Liquid-Crystal Order during Synthesis Affects Main-Chain Liquid-Crystal Elastomer Behavior


This study presents the first direct comparison of the influence of liquid-crystal order during synthesis on the thermo-mechanical behaviors of main-chain liquid-crystal elastomers (LCEs) in thiol-acrylate networks. Six polydomain nematic elastomer (PNE) chemistries were compared directly by synthesizing with the mesogens in either an isotropic state (i-PNE) or a nematic state (n-PNE). The i-PNE networks were created in the presence of solvent, which disrupted any liquid-crystal order during network formation. Conversely, the n-PNE networks were created without the presence of solvent below the isotropic transition (T_{NI}). Differential scanning calorimetry (DSC) was first performed, and it showed that i-PNE networks experienced a clearly defined nematic-to-isotropic transition upon heating, whereas the transition in n-PNE networks was unable to be identified, which may be the result of a nematic-to-paranematic phase transition. Dynamic mechanical analysis (DMA) tests revealed that while both networks maintained elevated loss tangent in the nematic region, only i-PNE networks prominently displayed dynamic soft elasticity behavior. The two-way shape switching behaviors of LCE networks were examined using actuation tests under a 100 kPa bias stress. It showed that the strain amplitude strongly depends on synthesis history; it ranges from 66% to 126% in i-PNE samples and 3% to 61% in n-PNE samples. To help interpret the different actuation strain behaviors between i-PNEs and n-PNEs, wide-angle X-ray scattering (WAXS) was then performed where the LCE samples were strained to 40%. The results showed that order parameter (S) in n-PNE samples (ranging from 0.37 to 0.50) is lower than that in i-PNE samples (0.54 for all cases), and the parameter decreased as the cross-linking density increased. The stress-strain behaviors of the LCE networks measured from uniaxial tension tests revealed that all i-PNE samples had a lower soft-elasticity plateau during loading compared to the n-PNE samples. Finally, free-standing strain recovery of LCE samples after being strained to 100% was investigated. Immediately after removing stress on the samples, i-PNE and n-PNE samples recovered 14% to 38% and 27% to 73% of strain, respectively. We discuss the advantages and disadvantages of the different synthetic histories on LCE design.


Full text access for Treasures at UT Dallas is restricted to current UTD affiliates.


Nematic liquid crystals, Elastomers, Materials—Mechanical properties, Actuators, Elasticity, Polymers, Muscles

NSF CAREER Award CMMI-1350436


©2017 The Royal Society of Chemistry