• Login
    View Item 
    •   Treasures Home
    • Academic Schools and Programs
    • Erik Jonsson School of Engineering and Computer Science
    • JECS Faculty Research
    • Al-Dhahir, Naofal
    • View Item
    •   Treasures Home
    • Academic Schools and Programs
    • Erik Jonsson School of Engineering and Computer Science
    • JECS Faculty Research
    • Al-Dhahir, Naofal
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Security-Enhanced SC-FDMA Transmissions Using Temporal Artificial-Noise and Secret Key Aided Schemes

    Thumbnail
    View/Open
    Article (7.211Mb)
    Date
    2019-01-19
    Author
    Marzban, Mohamed F.
    El Shafie, Ahmed
    Al-Dhahir, Naofal
    Hamila, Ridha
    Metadata
    Show full item record
    Abstract
    Abstract
    We investigate the physical-layer security of uplink single-carrier frequency-division multiple-access (SC-FDMA) systems. Multiple users, Alices, send confidential messages to a common legitimate base-station, Bob, in the presence of an eavesdropper, Eve. To secure the legitimate transmissions, each user superimposes an artificial noise (AN) signal on the time-domain SC-FDMA data symbol. We reduce the computational and storage requirements at Bob's receiver by assuming simple per-sub-channel detectors. We assume that Eve has global channel knowledge of all links in addition to high computational capabilities, where she adopts high-complexity detectors such as single-user maximum likelihood (ML), multi-user minimum-mean-square-error, and multi-user ML. We analyze the correlation properties of the time-domain AN signal and illustrate how Eve can exploit them to reduce the AN effects. We prove that the number of useful AN streams that can degrade Eve's signal-to-noise ratio is dependent on the channel memories of Alices-Bob and Alices-Eve links. Furthermore, we enhance the system security for the case of partial Alices-Bob channel knowledge at Eve, where Eve only knows the precoding matrices of the data and AN signals instead of knowing the entire Alices-Bob channel matrices, and propose a hybrid security scheme that integrates temporal AN with channel-based secret key extraction.
    URI
    http://dx.doi.org/10.1109/ACCESS.2019.2893801
    https://hdl.handle.net/10735.1/8804
    Collections
    • Al-Dhahir, Naofal

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of TreasuresCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV