Vagus Nerve Stimulation Rate and Duration Determine Whether Sensory Pairing Produces Neural Plasticity

dc.contributor.ORCID0000-0003-4225-241X (Hays, SA)
dc.contributor.VIAF13146094343400332984 (Hays, SA)
dc.contributor.authorBuell, Elizabeth P.
dc.contributor.authorBorland, Michael S.
dc.contributor.authorLoerwald, Kristopher W.
dc.contributor.authorChandler, Collin
dc.contributor.authorHays, Seth A.
dc.contributor.authorEngineer, Crystal T.
dc.contributor.authorKilgard, Michael P.
dc.contributor.utdAuthorBuell, Elizabeth P.
dc.contributor.utdAuthorBorland, Michael S.
dc.contributor.utdAuthorLoerwald, Kristopher W.
dc.contributor.utdAuthorChandler, Collin
dc.contributor.utdAuthorHays, Seth A.
dc.contributor.utdAuthorEngineer, Crystal T.
dc.contributor.utdAuthorKilgard, Michael P.
dc.descriptionNational Institutes of Health R01NS085167, R01NS085167, R01DC017480, R01NS094384; Defense Advanced Research Projects Agency (DARPA) Space and Naval Warfare Systems Center, Pacific Cooperative Agreement No. N66001–15-2-4057, Pacific Grant/Contract No. N66001–17-2-4011.
dc.descriptionFull text access from Treasures at UT Dallas is restricted to current UTD affiliates (use the provided Link to Article).
dc.description.abstractRepeatedly pairing a brief train of vagus nerve stimulation (VNS) with an auditory stimulus drives reorganization of primary auditory cortex (A1), and the magnitude of this VNS-dependent plasticity is dependent on the stimulation parameters, including intensity and pulse rate. However, there is currently little data to guide the selection of VNS train durations, an easily adjusted parameter that could influence the effect of VNS-based therapies. Here, we tested the effect of varying the duration of the VNS train on the extent of VNS-dependent cortical plasticity. Rats were exposed to a 9 kHz tone 300 times per day for 20 days. Coincident with tone presentation, groups received trains of 4, 16, or 64 pulses of VNS delivered at 30 Hz, corresponding to train durations of 0.125 s, 0.5 s, and 2.0 s, respectively. High-density microelectrode mapping of A1 revealed that 0.5 s duration VNS trains significantly increased the number of neurons in A1 that responded to tones near the paired tone frequency. Trains lasting 0.125 or 2.0 s failed to alter A1 responses, indicating that both shorter and longer stimulation durations are less effective at enhancing plasticity. A second set of experiments evaluating the effect of delivering 4 or 64 pulses in a fixed 0.5 s VNS train duration paired with tone presentation reveal that both slower and faster stimulation rates are less effective at enhancing plasticity. We incorporated these results with previous findings describing the effect of stimulation parameters on VNS-dependent plasticity and activation of neuromodulatory networks to generate a model of synaptic activation by VNS. ©2019 Elsevier Ltd
dc.description.departmentSchool of Behavioral and Brain Sciences
dc.description.departmentErik Jonsson School of Engineering and Computer Science
dc.identifier.bibliographicCitationBuell, E. P., M. S. Borland, K. W. Loerwald, C. Chandler, et al. 2019. "Vagus Nerve Stimulation Rate and Duration Determine whether Sensory Pairing Produces Neural Plasticity." Neuroscience 406: 290-299, doi: 10.1016/j.neuroscience.2019.03.019
dc.publisherElsevier Ltd
dc.rights©2019 Elsevier Ltd.
dc.subjectAuditory cortex
dc.subjectVagus nerve--Stimulation
dc.titleVagus Nerve Stimulation Rate and Duration Determine Whether Sensory Pairing Produces Neural Plasticity


Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
165.57 KB
Adobe Portable Document Format
Link to Article