A Multiscale Model to Study the Enhancement in the Compressive Strength of Multi-Walled CNT Sheet Overwrapped Carbon Fiber Composites

dc.contributor.ORCID0000-0001-5845-5137 (Baughman, RH)
dc.contributor.authorRavindranath, P. K.
dc.contributor.authorRoy, S.
dc.contributor.authorUnnikrishnan, V.
dc.contributor.authorWang, X.
dc.contributor.authorXu, Tingge
dc.contributor.authorBaughman, Ray H.
dc.contributor.authorLu, Hongbing
dc.contributor.utdAuthorXu, Tingge
dc.contributor.utdAuthorBaughman, Ray H.
dc.contributor.utdAuthorLu, Hongbing
dc.date.accessioned2019-12-18T21:39:08Z
dc.date.available2019-12-18T21:39:08Z
dc.date.created2019-03-22
dc.descriptionDue to copyright restrictions full text access from Treasures at UT Dallas is restricted to current UTD affiliates (use the provided Link to Article).
dc.description.abstractThe high tensile strength of polymer matrix composites is derived primarily from the high strength of the carbon fibers embedded in the polymer matrix. However, their compressive strength is generally much lower due to the fact that under compression, the fibers tend to fail through micro-buckling well before compressive fracture occurs. In this work, we consider multi-walled carbon nanotube (MWNT) sheets wrapped around carbon fiber at room temperature to improve fiber/matrix interfacial properties which, in turn, influences compressive strength of the composite. To investigate the effect of the wrapping of MWNT sheet on composite strength, Molecular Dynamics simulations were performed on an atomistic model of the interface region between the epoxy, carbon fiber and the scrolled MWNT sheets. The compressive strength of the unidirectional composite was computed using a novel hierarchical multi-scale model comprising of the rule of mixtures at the microscale, and the modified Argon's formula for composites at the macroscale. Model predictions were benchmarked through comparison with experimental data for different volume fractions of MWNT sheet. ©2019 Elsevier Ltd
dc.description.departmentSchool of Natural Sciences and Mathematics
dc.description.departmentErik Jonsson School of Engineering and Computer Science
dc.description.departmentAlan G. MacDiarmid NanoTech Institute
dc.description.sponsorshipThis research was supported by the Low Density Materials Program at AFOSR, Grant No. FA9550-14-1-0227 and NSF CMMI-1636308.
dc.identifier.bibliographicCitationRavindranath, P. K., S. Roy, V. Unnikrishnan, X. Wang, et al. 2019. "A multiscale model to study the enhancement in the compressive strength of multi-walled CNT sheet overwrapped carbon fiber composites." Composite Structures 219: 170-178, doi: 10.1016/j.compstruct.2019.03.065
dc.identifier.issn0263-8223
dc.identifier.urihttps://hdl.handle.net/10735.1/7131
dc.identifier.volume219
dc.publisherElsevier Ltd
dc.relation.urihttps://dx.doi.org/10.1016/j.compstruct.2019.03.065
dc.rights©2019 Elsevier Ltd
dc.source.journalComposite Structures
dc.subjectCarbon fiber-reinforced plastics
dc.subjectCarbon nanotubes
dc.subjectMaterials—Compression testing
dc.subjectMolecular dynamics
dc.subjectMultiscale modeling
dc.subjectFiber reinforced plastics
dc.subjectFibers
dc.subjectMatrices
dc.subjectMultiwalled carbon nanotubes
dc.subjectNanotubes
dc.subjectPolymeric composites
dc.subjectReinforced plastics
dc.subjectCarbon fiber-reinforced plastics
dc.titleA Multiscale Model to Study the Enhancement in the Compressive Strength of Multi-Walled CNT Sheet Overwrapped Carbon Fiber Composites

Files