• Login
    View Item 
    •   Treasures Home
    • Electronic Theses and Dissertations
    • UTD Theses and Dissertations
    • View Item
    •   Treasures Home
    • Electronic Theses and Dissertations
    • UTD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Finding Features Via Hull Approximation

    Thumbnail
    View/Open
    VANBUSKIRK-DISSERTATION-2021.pdf (1.334Mb)
    Date
    2021-05-03
    Author
    Van Buskirk, Gregory
    Metadata
    Show full item record
    Abstract
    Abstract
    With the recent explosion in data collection, big datasets are becoming more difficult to handle. The size of these datasets can cause algorithms to become intractable in time or space, but noise and outliers can also cause machine learning models to overfit data, yielding poor general performance. Additionally, applications that require users or experts to interpret or inspect data also suffer from big datasets as the sheer size makes it impossible for a human to grasp. These considerations motivate reducing the size and complexity of a dataset by selecting key features which allow one to compactly represent the data. This dissertation approaches the basic task of simplifying a dataset from a geometric angle. First, we view datasets from several types of applications as being naturally modeled by three geometric hulls: the staircase hull, the convex hull, and the conic hull. Then, the goal of this dissertation is to research geometric properties and algorithms related to simplifying each of these hulls which in turn results in a simplified dataset. Further, the dissertation provides experimental evidence that show these methods are useful in practice.
    URI
    https://hdl.handle.net/10735.1/9320
    Collections
    • UTD Theses and Dissertations

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of TreasuresCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV