Texas Science Teacher Characteristics and Conceptual Understanding of Newton's Laws of Motion

Date

2017-05

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

item.page.doi

Abstract

Misconceptions of Newtonian mechanics and other physical science concepts are well documented in primary and pre-service teacher populations (Burgoon, Heddle, & Duran, 2009; Allen & Coole, 2012; Kruger, Summers, & Palacio, 1990; Ginns & Watters, 1995; Trumper, 1999; Asikainen & Hirovonen, 2014). These misconceptions match the misconceptions held by students, leaving teachers ill-equipped to rectify these concepts in the classroom (Kind, 2014; Kruger et al., 1990; Cochran & Jones, 1998). Little research has been devoted to misconceptions held by in-service secondary teachers, the population responsible for teaching Newtonian mechanics. This study focuses on Texas in-service science teachers in middle school and high school science, specifically sixth grade science, seventh grade science, eighth grade science, integrated physics and chemistry, and physics teachers. This study utilizes two instruments to gauge conceptual understanding of Newton’s laws of motion: the Force Concept Inventory [FCI] (Hestenes, Wells, & Swackhamer, 1992) and a custom instrument developed for the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching (Urquhart, M., e-mail, April 4, 2017). Use of each instrument had its strengths and limitations. In the initial work of this study, the FCI was given to middle and high school teacher volunteers in two urban school districts in the Dallas- Fort Worth area to assess current conceptual understanding of Newtonian mechanics. Along with the FCI, each participant was asked to complete a demographic survey. Demographic data collected included participant’s sex, years of service in teaching position, current teaching position, degrees, certification type, and current certifications for science education. Correlations between variables and overall average on the FCI were determined by t-tests and ANOVA tests with a post-hoc Holm-Bonferroni correction test. Test questions pertaining to each of Newton’s three laws of motion were extrapolated to determine any correlations. The sample size for this study was small (n=24), requiring a second study investigate potential correlations to teacher characteristics. The second study was conducted using the 2013-2014 school year participants in the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching [TRC] (Texas Regional Collaborative for Excellence in Science and Mathematics Teaching, 2013), a statewide program led by The University of Texas at Austin Center for STEM Education (Texas Regional Collaborative for Excellence in Science and Mathematics Teaching, 2013). Participants completed a demographic survey and took the TRC Physics Assessment instrument developed for the TRC to determine current conceptual understanding of Newtonian mechanics as defined by the Texas Essential Knowledge and Skills. The TRC also collected demographic data including Texas Educational Agency region, participant’s sex, years of service in teaching, current teaching position, level of highest degree earned, whether or not the participant had a STEM degree, and certification type. Correlations were determined between overall average and conceptual force questions only. The sample size was substantial (n=368) but due to time constraints in its development, the TRC Physics Assessment was unable to undergo reliability or validity testing before implementation. Test question pertaining to each of Newton’s three laws of motion were extrapolated to determine any correlations. A significance value of p= 0.05 was used for all tests. Both content assessments indicated that, on average, teacher-participants had a considerable misunderstanding of Newtonian mechanics with Newton’s third law questions especially difficult for the populations. Teachers’ current teaching assignment was statistically significant for most tests, suggesting that high school physics teachers have more conceptual understanding of Newtonian mechanics than middle school teachers but have not necessarily mastered Newtonian mechanics. STEM majors and participant’s sex were significant only for the TRC Physics Assessment. One outcome of this study is a recommendation that the Texas teacher certification process for middle school science change to include a general science test that includes physical science. Also, in-service science teachers responsible for teaching Newton’s laws of motion should participate in specific professional development from a physics content educational expert to address misconceptions. Additional recommendations include that physics teachers take a mentoring role to help other teachers in physical science concepts and that middle school curriculum provide assistance to teachers for addressing misconceptions of Newton’s third law.

Description

Keywords

Science—Study and teaching, Mechanics, Science teachers, Teacher effectiveness

item.page.sponsorship

Rights

Copyright ©2017 is held by the author. Digital access to this material is made possible by the Eugene McDermott Library. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Citation