Enhancing the Strength, Toughness, and Electrical Conductivity of Twist-Spun Carbon Nanotube Yarns by π Bridging

dc.contributor.authorLiang, X.
dc.contributor.authorGao, Y.
dc.contributor.authorDuan, J.
dc.contributor.authorLiu, Z.
dc.contributor.authorFang, Shaoli
dc.contributor.authorBaughman, Ray H.
dc.contributor.authorJiang, L.
dc.contributor.authorCheng, Q.
dc.contributor.utdAuthorFang, Shaoli
dc.contributor.utdAuthorBaughman, Ray H.
dc.date.accessioned2020-03-23T20:13:37Z
dc.date.available2020-03-23T20:13:37Z
dc.date.issued2019-05-10
dc.descriptionSupplementary material is available on publisher's website. Use the DOI link below.
dc.descriptionDue to copyright restrictions and/or publisher's policy full text access from Treasures at UT Dallas is limited to current UTD affiliates (use the provided Link to Article).
dc.description.abstractThe weak interfacial interactions between carbon nanotube (CNT) always results in low stress load transfer efficiency in CNT yarns, herein we fabricated strong, highly conducting CNT yarns at room temperature using molecules having aromatic end groups, π bridging neighboring CNTs. The resulting CNT yarns have high tensile strength with 1697 ± 24 MPa, toughness with 18.6 ± 1.6 MJ/m³, and electrical conductivity with 656.2 S/cm, which are 3.9, 2.5, and 3.5 times, respectively, as high as that of the neat CNT yarn. The specific tensile strength of the resulting CNT yarn is higher than that for previously reported CNT yarns fabricated at room temperature, even that for some CNT yarns fabricated using corossive environments or extreme temperature. This π bridging strategy provides a promising avenue for fabricating high performance CNT yarns under ambient conditions. ©2019 Elsevier Ltd
dc.description.departmentSchool of Natural Sciences and Mathematics
dc.description.departmentAlan G. MacDiarmid NanoTech Institute
dc.description.sponsorshipExcellent Young Scientist Foundation of NSFC (51522301); the National Natural Science Foundation of China (21875010, 21273017, 51103004); the Program for New Century Excellent Talents in University (NCET-12-0034); the Fok Ying Tong Education Foundation (141045); the 111 Project (B14009); the Aeronautical Science Foundation of China (20145251035, 2015ZF21009); State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology (oic-201701007); the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (LK1710); the Fundamental Research Funds for the Central Universities (YWF-16-BJ-J-09, YWF-17-BJ-J-33, YWF-18-BJ-J-13); the Academic Excellence Foundation of BUAA (20170666); NSF Award 1636306.
dc.identifier.bibliographicCitationLiang, X., Y. Gao, J. Duan, Z. Liu, et al. 2019. "Enhancing the strength, toughness, and electrical conductivity of twist-spun carbon nanotube yarns by π bridging." Carbon 150: 268-274, doi: 10.1016/j.carbon.2019.05.023
dc.identifier.issn0008-6223
dc.identifier.urihttp://dx.doi.org/10.1016/j.carbon.2019.05.023
dc.identifier.urihttps://hdl.handle.net/10735.1/7440
dc.identifier.volume150
dc.language.isoen
dc.publisherElsevier Ltd
dc.rights©2019 Elsevier Ltd. All Rights Reserved.
dc.source.journalCarbon
dc.subjectCarbon nanotubes
dc.subjectMaterials—Mechanical properties
dc.subjectElectric conductivity
dc.subjectSpinning
dc.subjectWool
dc.subjectElectrical conductivity
dc.titleEnhancing the Strength, Toughness, and Electrical Conductivity of Twist-Spun Carbon Nanotube Yarns by π Bridging
dc.type.genrearticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NSM-3099-261074.12-LINK.pdf
Size:
166.82 KB
Format:
Adobe Portable Document Format
Description:
Link to Article

Collections