Molecularly-ordered Hydrogels with Controllable, Anisotropic Stimulus Response

Date

2019-05-03

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry

item.page.doi

Abstract

Hydrogels which morph between programmed shapes in response to aqueous stimuli are of significant interest for biosensors and artificial muscles, among other applications. However, programming hydrogel shape change at small size scales is a significant challenge. Here we use the inherent ordering capabilities of liquid crystals to create a mechanically anisotropic hydrogel; when coupled with responsive comonomers, the mechanical anisotropy in the network guides shape change in response to the desired aqueous condition. Our synthetic strategy hinges on the use of a methacrylic chromonic liquid crystal monomer which can be combined with a non-polymerizable chromonic of similar structure to vary the magnitude of shape change while retaining liquid crystalline order. This shape change is directional due to the mechanical anisotropy of the gel, which is up to 50% stiffer along the chromonic stack direction than perpendicular. Additionally, we show that the type of stimulus to which these anisotropic gels respond can be switched by incorporating responsive, hydrophilic comonomers without destroying the nematic phase or alignment. The utility of these properties is demonstrated in polymerized microstructures which exhibit Gaussian curvature in response to high pH due to emergent ordering in a micron-sized capillary. © 2019 The Royal Society of Chemistry.

Description

Due to copyright restrictions and/or publisher's policy full text access from Treasures at UT Dallas is limited to current UTD affiliates (use the provided Link to Article).
Supplementary material is available on publisher's website. Use the DOI link below.

Keywords

Crystals--Structure, Colloids, Liquid crystals, Artificial muscles, Liquid crystals (Chromonic), Gaussian curvature, Anisotropy

item.page.sponsorship

National Science Foundation under Grant No. 1663367 and the Graduate Research Fellowship Program, Grant No. 1746053

Rights

©2019 The Royal Society of Chemistry

Citation

Collections