Estimating the Daily Pollen Concentration in the Atmosphere Using Machine Learning and NEXRAD Weather Radar Data

dc.contributor.authorZewdie, Gebreab K.
dc.contributor.authorLary, David J.
dc.contributor.authorLiu, Xun
dc.contributor.authorWu, Daji
dc.contributor.authorLevetin, E.
dc.contributor.utdAuthorZewdie, Gebreab K.
dc.contributor.utdAuthorLary, David J.
dc.contributor.utdAuthorLiu, Xun
dc.contributor.utdAuthorWu, Daji
dc.date.accessioned2020-04-06T22:01:06Z
dc.date.available2020-04-06T22:01:06Z
dc.date.issued2019-06-07
dc.descriptionDue to copyright restrictions and/or publisher's policy full text access from Treasures at UT Dallas is limited to current UTD affiliates (use the provided Link to Article).
dc.description.abstractMillions of people have an allergic reaction to pollen. The impact of pollen allergies is on the rise due to increased pollen levels caused by global warming and the spread of highly invasive weeds. The production, release, and dispersal of pollen depend on the ambient weather conditions. The temperature, rainfall, humidity, cloud cover, and wind are known to affect the amount of pollen in the atmosphere. In the past, various regression techniques have been applied to estimate and forecast the daily pollen concentration in the atmosphere based on the weather conditions. In this research, machine learning methods were applied to the Next Generation Weather Radar (NEXRAD) data to estimate the daily Ambrosia pollen over a 300 km × 300 km region centered on a NEXRAD weather radar. The Neural Network and Random Forest machine learning methods have been employed to develop separate models to estimate Ambrosia pollen over the region. A feasible way of estimating the daily pollen concentration using only the NEXRAD radar data and machine learning methods would lay the foundation to forecast daily pollen at a fine spatial resolution nationally. © 2019, Springer Nature Switzerland AG.
dc.description.departmentSchool of Natural Sciences and Mathematics
dc.description.departmentWilliam B. Hanson Center for Space Sciences
dc.identifier.bibliographicCitationZewdie, G. K., D. J. Lary, X. Liu, D. Wu, et al. 2019. "Estimating the daily pollen concentration in the atmosphere using machine learning and NEXRAD weather radar data." Environmental Monitoring And Assessment 191(7): art. 418, doi: 10.1007/s10661-019-7542-9
dc.identifier.issn0167-6369
dc.identifier.urihttp://dx.doi.org/10.1007/s10661-019-7542-9
dc.identifier.urihttps://hdl.handle.net/10735.1/7849
dc.identifier.volume191
dc.language.isoen
dc.publisherSpringer International Publishing
dc.rights©2019 Springer Nature Switzerland AG
dc.source.journalEnvironmental Monitoring and Assessment
dc.subjectEnvironmental health
dc.subjectMachine learning
dc.subjectNeural networks (Neurobiology)
dc.subjectNext Generation Weather Radar
dc.subjectPollen
dc.subjectForest monitoring
dc.subjectWeather
dc.subjectDecision trees
dc.subjectGlobal warming
dc.subjectInstructional systems
dc.subjectWeather radar networks
dc.subjectAllergy
dc.subjectWeather radar networks
dc.subjectAmbrosia artemisiifolia
dc.titleEstimating the Daily Pollen Concentration in the Atmosphere Using Machine Learning and NEXRAD Weather Radar Data
dc.type.genrearticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NSM-3122-261144.51-LINK.pdf
Size:
166.53 KB
Format:
Adobe Portable Document Format
Description:
Link to Article