Inventory Control with Fixed Cost and Price Optimization in Continuous Time
Date
Authors
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.doi
Abstract
We continue to study the problem of inventory control, with simultaneous pricing optimization in continuous time. In our previous paper [8], we considered the case without set up cost, and established the optimality of the base stock-list price (BSLP) policy. In this paper we consider the situation of fixed price. We prove that the discrete time optimal strategy (see [11]), i.e., the (s; S; p) policy can be extended to the continuous time case using the framework of quasi-variational inequalities (QVIs) involving the value function. In the process we show that an associated second order, nonlinear two-point boundary value problem for the value function has a unique solution yielding the triplet (s; S; p). For application purposes the explicit knowledge of this solution is needed to specify the optimal inventory and pricing strategy. Selecting a particular demand function we are able to formulate and implement a numerical algorithm to obtain good approximations for the optimal strategy.