Effective Modal Volume in Nanoscale Photonic and Plasmonic Near-Infrared Resonant Cavities
Date
Authors
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.doi
Abstract
We survey expressions of the effective modal volume, Veff, commonly used in the literature for nanoscale photonic and plasmonic cavities. We apply different expressions of V_{eff} to several canonical cavities designed for nanoscale near-infrared light sources, including metallo-dielectric and coaxial geometries. We develop a metric for quantifying the robustness of different V_{eff} expressions to the different cavities and materials studied. We conclude that no single expression for V_{eff} is universally applicable. Several expressions yield nearly identical results for cavities with well-confined photonic-type modes. For cavities with poor confinement and a low quality factor, however, expressions using the proper normalization method need to be implemented to adequately describe the diverging behavior of their effective modal volume. The results serve as a practical guideline for mode analysis of nanoscale optical cavities, which show promise for future sensing, communication, and computing platforms.