High Thermal Conductivity in Isotopically Enriched Cubic Boron Phosphide

dc.contributor.authorZheng, Q.
dc.contributor.authorLi, S.
dc.contributor.authorLi, C.
dc.contributor.authorLv, Y.
dc.contributor.authorLiu, X.
dc.contributor.authorHuang, P. Y.
dc.contributor.authorBroido, D. A.
dc.contributor.authorLv, Bing
dc.contributor.authorCahill, D. G.
dc.contributor.utdAuthorLi, S.
dc.contributor.utdAuthorLiu, X.
dc.contributor.utdAuthorLv, Bing
dc.date.accessioned2019-08-30T19:22:08Z
dc.date.available2019-08-30T19:22:08Z
dc.date.created2018-09-05
dc.descriptionFull text access from Treasures at UT Dallas is restricted to current UTD affiliates (use the provided Link to Article).
dc.description.abstractZinc blende boron arsenide (BAs), boron phosphide (BP), and boron nitride (BN) have attracted significant interest in recent years due to their high thermal conductivity (Λ) predicted by first-principles calculations. This research reports the study of the temperature dependence of Λ (120 K < T < 600 K) for natural isotope-abundance BP and isotopically enriched 11BP crystals grown from modified flux reactions. Time-domain thermoreflectance is used to measure Λ of sub-millimeter-sized crystals. At room temperature, Λ for BP and 11BP is 490 and 540 W m−1 K−1, respectively, surpassing the values of conventional high Λ materials such as Ag, Cu, BeO, and SiC. The Λ of BP is smaller than only cubic BN, diamond, graphite, and BAs among single-phase materials. The measured Λ for BP and 11BP is in good agreement with the first-principles calculations above 250 K. The quality of the crystals is verified by Raman spectroscopy, X-ray diffraction, and scanning transmission electron microscopy. By combining the first-principles calculations and Raman measurements, a previously misinterpreted Raman mode is reassigned. Thus, BP is a promising material not only for heat spreader applications in high-power microelectronic devices but also as an electronic material for use in harsh environments. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
dc.description.departmentSchool of Natural Sciences and Mathematics
dc.description.sponsorshipOffice of Naval Research MURI. Grant Number: N00014‐16‐1‐2436; US Air Force Office of Scientific Research. Grant Number: FA9550‐15‐1‐0236.
dc.identifier.bibliographicCitationZheng, Q., S. Li, C. Li, Y. Lv, et al. 2018. "High Thermal Conductivity in Isotopically Enriched Cubic Boron Phosphide." Advanced Functional Materials 28(43): art. 1805116, doi:10.1002/adfm.201805116
dc.identifier.issn1616301X
dc.identifier.issue43
dc.identifier.urihttps://hdl.handle.net/10735.1/6829
dc.identifier.volume28
dc.language.isoen
dc.publisherWILEY-VCH Verlag GmbH & Co.
dc.relation.urihttp://dx.doi.org/10.1002/adfm.201805116
dc.rights©2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
dc.source.journalAdvanced Functional Materials
dc.subjectIsotope separation
dc.subjectRaman spectroscopy
dc.subjectTime-domain analysis
dc.subjectArsenic compounds
dc.subjectBeryllium oxide
dc.subjectHigh resolution electron microscopy
dc.subjectIsotopes
dc.subjectMicroelectronics
dc.subjectScanning electron microscopy
dc.subjectSilicon carbide
dc.subjectSilicon compounds
dc.subjectThermal conductivity
dc.subjectInsulation (Heat)
dc.subjectTransmission electron microscopy
dc.subjectZinc sulfide
dc.subjectSingle-phase materials
dc.titleHigh Thermal Conductivity in Isotopically Enriched Cubic Boron Phosphide
dc.type.genrearticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NSM-4828-279958.55-LINK.pdf
Size:
165.01 KB
Format:
Adobe Portable Document Format
Description:
Link to Article

Collections