A New LMS Algorithm Based Dead-Time Compensation Method for PMSM FOC Drives
Date
Authors
item.page.orcid
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.doi
Abstract
This paper presents a new least-mean-square (LMS) algorithm based dead-time compensation method to suppress the current distortion in permanent-magnet synchronous motor (PMSM) field-oriented control (FOC) drives. Compared to conventional average value compensations, the proposed method is robust to switching device parameter variations thanks to the online adaptation capability of the LMS algorithm. Similarly, the disturbance observer compensators are also immune to switching device parameter variations; however, varying motor parameters degrades their compensation performance. Without prior knowledge of switching device or motor parameters, the proposed method can directly reduce the dead-time current harmonics by generating compensation voltage references. In addition, the proposed method is easy to implement since it doesn't require voltage errors estimation or current harmonics extraction which are necessary for disturbance observer and adaptive filter based methods. The proposed method is tested on a 2.5 kW voltage-source inverter (VSI) PMSM drive controlled by FOC algorithm. Its effectiveness is validated by both experimental results and spectrum analysis.