Investigation of High Oxygen Reduction Reaction Catalytic Performance on Mn-Based Mullite SmMn₂O₅

dc.contributor.ORCID0000-0001-5931-212X (Wang, W)en_US
dc.contributor.authorLiu, Jieyuen_US
dc.contributor.authorYu, Mengen_US
dc.contributor.authorWang, Xueweien_US
dc.contributor.authorWu, Jieen_US
dc.contributor.authorWang, Changhongen_US
dc.contributor.authorZheng, Lijunen_US
dc.contributor.authorYang, Dachien_US
dc.contributor.authorLiu, Huien_US
dc.contributor.authorYao, Yanen_US
dc.contributor.authorLu, Fengen_US
dc.contributor.authorWang, Weichaoen_US
dc.contributor.utdAuthorWang, Weichaoen_US
dc.date.accessioned2018-09-14T19:17:34Z
dc.date.available2018-09-14T19:17:34Z
dc.date.created2017-10
dc.date.issued2017-10en_US
dc.description.abstractAn alternative material SmMn₂O₅ mullite with regard to Pt/C is proposed to catalyze the oxygen reduction reaction (ORR) by combining density functional theory (DFT) calculations and experimental validations. Theoretical calculations are performed to investigate the bulk phase diagram, as well as the stability and electrocatalytic activity of the ORR under alkaline conditions for SmMn₂O₅ (001) surfaces, which are passivated by nitrogen atoms to avoid any spurious interference. The adsorptions of relevant ORR species (O*, OH*, OOH* and OO*) tend to compensate the coordination of manganese atoms to form Mn-centered octahedral or pyramidal crystal fields, and the corresponding binding energies fulfill a linear relationship. An oxygen molecule prefers to be reduced to OH⁻ via a four-electron pathway and this prediction is verified by electrochemical measurements on the as-prepared SmMn₂O₅ catalyst with a nanorod structure. Volcano curves are obtained to describe the trends in theoretical ORR activity as a function of a single parameter, i.e. the oxygen binding energy. An overpotential of 0.43 V is obtained at the O* binding energy around 3.4 eV, which is close to the experimental observation (0.413 V) in this work. SmMn₂O₅ mullite exhibits favorable ORR activity and superior stability with only ~5% decay in activity over 20 000 s of chronoamperometric operation in contrast to ~15% decrease of Pt/C, making it a promising candidate for a cathode catalyst.en_US
dc.description.departmentErik Jonsson School of Engineering and Computer Scienceen_US
dc.description.sponsorshipNational Key Research and Development Program (Grant No. 2016YFB0901600), the National Natural Science Foundation of China (21573117 and 11404172), Tianjin Natural Science Foundation (14JCZDJC37700), and the National Basic Research Program of China (973 Program with No. 2014CB931703).en_US
dc.identifier.bibliographicCitationLiu, Jieyu, Meng Yu, Xuewei Wang, Jie Wu, et al. 2017. "Investigation of high oxygen reduction reaction catalytic performance on Mn-based mullite SmMn2O5." Journal of Materials Chemistry A 5(39): 20922-20931.en_US
dc.identifier.issn2050-7488en_US
dc.identifier.issue39en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/6075
dc.identifier.volume5en_US
dc.language.isoenen_US
dc.publisherRoyal Soc Chemistryen_US
dc.relation.urihttp://dx.doi.org/10.1039/c7ta02905e
dc.rights©2017 The Royal Society of Chemistry. This article may not be further made available or distributed.en_US
dc.source.journalJournal of Materials Chemistry Aen_US
dc.subjectOxidesen_US
dc.subjectManganese oxidesen_US
dc.subjectDiesel motor exhaust gasen_US
dc.subjectOxidationen_US
dc.subjectElectrocatalystsen_US
dc.subjectChemistryen_US
dc.subjectMaterials scienceen_US
dc.subjectMulliteen_US
dc.titleInvestigation of High Oxygen Reduction Reaction Catalytic Performance on Mn-Based Mullite SmMn₂O₅en_US
dc.type.genrearticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
JECS-2061-8183.84.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
JECS-2061-8183.84_S1.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
Supplement

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ROYAL SOCIETY OF CHEMISTRY.pdf
Size:
84.06 KB
Format:
Adobe Portable Document Format
Description: