15.7 An 8.3MHz GaN Power Converter Using Markov Continuous RSSM for 35dBμV Conducted EMI Attenuation and One-Cycle TON Rebalancing for 27.6dB VO Jittering Suppression

Date

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

item.page.doi

Abstract

GaN power switches have gained fast-growing popularity in power electronics. With a similar R DS_ON resistance, they boast 2-to-3-order lower gate capacitance than silicon counterparts, making them highly desirable in high-frequency (fsw ), high-performance power converters. However, at high f sw , switching transitions have to be completed in much shorter times, creating much larger di/dt and dv/dt changes in power stage, which directly link to electromagnetic-interference (EMI) emissions [1]. To suppress EMI, spread-spectrum-modulation (SSM) techniques [2-5] have been proposed. As depicted in Fig. 15.7.1, a periodic SSM (PSSM) is straightforward and easy to implement. However, its EMI suppression is not effective [2]. A randomized SSM (RSSM) can outperform the PSSM, with lower peak EMI and near-uniform noise spreading, but its performance highly relies on the random clock design. In [3], an N-bit digital random clock was reported to achieve a discrete RSSM (D-RSSM). However, the bit number N has to be large in order to achieve satisfying EMI attenuation, significantly increasing circuit complexity, chip area, and power consumption. To overcome this, a thermal-noise-based random clock was proposed [4]. Unfortunately, thermal noise is very sensitive to temperature and is hard to predict. To apply this approach to a practical implementation requires additional signal processing with periodic signals to confine its range of randomization, which, in turn, reduces the benefits of the RSSM. To achieve a near ideal RSSM, a continuous RSSM (C-RSSM) with a cost-effective implementation is highly preferable. Meanwhile, another challenge of applying SSM schemes lies in the fact that the schemes deteriorate V O voltage regulation. As shown in Fig. 15.7.1, as an SSM scheme continuously or periodically modulates f sw , a converter switching period fluctuates cycle by cycle, causing random errors on the duty ratio and thus jittering effect on V O. This is difficult to correct by a feedback control loop, as the duty-ratio error changes randomly between switching cycles. Due to a limited loop-gain bandwidth, the loop response usually lags far behind. Although a ramp compensation scheme was reported to resolve this [5], the improvement is very limited, and the scheme only works for voltage-mode converters. © 2019 IEEE.

Description

Full text access from Treasures at UT Dallas is restricted to current UTD affiliates (use the provided Link to Article).

Keywords

Real-time clocks (Computers), Cost effectiveness, Electromagnetic pulse, Gallium nitride, Semiconductors, Converters, Electric, Signal processing, Spectrum analysis, Cost effectiveness, Feedback control systems, Noise, Thermal

item.page.sponsorship

This work is in part sponsored by Semiconductor Research Corporation (SRC) under the research contract GRC 2810.006 and National Science Foundation (NSF) under the research contract NSF CCF 1702496.

Rights

©2019 IEEE

Citation