Nanoimprinted Perovskite Metasurface for Enhanced Photoluminescence
Date
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.doi
Abstract
Recently, solution-processed hybrid halide perovskite has emerged as promising materials for advanced optoelectronic devices such as photovoltaics, photodetectors, light emitting diodes and lasers. In the mean time, all-dielectric metasurfaces with high-index materials have attracted attention due to their low-loss and high-efficient optical resonances. Because of its tunable by composition band gap in the visible frequencies, organolead halide perovskite could serve as a powerful platform for realizing high-index, low-loss metasurfaces. However, direct patterning of perovskite by lithography-based technique is not feasible due to material instability under moisture. Here we report novel organolead halide perovskite metasurfaces created by the cost-effective thermal nanoimprint technology. The nanoimprinted perovskite metasurface showed improved surface morphology and enhanced optical absorption properties. Significantly enhanced optical emission with an eight-fold enhancement in photoluminescence (PL) intensity was observed under room temperature. Temperature-dependent PL of perovskite nanograting metasurface was also investigated. Based on our results, we believe that thermal nanoimprint is a simple and cost-effective technique to fabricate perovskite-based metasurfaces, which could have broad impact on optoelectronic and photonic applications.