Constraining Attacker Capabilities through Actuator Saturation

Date

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

item.page.doi

Abstract

For LTI control systems, we provide mathematical tools - in terms of Linear Matrix Inequalities - for computing outer ellipsoidal bounds on the reachable sets that attacks can induce in the system when they are subject to the physical limits of the actuators. Next, for a given set of dangerous states, states that (if reached) compromise the integrity or safe operation of the system, we provide tools for designing new artificial limits on the actuators (smaller than their physical bounds) such that the new ellipsoidal bounds (and thus the new reachable sets) are as large as possible (in terms of volume) while guaranteeing that the dangerous states are not reachable. This guarantees that the new bounds cut as little as possible from the original reachable set to minimize the loss of system performance. Computer simulations using a platoon of vehicles are presented to illustrate the performance of our tools.

Description

Full text access from Treasures at UT Dallas is restricted to current UTD affiliates (use the provided link to the article). Non UTD affiliates will find the web address for this item by clicking the Show full item record link and copying the "relation.uri" metadata.

Keywords

Actuators, Ellipsoid, Linear systems, Computer security, Combinatorial optimization

item.page.sponsorship

Rights

©2018 AACC

Citation