Understanding and Controlling Water Stability of MOF-74

dc.contributor.ISNI0000 0000 4239 3958 (Chabal, YJ)en_US
dc.contributor.authorZuluaga, S.en_US
dc.contributor.authorFuentes-Fernandez, Erika M. A.en_US
dc.contributor.authorTan, Kuien_US
dc.contributor.authorXu, F.en_US
dc.contributor.authorLi, J.en_US
dc.contributor.authorChabal, Yves J.en_US
dc.contributor.authorThonhauser, T.en_US
dc.contributor.utdAuthorFuentes-Fernandez, Erika M. A.
dc.contributor.utdAuthorTan, Kui
dc.contributor.utdAuthorChabal, Yves J.
dc.date.accessioned2018-06-01T15:04:37Z
dc.date.available2018-06-01T15:04:37Z
dc.date.created2016-03-09en_US
dc.date.issued2018-06-01
dc.description.abstractMetal organic framework (MOF) materials in general, and MOF-74 in particular, have promising properties for many technologically important processes. However, their instability under humid conditions severely restricts practical use. We show that this instability and the accompanying reduction of the CO2 uptake capacity of MOF-74 under humid conditions originate in the water dissociation reaction H2O → OH + H at the metal centers. After this dissociation, the OH groups coordinate to the metal centers, explaining the reduction in the MOF's CO2 uptake capacity. This reduction thus strongly depends on the catalytic activity of MOF-74 towards the water dissociation reaction. We further show that - while the water molecules themselves only have a negligible effect on the crystal structure of MOF-74 - the OH and H products of the dissociation reaction significantly weaken the MOF framework and lead to the observed crystal structure breakdown. With this knowledge, we propose a way to suppress this particular reaction by modifying the MOF-74 structure to increase the water dissociation energy barrier and thus control the stability of the system under humid conditions.en_US
dc.description.sponsorship"This work was entirely supported by Department of Energy Grant No. DE–FG02–08ER46491. It further used resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE–AC05– 00OR22725."en_US
dc.identifier.bibliographicCitationZuluaga, S., E. M. A. Fuentes-Fernandez, K. Tan, F. Xu, et al. 2016. "Understanding and controlling water stability of MOF-74." Journal of Materials Chemistry A 4(14): doi:10.1039/c5ta10416een_US
dc.identifier.issn2050-7488en_US
dc.identifier.issue14en_US
dc.identifier.urihttp://hdl.handle.net/10735.1/5802
dc.identifier.volume4en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.urihttp://dx.doi.org/10.1039/c5ta10416een_US
dc.rights©2016 The Royal Society of Chemistry. This article may not be further made available or distributed.en_US
dc.source.journalJournal of Materials Chemistry Aen_US
dc.subjectDissociationen_US
dc.subjectCrystalsen_US
dc.subjectCatalystsen_US
dc.subjectHumidityen_US
dc.subjectWateren_US
dc.titleUnderstanding and Controlling Water Stability of MOF-74en_US
dc.type.genrearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JECS-2471-7329.87.pdf
Size:
830.42 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ROYAL SOCIETY OF CHEMISTRY.pdf
Size:
84.06 KB
Format:
Adobe Portable Document Format
Description:

Collections