Friedman, Joseph S.
    Memristors are being explored as a potential technology to replace CMOS for logic-in-memory systems that exploit the memristive non-volatility. Memristors are two-terminal, non-volatile device that exhibit a variable ...