A Few-Minute Synthesis of CsPbBr₃ Nanolasers with a High Quality Factor by Spraying at Ambient Conditions


Inorganic cesium lead halide perovskite nanowires, generating laser emission in the broad spectral range at room temperature and low threshold, have become powerful tools for the cutting-edge applications in the optoelectronics and nanophotonics. However, to achieve high-quality nanowires with the outstanding optical properties, it was necessary to employ long-lasting and costly methods of their synthesis, as well as postsynthetic separation and transfer procedures that are not convenient for large-scale production. Here we report a novel approach to fabricate high quality CsPbBr₃ nanolasers obtained by rapid precipitation from dimethyl sulfoxide solution sprayed onto hydrophobic substrates at ambient conditions. The synthesis technique allows producing the well-separated nanowires with a broad size distribution of 2-50 μm in 5-7 min, being the fastest method to the best of our knowledge. The formation of nanowires occurs via ligand-assisted reprecipitation triggered by intermolecular proton transfer from (CH₃)₂CHOH to H₂O in the presence of a minor amount of water. The XRD patterns confirm an orthorhombic crystal structure of the as-grown CsPbBr₃ single nanowires. Scanning electron microscopy images reveal their regular shape and truncated pyramidal end facets, while high-resolution transmission electron microscopy ones demonstrate their single-crystal structure. The lifetime of excitonic emission of the nanowires is found to be 7 ns, when the samples are excited with energy below the lasing threshold, manifesting the low concentration of defect states. The measured nanolasers of different lengths exhibit pronounced stimulated emission above 13 μJ cm⁻² excitation threshold with quality factor Q = 1017-6166. Their high performance is assumed to be related to their monocrystalline structure, low concentration of defect states, and improved end facet reflectivity.

Due to copyright restrictions and/or publisher's policy full text access from Treasures at UT Dallas is limited to current UTD affiliates (use the provided Link to Article).
Supplementary material is available on publisher's website. Use the DOI link below.
Nanowires, Lead halide perovskite, Spraying, Halide perovskites, Materials science, Lasers
Russian Science Foundation (grant no. 18-73-00346); Ministry of Education and Science of the Russian Federation (projects 14.Y26.31.0010; 16.9284.2017/7.8)
©2018 American Chemical Society