Cortical Map Plasticity as a Function of Vagus Nerve Stimulation Rate

item.page.doi
Abstract

Background: Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an external event can reorganize the sensory or motor cortex. A 30 Hz train of sixteen VNS pulses paired with a tone significantly increases the number of neurons in primary auditory cortex (A1) that respond to tones near the paired tone frequency. The effective range of VNS pulse rates for driving cortical map plasticity has not been defined. Objective/Hypothesis: This project investigated the effects of VNS rate on cortical plasticity. We expected that VNS pulse rate would affect the degree of plasticity caused by VNS-tone pairing. Methods: Rats received sixteen pulses of VNS delivered at a low (7.5 Hz), moderate (30 Hz), or high (120 Hz) rate paired with 9 kHz tones 300 times per day over a 20 day period. Results: More A1 neurons responded to the paired tone frequency in rats from the moderate rate VNS group compared to naïve controls. The response strength was also increased in these rats. In contrast, rats that received high or low rate VNS failed to exhibit a significant increase in the number of neurons tuned to sounds near 9 kHz. Conclusion: Our results demonstrate that the degree of cortical plasticity caused by VNS-tone pairing is an inverted-U function of VNS pulse rate. The apparent high temporal precision of VNS-tone pairing helps identify optimal VNS parameters to achieve the beneficial effects from restoration of sensory or motor function.

Description
Full text access from Treasures at UT Dallas is restricted to current UTD affiliates.
Full text access from Treasures at UT Dallas is restricted to current UTD affiliates.
Keywords
Auditory cortex, Plasticity, Animal Experimentation, Animals--Experiments, Neurons, Heart Rate, Rats, Sensorimotor integration, Vagus nerve stimulation
item.page.sponsorship
item.page.rights
©2018 Elsevier Inc.
Citation